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a b s t r a c t

Healthcare applications in IoT systems have been receiving increasing attention because they help
facilitate remote monitoring of patients. In this paper, we propose a reliable oneM2M-based IoT system
for Personal Healthcare Devices. In order to use a Personal Healthcare Device as an Application Dedicated
Node in the proposed system, a protocol conversion between ISO/IEEE 11073 protocol messages and
oneM2M protocol messages is performed in gateways located between Personal Healthcare Devices
and the PHD management server. The proposed oneM2M-based IoT system for Personal Healthcare
Device is constructed, and evaluated in various experiments. The experiments show that the protocol
conversion performs effectively, and that the conversion process does not cause the system to suffer
serious performance degradation, even when the number of Application Dedicated Node is quite large.

Some Personal Healthcare Device data is too precious to lose due to system failures under u-healthcare
environments. However, until now, few studies have focused on fault-tolerant health data services.
Therefore, we also propose a fault-tolerant algorithm for the reliable IoT system inwhich gateways on the
same layer in the system are linked to form a daisy chain for fault tolerance at the level, and a gateway
stores the backup copy of the previous gateway positioned immediately ahead of the gateway in the daisy
chain. The upper-layered gateway stores the parity data of the daisy chain aswell. In thismanner, asmany
as two gateway faults occurred at the same time can be recovered. For experiments, the resource trees of
the oneM2M-based IoT system were expanded to store information on daisy chains, backup copies, and
parity. Our experiments reveal that the proposed algorithm can recover from faults on gateways in the
oneM2M-based IoT system.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Healthcare applications in IoT (Internet of Things) [1–6] sys-
tems have begun to draw attention recently, because IoT systems
provide many useful features that facilitate remote monitoring of
patients [7,8]. A Personal Healthcare Device (PHD) becomes an es-
sential part of a remotemonitoring systemwhen healthcare appli-
cations in IoT systems are considered. PHDs are portable electronic
healthcare devices that sense and measure users’ biomedical sig-
nals. As peoplemonitor their healthmore carefully than ever, PHDs
will become increasingly popular, and must be able to seamlessly
connect to main healthcare servers [9–12].

System failures [13–17] may occur because of hardware
malfunctions, software bugs, power shortages, or environmental
hazards. Most studies on IoT systems have been conducted
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assuming that few faults exist through which the operations
of an IoT system are disrupted. However, because sensors or
devices of IoT systems are geographically distributed and rarely
maintained, these systems are increasingly vulnerable to failures
such as power shortages or environmental hazards than are other
systems. Moreover, as the number of nodes in a large-scale IoT
system increases, the possibility of fault occurrence increases,
causing the system to work improperly. Moreover, some PHD data
is too precious to lose due to system failures under u-healthcare
environments. However, until now, few studies have focused on
fault-tolerant health data services in IoT environments.

The purpose of this study is twofold. The first purpose is
to propose and construct an IoT system for PHDs based on
the oneM2M communication protocol [5,6]. Whereas (programs
installed on) sensors or meters can be Application Entities (AEs)
in most oneM2M systems, (programs installed on) PHDs are the
Application Entities (AEs) in the oneM2M system proposed in this
paper. In order to use PHDs in a oneM2M system, a communication
protocol conversion process is needed because PHDs and IoT
systems use different communication protocols. In other words,
the ISO/IEEE 11073 protocol [9,10] is an international standard
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for PHD communication, while the oneM2M protocol is an
international standard for the IoT system considered in this paper.

There may be hundreds of IoT servers running in this
world, and the number of such IoT servers will increase greatly
every year. It would hardly be possible to use IoT systems if
every IoT server supported its own proprietary communications
protocol only. Therefore, standard communications protocols have
been proposed in IoT environments for interoperability, and
most the IoT servers have been made to support the standard
communications protocols. On the other hand, most PHDs do
support the ISO/IEEE 11073 communications protocol because the
protocol is a standard communications protocol for PHDs. This is
the reason why a protocol conversion process is needed in the
paper. Until now, few studies have focused on protocol conversion
process on health data services in IoT environments. In this study,
on the basis of our previous protocol conversion study [18], the
protocol conversion process is restructured and reprogrammed to
allow its application to a wider variety of PHDs. Some experiments
are performed on the prototype of the proposed system, to ensure
that the system does not suffer serious performance degradation
when the number of PHDs is quite large.

The second purpose is to propose a fault-tolerant algorithm for
the reliable IoT system. We propose a fault-tolerant algorithm in
which gateways on the same layer in the system are linked to form
a daisy chain for fault tolerance at the level, and a gateway stores
the backup copy of the previous gateway positioned immediately
ahead of the gateway in the daisy chain. The backup copy of the last
gateway in the daisy chain is stored by the upper-layered gateway
in the system. The upper-layered gateway stores the parity data of
the daisy chain as well. In this manner, as many as two gateway
faults occurred at the same time can be recovered. The fault-
tolerant algorithm that employs the daisy chain proposed in this
study is evaluated based on experiments on the multilayered
oneM2M-based IoT system. For experiments, the resource trees
of gateways and the server are expanded to store fault-tolerant-
related data such as daisy chain data, backup copies, and parity
data. Our experiments reveal that the proposed algorithm can
recover from faults on gateways in the oneM2M-based IoT system.

Healthcare applications in IoT systems have begun to draw at-
tention recently because they provide many features that are use-
ful for remote monitoring of patients, including scalability, flexi-
bility, and interoperability [7,8,19]. When healthcare applications
in IoT systems are considered, gateways located between sensors
(or PHDs) and the IoT servers usually play very important roles [8].
Good (Poor) management of the gateways usually leads to good
(poor) performance in the entire IoT system. Thus, most of the pro-
tocol conversion process and fault-tolerance process proposed in
this study are performed at the gateways.

The remainder of this paper is organized as follows. Section 2
describes some related studies, and Section3 explains the structure
of the oneM2M-based IoT system and modules constructed in
this study Section 4 discusses communication protocol conversion
mechanisms between oneM2M protocol messages and ISO/IEEE
11073 protocol messages. Section 5 shows the results of some
experiments using the system constructed in this study, along
with a discussion based on the results. Section 6 discusses the
proposed fault-tolerant algorithm for the reliable IoT system
Finally, Section 7 draws some conclusions and discusses some
possible directions for future research.

2. Related studies

The ISO/IEEE 11073 communication protocol [9,10] was
proposed by an ISO/IEEE committee as an international standard
to provide interoperability for health and medical services in
ubiquitous environments (especially using PHDs). The oneM2M

communication protocol is an international standard for IoT
systems [5,6]. In such a system, a sensor or device (i.e., an installed
program on either) represents an application dedicated node-
application entity (ADN-AE) that gathers surrounding data and
transmits them to the system’s middle node-common service
entity (MN-CSE). An MN-CSE controls or monitors ADN-AEs that
belong to the MN-CSE. Moreover, it performs processing that is
necessary to achieve efficient communication between ADN-AEs
and the infrastructure node-common service entity (IN-CSE). A
manager or user can access data stored in the IN-CSE through an
ADN-AE.

In [11], a message processing scheme for an integrated PHD
gateway in an integrated PHD management system is proposed.
The ISO/IEEE 11073 communication protocol is used to transmit
health messages measured by a PHD to the integrated PHD
management server via the related integrated PHD gateway.
The OMA DM communication protocol is used to transmit
device management commands issued by the integrated PHD
management server to a PHD via the related integrated PHD
gateway. In [10], a multilayer secure biomedical datamanagement
system for managing a very large number of diverse personal
health devices is proposed. The ISO/IEEE 11073 protocol and OMA
DM protocol are extended and implemented in the system. The
PHD gateway module receives separate ISO/IEEE 11073 or OMA
DMmessages from the PHDagents of the PHDs in order to integrate
them to send the server a single integrated message.

An IoT application that has emerged is healthcare [7,8,19,20].
The importance of gateways located between sensors and the
Internet has been recognized in IoT-based patient monitoring
systems, because the gateways have beneficial knowledge and
constructive control over both the sensor network and the data to
be transmitted over the Internet [8]. The Smart e-Health Gateway
proposed in [8] provides local storage to perform real-time local
data processing and embedded data mining.

When a patient’s biomedical data is processed, reliable IoT
systems should be provided to facilitate fault-tolerant healthcare
services. Until now, few studies have focused on fault-tolerant
health data services. Studies on fault-tolerant IoT systems have
mainly focused on routing problems [20–22]. In [20], a fault-
tolerant and scalable IoT architecture for healthcare is proposed.
Fault tolerance is achieved via backup routing between nodes and
advanced service mechanisms, to maintain connectivity in the
presence of faults on the paths between system nodes. A fault-
tolerant routing protocol for IoT systems is proposed to assure
successful delivery of packets, even in the presence of faults on
the paths between a pair of source and destination nodes [21].
The proposed approach based on the learning automata and cross-
layer concepts dynamically selects the optimum path. Dijkstra’s
algorithm can be used to select secure fault tolerant routing paths
to enhance performance and minimize energy consumption [22].

3. Structure of a oneM2M-based IoT system for PHDs

3.1. System structure

Fig. 1 shows the structure of the proposed oneM2M-based IoT
system for PHDs. In an IoT system, (a program installed on) a sensor
or device represents an Application Dedicated Node-Application
Entity (ADN-AE) that gathers surrounding data and transmits it
to the system’s Middle Node-Common Service Entity (MN-CSE). A
(program installed on a) PHD acts as an ADN-AE in the proposed
system. An MN-CSE controls or monitors ADN-AEs that belong to
the MN-CSE; moreover, it performs processing that is necessary
to achieve efficient communication between ADN-AEs and the
Infrastructure Node-Common Service Entity (IN-CSE).
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Fig. 1. Structure of the oneM2M IoT system for PHDs.

Fig. 2. CSE structure.

Because the ISO/IEEE 11073 communication protocol is an
international standard for PHD communication, the protocol is
used between PHDs (ADN-AE) and gateways (MN-CSE) in the
proposed system; the oneM2M protocol is used between PHD
management servers (IN-CSE) and MN-CSEs in ordinary IoT
systems. The IN-CSE controls and monitors all the ADN-AEs and
MN-AEs directly or indirectly. In addition, all the processed data is
stored in the IN-CSE. In the proposed system, the PHDmanagement
server performs the IN-CSE’s role. In the proposed system,
managers, medical staff, and PHD users can access biomedical data
from the PHD management server. Because the oneM2M protocol
is used for communication between the IN-CSE and an MN-CSE,
one of the MN-CSE’s responsibilities is to convert the ISO/IEEE
11073 protocol into the oneM2M protocol and vice versa.

3.2. CSE structure

Fig. 2 shows the CSE structure for the MN-CSEs and IN-CSEs
constructed in this study. The system is implemented in C#.

Some of the important system modules constructed in this
study are as follows:

– CMDH (Communication Management/Delivery Handling) pro-
vides data delivery service. It determines when and how data is
delivered.

– DMG (Device Management) provides device management
service.

– NSSE (Network Service Exposure/Service Execution and Trig-
gering) controls communication related to the base network. It
also provides network access via an MCN reference point.

– Resource Handler manages the resource tree that stores
information for all objects managed by the system.

– Message Handler and Protocol Converter analyzes received
messages, in order to execute operations in the message. It also
converts ISO/IEEE 11073 messages into oneM2Mmessages and
vice versa.

4. Protocol conversion in the oneM2M-based IoT system for
PHDs

4.1. Protocol conversion process

As mentioned previously, in our earlier study [18] we per-
formed the protocol conversion process for oximetry data only.
This study extends the protocol conversion process for various
biomedical data, including ECG, glucose, and blood pressure. There
are several types of ISO/IEEE 11073 communication messages: As-
sociation Request/Response messages, Present Request/Response
messages for notice configuration, Present Request/Responsemes-
sages for sensing data storage, and Association Release messages.

– Association Request/Responsemessage:When a PHD (ADN-AE)
wants to connect to a gateway (MN-CSE) for communication,
the PHD sends an Association Request message to the gateway,
in order to establish a connection between the PHD and the
gateway. Upon receiving the message, the gateway finds the
ID of the PHD in the message and checks if the PHD ID exists
in its resource tree. The existence of the PHD ID indicates that
the PHD has been registered in the gateway, and an Association
Response message is sent to the PHD.

– Present Request/Response message for notice configuration:
When a PHD ID does not exist in the resource tree, the PHD
must send a Present Request message to the gateway; this
message contains information such as the PHD’s environment
configuration and biomedical data format. Upon receiving the
message, the gateway stores the received information in its
resource tree and sends a Present Responsemessage to the PHD.
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Fig. 3. Communication message flow between a PHD and a gateway.

Fig. 4. Algorithm for converting ISO/IEEE 11073 Association Request messages into oneM2M Retrieve Request messages.

– Present Request/Response message for sensing data storage:
After a communication connection is established between
the PHD and the gateway, data sensed by the PHD can be
transferred to the gateway via a Present Request message;
this allows the sensing data to be stored. A Present Response
message is sent by the gateway to the PHD, to indicate whether
the sensing data was stored successfully.

– Association Release message: An Association Release message
is sent when the PHD or the gateway wants to release the
communication connection.

Fig. 3 shows communication message flow between a PHD
(AND-AE) and a gateway (MN-CSE) in the protocol conversion
process.

– FromaPHD, a gateway that is responsible formanaging the PHD
receives the association-related message (i.e., Association re-
quest/releasemessage) or present-relatedmessage (i.e., Present
Request message for notice configuration/sensing data storage)
in the ISO/IEEE 11073 format.

– There are three program modules in the gateway—a Network
Manager module, a Message Handler and Protocol Converter
module, and a Resource Manager module. Upon receiving the
message from the PHD, the Network Manager module in the
gateway delivers the message to the Message Handler and
Protocol Converter module for message analysis and protocol
conversion.

– The Message Handler and Protocol Converter module deter-
mines the protocol type used to transmit the deliveredmessage.
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Fig. 5. Conversion of an Association Request message (ISO/IEEE 11073) into a
Retrieve Request message (oneM2M).

If the ISO/IEEE 11073 protocol is used, the module extracts the
necessary information from the message to construct the cor-
responding oneM2M Primitive Request message(s), which are
delivered to the Resource Manager module. Other information
in the delivered message is stored in the gateway, to be used
when the related Response message is sent back to the PHD.

– The Resource Manager module is responsible for managing
the resource tree that stores the necessary information for
oneM2M messages. Upon receiving the oneM2M Primitive
message(s) from the Message Handler and Protocol Converter
module, the Resource Manager module executes the necessary
operations according to the oneM2M message. Then, the
oneM2M Primitive Response message(s) is (are) constructed to
deliver the operation results/status to theMessage Handler and
Protocol Converter module.

– Upon receiving the oneM2M Primitive Response message(s)
from the Resource Manager module, the Message Handler and

Protocol Converter module converts the message(s) into the
corresponding ISO/IEEE 11073 Response message, in order to
deliver it (them) to the Network Manager module.

– Finally, the NetworkManagermodule sends the ISO/IEEE 11073
Response message to the PHD.

4.2. ISO/IEEE 11073 Association Request message conversion

An algorithm for converting ISO/IEEE 11073 Association
Request messages into oneM2M Retrieve Request messages is
shown in Fig. 4.

The Association Request message is sent when a PHD (ADN-AE)
wants to establish a connection to the server (IN-CSE). After the
Network Manager in a gateway (MN-CSE) receives an Association
Request message from a PHD, the Message Handler and Protocol
Converter analyze the ISO/IEEE 11073 message and convert it
into an appropriate oneM2M message. First, the gateway checks
whether ‘‘APDU Choice Type’’ indicates an Association Request
message and whether ‘‘System Type’’ indicates an agent (PHD).
Using the ADN-AE ID of the PHD in ‘‘System ID’’, the gateway can
check whether the PHD has been registered in the oneM2M IoT
system.

The Message Handler and Protocol Converter deliver a request
message to the Resource Manager, to ask if the PHD (represented
by ‘‘System ID’’) has been registered in the resource tree of the
gateway. If not registered, the gateway sends the PHD a response
message that asks the PHD to send an ISO/IEEE 11073 Present
(Notice Configuration) Request message for registration.

If registered, the resource tree of the gateway should contain
the ADN-AE ID as the PHD ID. Then, the ADN-AE ID is assigned
to the ‘‘<to>’’ tag in the resulting oneM2M message, which is
in the form of an XML document. Other data in the Association
Request message are reference data for the message conversion,
and hence are not contained in the resulting oneM2M message.
However, they are stored and used when the related Association
Response message is generated to send to the PHD. The process
that converts the related Retrieve Response message into an
Association Response message is similar and omitted here.

Fig. 5 shows an example of the process for converting an
Association Request message into a Retrieve Request message.

Fig. 6. Algorithm for converting ISO/IEEE 11073 Present (Notice Configuration) Request messages into oneM2M Create Request messages.
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Fig. 7. Conversion of a Present (Notice Configuration) Request message (ISO/IEEE 11073) into Create Request messages (oneM2M).

Fig. 8. Algorithm for converting ISO/IEEE 11073 Present (Store Sensing Data) Request messages into oneM2M Retrieve Request messages and Update Request messages.

Basic ECG (1- to 3-lead ECG) biomedical data are used in this
example. An Association Request message and the resulting
Retrieve Request message are depicted in the upper and lower
parts of the figure, respectively. In this figure, ‘‘APDU Choice Type
(0xE200)’’ indicates that this is an Association Request message
and ‘‘System Type (0x00800000)’’ indicates that the requesting
PHD is an agent. The ‘‘system-id’’ (0x3132333435363738) in the
Association Request message is assigned to the ‘‘<to>’’ tag in the
resulting oneM2M message. The URL of the PHD is stored in the
‘‘<to>’’ tag because the PHD is stored in the resource tree of the

gateway. ‘‘<operation> 2’’ indicates that this is a Retrieve Request
message.

4.3. ISO/IEEE 11073 Present (Notice Configuration) Request message
conversion

Fig. 6 shows an algorithm for converting ISO/IEEE 11073 Present
(Notice Configuration) Request messages into oneM2M Create
Request messages.

Upon receiving an Association Response message from a
gatewaywhere a PHDhas sent anAssociationRequestmessage, the
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Fig. 9. Conversion of a Present (Store Sensing Data) Request message (ISO/IEEE 11073) into Update Request messages (oneM2M).

Fig. 10. Initial resource tree in the PHD management server.

PHD checks whether it has been registered in the oneM2M system
with which it wants to connect. In the case of nonregistration,
the PHD sends an ISO/IEEE 11073 Present (Notice Configuration)
Request message to the gateway, to provide the environmental
configuration (including the data types) of its biomedical data.

The gateway checks whether ‘‘APDU Choice Type’’ indicates
a Present Request message and whether ‘‘Event Type’’ indicates
that this message is for Notice Configuration. Then, for each

Table 1
MDS object attributes.

Attribute name Value

Handle 0
System-Type Attribute not present
System-Type-Spec-List Specialization value:

{MDC_DEV_SPEC_PROFILE_ECG, 1} and
Profile value:
{MDC_DEV_SUB_SPEC_PROFILE_ECG, 1} or
{MDC_DEV_SUB_SPEC_ PROFILE_HR, 1}

System-Model {‘‘Manufacturer’’, ‘‘Model’’}
System-Id Extended unique identifier (64-bits) (EUI-64)
Dev-Configuration-Id Standard config: 0x0258 (600)

Extended configs: 0x4000-0x7FFF

‘‘Object Handle’’, a oneM2M Create Request message is gen-
erated. A ‘‘<container resource ID>’’ tag and related informa-
tion are generated for every ‘‘Object Handle’’ (MDS object) for
the resulting oneM2M Create Request message. In addition, a
‘‘<contentInstance resource ID>’’ tag and related information are
generated for every ‘‘Attribute ID’’.

Other data in the Association Request message are reference
data for the message conversion, and hence are not contained in
the resulting oneM2Mmessage. However, they are stored and used
when the related Association Response message is generated to
send to the PHD. The process that converts the related Retrieve
Responsemessage into an Association Responsemessage is similar
and omitted here.

Fig. 7 shows an example of the process for converting
a Present (Notice Configuration) Request message into Create
Request messages for ECG data. A Present (Notice Configuration)
message and the resulting Create Request messages are depicted
in the left and right portions of the figure, respectively. ‘‘APDU
Choice Type (0xE700)’’ indicates that this is a Present Request
message. ‘‘event-type (0x0D1C)’’ indicates that this is a Notice
Configuration message. ‘‘config-obj-list.count (0x0002)’’ indicates
that there are two types of objects (biomedical data) sent
by the PHD. A Create Request message is generated for each
object. The data in the Present (Notice Configuration) message

Fig. 11. ISO/IEEE 11073 Present (Notice Configuration) Request message sent by a Pulse Oximetry PHD.
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Fig. 12. oneM2M Operation (Create) Primitive Request message related to the ISO/IEEE 11073 Present (Notice Configuration) Request messages in Fig. 11.

Fig. 13. Updated resource tree after the Pulse Oximetry PHD is registered.
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Fig. 14. Average transmission times for messages sent from PHDs to the PHD
management server.

represents the detailed description of the object (ECG in this
figure) and is assigned to the ‘‘<container>’’ tag in the resulting
Create Request oneM2M message. The Create Request message
is then delivered to the Resource Manager in order to add the
‘‘<container>’’ node to its resource tree; this indicates that the
PHD and its ECG data type are registered. In this figure, two
types of measurement data objects are displayed: one for average
heart rates (MDC_ECG_HEART_RATE), and one for the R-R interval
(MDC_ECG_TIME_PD_RR_GL).

Other mandatory object attributes for basic ECGs (1- to 3-lead
ECGs) and MDSs (medical device systems) are shown in Table 1.
‘‘System-Type-Spec-List’’ is a list of device type/version pairs.
For a basic ECG agent, a specialization value of MDC_DEV_SPEC_
PROFILE_ECG is included in the System-Type-Spec-List attribute.
The profile value for a basic ECG agent supporting a simple ECG
profile is set to MDC_DEV_SUB_SPEC_PROFILE_ECG.

Fig. 16. Baseline structure of the daisy chain for fault-tolerance.

4.4. ISO/IEEE 11073 Present (Store Sensing Data) Request message
conversion

Fig. 8 shows an algorithm for converting ISO/IEEE 11073 Present
(Store Sensing Data) Request messages into oneM2M Retrieve
Request messages and Update Request messages.

Fig. 15. Augmented multilayered oneM2M-based IoT system model.
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Fig. 17. Fault-tolerance algorithm: backup phase.

Fig. 18. Fault-tolerance algorithm: fault recovery phase.

When a PHDmeasures biomedical data and wants to store it in
the server, the PHD sends the gateway an ISO/IEEE 11073 Present
(Store Sensing Data) Request message. Fig. 9 shows of the process
for converting Present (Store Sensing Data) Request messages into
Retrieve Request messages and Update Request messages. When a
PHD wants to send sensed ECG data to a gateway in a oneM2M
system, a Present (Store Sensing Data) Request message is sent.
A Present (Store Sensing Data) message and the resulting Update
Request messages are depicted in the upper and lower portions of
the figure, respectively. ‘‘APDU Choice Type (0xE700)’’ and ‘‘Event
Type (0x0D1D)’’ indicate that this is a Present (Store Sensing Data)
Request message. Two heart beat measurements are delivered;
121 bpm and 512 ticks for 7.25 s.

The algorithms explained in Sections 4.2 and 4.3 are executed
once, while the algorithm in Section 4.4 is executed whenever
sensing data is stored. Obviously, the complexity of the algorithm

in Section 4.2.3 is O(m), where m is the number of sensing data
elements stored in one ISO/IEEE 11073 message. Therefore, the
conversion process proposed in this paper causes some minor
overhead.

5. Experiments

A prototype of the proposed M2M-based IoT system for PHDs
was constructed, and evaluated in several experiments. Table 2
shows experiment environments for this study. PCs are used for the
PHDmanagement server (IN-CSE) and gateways (MN-CSEs), while
notebooks are used for PHDs (ADN-AEs). In the experiments, up
to 500 Pulse Oximetry PHDs [11] were used. Because hundreds of
actual PHDs cannot be obtained, threads that emulate PHDs were
generated and used as ADN-AEs for the experiments.
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Fig. 19. Fault recovery procedure in the case of two nonconsecutive gateway faults (Case 2).

Fig. 20. Fault recovery procedure in the case of two consecutive gateway faults (Case 3-1).

Table 2
Experiment environments.

PHD management server Gateway PHD

CPU Intel Core i7-3770 (3.4 GHz) Intel Core i5-650 (3.2 GHz) Intel Core i3-2367M (1.4 GHz)
Main memory 8 GB 4 GB 2 GB
HDD SSD SSD HDD
Operating system Windows 7 Windows 7 Windows 7

Fig. 10 shows the initial resource tree in the PHD management
server

When a Pulse Oximetry PHD wants to register in the PHD
management server, it sends the server an ISO/IEEE110703Present
(Notice Configuration) Request message, as shown in Fig. 11.
Upon receiving the message, the gateway converts the ISO/IEEE
110703message into an XML document representing the oneM2M
Operation (Create) Primitive Request message, as shown in Fig. 12.
Finally, the oneM2M message is sent to the server, in order to
register the PHD in the server. Registration of the PHD is realized
by adding a new (shaded) ‘‘<AE>’’ node in the resource tree of the
server, as shown in Fig. 13.

Another experiment analyzed the extent to which protocol
conversion overhead affects system performance, especially when
a large number of PHDs are being utilized. In the experiments,
threads representing up to 500 Pulse Oximetry PHDs were
generated to send measured SpO2 values simultaneously. Fig. 14
shows the average transmission times for messages sent from
the PHDs to the PHD management server. The figure shows that
the average transmission times increase linearly as the number
of PHDs increases; this indicates that the protocol conversion

overhead does not seriously affect system performance when
many PHDs are involved.

6. Fault-tolerant algorithm for a reliable multilayered
oneM2M-based IoT system

6.1. Augmented multilayered oneM2M-based IoT system model

Fig. 15 shows the augmented multilayered oneM2M-based IoT
system model used in this study. The multilayered oneM2M-
based IoT system (Fig. 1) is augmented with daisy chains for the
purpose of fault tolerance in this study. In this figure, the lower-
layered gateways are linked together to form a daisy chain for fault
tolerance along with the upper-layered gateway (or server) that is
responsible formanaging the lower gateways. PHDs (ADNs) are not
included in the process of fault tolerance because most ADNs in an
IoT system do not have sufficient processing power and memory
to store backup copies of other ADNs. Moreover, because ADNs do
not use information such as resource trees for a oneM2M-based IoT
system, they have little information to recover from its failure.
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Fig. 21. Fault recovery procedure in the case of two consecutive gateway faults (Case 3-2).

Fig. 22. Fault recovery procedure in the case of two consecutive gateway faults (Case 3-3).

Fig. 23. Daisy chain information in the resource tree used in the experiment.

6.2. Fault-tolerant algorithm using daisy chains

Fig. 16 shows the baseline structure of a daisy chain for fault
tolerance used in this study. In this figure, three lower-layered
gateways (Gs) and one upper-layered gateway, or the server (S)
that forms a daisy chain necessary to participate in the fault-
tolerance process, exist. G1 is PREV(G2), the previous gateway of
G2, whereas G3 is POST(G2), the posterior gateway of G2 in the
daisy chain. Every gateway stores a backup copy of its previous
gateway in the daisy chain. G1, G2, and G3 store the backup copies
of S, G1, and G2, respectively. The upper-layered gateway or the
server S stores the backup copy of G3 as well as the parity data
of all members of the daisy chain. The parity data are obtained by
performing exclusive-OR operations on all data in the daisy chain.

The proposed fault-tolerant algorithm consists of two phases:
backup and fault recovery. Figs. 17 and 18 show the backup phase
and fault recovery phase algorithms, respectively. In the backup
phase, a gateway stores the backup copy sent by the previous

gateway in the daisy chain whenever the previous gateway’s data
are updated or a certain event (e.g., time expiration) occurs. In
addition, the parity data stored in S is updated whenever any
data in the daisy-chain are updated or a certain event (e.g., time
expiration) occurs.

In Fig. 18, three cases are considered for fault recovery. In
Case 1, a faulty gateway G requests its data to the upper gateway
(or server) after which G is up and running. The upper gateway (or
server) then requests that POST(G), the posterior gateway of G, in
the daisy chain send to G the backup copy of G that is stored in
POST(G).

Fig. 19 illustrates the means by which to recover the faulty
gateways when two nonconsecutive faulty gateways (G1 and
G3) exist, as in Case 2. The daisy chain alive from the faults is
represented by dotted lines. The fault recovery procedure for the
case is as follows: ① the faulty gateways G1 and G3 request their
data send to them after which G1 and G3 are up and running;
② S requests that the POST(G1) (POST(G3)) in the daisy chain send
to G1 (G3) the backup copy of G1 (G3) that is stored in G2 (S);
③ G2 and S then send the backup copies of G1 and G3 to G1 and
G3, respectively. Finally, the daisy chain for fault tolerance is fully
recovered.

When two nonconsecutive faulty gateways (G1 and G2) exist,
as in Case 3, the fault recovery procedure for the case becomes
somewhat complicated. In Case 3-1, in which only faulty gateways
(i.e., neither faulty server nor faulty upper-layered gateway) are
considered, as shown in Fig. 20, the fault recovery procedure for
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Fig. 24. Resource tree of the daisy chain information used in the experiment.

Fig. 25. Request for recovery message from CSE01.

the case is as follows: ① the faulty gateways G1 and G2 request
their data to the upper gateway (or server) S, after which G1 and
G2 are up and running; ② S requests that G3 (= POST(G2)), in the
daisy chain send to G2 the backup copy of G2; ③ G2 receives its
backup copy from G3, and G2 recovers its data; ④ S recovers G1’s
data by using G2’s data, G3’s data, and S’s parity data, and then S
sends G1’s recovered data to G1; ⑤ For backup copies, S requests
that G1 (= PREV(G2)) and S (= PREV(G1)) send their data to G2 and
G1, respectively; ⑥ G1 and G2 then recover the backup copies of S
and G1, respectively. Finally, the daisy chain for fault tolerance is
fully recovered.

When two nonconsecutive faulty gateways (S and G1) exist and
one of them is the upper-layered gateway (or the server), as in Case
3-2 (shown in Fig. 21), the fault recovery procedure for the case is
as follows:① Let S recover its data aswell as parity data byusing the
daisy chain at the upper layer; ② S requests that G2 (= POST(G1))
in the daisy chain send G1 the backup copy of G1; ③ G2 sends G1
the backup copy of G1, and G1 recovers its data; ④ S sends its data
to G1, and G1 recovers the backup copy of S; ⑤ S requests that G3
(= PREV(S)) send G3’s data to S; ⑥ S then restores the backup copies
of G3. Finally, the daisy chain for fault tolerance is fully recovered.
The explanation for Case 3-3 in Fig. 22 is similar and thus omitted
here.

6.3. Correctness of the fault-tolerant algorithm using daisy chains

Let us consider the correctness of the proposed algorithm
explained in the previous section.

(Case 1): It is straightforward in the sense that, because G’s
backup data is stored in POST(G), it is enough for G to
receive G’s backup data from POST(G).

(Case 2): Because there are two nonconsecutive faulty gateways
G1 and G2, POST(G1) and POST(G2) are alive and
G1 (G2) can receive its backup data from POST(G1)
(POST(G2)).

(Case 3-1): In this case, Gi (= PREV(Gj)) and Gj are faulty. Because
POST(Gj) is alive, Gj can recover its data simply by
receiving its backup data from POST(Gi), as in step ③.
When faults occurred on Gj, Gi’s backup data stored in
Gj was also lost. Therefore, Gi cannot recover its data
just by receiving its backup data from Gj (= POST(Gi)).
Instead, Gi’s data can be recovered by performing
exclusive operations on all data in the daisy chain,
including S’s parity data, as in step ④.

(Case 3-2): In this case, Gi, the upper-layered gateway, and Gj
(= POST(Gi)) are faulty. Gi cannot recover from any
gateways located at the current layer because POST(Gi)
is faulty and no gateways have the parity data on all
gateways at the current layer. Instead, Gi can recover
its data as well as the parity data by applying the
proposed algorithm to gateways at the upper layer, as
in step ①. After Gi is recovered, only Gj still remains to
be recovered, which is similar to Case 1.

(Case 3-3): This case is similar and thus omitted here.
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Fig. 26. oneM2M response message for recovery.

Fig. 27. Backup copy and parity data in the resource tree of IN.

6.4. Experiments on the fault-tolerant algorithm using daisy chains

For this study, the resource trees of the oneM2M-based IoT
system were expanded to store information on daisy chains,
backup copies, and parity. In this experiment, the expanded
resource tree of a gateway is used as data to be recovered after
failure of the gateway. Fig. 23 shows the daisy chain information
in the resource tree for experiments on the proposed fault-tolerant

algorithm. In this figure, there are one server (‘‘IN’’) and three
gateways (‘‘CSE01’’, ‘‘CSE02’’, and ‘‘CSE03’’). The resource tree can
be depicted as shown in Fig. 24.

When CSE01 is up after its failure, CSE01 requests IN for its
data for recovery, as shown in Fig. 25. Then, IN requests CSE02 to
send CSE01’s backup data stored in CSE02. Fig. 26 shows a oneM2M
response message to send CSE01 the backup data for recovery. The
box in the figure shows the backup data of 4182 bytes to be sent
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for CSE01’s recovery. In this experiment, the backup data is the
expanded resource tree of CSE01. The server IN has a backup copy
of CSE03’s data and parity data of all members of the daisy chain.
The resource tree in server IN is depicted in Fig. 27.

7. Conclusion

In this paper, a reliable oneM2M-based IoT system for PHDs
is proposed. (Programs on) PHDs are used as ADN-AEs in the
oneM2M system. Gateways (MN-CSEs) are used to link PHDs and
the PHD management server (IN-CSE). One of the important tasks
assigned to the gateways is to convert the ISO/IEEE 11073 protocol
messages from PHDs into the IoT server’s oneM2M protocol mes-
sages, and vice versa. Communicationmessage flow between PHDs
and gateways is proposed for managing the protocol conversion
process, and the relationships between oneM2M protocol mes-
sages and ISO/IEEE 11073 protocol messages are described. The
oneM2M-based IoT system for PHDs was constructed, and evalu-
ated in various experiments. The experiments show that the pro-
tocol conversion works effectively, and that the system does not
suffer serious performance degradation from the conversion pro-
cess, even when the number of PHDs is quite large.

We also proposed a fault-tolerant algorithm for a reliable IoT
system in which gateways on the same layer in the system are
linked to form a daisy chain for fault tolerance at the level,
and a gateway stores the backup copy of the previous gateway
positioned immediately ahead of the gateway in the daisy chain.
The backup copy of the last gateway in the daisy-chain is stored by
the upper-layered gateway (or server) in the system. The upper-
layered gateway stores the parity data of the daisy chain as well.
In this manner, as many as two gateway faults occurred at the
same time can be recovered. The resource trees of the oneM2M-
based IoT systemwere expanded to store information on the daisy
chains, backup copies, and parity for this study. We evaluated
our proposed fault-tolerant algorithm using the daisy chain in
experiments on the multilayered oneM2M-based IoT system. Our
experiments reveal that the proposed algorithm can recover from
faults on gateways in the oneM2M-based IoT system.
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