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Preface

The Internet of Things (IoT) usually refers to a worldwide network of inter-
connected heterogeneous objects (sensors, actuators, smart devices, smart objects,
RFID, embedded computers, etc.) uniquely addressable, based on standard com-
munication protocols.

Beyond such a definition, a new definition of IoT is emerging seen as a loosely
coupled, decentralized system of cooperating Smart Objects (SOs). An SO is an
autonomous, physical digital object augmented with sensing/actuating, processing,
storing, and networking capabilities. SOs are able to sense/actuate, store, and
interpret information created within themselves and around the neighboring
external world where they are situated, act on their own, cooperate with each other,
and exchange information with other kinds of electronic devices and human users.
Their importance resides in the capabilities they have to make physical environ-
ments ‘‘smart’’ so as to provide novel cyber-physical services to people.

However, such SO-oriented IoT raises many ‘‘in-the-small’’ and ‘‘in-the-large’’
issues involving SO programming, IoT system architecture/middleware, and
methods/methodologies for the development of SO-based applications.

This book focuses on exploring recent advances in architectures, systems, and
applications for an IoT based on Smart Objects. The book specifically covers the
following topics: (i) middleware for SOs; (ii) agent-oriented SOs; (iii) service-
oriented SOs; (iv) Smart applications; (v) SOs indexing and discovery; (vi) IoT
technologies for Smart Manufacturing; (vii) IoT technologies for Smart Grids;
(viii) SOs trajectory mining for Smart City scenarios; (ix) Smart Health systems;
and (x) Sensing platforms. The book is structured into ten authored chapters
focused on the above-mentioned topics and provides novel and cutting-edge
contributions for next-generation IoT systems. A brief introduction to the chapters
is provided below.

‘‘Middlewares for Smart Objects and Smart Environments: Overview and
Comparison’’, by Giancarlo Fortino, Antonio Guerrieri, Wilma Russo, and Claudio
Savaglio, presents an overview of middlewares for SOs and smart environments
and compares them according to the most important general and specific
requirements that have been identified in the literature so far. The chapter aims at
providing a clear picture of the suitability of such middlewares to support the
development of SO-based IoT systems.
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‘‘Mobile Agents-Based Smart Objects for the Internet of Things’’, by Teemu
Leppänen, Jukka Riekki, Meirong Liu, Erkki Harjula, and Timo Ojala, proposes a
method for the integration of mobile agents and SOs in order to facilitate coop-
eration and global intelligence. The chapter discusses SOs, agents, and systems
requirements to enable cooperation, introduces a RESTful framework for agent
creation, migration, and control, and presents an evaluation method to assist in
system and agent composition design.

‘‘Service-Oriented Middleware for the Cooperation of Smart Objects and Web
Services’’, by Andrea Giordano and Giandomenico Spezzano, discusses how
enterprise web services can be integrated with RESTful SOs by exploiting the
concept of service choreography, undertaking the scalability and dynamicity issues
of the IoT in order to extend the existing service composition mechanisms. The
chapter shows that applications involving SO interaction can be seen as a parti-
cular case of event-driven composite services.

‘‘CO-Based Outdoor Smart Lighting for Energy Aware Factory’’, by Anna
Florea, Ahmed Farahat, Corina Postelnicu, Jose L. Martinez Lastra, and Francisco
J. Azcondo Sánchez, describes an approach to the implementation of smart
applications in a multi-purpose environment following the cooperating objects
paradigm, aimed at increasing energy awareness, reducing power consumption,
and enhancing user experience. As a use case, the chapter presents a smart lighting
application for a multi-purpose outdoor environment.

‘‘A Service-Oriented Discovery Framework for Cooperating Smart Objects’’,
by Marco Lackovic and Paolo Trunfio, presents a service-oriented framework
designed to support indexing, discovery, and selection of network-enabled SOs.
The framework enables the dynamic discovery of distributed SOs and, specifically,
their services and operations described through an ad hoc metadata model. The
chapter presents the metadata model, the framework architecture and imple-
mentation, and the programming APIs.

‘‘Smart Manufacturing Through Cloud-Based Smart Objects and SWE’’, by
Pablo Giménez, Benjamín Molina, Carlos E. Palau, Manuel Esteve, and Jaime
Calvo, discusses how IoT concepts can be applied to smart manufacturing, with
smart entities that cooperate to achieve broader goals or to increase the overall
knowledge in a factory through information sharing. The chapter shows that
interoperability can be achieved by means of Sensor Web Enablement (SWE),
while processing capabilities can be provided by virtualizing SOs on a Cloud-
based datacenter.

‘‘The Cloud of Things Empowered Smart Grid Cities’’, by Stamatis Karnous-
kos, discusses the impact that real-time monitoring and management capabilities
offered by the IoT can have on the Smart Grid, and its applicability in Smart City
scenarios. As an example case, the chapter highlights the efforts within the
NOBEL project, which has prototyped an open service-based infrastructure for
energy monitoring, management, and brokering, and points out some key aspects
for the future Smart Grid City.

‘‘Trajectory Data Analysis Over a Cloud-Based Framework for Smart City
Analytics’’, by Eugenio Cesario, Carmela Comito, and Domenico Talia, proposes
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a methodology and a Cloud-based framework for trajectory pattern mining, which
can be used for analyzing the trajectories of SOs in large-scale environments,
particularly in Smart City scenarios. The chapter provides an experimental
evaluation showing that trajectory pattern mining can take advantage from a
Cloud-based parallel execution environment.

‘‘People-Centric Service for mHealth of Wheelchair Users in Smart Cities’’, by
Lin Yang, Wenfeng Li, Yanhong Ge, Xiuwen Fu, Raffaele Gravina, and Giancarlo
Fortino, presents a real-time health-driven model for a people-centric healthcare
context, introduces a social-aware architecture to support SOs mapping to online
social networks, then discusses discovering and interacting with shared SOs in a
virtual community. The chapter presents also a prototype for validating the
proposed model.

Finally, ‘‘Experiments With a Sensing Platform for High Visibility of the Data
Center’’, by João Loureiro, Nuno Pereira, Pedro Santos, and Eduardo Tovar,
presents a hardware sensing platform for collecting physical parameters in a data
center, which can serve as an enabler to optimize energy consumption. The chapter
includes an analysis of the delay to obtain data from sensor networks under
different data center topologies, and discusses some capabilities of the system in a
real deployment.

We would like to thank all the book contributors, the anonymous reviewers, and
Christoph Baumann from Springer for his support and work during the publication
process.

Rende, Italy Giancarlo Fortino
Paolo Trunfio
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Middlewares for Smart Objects and Smart
Environments: Overview and Comparison

Giancarlo Fortino, Antonio Guerrieri, Wilma Russo and Claudio Savaglio

Abstract In the last few years, the Internet of Things (IoT) is gaining more and
more attention both in the academic and in the industrial worlds. IoT is a concept
describing a vision in which everyday objects will be connected to the Internet, will
be identified, and will, possibly, communicate with other devices. These objects
are typically referred as “smart objects”, which can be defined as real artifacts
augmented with computing, communication, sensing/actuation and storing func-
tionalities. Their importance resides in the capabilities they have to make physical
environments “smart” so as to provide novel cyberphysical services to people. In
the last years, several middlewares for SOs were proposed. Middlewares, widely
used in conventional distributed systems, are fundamental tools for the design and
implementation of smart objects as well as of smart environment applications. They
provide general and specific abstractions (e.g. object computation model, inter-object
communication, sensory/actuation interfaces, discovery service, knowledge manage-
ment) through which smart objects and their related applications can be easily built
up. In this chapter, we present an overview of middlewares for smart objects and
smart environments and compare them according to the most important general and
specific requirements that have been identified in the literature so far. Moreover,
such middlewares are also compared according to a feature-oriented framework to
better highlight their distinctive properties. The comparison therefore provides a
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2 G. Fortino et al.

clear picture about the suitability of such middlewares to support the development of
SO-based IoT systems. Finally, the chapter will briefly discuss on-going challenges
in this research area.

1 Introduction

In the 1999 Kevin Ashton [1] introduced a novel paradigm named Internet of Things
(IoT) [2]. The basic idea of IoT is “the pervasive presence around us of a variety
of things or objects which, through unique addressing schemes, are able to interact
with each other and cooperate with their neighbors to reach common goals” [3]. The
research in this context has done several steps in the direction of a connected and
collaborating world and the things of the IoT are starting to become smarter thanks
to their augmentation with new, small, and pervasive technologies [4].

Smart Objects (SOs), which are important components of the IoT, are everyday
objects that are equipped with hardware components such as a radio for commu-
nication, a CPU to process tasks, sensors/actuators to be conscious of the world in
which they are situated and to control it at a given instant. Several definitions of SO
are available in the literature. In [5] a smart object “is an everyday artefact aug-
mented with computing and communication, enabling it to establish and exchange
information about itself with other digital artefacts and/or computer applications”.
This definition lacks of the interaction that humans can have with SOs and that is
introduced in [6], where the author proposes a “continuous interplay between objects
and people”.

Developing SOs raises many issues mostly regarding the communication among
SOs, the interface with sensors/actuators, the proactivity, the knowledge manage-
ment, and the distributed computation. In order to facilitate the development process,
research is focused on defining new frameworks/middlewares for the rapid proto-
typing of SOs. These middlewares commonly provide a well defined platform and
an API through which new SOs can be programmed and deployed. These SOs are
able to collaborate and to support Ambient Intelligence [7] in order to build so called
Smart Environments (SEs) [8].

The concept of SE appeared prior to the IoT. An SE can be defined as a cyber-
physical environment augmented with a collection of embedded systems elaborat-
ing heterogeneous data and interacting with people. In the literature many different
definitions of SE do exist, among them: (i) “a small world, where all kinds of smart
devices are continuously working to make inhabitants’ lives more comfortable” [8]
and (ii) “an environment that is able to acquire and apply knowledge about the
environment and its inhabitants in order to improve their experience in that envi-
ronment” [9]. Several middlewares for the rapid prototyping of SEs have been also
proposed so far [10].

This chapter aims at providing a framed overview about the main middlewares
both in the SO and SE research areas. In particular, it proposes a qualitative com-
parison framework for such middlewares on the basis of the requirements identified
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in the surveyed works. Moreover, middlewares are compared with respect to several
important features extrapolated from the overviewed state-of-the-art.

The chapter is organized as follows. Section 2 introduces the requirements that
both SE and SO middlewares should provide. Section 3 overviews the most important
middlewares for SE and SO development. In Sect. 4, starting from the identified
requirements, a comparison among the overviewed work is discussed. Moreover,
some important common features of the overviewed middlewares are identified and
a comparison based on these characteristics is performed. Finally, conclusions are
drawn and some future challenges in the IoT middleware area are discussed.

2 Middleware Requirements

The objective of this section is to analyze the requirements for both SE and SO
middlewares. Such requirements will be then used to compare the most important
currently available middlewares that will be systematically overviewed in the Sect. 3.

With regards to the SE middlewares, in [11] the following five general require-
ments have been identified:

SE_Req1: “Abstraction over heterogeneous input and output hardware devices”.
Input/Output devices are usually heterogeneous so it is hard, some-
times impossible, to couple them or make them interact. Abstractions
are needed to virtualize them and let them be used as they were homo-
geneous by following a kind of “plug-and-play” paradigm.

SE_Req2: “Abstraction over hardware and software interfaces”.
Interfaces, both hardware and software, are heterogeneous too. So they
need to be made generic and standardized through higher level mech-
anisms so that their use will be straightforward. Thus, hardware and
software components based on such high-level interfaces (e.g. service
oriented interfaces) will be able to seamlessly interact.

SE_Req3: “Abstraction over data streams (continuous or discrete data or events)
and data types”.
Different hardware and software components (e.g. sensors, devices, smart
objects, mobile apps) usually produce data according to different modal-
ities, formats and types. Thus, abstractions are needed to formalize data
streams generated by such components. Both continuous data stream,
discrete data and sporadic events should be defined under a common
framework (e.g. through the use of XML-like languages). Moreover, the
representation of data types needs to be standardized. This would allow
interoperability in data exchange among heterogeneous components.

SE_Req4: “Abstraction over physicality (location, context)”.
Objects in smart environments and the smart environments themselves are
usually situated. This implies that they have static or dynamic locations
and refer to one or multiple contexts during their lifecycle. Abstractions
are therefore needed to capture and provide the concepts of location and
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context as they are useful in the design and implementation of smart
environment applications.

SE_Req5: “Abstraction over the development process”.
To analyze, design and implement smart environments, suitable methods
and tools need to be defined that are able to effectively model them by
using high-level abstractions and fully support their implementation and
deployment.

While the aforementioned requirements can be exploited for any smart environments
(including those based on smart objects), in [12] authors defined specific requirements
for smart object middlewares. In the following, they will be presented and discussed.

SO_Req1: “Heterogeneity and Application Development”
Applications that use smart objects should be programmed independently
from SOs produced by specific SO vendors. For instance, if an applica-
tion is based on a “smart chair”, it should be able to use smart chairs built
by different SO vendors. Moreover, applications should be able to exploit
SOs that will be built in the future. This implies to employ a standard-
ized approach or, if not applicable as de-iure standardization is a very
long process, to exploit software layering-based (dynamic) adaptation
techniques between application and smart object levels.

SO_Req2: “Augmentation Variation of Smart Objects”
SOs provide a set of services that can vary in number and types both
among different SOs and similar SOs. In particular, different SOs can
provide the same services whereas two similar SOs can provide differ-
ent services. Thus, SOs cannot be crisply classified only by the object
type. Moreover, they are unlike to provide standard interfaces. Augmen-
tation variation of SOs is an important requirement as it defines how SOs
can variate their augmentation by providing diversified services that can
change during their lifecycle. This implies to design not only methods to
dynamically add/modify/remove SO services but also how they will be
actually furnished.

SO_Req3: “Management of Smart Object”
An effective management of SOs is crucial in IoT applications where
tons of distributed SOs could potentially interact with each other and/or
be used to fulfill a final goal. Applications and SOs should be therefore
able to dinamically adapt as SOs could continuously change for differ-
ent purposes: augmentation variation, mobility, failures, etc. Thus, the
matching among SO services and application requirements should be
done often at run-time. Discovery services are therefore strategic in such
a dynamic context to look up and retrieve SOs according to their static
and dynamic properties.

SO_Req4: “Evolution of Smart Object Systems”
Applications and SOs should be simply and rapidily prototyped and
upgraded through proper programming abstractions. The evolution can
be driven by programming, by learning, or by both. In particular,



Middlewares for Smart Objects and Smart Environments: Overview and Comparison 5

evolution by learning is usually based on smart self-evolving components
(application-level components and smart objects) able to self-drive their
evolution on the basis of some learning model (e.g. software agents [13]).

3 Smart Environment and Smart Object Middlewares:
An Overview

In this section, middlewares for the rapid prototyping of intelligent environments will
be presented and, for each of them, the reference project, objectives, main features,
and some applications will be described.

In particular, Sect. 3.1 introduces SE middlewares that were proposed in a context
different from the IoT, as well as SE middlewares that allow to develop, as part of a SE,
smart devices that exhibit some of the characteristics typical of SOs. Middlewares
specifically conceived for SO development and contextualized in the IoT will be
addressed in Sect. 3.2.

3.1 Middleware for Smart Environments

In this section, the main SE middlewares will be presented (ROS [11, 14], iRoom
[15, 16], Aura [17–19], Context Toolkit [20, 21], JCAF [22, 23]), as well as some
middlewares (Gaia [24–26], Ambient Agoras [27, 28]) that are particularly interest-
ing since they make available some abstractions (e.g. active spaces and electronic
walls) allowing the augmentation of devices.

3.1.1 ROS

Starting from the assertion “an intelligent environment is very similar to a static,
non-removable robot”, in [11] authors present an adaptation of middleware sys-
tems, thought for the robotic domain, to the development of smart environment:
Player/Stage [29] and its evolution ROS,1 namely Robot Operating System [14].

The main goals of ROS, summarized in [14], are the following: Peer-to-peer,
Tools-based, Multi-lingual, Thin, Free and Open-Source. These goals represent the
challenges encountered when developing large-scale service robots as part of the
STAIR project2 at Stanford University and the Personal Robots Program3 at Willow
Garage.

1 https://vmi.lmt.ei.tum.de/ros/.
2 http://stair.stanford.edu.
3 http://pr.willowgarage.com.

https://vmi.lmt.ei.tum.de/ros/
http://stair.stanford.edu
http://pr.willowgarage.com
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The fundamental concepts of the ROS implementation are nodes, messages,
topics, and services. Nodes are processes that perform computation and commu-
nicate with each other by passing messages. A message is a strictly typed data
structure. A node sends a message by publishing it to a given topic, which is simply
a string. A node that is interested to particular data will subscribe to the appropriate
topic. In addition, the services support direct communication (e.g. for synchronous
transactions) defined as a string name and a pair of strictly typed messages: one for
the request and one for the response.

ROS has been used to implement the “Cognitive Office”, an intelligent envi-
ronment obtained by the transformation of a normal office room augmented with
heterogeneous sensors and actuators managed by the ROS middleware.

3.1.2 iRoom

The Intelligent Room (iRoom) Project [15, 16], now part of the aire project,4 starts
from the idea to create ambients in which distributed computation adapts to environ-
ment and people just augmenting the environment with minimal decorations (such
as camera or microphones).

The aim of the iRoom system is to track people in a room, understand what they
do or say, give them news and/or suggestions, and interact with them.

The software controlling the iRoom environment is divided in three conceptual
layers: the lowest one provides elements to interact with the room, the middle one
wraps all the previous interaction elements in a uniform agent interface, the highest
one contains agents implementing high level applications.

Agents speak to one another to control and coordinate tasks using Metaglue and
Hyperglue [30], which provide simple, robust, fault tolerant communication mecha-
nisms to software agents. Agents are implemented using SodaBot [31], an environ-
ment for creating and using distributed software agents.

The most important applications implemented in the Intelligent Room environ-
ment are related to the transformation of a room into a command center for disaster
relief, to make interactive a space for virtual tours of the MIT Artificial Intelligence
Laboratory. Other applications help users finding data on the Internet and organizing
information about meetings.

3.1.3 Aura

Project Aura5 [17–19] was designed with the aim to provide each user of the frame-
work with an invisible halo of computing and information services that persists
regardless of location.

4 http://aire.csail.mit.edu/.
5 http://www.cs.cmu.edu/~aura/.

http://aire.csail.mit.edu/
http://www.cs.cmu.edu/~aura/
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It allows a user to transparently preserve continuity in his/her work when moving
between different locations (tailoring the user’s tasks to the resources in the spe-
cific environments), and adapts the computation of a particular environment in the
presence of dynamic resource variability.

The Aura architecture is composed of user tasks (expressed as collections of ser-
vices), the task manager which manages the user tasks, a context observer which
allows to execute a task in the target environment, an environment manager that con-
stantly monitors resources. The services needed to support a user task are specifically
implemented on the target platform.

To allow different Aura environments to access user’s data, the framework uses an
extended version of Coda [32] which provides nomadic file access and data staging.

Several applications have been built on top of Aura with the goal of supporting
on campus collaboration. An example is the Portable Help Desk that allows a user
to know the location of teammates on the campus as well as information about them.
Another application implemented for the campus is Idealink which provides users
with features that let them communicate their ideas to others via a shared distributed
blackboard.

3.1.4 Context Toolkit

The Context Toolkit project6 [20, 21] started from the idea that the context can
improve the experience in the interaction between humans and computers.

Context Toolkit is a framework for context-sensing and context-aware application
development. In particular, there are three categories of features that a context-aware
application can support: presentation of information and services to users; automatic
execution of a service for a user; and tagging of context to information to support
later retrieval.

The Context Toolkit provides three important abstractions: widgets, interpreters,
and aggregators. The context widget [33] acquires the context and makes it available
to applications in a generic manner (applications don’t have to worry about how the
context was sensed). Applications access the context from widgets using poll and
subscribe methods. The context interpreter uses historical context informations to
predict the future actions or intentions of users. The context aggregator aggregates
contexts from single entities to characterize the situation of that entities.

Many applications have been built on top of Context Toolkit: In/Out Board, that
allows to trace people entrance/exit from a research lab; Context-Aware Mailing
List, a mailing list service that only sends emails to who is actually in a building;
Dynamic Ubiquitous Mobile Meeting BOard (DUMMBO), an instrumented digitiz-
ing whiteboard that supports the capture and access of informal and spontaneous
meetings; Intercoms, intended to facilitate conversations between occupants distrib-
uted throughout the home; Conference Assistant, a context-aware application that
assists conference attendees.

6 http://www.cs.cmu.edu/~anind/context.html.

http://www.cs.cmu.edu/~anind/context.html
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3.1.5 JCAF

The Java Context-Awareness Framework, or JCAF7 [22, 23], a context-awareness
infrastructure and programming API, aims to make available for programmers a Java-
based, lightweight and robust framework, easily extensible to support the creation
of specific context-aware applications.

The main components of the framework are: the Context Services, that are respon-
sible for handling context in a specific environment; the Context Clients, that are the
context-aware applications using the JCAF infrastructure by accessing one or more
context services; the Context Monitor and Context Actuator that allow, respectively,
to monitor the environment acquiring context information and to affect or change
the context.

JCAF was designed to be highly modifiable and extensible at runtime, then ser-
vices, monitors, actuators and clients can be added to the JCAF runtime infrastructure
while running.

The most important applications developed on top of JCAF are the following: the
Proximity-Based User Authentication, that enables a user to log into a computer by
approaching it; the Context-Aware Hospital Bed [34], a hospital bed that adjusts itself
and reacts according to entities in its physical environment; the AWARE Framework,
a system that distributes context information about users, thereby facilitating a social,
peripheral awareness, which helps users to coordinate their cooperation.

3.1.6 Gaia

Gaia8 [24–26] is a distributed middleware infrastructure capable of managing
resources contained in physical spaces, called active spaces which simplify the
development of portable applications. The framework provides mobility, adapta-
tion, and dynamic binding enabling applications component-based, distributed and
mobile. Indeed, applications can be dynamically partitioned, mapped to a variety
of devices, customized on the space context, bounded to users, and moved across
different spaces.

Gaia encapsulates the heterogeneity of active spaces, and presents them as a
programmable environment, instead of a collection of individual and disconnected
heterogeneous devices.

The system is built as a distributed object system and its three major building
blocks are: the Gaia Kernel, the Gaia Application Framework, and the Applications.
The Gaia Kernel contains a management and deployment system for distributed
objects and an interrelated set of basic services that are used by all the applications.
Gaia’s Applications use a set of component building blocks, namely the Gaia Appli-
cation Framework, to support applications that execute within an active space. The
Gaia Application Framework allows Applications to be partitioned among a group of

7 http://www.daimi.au.dk/~bardram/jcaf/index.html.
8 http://gaia.cs.uiuc.edu/index.html.

http://www.daimi.au.dk/~bardram/jcaf/index.html
http://gaia.cs.uiuc.edu/index.html
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coordinated devices, receive input events from different devices, present their state
using different types of devices, and adapt to changes in the environment.

Gaia uses a high level scripting language, called LuaOrb [35], to program and
configure active spaces and to coordinate the active entities they contain. LuaOrb
is based on the interpreted language Lua [36], which simplifies management and
configuration tasks and allows for rapid prototyping and testing. The interpreter for
Lua is fast and has a small memory footprint, which makes it suitable for resource-
constrained devices.

Specifically for Gaia a Presentation Manager was developed [25]. This applica-
tion allows to present slideshows in multiple displays simultaneously. The Presen-
tation Manager supports moving and duplicating slides to different displays during
the presentation, and allows moving and duplicating the input sensor that controls
the presentation to different devices.

3.1.7 Ambient Agoras

Ambient Agoras9 [27, 28] is part of the European Commission funded research
initiative “The Disappearing Computer”. Ambient Agoras (from the Greek agora,
a marketplace) wants to “turn everyday places into social marketplaces of ideas
and information where people could meet and interact”. In particular, the project
addresses the office environment and wants to augment it by developing a wide range
of smart artifacts and their corresponding software that, together, provide users with
smart services.

The aims of the project were to support informal communication in organizations
and to combine static artifacts integrated in the environment with mobile devices
carried by people.

Seen that ambient technology best supports informal communication, ambient
displays were chosen to interact with people. So, a Hello.Wall was developed for the
Ambient Agoras environment [37]. The Hello.Wall provides awareness and notifi-
cations to people passing by or watching it. Different light patterns correspond to
different types of information. People are known by the Hello.Wall thanks to mobile
ViewPort devices provided with WLAN, RFID tags, and RFID reader to talk with
other artifacts, to sense them and to be sensed.

3.2 Middleware for Smart Objects

This section aims to describe the former developed prototypical SO middlewares
(Voyager [38, 39] and Smart-Its [40, 41]), where the concept of SO-based IoT is not
well defined yet, and then to overview the SO middlewares specifically defined in
the IoT context: UbiComp [42], FedNet [12, 43], Smart Products [44], and ACOSO
[45–47].

9 http://www.ambient-agoras.smart-future.net/.

http://www.ambient-agoras.smart-future.net/
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3.2.1 Voyager

Authors in [38] and [39] propose Voyager,10 a framework that supports the imple-
mentation of ambient dialogue applications to implement smart environments. The
framework requires that every user carries with him a miniaturized pocket-size
portable processing unit running user-chosen applications. Those applications are
capable of dynamically detecting the presence of devices within the surrounding
environment, and using those on-the-fly (realizing meaningful interaction with the
user). To this end, Voyager provides the user with applications that: (i) use short-range
technology (Bluetooth); (ii) discover devices in the neighborhood; (iii) communicate
through a standard agreed communication protocol to query and control the services
of ambient devices; (iv) use specifically implemented user API.

Voyager consists of three logical components: (i) the client development library,
which supports the implementation of interactive applications; (ii) the device devel-
opment library, which supports the implementation of the software to be embedded
in the ambient devices; and (iii) the standard device library, which offers a set of
implemented queries and control software components.

The implementation of Voyager has been carried out in the context of the 2WEAR
project [48, 49], shared by FORTH (Greece), ETHZ (Switzerland), MA Systems
and Control (UK), and NOKIA/NRC (Finland). This project aims to develop and
experiment the flexible and dynamic formation of a mobile personal computing
system.

Due to the short wireless range related to the low cost technology exploited,
2WEAR investigated the possibility of controlling the formation of the (mobile) per-
sonal computing system (or personal area network) based on the physical proximity
of devices. Essentially, the idea was to enable users to add or remove a device to/from
his personal area network respectively by approaching or by distancing himself from
it.

The Brake Out game and the City Guide are two significant applications developed
with the Voyager development framework. The implementation of the first one as a
Voyager application has resulted in a dynamically reconfigurable user interface. The
implementation of the latter one allows the users to record and visualize routes on a
map in realtime using GPS and storage services. The City Guide supports dynamic
configuration, as ambient devices are engaged or disengaged on-the-fly by enabling
either automatic or on-demand reconfiguration. In such context, a Voyager-enabled
wrist watch (or smart watch) supports users in interacting with the environment.

3.2.2 Smart-Its

Smart-Its11 [40, 41], part of the European Commission funded research initiative
“The Disappearing Computer”, is a platform specifically designed for augmen-
tation of everyday objects. The aim of the platform is to empower objects with

10 http://2wear.ics.forth.gr/.
11 http://www.smart-its.org.

http://2wear.ics.forth.gr/
http://www.smart-its.org
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processing, context-awareness and communication. The platform is both hardware
and software. The hardware part shares some similarities with Berkeley Motes but is
specifically designed for adaptation to very diverse smart objects (hardware can be
specifically customized depending on the specific SO). The software part offers a set
of libraries to quick implement SOs awareness, actions, communication, and logics.
These libraries represent the abstractions of the hardware platform components: the
Sensors/Actuators lib provides access to sensors and actuators; the Communication
lib allows to access the radio and radio services; the OS Core lib provides access to
specific OS services.

Smart-Its communicate through short range radio frequencies. Smart-Its designers
didn’t care about routing on their nodes, but they concentrate on fast network discov-
ery. Smart-Its data transmission is based on a stateless P2P communication protocol.

Smart-Its devices have been used in several labs across Europe. In [50] has been
presented an experiment in which objects subjected to the same movements were
associated. Moreover, the platform has been used to build smart furniture, smart
cups (Mediacups) [5], and to augment mobile phones. In particular, Mediacup is a
smart coffee cup that is composed of an ordinary coffee cup augmented with sensors,
processing and communication capabilities.

3.2.3 UbiComp

UbiComp [42], part of the DAISy (Dynamic Ambient Intelligent Systems Unit)
project12 is a middleware that supports the interaction of heterogeneous smart objects
and allows to combine them through an advanced GUI application [51]. UbiComp
has to run on every smart object to allow to treat SOs as components of distrib-
uted applications. UbiComp is kind of extension of the work already done for GAS
(Gadgetware Architctural Style) [52].

Applications in UbiComp are component-based. The most important UbiComp
component is the artifact. Artifacts are the tangible smart objects. Usually artifacts are
augmented with sensors, actuators, processing and networking units. More artifacts
can be combined in an artifact composition. Artifacts have properties which represent
physical characteristics, capabilities, and services. An artifact can give values of
different properties (e.g. a sensor reading) at different times. The State of an artifact
is the snap-shot of all its properties at a given time. Plugs are the interfaces of an
artifact. Interfaces are the set of functions that a SO exposes to its surrounding and
the set of functions that the SO needs to use. When two plugs are compatible, they
are associated through Synapses.

The SO structure [53] presents at its heart the UbiComp software middleware that
allows to dynamically deploy UbiComp applications and to use sensors/actuators/
wireless communication.

In order to exemplify the usability of the middleware, a smart environment com-
posed by a smart chair, a smart lamp, a smart book, and a smart desk was implemented.
In this application, if someone sits on the chair and draws it near the desk and opens

12 http://daisy.cti.gr/.

http://daisy.cti.gr/
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a book on it, then the study lamp is switched on automatically. If he closes the book
or stand up, then the light goes off. The realization of the explained behavior requires
the combined operation of the aforementioned artifacts.

3.2.4 FedNet

In [12, 43] authors present a framework for smart objects with the aim to make
SOs collaborating among them and with applications through documents and with
no direct interaction. In particular, structured documents are used to externalize
(“objectify”) application requirements (Task abstraction) and SO services (Profile
abstraction) and a runtime framework, namely FedNet, provides the spontaneous
and dynamic federation of them, through structural type matching of the documents.

The framework [54] allows to coordinate heterogeneous smart objects. SOs can
provide different services or the same service with different granularities. SOs can
evolve at runtime and are managed by the runtime framework (located between SOs
and applications) so that the applications don’t need to know the access and the
configuration semantics of the SOs.

The main component of the system is the Artefact Framework or Smart Object
Wrapper which encapsulates a smart object so that it can be connected and used
by other smart objects and applications. It is composed by a generic core and by
additional augmented features that can be added as a plug-in into the core. Each
augmented feature is called Profile. Profiles are artefact independent. Applications
in FedNet are exposed as a collection of implementation independent functional
Tasks. FedNet maps the services requested by the tasks to the corresponding service
providers (Profiles). The FedNet Runtime Infrastructure provides the runtime asso-
ciation among tasks and artefacts by using only their description documents thus
externalizing smart object management and addressing heterogeneity issues away
from the applications allowing developers to focus only on the application function-
alities.

From a physical point of view, all these components can be distributed. To commu-
nicate, the components are forced to implement a standard RESTful (HTTP/XML)
communication protocol.

Among the SOs built using FedNet, particularly interesting is the personalized
peripheral information display called AwareMirror [55]. AwareMirror is an aug-
mented mirror that presents information relevant to the person in front of it, in
anticipation of the fact that users may decide to modify their behavior once an
unwanted/unknown situation is understood. Moreover, a smart toothbrush [12] was
developed interacting with the smart mirror.

One more case study was implemented to realize a prototype home entertainment
smart object system composed by several SOs such as a smart couch, a smart lamp, a
smart window, smart coffee table, a TV, an air conditioner, and bluetooth headphones.
These SOs were interacting each other to form a smart environment.
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3.2.5 Smart Products

Smart Products13 [44] is a project funded as part of the Seventh Framework
Programme of the EU. A Smart Product is [56] “an autonomous object which is
designed for self-organized embedding into different environments and which allows
for a natural product-to-human interaction.”

The aim of Smart Products is to support natural interaction between objects and
users and to make smart products collaborating in the environment [57]. Smart Prod-
ucts activity is mainly based on workflows that developers specify for each procedure
they want the smart product to support.

The component-based architecture of the Smart Products platform [58] provides
components for supporting the interaction between user and smart products; com-
ponents for supporting the information exchange and cooperation between different
smart products; components for sensing, processing and distributing context infor-
mation; components for handling the knowledge of a smart product; components for
storing knowledge of a smart product in a secure and distributed way.

The communication components are based on the MundoCore middleware [59],
which provides peer to peer communication and discovery.

Among the applications implemented in this project, Smart Products have been
used to assist users in assembly actions, in the smart car application domain (snow
chain assembly, tyre change, etc.), and as smart cooking service aware of users and
appliances.

3.2.6 ACOSO

The ACOSO (Agent-based COoperating Smart Objects) middleware [45–47] was
developed in the context of the TETRis (TETRA Innovative Open Source Services)
project, funded by the Italian Government.

The aim of the middleware is to provide the right instruments and a simple pro-
gramming model to realize cooperating smart objects.

ACOSO is agent-oriented and supplies the SOs with an event-driven architecture
that allows the SOs to fastly react to external stimulus. The middleware supports
several communication types (message passing and publish/subscribe) and provides
proactivity based on inference rules and on local and remote Knowledge Bases.

While the design of the architecture is platform independent and can be realized
on several agent-based platforms (e.g. JADE [60], Jadex [61], MAPS [62]), actually,
the middleware implementation relies on the JADE middleware that provides an
effective agent management and infrastructure of communication. So, the SOs can
be implemented as JADE or Jadex agents.

The architecture proposed for the SOs is very simple and effective and composed
by a Behavior incorporating the object behavior, an EventDispatcher handling all the
internal events of the object, a Communication Management Subsystem controlling

13 http://www.smartproducts-project.eu/.

http://www.smartproducts-project.eu/
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communications with other SOs and external entities, a Device Management Sub-
system coordinating the sensor/actuator nodes of the object, and a KB Management
Subsystem managing the knowledge base in the SO.

ACOSO is completely integrated with two frameworks realized to control wireless
sensor networks, such as the Building Management Framework [63] and the SPINE
framework [64].

In [46] a case study was presented referring to a smart environment composed
of two cooperating SOs: a Smart Office and a Smart Body. The two SOs gather
information about the environment, the body, and the interaction between the body
and the environment and cooperate to support the working activity of the office
user (e.g. giving suggestions about wastes in the environment that can be limited).
Moreover, the Smart Office is based on a smart chair, a smart projector and a smart
whiteboard.

4 Comparison and Discussion

This section presents a detailed comparison of the middlewares described in Sect. 3.
In particular, Sect. 4.1 shows a comparison based on the requirements introduced in
Sect. 2 while Sect. 4.2 provides a comparison based on the most important identified
features which allow to characterize SE and SO middlewares.

4.1 Middleware Requirements-Based Comparison

The requirements introduced in Sect. 2 can be used to compare all the proposals
analyzed in Sect. 3. In particular, both SE and SO middlewares can be successfully
compared on the basis of the requirements SE_Req1−5.

Specifically, all the overviewed works, with the exception of Ambient Agoras,
fulfill the requirements SE_Req1, SE_Req2 and SE_Req5. Regarding the require-
ment SE_Req3, it is not satisfied by Smart-Its, Context Toolkit, Gaia, iRoom, and
JCAF that do not provide generic data stream formalization, but specific ones. The
requirement SE_Req4 is the less considered among the examined work. In particular,
UbiComp, Gaia, Smart-Its, Ambient Agoras, Voyager, Context Toolkit, Aura, and
JCAF do not provide methods to abstract applications (for SE middlewares) or SOs
(for SO middlewares) over the location on which they will be deployed.

The full comparison of SE and SO middlewares with respect to the general SE
middleware requirements is reported in Table 1.

Moreover, a further comparison of the works analyzed in Sect. 3 is carried out with
respect to the specific requirements for SO middlewares (SO_Req1−4). Middlewares
for SEs are also included in this comparison, see Table 2, to bring out if some of them
also fulfills the specific SO middlewares requirements and can be therefore reused
in the SO context.
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Table 1 Comparison of the overviewed SE/SO middlewares based on the general SE middlewares
requirements

SO/SE middleware SE Req1 SE Req2 SE Req3 SE Req4 SE Req5

ROS-player/stage SE Yes Yes Yes Yes Yes
iRoom SE Yes Yes No Yes Yes
Aura SE Yes Yes Yes No Yes
Context toolkit SE Yes Yes No No Yes
JCAF SE Yes Yes No No Yes
Gaia SE Yes Yes No No Yes
Ambient agoras SE N/A N/A N/A No N/A
Voyager-2WEAR SO Yes Yes Yes No Yes
Smart-Its SO Yes Yes No No Yes
UbiComp/GAS SO Yes Yes Yes No Yes
FedNet SO Yes Yes Yes Yes Yes
Smart products SO Yes Yes Yes Yes Yes
ACOSO SO Yes Yes Yes Yes Yes

Table 2 Comparison of the overviewed SE/SO middlewares based on the specific SO middlewares
requirements

SO/SE middleware SO Req1 SO Req2 SO Req3 SO Req4

ROS-player/stage SE No Yes Yes Yes
iRoom SE No No Yes Yes
Aura SE No Yes No Yes
Context toolkit SE No No No Yes
JCAF SE No No No Yes
Gaia SE Yes No No Yes
Ambient agoras SE N/A N/A No N/A
Voyager-2WEAR SO No Yes No Yes
Smart-its SO Yes No No Yes
UbiComp/GAS SO Yes Yes No Yes
FedNet SO Yes Yes Yes Yes
Smart products SO Yes Yes Yes Yes
ACOSO SO Yes Yes Yes Yes

As highlighted in Table 2, the requirement SO_Req1 is the most distinctive for
SO middlewares because, to fulfill it, the SO abstraction has to be provided by
the middleware itself. The only SE middleware satisfying the SO_Req1 is Gaia as
it makes available a particular abstraction sharing some similarities with the SO,
namely the active space.

With reference to the requirement SO_Req2, all the SO middlewares, apart from
Smart-Its, do not provide standard interfaces to access the SOs. Regarding the SE
middlewares, Aura and ROS satisfy this requirement since they provide a flexible
interface among SE components or different SEs.

Requirement SO_Req3 is satisfied by ACOSO, FedNet, and Smart Products that
implement at middleware-level a mechanism to match the application requirements
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with the services provided by the SOs. Among the middlewares for SEs, only iRoom
and ROS provide mechanisms to match SE services and application requirements.

Requirement SO_Req4 is satisfied by all the SO and SE middlewares since all
the proposals (apart Ambient Agoras which does not provide details about such
requirement) offer programming abstractions to support SO/SE implementation and
enhancement. However, the evolution is only driven by programming.

4.2 Middleware Features-Oriented Comparison

This section presents a comparison of the works presented in Sect. 3, based on the
most important characteristics of the middlewares for SEs and SOs. These charac-
teristics are distinctive properties of the middlewares and have been chosen after a
detailed analysis of the literature to determine a feature-oriented comparison frame-
work among the surveyed work.

In particular, the majority of the features have been considered for both SE and
SO middlewares, while some of them are specifically referred to either SE or SO
middlewares.

The common features are listed in the following highlighting the reference model
and the implementing technology. They are:

• System Programming, the programming model used by the middleware (e.g.
component-based, agent-based, object-based, service-based) and the specific pro-
gramming language exploited.

• System Architecture, the system architecture of the middleware (e.g. client/server,
peer-to-peer, distributed, hierarchical) and its related technology.

• Metadata, the model for the representation of information about SEs or SOs and
its implementing technology.

• Discovery, the model on which the middleware is based to discover SE elements
or SOs (e.g. centralized, distributed) along with the implementation method.

• Communication, the communication paradigm through which the entities/
components/objects in the system communicate (e.g. peer-to-peer, client/
server, tuple-based, publish/subscribe) and the communication technology.

• Knowledge Management, if the knowledge is managed by the middleware and, if
available, where it is managed (e.g. local, distributed, hybrid) and through which
technology.

With reference to SE middlewares, there are the following specific features:

• SE Proactivity, if the SE is proactive (i.e. it is able to autonomusly fulfill goals)
and, if it is, how the proactivity is made available.

• SE Cooperation, if the SE is cooperative (i.e. it is able to cooperate with other SE)
and, if it is, how the proactivity is made available.

• SE/Application decoupling, if applications running atop the SE are decoupled from
the SE components.
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Finally, with reference to the SO middlewares the following characteristics are
considered:

• SO Architecture, the specific architectural model defined for developing SOs
(e.g. agent-oriented, object-oriented, service-oriented, component-based) and the
techonology used to implement the model.

• SO Proactivity, whether or not SOs are proactive (i.e. it is able to autonomously
fulfill goals) and, if they are, how the proactivity is made available.

• SO Cooperation, whether or not SOs are cooperative (i.e. it is able to cooperate
with other SE) and, if they are, how the proactivity is made available.

• SO/Application coupling, if applications running atop SOs are decoupled from
SOs.

The comparison, on the basis of the defined features, is shown in Table 3 and in
Table 4 for SE and SO middlewares, respectively.

From the analysis of Table 3, three main considerations arise:

• Surveyed middlewares have a marked heterogeneity in the adoption of models in
relation to all the considered features. The only point of contact seems to be the
architectural model, which of course is distributed.

• A strong heterogeneity also with regard to technology is shown, although Java and
CORBA are the most commonly used (in a cross to the different characteristics).

• Almost all of the surveyed SE middlewares do not make available services regard-
ing Metadata, Discovery services (with the exception of Context Toolkit), and
Knowledge Management (with the exception of Aura).

In principle, these considerations remain valid even after the analysis of SO mid-
dlewares (see Table 3), although they appear functionally more complete of the
corresponding SE middlewares. In particular:

• The heterogeneity of the adopted models is still present, although to a lesser extent:
distributed system architectures, component-based SO architecture, and Message
Passing as communication strategy are in fact commonly used.

• C-based and Java-based applications technologies are exploited in a cross.
• Different SO middlewares take into account the Metadata but are lacking about

Code Availability (with the exceptions of Smart Products and ACOSO) and
SO/App decoupling (totally supported only by FedNet and partially only by
ACOSO).

5 Conclusions and Future Research Challenges

This chapter has presented an overview of the state-of-the-art regarding SE and SO
middlewares. In particular, the main SE and SO middlewares have been described and
compared with reference to three comparison frameworks: (i) the first one is based
on general SE middleware requirements that have been elicited in the literature;
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(ii) the second one relies on specific SO middleware requirements identified in the
literature; (iii) the last one is based on a set of features specifically identified on the
basis of the overviewed works. Overall, the proposed comparison provides a clear
picture about the characteristics of the surveyed middlewares and, specifically, their
suitability in supporting the development of SO-based applications in the IoT context.
In particular, ACOSO, FedNet, Ubicomp and Smart Products are fully suitable to
be actually exploited, Voyager and Smart-Its are partially suitable but need to be
enhanced, whereas the surveyed SE middlewares should be heavily enhanced to be
practically used.

Although the overviewed SO middlewares provide effective management to
develop and deploy SOs, they are still limited in the management of a huge number of
cooperative SOs. According to forecasts from Cisco Systems [65], by 2020 more than
50 billion of smart objects will be connected in the IoT. It becomes clear that such a
huge swarm of devices cannot be subject to a human-driven management, because of
the intrinsic complexity of such a scenario and the heterogeneity of its components.
In addition, several application contexts may require response times decidedly out
of the reach of an operator, though very skilled. So, the entire system must be able to
auto configure itself following specific and predetermined objectives and policies, as
well as keep itself functioning, efficient, reliable and protected against endogenous
and/or exogenous dangers or malfunctions, without the human intervention [66, 67].
In recent years, systems self-* were massively used for autonomic management of
large scenarios [68], characterized however by well defined interactions. In such situ-
ations, the autonomic architecture properties can provide flexibility and adaptability
in the operational management (optimization of communications, services discov-
ery, adoption of protection policies and strategies), minimizing the resources used
through sets of predetermined rules. At the same time, IoT expectations regarding the
context-awareness and user-tailored content management have highlighted the need
for interoperability, abstraction, collective intelligence, dynamism and experience-
based learning. To cope with these requirements cognitive systems, typically agent-
based, were widely employed [69, 45]. Multi Agent Systems, already used in contexts
typically not extensive but characterized by an high uncertainty, prove to be the right
means to infuse intelligence into smart objects and in the whole big scenario. Inspired
by the human body, in which the two mechanisms operate synergistically, one could
hypothesize a cognitive-autonomic management for the IoT, with the aim of making
its realization as close to the theoretical expectations.

In addition to a cognitive-autonomic management of cooperative SOs, comple-
mentary approaches need to be exploited to enhance computing and memory capabil-
ities of SOs. The Cloud Computing paradigm provides flexible, robust and powerful
storage and computing resources, and enables dynamic data integration and fusion
from multiple data sources [70]. Cloud Computing can therefore support SO, empow-
ering their specific resources, and allow for the definition of new and more capable
(virtual) SOs as meta-aggregation of existing real and virtual SOs [71].

Finally, to develop SO-based IoT systems, novel software engineering
methodologies for extreme-scale dynamic systems need to be defined. They need
to include not only a modeling language along with a well-defined process but also
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specific abstractions able to deal with system/component evolution that is a typical
property of SO systems. Agent-oriented methodologies [72] could be exploited as
basis for formalizing such an effective development methodology for SOs.
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1 Introduction

The Internet of Things (IoT) refers to a globally connected, highly dynamic and
interactive network of physical and virtual devices [2]. The IoT requires integration
and collaboration of disparate technologies in wireless and wired networks, hetero-
geneous device platforms and application-specific software. These IoT technologies
include, but are not limited to, Ethernet, RFID, BlueTooth, Wi-Fi, ZigBee and 6LoW-
PAN. IoT systems require scalability beyond millions of devices, where centralized
solutions could reach their bounds. To achieve global connectivity, standardized pro-
tocols and interfaces are necessary to address device heterogeneity and to enable
universal resource access. Moreover, IoT systems cannot have fixed deployments
or fixed system configurations, as the environment is in continuous transition. Run-
time deployment of new services and applications has to be supported in IoT. As
the systems evolve over time, it is necessary to consider software adaptation and
evolution in order to cope with environment, system configuration and application
requirement changes. Specifically, the issues here include interoperability between
different standards, protocols, data formats, resource types, heterogeneous hardware
and software components, database systems and human operators [2, 9]. The IoT
paradigm transforms everyday physical objects into wirelessly networked, intelli-
gent, autonomous and self-aware smart objects and enables smart objects to observe
their environment through integrated sensors, store the information and interpret it
proactively, cooperate by sharing information and react to changes in the environ-
ment [7, 11, 16]. The IoT then becomes a loosely-coupled and decentralized system
of smart objects, based on distributed applications and global intelligence.

The agent-based systems feature decentralization and flexibility in the system con-
figuration and allow abstracting heterogeneous subsystems and system resources for
cooperation [3, 4, 7, 9, 10, 12, 16]. Agents act autonomously, possess self-properties
and allow the direct manipulation of the hosting device and its physical components,
such as sensors and actuators. Additionally, in agent-based systems, communica-
tion and information processing costs can be reduced by distributing information
processing closer to actual data sources. Mobile agents are autonomous programs
that transmit their execution state from device to device in networked systems [17],
which provides means for software adaptation, system evolution, and tolerance to
system or environment failures. Furthermore, mobile agents enable the dynamic re-
uses of hardware components and asynchronous execution of computational tasks.

This heterogeneous shared environment is not only a technical system, but IoT
devices and smart objects also interact with human users. Therefore, smart user
interfaces [9] are required for humans to interact with smart objects and access
various services and use applications. Abstracting the system through RESTful Web
services leads to the vision of Web of Things (WoT) [8], where each smart thing is
equipped with a tiny Web server according to its capabilities, which then becomes
an integral part of the Web. For embedded networked devices, Web connectivity can
be enabled with embedded Web services [18], or by the smart gateways abstracting
the most low-power resource-constrained devices, such as 8-bit microcontrollers
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[12]. The Web is beneficial for human-machine interactions, as various services for
information searching, aggregation and visualization are available.

We propose a method for the integration of mobile agents and smart objects in
order to facilitate cooperation and global intelligence, extending our previous work on
the mobile agent based integration in IoT systems and wireless sensor networks [12].
This leads to a number of research questions [7, 11]: (1) How are the distributed IoT
system architecture designed and eventually deployed? (2) What are the middleware
and programming models? (3) How to represent the smart objects capabilities and the
distributed intelligence? (4) How to combine a coherent collective application with
the distributed application logic? (5) What is the level of human involvement? We
seek to answer these questions by enabling platform- and programming language-
independent mobile agents in an open standards based framework and information
infrastructure. Interactions with humans are facilitated by seamless integration into
the Web.

In this chapter, we first present system design considerations for mobile agent-
based smart objects in IoT and outline the requirements for the smart objects, agents
and systems to enable cooperation. A mobile agent composition is then presented
with a RESTful Web service API for smart object internal architecture and reference
system architecture. Finally, an evaluation method is presented to assist in system
and agent composition design, taking into consideration the different types of IoT
system resources and their dynamic utilization.

2 System Design Considerations

IoT system architecture or middleware should facilitate general and non-specific
design solutions for applications, because the systems are in continuous transition,
where the system configurations and network topologies are ad-hoc, thus cannot be
fixed in deployment. The IoT system should provide the augmentation of smart
objects with internal and external services, object management capabilities and
means for system adaptation and object evolution [6]. Then, the smart objects can
control the flow of information, supporting global intelligence autonomously and
cooperatively [6, 16]. For IoT, Internet-based information infrastructure is needed
to leverage the capabilities of smart objects for provision of services to end-users.

The object-centric systems provide one solution for the heterogeneous fluctuating
environments, enabling the abstraction of hardware, software, data and physicality
[6]. The distinct features of smart objects include the ability to make complex intelli-
gent decisions in information processing locally and to provide services for end users.
In [11], three types of smart objects were presented: activity-, policy- and process-
aware, with different levels of information processing and interaction capabilities.
The individual different capabilities of the smart objects need to be exposed to the
system, be discoverable and queried through well-defined interfaces. In [4], three
types of multi-agent platforms for devices with limited resources was described,
such as computing power, memory, limited user interface or real-time constrains.
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First, the portal platforms do not execute the agents on resource-constrained devices,
but only provide user interaction, sensing and actuation capabilities. Secondly, the
embedded platforms execute the agents entirely in the device itself and, thirdly, the
surrogate platforms execute the agent partially on a resource-constrained device and
partially on the other devices. These high-level design considerations lead to some
key challenges. The smart objects need to be globally identified and addressable.
The resource access interfaces and object capabilities need to be globally discov-
erable. The dynamic availability of the capabilities in the smart objects is crucial
in IoT system deployment. The application development should be decoupled from
the smart object development as the smart objects take different roles and interac-
tion models in the system, based on their capabilities and the agents they are hosting.
Intelligent decision-making is required for information processing, but also in ad-hoc
networking, data routing and providing inter-network relationships.

In Resource-Oriented architectures (ROA) [15], the main abstraction is a resource,
referenced through its unique URI. The ROA is based on the principles of the Repre-
sentational State Transfer (REST), which include separation of concerns with clients
and servers, stateless communication, addressability of resources, link-based con-
nectedness, uniform interface for resource access and various representations of the
state of the resource. The individual capabilities and resources of smart objects, the
state and composition of the agents, system and external services and application-
specific tasks should all be considered as REST resources with URI. These resources
are exposed to the system and be utilized through a uniform interface. The trans-
portable URI identifies system resources and the URLs support resource hierarchies,
linked resources and even private network overlays within the application, a particu-
lar task or an agent composition. The transportable URI enables to discover the smart
objects, their relationships and contextual situations. This realizes the information
infrastructure and system-, application- or task-based network structure repository
[16]. Moreover, the IETF Constrained RESTful Environment Working Group [18]
has published Internet drafts to enable embedded Web services in the low-power
resource-constrained embedded networked devices. These drafts are crucial for IoT
solutions, as the existing solutions based on HTTP and Simple Object Access Proto-
col (SOAP) may be too heavy for the most resource-constrained embedded devices.
The CoRE framework enables direct access to the resources in embedded networked
devices from the Web and facilitates limited human-machine interactions. These
drafts additionally describe a number of infrastructure services such as resource direc-
tory facilitator and proxies for protocol translations, which are utilized to implement
parts of the information infrastructure in this work.

In our previous work [12], we proposed a REST-based adaptable mobile agent
composition, where the principles of REST are utilized in agent creation, composi-
tion, migration and control, realizing the requirement for single protocol in the agent
transfer, messaging and control. The agent composition itself can be considered as a
system resource, promoting re-use, and adaptable to react to unexpected system envi-
ronment changes. With the RESTful Web services, we are able to utilize standardized
uniform interfaces and communication primitives with heterogeneous IoT systems,
smart objects and device platforms, based on loosely-coupled and flat distributed
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system architecture in WoT. Seamless integration to external Web services follows
from the rule of extending the systems over the Web.

3 Requirements for Mobile Agents in IoT

We gather the requirements to enable the system-wide interoperability of smart
objects with mobile agents and heterogeneous resource-constrained object platforms
as well. General requirements for smart object middleware are previously presented
in [5], however we consider the REST principles in the agent creation, migration, con-
trol and its composition. Extended from our previous work in [12], the smart objects
are capable of sensing and actuation, storing information, local decision-making,
interacting with each other and with external entities and finally, of operating in
ad-hoc networks [16].

3.1 Requirements for Smart Objects-Enabled Platforms

Sensing and actuation Smart objects are equipped with physical components,
such as sensors and actuators. Both of these components
should be identifiable and accessed as resources of the
smart objects.

Information gathering Smart objects can locally process the gathered infor-
mation, providing them capability to understand their
contexts and to make intelligent decisions.

Information dissemination Smart objects in IoT support many interaction mod-
els, such as client-server, publish-subscribe, event-based
communication and broadcast messages.

Networking Smart objects are capable of participating in both intra-
network and inter-network communications over dis-
parate networks.

Mobile code Smart objects in IoT need to support a number of dis-
tributed programming models: macroprogramming lan-
guages, MapReduce, code migration, task offloading,
cyber foraging and virtual machines.

Shared resources Smart objects maintain their resources and capabilities,
which include gathered and refined information, object’s
capabilities and furthermore hosted agents’ resources.
The resources are be then cooperatively utilized by other
objects and agents in their operations.
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3.2 Requirements for Mobile Agents

Shared resources The agents maintain their own state, exposed by the
smart object. As the task state is not tightly-coupled into
a physical device, the task state is cacheable and agents
provide limited robustness in case of failures.

Agent composition Agent implementation should be platform- and pro-
gramming language-independent to address the software
and hardware heterogeneity. The agent composition
should be adaptive, modified by the hosting devices. The
composition can also be exposed as a system resource.

Lightweight composition Agents must be lightweight in composition, serializable
and transferred as a whole or as sequential parts. Agents
should be executable in platforms with limited process-
ing power, memory, communication capabilities and
battery lifetime. Binary message formats are a necessity
for most of the resource-constrained embedded devices.

Dynamic deployment The agent life-cycle is application-dependent.

3.3 Requirements for IoT Systems

Standardized interfaces Standard, unified and simple interfaces are required to
address device heterogeneity, resource abstraction, and for
universal access. To simplify the implementation of mobile
agents, agent transfer, messaging and control protocols
should be integrated into a single protocol, based on basic
communication primitives.

Abstracted objects Smart objects and their resources should be utilized through
basic and standardized communication primitives with uni-
fied interfaces, where the primitives should be interface and
protocol independent. The agents can also provide primi-
tive or atomic operations in the system.

Abstracted resources In addition to the resources in smart objects, the system
resources include internal and external services, which may
register themselves into the system with various roles, such
as data producer, aggregator or interaction enablers. These
resources may also introduce their own restrictions and pri-
orities.

Dynamic deployment The systems are in continuous transition, therefore the run-
time injections of objects and agents into the system are
common, where the i.e life-cycle is application-dependent.
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Table 1 Mobile agent composition for the smart objects

Segment Elements

Metadata Name Agent i.e. resource name or URI
Migration Policy identifier
Authorization Access rights
Timestamp Time of last state update

Code Type identifier Task code
Reference URL

Resource Local URL list
Remote URL list
Static URL list
Reference URL list

State State variable list
Local variable list

Historical data Variable list
URL list

Dynamic binding The objects are simultaneously acting as servers for their
local resources and as clients for the resources in other
objects. The agents should allow dynamic binding to
resources and dynamic mapping of the task into any system
configuration. An agent composition should, in general, be
exposed to the system by the devices and be adaptable.
Runtime lookups and loose coupling to the resources are
facilitated by stateless communication.

Scalable configuration Scalability beyond current networked systems is required.
Thus distributed architectures with loosely-coupled ser-
vices become necessity. Gateways and proxies are intro-
duced to abstract heterogeneous subsystems, spanning over
networks, protocols and communication interfaces.

4 Composition for the Mobile Agents

We extend the agent composition presented in [12], to fulfill the smart objects and
system requirements. The composition, illustrated in Table 1, consists of three seg-
ments: code, resource and state. In addition the composition includes metadata, such
as a unique name or URI, to register the agent into the system and to enable resource
lookups. The metadata also contains a description of globally known migration pol-
icy to control the agent migration. The metadata may also include the last time the
agent state was updated and authorization information for the agent and the required
resources. With proper authorization, we allow smart objects, smart gateways and
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proxies to modify the composition to adapt and evolve to system environment, appli-
cation or task configuration changes and to dynamic resource availability. Then, the
agent composition itself becomes a system resource. Historical data can be included
in the composition for agent tracking purposes.

4.1 Code Segment

The agent task code is stored into this segment. The code can be presented in any pro-
gramming language: high-level macroprogramming language, scripting language,
precompiled binaries, bytecode or even as machine language instructions. The seg-
ment allows multiple code segments for multiple heterogeneous platforms, which
requires an identifier of the code type. Additionally, to minimize the composition
size, the segment can contain a reference to the code in the system repository for
on-demand code retrieval.

4.2 Resource Segment

The resource segment lists the local, remote and static resources for the task execu-
tion. The local resources refer to the resources exposed by the hosting smart object,
whereas remote and static resources are external to the object. The remote resources
are accessed each time the agent migrates or the task execution iterates. The static
resources are remote and constant for the lifetime of the agent, hence the repre-
sentation is requested only once and moved into the state segment as a variable.
How the object binds to the remote resources are determined by the references and
the resource access interfaces. If the resource segment is a reference, resources are
requested from a application-specific or global system service. This allows sharing
the segment becomes a system resource and enabling runtime modifications as well.
The resource segment therefore presents dynamic and partial view of the system
resources utilized by the agent, as an overlay.

4.3 State Segment

The state segment contains the current state of the agent, i.e. the intermediate or final
results of the task. The state is then returned as the agent resource representation.
Other local data, such as a program counter, local variables and retrieved static
resources are stored in this segment as well [12].



Mobile Agents-Based Smart Objects for the Internet of Things 37

4.4 Historical Data

This segment is optional. It contains the previous states of the agent, its local variables
and previously visited locations, for tracking the agent and its behavior. Also, to
minimize the composition size, this segment may contain URLs to a repository
hosting this information.

4.5 Agent Mobility

The local resource segment dictates where the agent migrates in the system, with
the particular migration policy given in the metadata segment. We can utilize any
migration police, for example: (1) the agent visits the objects listed in the local
resource segment each only once, (2) the agent considers the local resource segment
as a ring buffer circulating though the devices, (3) the agent message is broadcasted to
all the objects at once, (4) the local resource segment lists gateways or proxies, which
distribute the agent to any number of abstracted smart objects. Actually, the migration
policy can also be considered as a system resource. Whenever the local resource
segment is a reference, the smart objects rely on the information infrastructure, such
as the network structure repository [16] for migration instructions.

This agent migration procedure requires, at minimum, that the agent is cloned in
the host device and sent to the new host, where the state is first updated by executing
the computational task. Then the host registers the agent into the system name server
or directory facilitator. Here the updated agent state is exposed into the system and
other objects can access the new state in the new host. After successful registration,
an acknowledgement is sent to the previous host, which can then delete the agent
from its memory and free the utilized resources.

4.6 Implementation Considerations

Considering different utilization of the adaptable agent composition, we assume the
following. The state segment cannot be omitted, as it is the agents resource repre-
sentation. If the code segment is omitted, then the agent works as a data aggregator,
migrating through the listed smart objects. Moreover, this enables event-based com-
munication [1] as the agent composition can be considered an event with a state. If the
local resource segment is omitted, the agent does not migrate autonomously, which
implements task offloading. The remote and static segments are optional based on
the required resources. All the activity-, policy- and process-aware smart object func-
tionality [11] become now possible. This agent composition inherently supports the
multi-agent platform types in [4], as the requested resource representations dictate
which parts of the agent task code are executed and where.
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Fig. 1 Smart object inter-
nal architecture to facilitate
mobile agents

With the flexible structure of the resource segment, objects and intermediates
can modify the composition [12]. The client-server paradigm is the default; agents
send state and resource requests to other agents. Publish-subscribe paradigm can
be achieved through mobile agents as events. MapReduce can be implemented by
cloning the agent, or by broadcasting the resource requests to the system devices,
where partitioning the task into smaller computational units can be considered before
sending the task to the devices. Macroprogramming languages can be supported
through agents as high-level code abstractions or as code primitives, which can be
introduced to the system as on-demand task code or as global system resources.
These primitives representations can be considered remote methods or in-line code
for the task.

Mapping the agent composition to different protocol messages needs to be con-
sidered. With the HTTP, we can assume the composition for example as HTML
or XML document, EXI XML representation or as JSON object. However, these
human-readable formats may introduce too much overhead in communication with
low-power resource-constrained embedded devices. Therefore, we presented the
agent composition mapping into a significantly smaller, in size, binary Constrained
Application Protocol (CoAP) message structure in [12].

5 Smart Object Reference Architecture

For the smart objects, we identify three software components, which are necessity
to enable mobile agents: the execution environment to run the actual agent task, a
repository to store the resources in these objects and the physical components, such
as sensors and actuators. The repository contains both data and the knowledge base,
typically in a relational database. We also define two interfaces: the agent interface
to enable the handling of mobile agents and the object interface for communication
with other smart objects and the system. See Fig. 1 for the proposed smart object
internal architecture.



Mobile Agents-Based Smart Objects for the Internet of Things 39

The execution environment (EE), it is a hardware and operating system depen-
dent. The EE is capable of querying information from the repository and from the
physical components to compile a runnable code for execution, after retrieving the
required resource descriptions. Additionally, EE provides methods for actuating and
controlling the physical components. The EE must feature a method to immediately
stop the agent code execution, called by the EE or by the agent task code, which
enables the agent to control its own execution.

The implementation of EEs for the Android operating system in Java and for Atmel
microcontrollers in the C programming language was presented in our previous work
[12]. The Android EE allows scripting languages Python and JavaScript as agent
task code, where a language-specific engine is invoked to execute the script code. A
HTTP server component is used for communication and a SQLite database for the
repository. The EE in the microcontrollers uses IntelHEX precompiled code for agent
task code. The task code is flashed into the memory in the device, as code cannot
be run from the RAM in the ATmega architecture. However, the architecture allows
flashing program memory sections without a reset, a crucial feature here. The local
and remote resource representations are stored into a shared memory block in RAM,
from where the executable code accesses them as 16-bit variables through common
pointers. These pointers and the API methods are defined in a common C header file.
In the program memory, a number of slots are reserved to store the agent code and it
is accessible until overwritten. The communication API was implemented in C for
the CoAP protocol.

5.1 The Agent Interface

The interface is internal within the smart object, providing the methods for handling
the agent messages and agent composition, the execution of the agent tasks and local
resource queries from the repository. Methods are provided to control the integrated
physical components and to stop the agent execution immediately.

Marshal/Unmarshal Handles the serialization and deserialization of the agent com-
position into an internal data structure in the device memory
and back into the transferable agent composition, then utilized
by the object interface. The data structure stores the binding
of the remote and local resources.

Map/Unmap Maps the internal data structure and local resource representa-
tions into the executable code object. After the task execution,
the internal data structure is updated with the new resource
representations.

Execute Runs the executable task code object.
Getter Retrieves the intermediate state of the agents task from the

internal data structure, to respond to external state queries.
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Poster Used for disseminating events from the task code and for actu-
ating the physical components from the code.

Stop Called by the EE or from the agent task code to stop the task
execution and to immediately transfer the agent.

5.2 The Object Interface

This interface provides functionality for inter-object communication, including
resource access and registration into the system. The methods allow query parame-
ters for retrieving information with location information, different granularity and
historical data from the repositories in the objects. This allows discovering nearby
smart objects and resources dynamically.

Post Transmit the agent between smart objects, according to the
resource segment addresses.

Get Enables two-way communication by responding to the exter-
nal queries of local resources, including the agent state. Sec-
ondly, it is used to request remote and static resource represen-
tations from other objects. It may be needed to first perform
resource lookup into the name server or directory facilitator.

Delete Deletes the resource, including the agent, from the hosting
object or from the system.

Register/Unregister Registers the object, its resources and capabilities into the
system. Unregister is used to remove the resource description
from the system. Whenever an object is hosting an agent, its
identifier with the object network address is registered into the
system. The address of the name server or directory facilitator
should be globally known by all system components.

6 System Reference Architecture

The system reference architecture is generally based on the framework described
by IETF CoRE Working Group in [18]. The benefit of the CoRE framework is
that it allows embedded Web services, i.e. Web connectivity, for the most resource-
constrained embedded networked devices.

In the Fig. 2, the resource directory (RD) acts as a name server and stores the
resource descriptions as a part of the information infrastructure. Smart objects can
lookup exposed resources in the system from the RD by the presented API. As
described in [13], the RD can be a part of an P2P overlay over the IoT system.
Queries can be based on URI or resource name, output type, semantic interpreta-
tion, and both virtual and physical location. Secondly, in the system architecture we
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Fig. 2 Smart object-based IoT system reference architecture

utilize generic Web service in several different roles. Web service can abstract het-
erogeneous hardware and software technologies, heterogeneous systems and smart
objects resources, coordinate application or task execution to provide application-
specific intelligence, expose external services into the system, work as a gateway or
proxy over disparate networks enabling interoperability and finally facilitate human-
machine interactions over the Internet. Lastly, we utilize a repository component to
store and expose global and application-specific resources into the system, such as
agent task codes and agent compositions, accessed through the RD lookups. There-
fore, the repository enables smart objects to adopt any agent-based role and facilitates
the re-use of system resources as a part of the information infrastructure. The reposi-
tory can also be part of, for example, a P2P overlay. These system components could
provide communication interfaces for different protocols, namely HTTP and CoAP,
to allow access over disparate networks.

7 Application Programming Interface

We extend the API presented in [12] with smart objects-based features for a reference
RESTful API for mobile agent-based application development, complying with the
ROA. With this method, the role of the objects depends solely on their local resources
and on the agents they host. The API features mobile agent creation and control, agent
migration, communication between devices and agents, and also local and remote
access to the resources in the smart objects. It facilitates interobject and interagent
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Table 2 Application programming interface

GET/object/resource
GET/web_service/resource This method is used for requesting resource repre-

sentations either from a smart object or from a Web
service

POST/object/agent_name
POST/web_service/resource/agent_name With the first method, the agent migrates between

objects. In the second case, an agent is injected into
the system for the given resource, exposed by the Web
service. If an agent composition is not provided in the
message body, a resource lookup is done to locate
the smart objects hosting the particular resources.
The resource segment is compiled automatically, if
resources based on the agent name are available in the
system

DELETE/object/resource
DELETE/web_service/resource This method will delete the given resource from the

addressed smart object and request the deletion of the
object from the RD. In the second case, a lookup to
locate the hosting object for the resource is first per-
formed, if needed to locate the hosting agent or service

GET/repository/agent_name
POST/repository/agent_name These methods will retrieve from or store the particu-

lar agent task code into the repository, with the given
platform identifier as a query parameter. When adding
new code, included in the message body, the reposi-
tory will register the task as a system resource

GET/resource_directory/resource
POST/resource_directory/resource The lookups to the resource directory follow the same

methods: GET returns the description of a resource
and POST injects new resource description from the
message body to the directory. The resource descrip-
tion follows the format outlined in [13]

Table 3 Additional query parameters

object={list of smart object URIs} Allows directly manipulate the resources, including agents,
in these particular smart objects. The requests are only
sent to these particular devices. This can also override the
resource segment in the agent composition

location={URI} This identifier can be both physical location or logical
address of the resource

time={start_time, end_time} Access historical information in the agent, smart object or
system resource. Additionally, when this parameter is sent to
the RD with lookup request, it allows tracing the particular
object or resource

rate={integer} Set the granularity in the information requests, if available.
This is an application-specific parameter
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communications with basic HTTP and CoAP methods, additionally with inherent
content negotiation and authorization methods. This realizes the requirement for
a single protocol with a uniform interface. See Table 2 for the API description. We
introduce additional parameters, in Table 3, for querying historical data with different
information granularity and tracing the agent or objects location or status.

8 Evaluation of Agent-Based IoT Systems

To evaluate mobile agent-based smart objects in IoT, with the possibility of dynamic
resource utilization, a set of specific measures are needed. We propose here metrics
such as resource utilization costs in terms of access and communication latencies,
to describe system-, application-, device-, object- and agent-based characteristics.
In our earlier work [12], we proposed communication, remote resource access and
agent migration latencies and computational overhead in agent task execution as the
measures. Furthermore, we can compare different configurations of the above.

1. With the resource access latencies, we measure the latencies either directly
between heterogeneous devices or through the abstracting Web services. Addi-
tionally, we should measure the access latency from the Internet to system plat-
forms, considering resource access over disparate networks. This measure could
include the request processing time in the hosting device. In the agent composi-
tion, we assume that this latency is dominated by the number of remote resource
queries and should linearly increase as in [14]. Queries to the RD are considered
the same as standard resource accesses.

2. With the computational overhead, we measure the computational latency in the
particular EE in executing agent task code. Platform-specific latencies include
time for system atomic service invocation, marshaling and mapping the composi-
tion into the device memory, running the code and composing the agent message
again.

3. Agent migration latency includes the overhead of agent registration into the RD by
the hosting device, sending the agent as a message to the next device and waiting
for acknowledgement, after which the agent can be deleted from the memory.
This does not include the computational overhead or additional resource access
latencies. This latency would increase with introducing security measures, such as
guaranteed reliable message transmission, and with large-size agent composition.

However, we found out that in the real-world environment [12, 14], conclusive
evaluation would be difficult to conduct with heterogeneous smart object platforms,
as the system configuration, device and object deployment, agent composition,
required resources and their locations are largely application-specific. Additionally,
the varying communication latencies, changing network conditions, device failures
and resource availability are difficult to consider. The evaluation additionally intro-
duces overhead, which would reduce query response times in the most resource-
constrained platforms, such as wireless sensor networks nodes. Therefore, we should
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utilize of indirect evaluation, for example in smart object or agent communication
through application-specific Web services or by tracing the resource accesses or
agent migration indirectly from the RD. Echo request message’s, such as the ping,
round-trip latencies could be useful for measuring communication latencies as a
baseline.

To assist in the evaluation of mobile agent-based IoT system, application and
agent composition design, we proposed simplified equations in our previous work
[12]. We extend the equations to include smart object-specific features, such as the
repository component in each device. The equations identify the relevant factors in
each case, and with modifications allow calculating application-specific costs with
different system and resource configurations. In Eq. 1, we estimate the maximum
latencies C in particular execution environment k, including the resource access,
executing the agent task and the following agent migration latency. Here r is the
number of remote resources, Tr is the response time for remote and static resource
requests, Tk is the computational overhead in the device and Tm is the migration
latency from sending the agent message to receiving an acknowledgment message. Tr

is added once for agent registration to the system. The local resource query latencies
Tl can be considered negligible, however with large information chunk retrieval or
with large number of local resource accesses l, this can be considerable. Based on
the observations in [12, 14], the remote resource queries and migration latencies
dominate these costs.

Ck = (r + 1)Tr + lTl + Tk + Tm (1)

The Eq. 2 gives the total agent migration costs CT otal , for a particular mobile agent-
based service as the agents migrate over disparate networks.The additional latency
for static resource queries is included, where s is the number of static resources. The
number of disparate networks is d, and here it is assumed that the agent migrates only
once to each network. The equation can be modified to cover different scenarios. The
agent migration time between networks is given as Tm,d . We include the latency of
possible message translations in the gateways as Tp. The latencies in each execution
environment are given in Cn,t , from Eq. 1, where the number of devices running each
execution environment is n.

CT otal = sTr +
∑

d−1

(Tp + Tm,d)+
∑

d

∑

n−1

(Cn,t ) (2)

The cost, as latencies, is dominated by the number of platforms in each network
and the previously noted remote resource accesses [12, 14]. Therefore, the remote
resources in the system design and agent composition should be considered as static
or local resources as much as possible [12]. However, this is an application-specific
tradeoff between the agent migration costs and resource access latencies, as the
composition allow the different utilization of the resources. In IoT, we can envision
systems over a number of disparate networks, all with their own characteristics
and technologies, therefore, the migration cost and resource access latencies over
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disparate networks are significant factors in the system and application design and
in the deployment phase.

9 Related Work

To start with, an extensive evaluation of middleware for smart objects and smart
environments in IoT, can be found in [5]. Here we consider the previous work related
to agent-oriented smart object-based systems in IoT.

In [9], the authors envision agent-based IoT system architecture, where the
resources are represented by agents. Agents handle monitoring the state of the
resource, historical data storage and the interactions with other components and
humans. Monitoring and coordination of the resources is done through specific roles
played by the agents. Communication is based on the role of the agent and not to
its name or identifier. For resource discovery, the semantic queries are addressed to
the directory to locate the resource identifier. The tasks are written in a rule-based
language, where the agents provide the system configuration for the tasks and react
to configuration changes.

In [7], the authors present agent-based architecture for smart objects, where the
IoT system heterogeneity is abstracted with layers. The system architecture provides
communication middleware to abstract underlying details, a component for manag-
ing communication with external systems, a resource discovery module, adapters to
abstract sensors and actuators as system resources, and lastly components for man-
aging contexts, knowledge base and reasoning. The implementation is Java-based.
The master-slave model is used with smart objects, where a coordinator manages the
set of software entities, running on other smart objects. The coordinator controls the
hosting smart object though internal communication protocol and is the sole com-
ponent to communicate with other smart objects or system devices, through external
communication protocol. An internal software framework provides API for atomic
services and runs the EE as an additional internal software framework.

In [16], an event-driven smart object framework for IoT is presented. The smart
objects communicate by forming ad-hoc clusters, based on the common context of
objects, with electing representative to each cluster. The objects communicate within
the cluster, where only the representative communicates with the infrastructure. In
communication, XML documents are disseminated over SOAP and HTTP through
a Web service in a gateway node. Two types of events have been defined: network
structure changes to manage the clusters and events to disseminate sensor data. For
addressing and routing, the authors have developed their own mechanism, consid-
ering merge and split operations with unique and reusable addresses. The role of
cluster representative rotates according to available resources in objects, balancing
the communication load.

In [1], an agent-oriented and event-based framework for cooperative smart objects,
based on the architecture in [7], is presented. Smart objects’ behaviour, in the form of
tasks, is separated from the event-based communication management. The tasks are
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separated as system tasks, providing basic services for the smart objects and as user-
defined tasks, in application-level, to define the smart objects’ behaviour as plans.
Events are categorized as information, request, log and error. Event types include
system internal events, external events and another smart object as an event source.
The communication model is publish-subscribe, where each smart object publishes
its topics and services for others to utilize.

In [3], interoperable agents in IoT are presented, abstracting heterogeneous
devices and communicating over different access technologies simultaneously. The
agents register their identifier, type and transport protocols to the directory facilitator.
The facilitator enables the registration and discovery of agents, group memberships
of agents, system services and a messaging service for messages between agents.
The groups, as IoT applications, enable multicast messaging with the members.

Considering agent platforms for smart objects, the authors in [10] present a multi-
agent platform for embedded systems, based on the Java virtual machine. The device
platforms include static system agents providing interfaces to the system services
and, on the other hand, dynamic service agents running the smart home applications.
In [1], mobile agent framework for SunSPOT platforms is implemented in Java. The
agents are modeled as multi-plane event-based state machines, where the state tran-
sitions come in response to events. New events can then be emitted asynchronously.
A distinct feature is the timing of the agent operations by system components, which
additionally offer services for communication and agent control.

In comparison, we presented a novel, language- and platform independent compo-
sition for mobile agents-based smart objects. This method is based on open standards
for communication over disparate networks and for collaboration support without
specific interaction models or middleware. The information infrastructure is realized
with the IETF CoRE framework [18], additionally enabling resource-constrained
device platforms for smart objects becoming integral part of the Web. The system
architecture is flat and is not restricted to specific interaction, communication or
programming models. Centralized system configuration or agent coordination is not
facilitated and we do not apply any specific system configuration or task plan with the
smart objects. Instead, we expose the modifiable agent composition into the system
as a common resource. This method facilitates dynamic interlinked many-to-many
communications, including external systems, despite the roles of the agent or smart
objects. The REST design principles and unified interfaces are utilized for agent
creation, migration, messaging, control and exposing system resources to the Web.
Lastly, although Java software components are modular, portable and provide object-
oriented features for programming, Java virtual machine-based solutions may be too
heavy for the most resource-constrained embedded devices.

10 Discussion

In this work, we proposed a method for integration of autonomous smart objects
with mobile agents, with open standards for communication and cooperation sup-
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port without a specific middleware solution. We presented language- and platform-
independent mobile agent composition, which enables global intelligence and dif-
ferent interaction models for the smart objects and mobile agents. The roles of the
smart objects are decided by the agent composition, which promotes the dynamic
re-use of the system resources with different simultaneous applications. Mobile
code is inherently supported as the mobile agents can be considered as application-
level tasks, high-level programming abstractions and code primitives. The expected
benefits include: mobile agents enable global intelligence, mobile agents facilitate
adaptable system configurations and dynamic service composition, distribute com-
putational load in applications, exploit locality in communication, and finally provide
re-usability and robustness for the smart objects.

The REST principles are utilized in agent creation, migration, control and, in
larger-scale in smart object communication, system resource access and exposing
the resources to the internet, including the agent composition itself. This realizes
the single protocol for uniform interface in ROA-based architecture. Moreover, the
system resources, services and smart objects are exposed to the Web for human-
machine interactions, which provides integration into the WoT.

The presented evaluation method, albeit generic and simplified, can assist in
application-specific IoT system design, in smart object- or mobile agent-based
dynamic service composition and in system service response latency estimations.
Additional system and network-specific parameters should be introduced to real-
world evaluations. The inevitable security and privacy issues in agent-based
approaches were omitted in this work, but to some extent the security mechanisms
of communication protocols are available with RESTful Web services.
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Service-Oriented Middleware for the
Cooperation of Smart Objects and Web Services

Andrea Giordano and Giandomenico Spezzano

Abstract Many physical devices can be interconnected and cooperate by Internet
of Things (IoT), providing and consuming information available on the network.
These will not only provide information by monitoring the real-world, but create
complex collaborations, interacting also with business processes, in order to provide
sophisticated value-added services. In addition, business processes can also adapt
their behavior in response to real-time context updates. Web services technology
offers a promising approach to provide information and functionalities of physical
objects to business processes, since it facilitates interoperability and encapsulates the
heterogeneity and specificity of physical objects. To address the dynamic composition
of web services in a decentralized, distributed manner, with no single point of failure,
a choreography execution model can be used. This chapter describes an approach to
support adaptable business processes (workflows) considering changes in the state of
Things; likewise, whenever needed, the software controlling the behavior of sensors
can be dynamically configured as a result of changes in the functional specifications
of business processes.

1 Introduction

From an enterprise and economic perspective, the Future Internet will be the basis
for a web-based service economy [1] that will merge the digital and physical worlds.
The Future Internet, it is now widely accepted, will have four pillars [2]. Besides
the Internet of Networks, there will be an Internet of Services as well as Internet of
Things integrating common objects into our lives. Finally, an Internet of Contents &
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Knowledge, and an Internet of People are foreseen too. It is important to note that
these terms should not be regarded as different “Internets” that will exist in parallel,
but rather as different aspects of a common Future Internet.

The innovative and rapidly evolving area of Internet of Things [3] and Services
(IoTS) integrates two of the four pillars of the Future Internet and investigates a world
where smart objects (SOs) [4–7]—that is, autonomous physical/digital objects aug-
mented with sensing, processing, and network capabilities, are seamlessly integrated
into the information system where they can become active participants in business
processes. The supporting service-oriented middleware [8] will then abstract the
functionalities of SOs as services as well as provide the needed interoperability and
flexibility, through a loose coupling of components and composition of services.

Efforts in this area are focused on a development of platforms and solutions
where services and SOs cooperate and can be employed in real-world applications in
industrial domains such as manufacturing, e-Health, smart cities, home automation,
e-Business, etc. However, owing to the heterogeneity of devices and tight coupling of
individual information systems, developers cannot easily create their specific appli-
cations by combining physical devices and web resources. To address these prob-
lems, we proposed to realize composite applications combining services and SOs by
event-driven choreographic workflows.

Nowadays enterprise systems are built on a service-oriented architecture (SOA),
and business processes in such systems are modeled as an orchestration of underlying
services. In order to integrate the IoT into business process systems it is necessary to
service-enable IoT resources, e.g., the sensors and actuators that are used to interact
with the physical environments. The current state-of-the-art is mostly focused on
integration of IP enabled networked smart objects where nodes communicate their
information using RESTful Web services. We argue that the approach for the inte-
gration of RESTful SOs with existing, widely deployed SOA technologies such as
Web services and Business Process Execution Language (BPEL) is the key to the
success of SOs in enterprise systems.

In SOA, service composition is normally achieved either through a centralized
controller or in a decentralized manner. Support of decentralized workflow execution
and scalability are important issues for workflow management systems since it makes
it easier to obtain a flexible and adaptive composition of services.

Typically, to reach the required level of scalability, the workflow management
system must be distributed and make use of replicated web services that are selected
and used at runtime. Traditional workflow systems use centralized orchestration
techniques which limit the scalability in the presence of a high number of services.
In the orchestration model, all data pass through a centralized engine, which results
in unnecessary data transfer and wasted bandwidth so that the engine becomes a
bottleneck to the execution of a workflow. Choreography techniques [9], although
more complex to model, offer a decentralized alternative and are optimal architectures
for data-centric workflows. In this model, data are passed directly to where they are
required, at the next service in the workflow.

Self-organizing in this context describes the adaptability of the model during
deployment. Changes in the environment (e.g. location change, connectivity outage,
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reconfiguration of business processes etc.) require reorganization of the deployed
components during run time to meet given Quality of Service (QoS) constraints.

Our idea is to integrate enterprise web services with RESTful SOs by exploiting the
concept of service choreography undertaking the scalability and dynamicity issues
of IoT in order to extend the existing (adaptable) service composition mechanisms.
We show that applications involving SO interaction can be seen as a particular case
of event-driven composite services.

To this end, the rest of chapter is structured as follows: in Sect. 2, we present
our view of system architecture for the execution of event-driven workflows; Sect. 3
presents a description of the adaptive P2P agent-based framework, called Sunflower,
we studied and designed, that supports autonomic management of workflows; Sect. 4
describes the integration in Sunflower of RESTful SO; Sect. 5 illustrates the details
of the proposed methodology through a case study; finally Sect. 6 concludes the
chapter.

2 System Architecture

This section presents an architecture for the execution of event-driven workflows
(i.e. composite applications combining services and SOs through events). The inner
part of Fig. 1 shows the architecture of the Sunflower service execution platform
designed to support the composition of SOAP services. This cooperating model is
created by WS-BPEL workflows. Sunflower permits a decentralized and optimized
execution of WS-BPEL workflows upon a P2P system as described in Sect. 3.

In this context, addressing Smart Object (SO) technology and, in general, Internet
of Things philosophy requires some additional mechanisms to suitably cope with
physical entities. Firstly, a kind of transport layer should be chosen and implemented
in order to foster proper interaction between the WS-BPEL world and concrete
“things” (i.e. SO). Secondly, given that SOs capture the state of the environment
in which they are embedded, environmental state modifications should be carefully
handled and reflected at the Sunflower side. Finally, a mechanism is required that
permits Sunflower workflows to trigger actuation upon SOs.

On the basis of the previous considerations, we propose the use of Web Service
Proxy (SP) acting as an adapter/wrapper of the SO’s world. Through SP, each com-
mand coming from Sunflower will be forwarded toward the SOs. In addition, each
environmental state modification will be considered as an event and notified to the
Sunflower part. In summary, the proposed system can be seen as a Web Service
orchestrator enhanced by a SOs mashup and an even-driven engine.

SP adds the following features to Sunflower:

• support for a combination of services implemented by means of different tech-
nologies (e.g. SOAP, REST etc.);
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Fig. 1 Architecture for event-driven choreographic workflows execution combining Web services
and RESTful Smart Objects

• interaction between Web service and SOs through an “event/action” paradigm,
according to which, the occurrence of an event triggers the execution of one or
more actions in other components.

SP is attached to SOs via REST invocations on a middleware layer that is in charge
to manage underlying SOs. This middleware layer is represented by a so-called
Smart Object Gateway (SOG). SOG offers a transparent and ubiquitous access to
the physical part due to a well-established interface exposed as a REST service as
described in Sect. 4.

SOG allows enterprise application to connect directly to devices without using
proprietary drivers or addressing some kind of fine-grained technological issues.
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In addition, it fosters the reusing of a pre-existent Web Service in conjunction with
SOs thus achieving a perfect match between the Internet of Service and Internet of
Things.

The low level of our architecture concerns formalization of SO and how it is inte-
grated in the system. We define a SO as a system made up of one or more physical
devices that together achieve complex behaviors. Each SO comprises “functionali-
ties” directly provided by the physical part.

Essentially, a SO exposes an abstract representation (i.e. machine-readable
descriptions) of the features and capabilities of physical objects spread in the smart
environment. It is implemented as computer software that is used to link physical
objects with the virtual world.

Functionalities exposed by different types of SOs can be combined in a more
sophisticated way on the basis of event-driven rules which affect high-level applica-
tions and end-users. A SO is self-managed and self-configurable, capable of being
used also out of the context for which it was initially created.

Each physical object, contained in a SO, should automatically perform a simple
action (e.g., lighting, recording) in response to a simple event (e.g. detecting a user,
people who sit in a chair). On the other hand, SOs must have the flexibility to change
their behavior dynamically on the basis of complex applications even though they
posses low processing power and small memory.

A SO changes the behaviour of physical objects by remote and dynamic repro-
gramming thus considering them as execution parts of business processes.

In summary, our architecture is structured in three layers:

• The first level is the SO level dedicated to the characterization of the SO abstraction
in terms of its different functionalities that can be either sensing or actuating and
can be refined by further parameters that dynamically configure it (see Sect. 4.1).

• The second level is dedicated to SOG abstraction which permits operations of
remote and transparent reading and writing on SOs and, also, definition of complex
rules on SO functionalities.

• The top level concerns applications written as WS-BPEL/Sunflower workflows.
This level encapsulates SOs through Web Service Proxies linked via REST to
the underlying layer in order to hide the heterogeneity of devices and provide a
seamless way to integrate SOs with web applications.

3 Sunflower Framework

Sunflower is an adaptive P2P agent-based framework for configuring, enacting, man-
aging and adapting autonomic workflows [10, 11]. Sunflower assumes that multiple
copies of a Web service co-exist, with different performance profiles and distributed
in different locations. During the execution of the workflow, when a service fails
or becomes overloaded, a self-reconfiguring mechanism based on a binding adap-
tation model is used to ensure that the running workflow is not interrupted but its
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Fig. 2 The Sunflower
architecture

structure is adapted in response to both internal or external changes. Figure 2 shows
the architecture of the framework Sunflower.

Workflows are described in Sunflower by the BPEL language [12] in order to
exploit existing design tools. Sunflower replaces the standard BPEL engine with a
new decentralized engine able to exploit the dynamic information available in the
network and respond to the dynamic nature of Internet.

The workflow process is enacted by a set of cooperating Sunflower BPEL engines
(SBE), instantiated at all participating nodes, which are responsible for interpret-
ing and activating part of the process definition and interacting with the external
resources—invoked web services—necessary to process the various activities.

A dynamic group of bio-inspired mobile agents SWEA (Self-organized Work-
flow Executor Agent) [13] representing the workflow executors generated from the
BPEL workflow specification are initially deployed on the basis of the workflow
configuration. A coordination model describes how the generated agents cooperate
with each other to reach a choreographic execution. In Sunflower, the coordination
model is obtained by the Petri Net (PN) associated with the BPEL program. The
PN representation is then structurally decomposed into a set of distributed sub-flow
schemas.
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Fig. 3 Example of BPEL workflow (right)

3.1 Mapping BPEL Workflows on Petri Nets

A workflow described in BPEL, as shown in Fig. 3, details the flow control and any
data dependencies among a collection of Web services being composed. We build
every process in a BPEL workflow by plugging language constructs together; we
thus can translate each construct of the language into a Petri net (PN). Each primitive
or structured activity can be easily modeled as a Petri Net as illustrated in Fig. 4.

BPEL based workflows are converted to a Petri net applying the rules defined by
the Van der Aalst methodology [14] that generate a PNs via the repetitive replace-
ment of elemental PNs with other PNs. Figure 5a shows the conversion of the BPEL
workflow described in Fig. 3 to a PN form using the replacement property.
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Fig. 4 Example of BPEL constructs (left) converted to Petri nets (right)

3.2 Petri Nets Partitioning

A workflow written as a single BPEL program must be decomposed in an equivalent
set of decentralized processes to set up the choreography model. Our strategy is to
construct a PN for the workflow and then apply partitioning rules to operate on such
an abstract representation to create the set of cooperating sub-workflows. Our PN
partitioning algorithm is based on the idea of merging tasks starting from the invoke
activities along the control dependence edges.
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(a) (b) (c)

Fig. 5 Petri nets partitioning a Petri nets. b Top down allocation. c Bottom up allocation

An informal description of the partitioning algorithm is as follow:

• The begin and end portions of PN concerning the main sequence must be assigned
to the same peer, named Peer Collector (PC). Reply and receive activities must be
also executed on the PC.

• The portion of PN concerning the invoke is assigned to the peer handling the web
service called by the invoke itself.

• All the other constructs are assigned by means of two subsequent visits (top down
and bottom up) of the PN graph. The visits of the PN graph start from the invoke
activities. Constructs between two invoke activities can be assigned to one of the
two peers where the invokes are executed in order to balance the load.

After the initial allocations, we start with an TopDown visit of the PN graph and then
continue with a BottomUp visit. The procedure is as follow:

1. TopDown initial allocation: for each PN portion concerning the invoke activity,
the label that indicates the peer on which the invoke activity is allocated is
propagated to all the successors; in the case of controversy (several activities
going to the same place), only the right label is propagated.
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2. BottomUp final allocation: for each PN portion concerning the invoke activity,
the label of the peer assigned to this activity is propagated to all the predecessors;
in the case of controversy, only the left label is propagated.

In order to better describe the entire process, the PN graph shown in Fig. 5a will
be used to illustrate the partitioning procedure. Figure 5b shows how the activities
are allocated to the peers through the TopDown procedure. Following the above
partitioning algorithm, activities 1, 2 (main sequence, begin and receive) and 24,
25 (reply and main sequence end) are assigned to the Peer Collector. Then, starting
from the invoke activities marked as 7, 15 and 18 activities 7–11, with the E1 label,
are assigned to Peer1, activities 15 and 16, with E2 label, are assigned to Peer2 and
activities 18–23, with E3 label, are assigned to Peer3. Then, applying the BottomUp
procedure, activities 3–6 are assigned to Peer1, 12–14 to Peer2, 17 to Peer3 as shown
in Fig. 5c.

3.3 Sunflower Decentralized Execution

On the basis of these schemas, Sunflower enacts the federation of (SWEA) agents that
has to be executed on the SBE nodes. The decentralized execution of the workflow
is coordinate by tokens exchanged among the SBE platforms. Tokens contain the
whole execution state, including all data gathered during execution. Each SWEA
agent performs the portion of workflow assigned and determine which agent should
be activated next.

SWEA agents adapt their structure moving over the Internet to position themselves
in the nodes with low workload and where the Web services with the best performance
are available. The framework provides support for the migration-transparent of the
agents and instructs the agents, by a migration policy, to migrate in order to achieve
goals like load balancing, performance optimization or guaranteeing QoS.

Sunflower monitors the QoS for Web services by Antares [15] and effectively
self-adapts the workflow engines in response to changes in load patterns and server
failures. Antares is able to disseminate and reorganize service descriptors by an
ant-clustering algorithm and, as a consequence of this, it facilitates and speeds up
discovery operations. Based on dynamic service performance evaluation, the ser-
vices with similar or same metric are gather into clusters by Antares. Scheduling
managers make a scheduling decision based on user QoS requirements and informa-
tion in Antares. All member services in a cluster provide similar or the same QoS
after service clustering. Consequently, the task scheduling involves two steps: initial
cluster selection from service clusters and further service selection from the selected
cluster.

To support workflow adaptation the SWEA agents are assisted by routing/schedul-
ing RA agents and monitoring/analizing MA agents that interact with the Antares
information system. The MA agent collects details about the performance metrics
and workload of the Web service and when it detects a change, owing to external
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events, it inserts a new Web service descriptor with the new information in the Antares
virtual space and notifies the change to the RA agent. When the RA agent receives
a notification about a modification of the class of QoS, it sends a query to Antares
to discovery and select a descriptor of an equivalent optimal service. Then, Antares
returns a reference to an end point handler for the selected service. Before executing
the sub-workflow, the SWEA agent contacts the MA agent to verify whether the class
of QoS of the service to invoke is respected. In the affirmative case, the SWEA agent
invokes the service and performs the workflow task, otherwise it uses its migration-
policy to decide its destination consulting the RA agent. The activities of the MA and
RA agents are performed continuously.

Sunflower uses the scheduling algorithm executed by RA agents, to make these
choices, using information provided by Antares. For each Web service, the RA agent
schedules the SWEA agents queued in the local SBE. The scheduled SWEA agent
checks whether the QoS of the service relied on the node of the network is less than
that required. If affirmative, a request is sent to the Antares registry service to search
for an equivalent service to replace. If the service exists and is available, the reference
to the service is returned to the RA agent that uses this information to migrate the
SWEA agent on the node where the service is localized. Otherwise, if there are no
services available an activation request for a new virtual machine is sent to the Cloud
[16] provisioner.

Before, a new VM is started the provisioner checks whether there is one VM
with the QOS requested already, else a new VM is started. The VM continues the
execution of the workflow and before invoking the next Web service on the Cloud the
RA agent checks, by querying Antares, whether an equivalent service is available
on the Internet. If affirmative, the activation token with the status information is
transferred to the SBE node on the network that has the next service to invoke.

4 Integration of RESTful SO in Sunflower

IoT technology emerges from the recent research and technology advancements in
the fields of embedded systems and wireless sensor networks [17]. In these contexts,
a plethora of electronic objects has been developed that fulfills even more complex
requirements. These objects span from simple sensors to more and more flexible and
programmable objects. In addition, all the objects should be able to interact with
each other and with the services on the internet in order to fully accomplish the IoT
philosophy. These considerations suggest these objects should be wrapped with a
standard well-established interface that also addresses the complex and proactive
behavior leading to the concept of SO.

REST services could be a way to deal with standardization issues in an easy and
lightweight way. Also, REST technology strongly relies on IP reachability which is
a fundamental concept of IoT technology in the world of IoT researchers.

Our middleware uses a REST interface to wrap SOs and also supplies an event-
driven engine that properly captures the context modifications in the physical part.
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Fig. 6 Middleware architecture for integration of web services and smart objects

Roughly speaking, our middleware permits us to read/write the SOs and define events
upon them through a well-established REST interface. Events are defined by logical
rules submitted to the middleware and exploited in a publish/subscribe [18] fashion.

This approach is designed to ensure ubiquity and location transparency of SOs
while fostering a service-oriented easy to use development of IoT applications.

As is shown in Fig. 6 our architecture was conceived so that SOs are linked to
different computing nodes. Each SO is wrapped in a suitable Smart Object
Interface (SOI). All the SOs relative to a computing node, together with their
Smart Object Interfaces, are managed by the SOG.

SOG represents the “glue” between the REST part and the SO part of the system.
More in particular, SOG is a singleton (i.e. one SOG per computing node) and
persistent entity of the middleware. Through SOG, REST invocations, which are
intrinsically non-persistent and stateless, can access properly to the SOs which are
conversely persistent and stateful. In addition, SOG is in charge of managing events
defined by rules involving more than one SO; In this case, SOG divides an entire
rule into different sub-rules and then assigns each sub-rule to the suitable SO.

As can be seen in Fig. 6 remote accessing of the SOs can be done in different
ways: owing to REST protocol, one can access the middleware and relative SOs by
using a normal browser, that is, by means of HTTP protocol. In a different scenario,
one can interact with the middleware using an ad hoc client library that hides REST
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invocation details offering suitable API for developing the application in general
purpose programming languages such as: java, c++ and so on.

The third scenario is the one which is more of interest in the context of this work:
it foresees full integration between the SO paradigm and web service’s orchestration
with the addition of an event-driven methodology. Web services orchestration could
be realized in different ways, in the context of this work we propose the use of
WS-BPEL/SunFlower described in the previous sections.

WS-BPEL technology permits web services to be orchestrated through workflow
design. Nowadays, many graphical tools exist that allow WS-BPEL workflows to be
developed in an easy manner in order to allow people, even with no skills in pro-
gramming, to create their own applications. WS-BPEL relies on SOAP web services
rather than on RESTs. Our middleware tackles this issue using SOAP/REST proxy
services that permit full compatibility and integration.

4.1 SOs Versus Physical Resources

A SO can be composed of just a simple sensor or it can be a more complex object
that includes many sensors, many actuators, computational resources like CPU or
memory and so on. Examples of complex SOs can be: smart room, smart flat, smart
building etc.

In general, SO outputs can be represented by punctual values (e.g. the temperature
at a given point of a room) or aggregate values (e.g. the average of moisture during the
last 8 h). Also, the values returned by SOs could be just the measurement of sensors
or could be the result of complex computations (e.g. the temperature of a given point
of space computed by means of interpolation of the values given by sensors spread
across the environment). Furthermore, a SO could supply actuation functionality by
changing the environment on the basis of external triggers or internal calculus.

These different kinds of behavior that SO can expose must be reflected in how it is
integrated in the middleware. SO is therefore conceived as a complex object that can
read and write upon many simple physical resources. More in details, we consider that
each SO exposes different functionalities. Each functionality can be either sensing
or actuating and can be refined by further parameters that dynamically configure it.
The previous assumption leads to the definition of simple physical resource as the
following triplet:

[SOId, SOFunctionId,Params]

where SOId uniquely identifies the SO, SOFunctionId identifies the specific
functionality and Params is an ordered set of parameter values that configure the
functionality. For example let’s consider a Smart Room made of sensors for measuring
different physical quantities inside a room such as temperature, moisture, brightness
and so on. Suppose now you want to read from Smart Room the temperature in a
given spatial point of the room. In that case the triplet could be:
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Fig. 7 Example of binary tree of a rule

[Smart Room, temperature, [x, y, z]]

where x, y and z are the cartesian coordinate of the point of interest.

4.2 Publish/Subscribe of Events

SOG include a publish/subscribe component for managing events in each computing
node. Each event is defined by a logical rule where one or more SOs could be
involved. Each rule is a logical proposition in which the atomic predicates can be of
the following kinds:

simple_physical_resource < threshold (e.g. temperature <300)
simple_physical_resource > threshold
boolean_resource (e.g. the_door_was_unlocked)

Just an example of rule:

(temperature < 100 and brightness > 500) or number_of_ person > 3 or
door_unlocked

The SOG (specifically its publish/subscribe manager) is in charge to parse the
logical rule and generate a binary tree made as explained below: each node N of the
tree corresponds to a logical proposition N (). given L and R, the child nodes of N ,
their associated logical propositions are respectively L() and R() so that it results
either N() = L() or R() or N() = L() and R(). The radix of the tree corresponds to the
entire rule while the leaves contain the atomic propositions that SOG considers in
order to pass them forward towards the suitable SOs.

An example of a binary tree representation of a composed rule is shown in Fig. 7.
A SO is in charge to establish each time when the assigned atomic propositions

are true or false. The logical proposition of a given node is computed on the basis
of the value of its child nodes. The root of the tree is recursively involved by this
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bottom-up computation. As soon as the value of the root node (i.e. the value of the
entire rule) changes SOG notifies all the subscriber.

4.3 Smart Object Interface

The previous sections are focused on supplying a sort of general formalization to
SO and their relative functionalities. The effort of formalization is now useful to
introduce a well-established interface for SO:

Where the checkValue is the method for read a particular physical resource,
acting is the method for performing an operation that produces a change in the
smart environment. There are 2 methods setRule: the first concerns publishing
of threshold based rules while the second is thought for Boolean resources (see
Sect. 4.2).

The parameters of the methods follow the previously described logic:
functionId identifies a functionality that the SO exposes, params is an ordered
set of parameter values that configure the functionality, operator is just the com-
parative operator to be used for the rule, its value can be either < or >, threshold
is a numeric value intended as the threshold value of the rule. The last parameter
of both setRule methods is a listener object that the SO have to notify when the
value of a rule is changed. The involved SO will execute notifications by calling the
methods of the RuleMacthedListener presented below:

For instance, let’s consider the previously introduced Smart Room example, if
one wants to publish an event that occurs when the temperature in the [4,4,5] point
of the room’s space is less than 27 then the method setRule should be called as
shown in the following code excerpt:
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It is worth noting that the SO Interface is used only by the SOG while it is
completely hidden at application level. SOG is in charge of interacting with the
suitable SO on the basis of the application part that, in turn, interacts with SOG
through the SOG interface presented in the next section. Finally, all the SOs will
have to link itself to the suitable SOG calling the register method on the SOG
thus supplying its unique Id. For example:

4.4 Gateway Interface

The SOG implements the GatewayInterface described below. This interface is
exposed outside by means of REST technology. The middleware foresees a suitable
proxy SOAP web service that executes REST invocations in order to reproduce the
GatewayInterface in the client side thus permitting fully integration with WS-
BPEL/SunFlower workflows.

The method resourceNaming assigns an identification name to a given
resource supplied by a given SO. A resource is a particular instance of a function-
ality of a SO refined by some parameters. In other word, a resource is the above-
mentioned triplet: [SOId, SOFunctionId,Params]. The name assigned to a resource
via resourceNaming can be used in the other methods in order to simply identify
the resource. Furthermore, the identification name of a resource is useful to compose
the rules in a more human-readable fashion.

The method check reads the current value of the resource identified by name.
acting triggers tha actuation operation upon the resource identified by name. Both
check and acting methods are of two kinds: the first take only name as parame-
ter and refers to the resource as it is previously defined in resourceNaming; the
second kind, instead, permits to dynamically refine the parameters of the referred
resource. The method setRule permits a complex rule to be published (e.g. (tem-
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Fig. 8 Micaz mote and MTS310 sensor board

perature < 100 and brightness >500) or number_of_ person > 3 or door_unlocked)
and to assigns an id (i.e. idRule) useful for subscribing the rule afterwards.

The method subscribe permits a previously published rule to be subscribed
that is identified by idRule. It is worth underlining that the latter method is a block-
ing method: when it is invoked, the middleware takes care of the event of interest
while the execution of subscribe is stopped for waiting for the event to occur. This
blocking behavior guarantees a correct integration in WS-BPEL/SunFlower work-
flows. In general, indeed, a workflow has one start point and one end point. Between
start and end points there is the entire workflow that can be as complex as required.
Nevertheless, it does not have any other entry points of execution except for the
start point, so workflow cannot manage asynchronous operations properly because
some sort of request/callback mechanism is required to cope with the asynchronous
scenario.

5 Example of Usage

In this section we introduce a simple example of usage of the middleware in order to
explain in detail how the proposed middleware works. In the example we use Micaz
motes (Crossbow MPR2400) (see Fig. 8) as reference technology to build SOs.

A Micaz mote is a processor/radio board that run the operating system TinyOS
[19], which handles power, radio transmission and networking transparent to the
user. The Micaz system is widely used in the context of wireless sensors network
where multiple motes distributed over a wide area are able to wirelessly transmit
their data back to a base station attached to a computer.

TinyOS operating system enables Micaz motes to be programmed in NescC lan-
guage supplying the chance to perform even complex elaborations directly inside the
mote itself. Each mote can be expanded by attaching it a sensor board like MTS310
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(see Fig. 8) which includes different kinds of sensing operations concerning physical
entities such as temperature, brightness etc. In addition, each MTS310 sensor board
includes 3 led that will be used as actuators in the context of our example. Firstly, we
need to define the SOs we want, the functionalities they would offer and the meaning
of the latter. After, we have to program the Micaz motes properly and develop suit-
able computer side SOs implementations that interact with motes via base station. In
our simple example we define a single SO called smart micaz made of 3 Micaz
motes. The first 2 motes both have sensing behavior while the third have the role
of actuator. More in particular, the foreseen functionality for the first 2 concerns
brightness while the third one exposes an actuating functionality that corresponds
just to turn on and off a led. Formally, we call light 1 and light 2 respectively
the sensing functionality of the first 2 motes and we call actuator the acting func-
tionality of the third one. On the basis of the just defined functionalities we introduce
the resources that will be used by the application part. Each resource corresponds to
a triplet as explained in the previous sections:

light sensor 1 = { smart micaz, light 1, [] }
light sensor 2 = { smart micaz, light 2, [] }
led off = { smart micaz, actuator, [led = 0] }
led on = { smart micaz, actuator, [led = 1] }

Now we are free to use the resources as we want, we can read and publish/subscribe
events upon light senor 1 and light sensor 2 or trigger actuation of
led off and led on. The application we want to develop as example has a
straightforward behavior: when the brightness sensed by the first mote (i.e. light
sensor 1) decreases under a given threshold value, the led upon the third mote
shall be turned on (i.e. triggering led on) whilst if it is the brightness measured
by the second mote (i.e. light sensor 2) which decreases under the threshold
value, the led upon the third mote shall be turned off (i.e. triggering led off). The
above-described application is created by setting up a WS-BPEL workflow as shown
in Fig. 9.

As can be seen the flow construct is used which enables executing commands
in parallel. In our example there are two branches (i.e. sub-workflows) executing
concurrently, each execution branch is in charge of controlling one of the read-
ing resources (light sensor 1, light sensor 2) and triggering one of the
writing resources (led on, led off). More in particular, each branch contains
a while construct that loop infinitely. For each iteration a first proxy web service
is called in order to subscribe an event defined by a rule such as light sensor
1 < 150000 ( the Assign construct passes the rule as parameter to the Invoke
construct). The subscribe operation waits for the event to occur. When the rule is
matched the first proxy web server ends its execution and a second proxy web server
is called in order to trigger the actuation part. In that case the Assign construct
passes led on or led off as a parameter to the Invoke construct.
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Fig. 9 WS-BPEL workflow

6 Conclusions

This chapter introduces an innovative framework and applications to combine Web
service and SOs. The platform designed provides the execution of event-driven
choreographic workflows. We present the design requirements and the corresponding
architecture with a description of the technologies and platforms we intend to use for
the implementation. Practical experience gained with the evaluation and implemen-
tation of the architecture demonstrates that it is both feasible and flexible to adapt to a
variety of applications and off-the-shelf technologies. Regarding the implementation
issues, we have shown that Event-driven Architecture has evolved to Event-driven
SOA and this combination may form the foundation of emerging smart systems.
Furthermore, we describe an implementation of a simple example of usage of the
middleware following the SO’s vision. In the near future, we aim to implement and
test the proposed solution with the help of a smart room application.
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Abstract Energy awareness together with holistic perception of consumption
processes are one of the main factors contributing to efficient and sustainable per-
formance of such complex systems as buildings, cities, and factories. Availability of
relevant data and possibility for cross-domain integration become minimum require-
ments defining the success of the implementation. Emergence of cooperating smart
objects, resulting from evolution in IoT and embedded devices, helps achieving
both energy awareness and efficiency by offering possibility of sensing and acting
over complex environments and overcome challenges associated with cross-domain
integration. This chapter describes smart lighting application for the industrial out-
door environment implemented using cooperating objects featuring Semantic Web
Service middleware. Presented use-case considers the university campus area com-
prising multipurpose outdoor area and neighbouring industrial laboratory facilities.
The application is aiming efficient use of energy and possibility for integration with
relevant industrial systems.
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1 Introduction

Energy awareness and efficiency is an important application domain for modern
Information and Communication Technologies (ICT) ranging from enterprise inte-
gration to IoT and smart cooperating objects. Together with holistic perception of
consumption processes, it supports efficient and sustainable performance of such
complex systems as buildings, factories and cities. The design success is heavily
dependent on the availability of relevant data and possibility for cross-domain inte-
gration, which can be realised nowadays with help of the recent advancements in
IoT technologies.

Early smart applications targeted stand-alone appliances within small living
and/or work spaces. With the adoption of more mature technology, it became possi-
ble to embed smart applications in more complex environments, exhibiting different
levels of demands and requirements depending on the target domain (e.g. cities [8],
factories [2], and lower level industrial environments [26]).

Smart applications target enhanced user experience while facilitating efficient use
of resources. There are common challenges across all the application domains that
complicate the achievement of these objectives. The challenges include, but are not
limited to: multitude of purposes for which the same environment may be used, big
amounts of users with different profiles, and dynamics of ambience.

WSN and IoT were successfully applied to implement the early applications for
smart environments [23, 24], and continued to evolve driven by newly appeared
challenges. The concept of cooperating objects (CO) [14] and smart cooperating
objets(SO) [6] bear on the same technological base, as IoT and WSN and is perceived
as foundation for the future IoT [10]. These approaches enable creation of sustainable
smart solutions for complex applications.

This chapter describes an approach to implementation of smart applications in
a multipurpose environment following the cooperating objects paradigm aiming at
increased energy awareness, reduced power consumption and enhanced user expe-
rience. The use case presented is a smart lighting application for outdoor docking
environment at a university campus next to the industrial laboratory. In addition to
primary objectives, the solution is intended for the integration with industrial systems
located inside the building. The paper is structured as follows: Sect. 2 provides the
research background discussing the technological considerations for smart lighting
applications; Sect. 3 describes the implemented smart lighting solution; Sect. 4 draws
the conclusions and outlines the future work.

2 Technological Considerations for Smart Lighting Applications

2.1 Illumination

Lighting conditions have strong impact on everyday life and individual work perfor-
mance [7, 15]. Illumination accounts for 5 to 10 % of total energy consumption on
the planet [17], with lighting systems presenting huge potential for energy savings
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[25]. It is therefore of crucial importance that smart lighting applications should aim
efficient resource usage. Most of the savings can be achieved via suitable (multi-
ple type) control strategies [22], that have proven so far more effective than simple
personal, institution, occupancy and day-lighting driven control [25].

Recommended illumination levels (as produced by the Illumination Engineering
Society) vary from 100 lux in the warehouse areas to 5000 lux for fine inspection
operations [13]. In multipurpose environments, compliance with levels tailored for
the specific needs of one working environment at hand is achievable via a control
strategy allowing to switch between pre-set lighting modes correlated to specific user
needs.

As far as energy consumption of lighting solution is concerned there are a number
of aspects to be taken into account. The luminous intensity drops rapidly as distance
from the light source to the observer increases. Because of the non-linear nature of
this dependency, implications of different lighting modes on energy consumption
are not as straight forward as it may be initially expected [13]. Although there are
simulation tools available allowing to estimate the energy consumption of lighting
applications, it has been found that simulations tend to overestimate savings [25].
Therefore, real measurements are needed in order to evaluate the energy efficiency
of a lighting solution in place.

The identified challenges may be addressed by considering LEDs over conven-
tional light sources and by implementing smart lighting control customized for the
specifics of the environment. Numerous lighting solutions targeting energy efficient
performance were developed in previous decade, actively exploiting low consuming
light sources, control techniques targeting low energy consumption [1] and the com-
bination of both [19]. The challenges of adopting the best practices of smart lighting
solutions are related to the fact, that each application of this kind must be tailored
to the needs of the dedicated users and consider peculiarities of the specific environ-
ment. On the other hand most of the recent solutions rest on same core architectural
paradigms, discussed in the following section.

2.2 Architectural Paradigms

WSN technology is used for many different applications, including structural health
care monitoring, habitat monitoring, fire detection or ambient intelligence [2].
A WSN or WASN (wireless sensor and actuator network) is composed of a set of
nodes distributed over an area of interest. The nodes are able to sense, process, drive,
store and communicate. The network produces large amounts of raw data which
then sent to the central server via sink nodes. Some variations of the concept were
proposed by the research community looking to enhance either the autonomy of the
network (Autonomic Sensor Networks [12]) or data processing and reuse through
dynamic tagging of semantic information (Semantic Sensor Networks [16]).
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Leveraging RFID and WSN, the IoT aims to break the border between physical
and virtual reality through the creation of objects with a virtual representation, which
can be integrated into a network of a global scale to interact with each other.

A generic definition is formulated in [3] as follows:

The main tenet of the IoT is extension of Internet into physical world, to involve interaction
with a physical entity in the ambient environment.

The entity may be an entity, a device (the means of integration of the entity with the
virtual world), a resource (the software component), or service (defines standardized
interfaces and processes for interaction with entities).

There are many definitions of the IoT proposed [20], with a definition focus
shifting in time from the objects themselves to their communication capabilities.
The notion of cooperative IoT can also be found in the literature [9]. Despite the
focus shift, there are three core features mentioned across all definitions: (1) global
scale of the application, (2) big amounts of devices, (3) heterogeneity of the devices.

Succeeding the IoT, the notion of cooperating objects emerged initially defined
at the abstract level in [4] in the following way:

... a Cooperating Object is a single entity or a collection of entities consisting of: Sensors,
controllers (information processors), actuators or cooperating objects that communicate with
each other and are able to achieve, more or less autonomously, a common goal.

While the components of an object are provided in the definition above, the term
cooperation does require further clarification.

In [14] cooperation is defined as

the ability of individual entities or objects to use communication as well as dynamic and
loose federation to jointly strive to reach a common goal, which will typically be a goal in
sensing or control.

A similar explanation of cooperation is given in [9].
Dynamic cooperation relying on complex messaging patterns with nested

messaging threads is highlighted as the minimum technology needs to make object
integration combining both visions a reality [11, 21].

The heterogeneity of devices is resolved by using semantic web service (SWS)
middleware for in embedded devices [18]. This enables CO to be used for complex
cross-domain applications, e.g. smart grid enabling smart houses to communicate
with energy providers, marketplaces, alternative energy sources, etc. [9].

Further enhanced connected objects, characterised by ability to intelligently inter-
pret the information are referred as smart cooperating objects (SO) [5]. The key
enabler of the paradigm is seen to be the agent technologies due to the matching
characteristics of intelligent agents and smart objects (i.e. autonomy, scalability,
responsiveness and pro-activeness) [6].

WSN and the IoT are paradigms that provide tools and methods for implementa-
tions of the solutions for complex smart environments. The approaches are often used
side by side complementing each other in order to fulfil all the needs of the uncon-
ventional use-cases. This becomes possible due to the similarity of the technological
base, which converges into the notion of CO.



CO-Based Outdoor Smart Lighting for Energy Aware Factory 73

3 Case Study: Smart Lighting Application

The solution described in this chapter was designed to provide appropriate illumina-
tion for the multipurpose outdoor environment in a specific utilisation mode using
low amounts of electrical power.

The section is split in five parts, dedicated to the description of the testbed
(Sect. 3.1), analysis of the utilisation modes of the area (Sect. 3.2), description of
the designed architecture (Sect. 3.3), implementation and testing (Sect. 3.4), and the
opportunities for integration with other industrial applications (Sect. 3.5).

3.1 Target Environment

The proposed solution is intended for the backyard area auxiliary to one of the
buildings of Tampere University of Technology (Tampere, Finland) showed in Fig. 1.
The area is used for a variety of purposes, including:

• Students and personnel everyday access to the building via two entrance doors.
• Load/unload of material/equipment to/from trucks via two additional dedicated

doors.
• Parking purposes (there are several parking spaces in the area).

The zone is illuminated with four lamps, which are turned on and off following
the work time schedule and security guidelines (i.e. some of the lamps are on during
the night time to provide minimum illumination to the area); furthermore, the lamps
are always on during the darkest period of winter. The existing operational pattern
fulfils the basic need for lighting, but does not consider such important aspects as
current utilisation mode of the area and nature of the environment hosted by the
building.

As it was previously mentioned, there are different types of actors attending the
area: students, research and support personnel, and vehicles of various scales. Each
of the actors has own purpose when visiting the area, thus lighting conditions tailored
for particular utilisation scenario could facilitate the goal achievement and offer bet-
ter user experience to the users of the area. The part of the building facing the area
considerably differs from average study blocks, being more similar to industrial envi-
ronment, rather than administrative building. The area is actively used as a docking
station, and preparations for load and unload operations could become easier if the
lighting was automatically adjusted to the activity (i.e. proper lamps were turned to
the need intensity to illuminate the working area).

In addition to the above mentioned problems, the existing lighting installation
lacks energy efficiency due to the type of lamps used, applied control strategy and
lack of dimming capabilities. These obstacles are easily overcome by migration to
LED lamps with drivers offering dimming functionality, which is expected to turn into
even bigger savings as cold climate prevents overheating of the diodes. Furthermore
availability of information on energy consumption patterns, achieved through the
site monitoring, can support elaboration of campus-scale energy efficient solution.
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Fig. 1 Testbed area: a building and yard plan; b view to the front wall with access doors and legacy
lamps mounted (top), view to the parking area (bottom)

3.2 Defining the Representation of the Area State

The key to the improved user experience lays in the knowledge on the current sta-
tus of the area. Several criteria were considered during the study of the presented
multipurpose environment. The most descriptive parameters, selected for the imple-
mentation are:

Users present indicate both the fact of presence and the category of users.
Weather conditions focusing on the climate dimensions influencing the visibility.
Illumination level Illumination level provided by the natural conditions.

The notion of profile (P) was introduced in order to combine multiple criteria in
one parameter. Profile allows to uniquely identify the superposition of the dimensions
as shown in Table 1. Each profile is marked with unique identifier Pi jk where indexes
stand for one of the alternative values of the profile dimensions (e.g. P111 corresponds
to a situation when there are people in the area, the sky is clear and it is bright outside).

Each profile is mapped to a specific lighting scene (S). It is a collection of operating
modes to be assigned to each lamp on-site in order to provide the desired lighting
conditions. The range of operating modes varies depending on the lamp and may
consist of either on and off modes, or include a set of intermediate stages if dimming
features are available.

Table 2 illustrates mapping between profiles and lighting scenes. It is important
to realize, that total amount of lighting scenes is smaller than the amount of profiles,
because same combination of lamp operating modes may apply to more than one
profile. Therefore the approach results in a reasonable number of lighting scenes to
be set up (in the first round of scene design 20 lighting scenes were identified for 32
profiles). The provided tabular representations were used as input for the algorithm
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Table 1 Profile dimensions Illumination level Users present Weather conditions
Clear Mist Rain Snow

Above threshold Personnel P111 P112 P113 P114

Truck P121 P122 P123 P124

Both P131 P132 P133 P134

None P141 P142 P143 P144

Below threshold ...

Table 2 Profile to lighting
scene mapping

P Lamp operating modes ( % of total power) S
L1 L2 L3 L4

P111 0 0 0 0 S1

... ... ...
P244 30 50 50 0 Sm

design, helping to identify possible future variations related to change in amounts of
lamps and profile dimensions, as hard-coded implementation prevents the scalability
of the solution.

3.3 Architecture

The application was designed to serve the two purposes: provide users of the area
with lighting conditions adjusted to their needs, provide detailed information about
the energy consumed by the installation. The first objective can be easily achieved
through sensing of the environmental conditions and user detection and consequent
mapping of the detected profile to the required lighting scene. The second objec-
tive puts requirement for synchronization of the measurements recordings with the
profile changes and raises the question about the degree of granularity of energy mea-
surements. Considering the need to investigate the energy consumption patterns and
obtain detailed information about the performance of the updated lighting system, it
has been decided to measure consumption of each individual lamp block installed.

The designed architecture is shown in Fig. 2. Due to the small scale of the target
area, only four proximity sensors (denoted as PS1–PS4 in the figure) are needed for
user detection. Sensors allow detecting the direction from which a user is approach-
ing the area as well as distinguishing between trucks and people. Additionally a
Temperature-Humidity-Light (THL) wireless sensor nodes are needed to sense illu-
mination level and weather conditions. The complete information about weather con-
ditions is formed by data from THL sensor and weather web service, which receives
full weather profile of the location from a third party weather service (Weather-
Yahoo!1).

1 http://developer.yahoo.com/weather/.

http://developer.yahoo.com/weather/
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Fig. 2 Smart lighting application architecture

The command application is distributed over three embedded devices, support-
ing SWS. The first node (denoted as PD in the figure) hosts the main application,
receives input data and communicates commands to the lamps. The other two devices
(EA1 and EA2) are energy analysers; they are intended to measure the individual
energy consumption of the lamps installed. The required amount of energy analysers
depends on the amount of actuators (i.e. lamp drivers) and the required granularity of
measurements. Each actuator in turn may serve several lamps. Its capacity is limited
by the total power of the load attached.

Targeting detailed measurements of energy consumption, each of the lamps is
provided with a dedicated actuator. The main controller communicates with individ-
ual luminaires via a gateway, which transforms the messages received via serial port
into native Digital Lighting Addressable Interface (DALI) messages, understood by
the lamps’ drivers.

Finally, all three command devices feed the events reporting measurements and
status change for further archiving or use in adjacent systems.

From the perspective of the visibility of the components, the overall solution
is composed of three layers: distributed sensing and actuating devices in the field,
networked cooperating objects hosting the distributed control solution, and external
components. The field deployment is aware only of immediately connected control
devices; the external components have access to site-scale network (Event Hub)
and Internet; the control devices bring together information from the field and the
external sources to execute the control and expose field information to the outside
applications via web-service interface.
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Fig. 3 Hardware components of the implementation: LED lamp with integrated driver, proximity
sensor for outdoor use, wireless THL sensor node, two devices S1000 with wireless communication
and energy analyser expansion modules

Table 3 Atomic program categories

Service Monitoring Control

Variables value updates
from device I/Os

Regular energy
measurements

Profile change
notifications

Variables value updates
from external service
data

Over-threshold energy
measurements

Consumption status
acquisition

Scale transformation On-demand energy
measurements

Lighting scene set-up
command

Local KPI computation

3.4 Implementation and Testing

Devices used for the pilot implementation, except the RS-232/DALI gateway, are
shown in Fig. 3. Devices hosting the command logic are three S1000 RTU modules:
one with extension for wireless communication (PD) and two with E10 expansion
modules for monitoring of energy consumption (EA1 and EA2). The outputs of the
proximity sensors are wired to the digital inputs of the PD, and W-Z-THL sensors
are communicating the measurements via ZigBee PRO protocol. Each of the energy
analyser allows to measure energy consumption and related parameters for three
phases. In presented scenario, every phase is assigned to particular driver and each
analyser is in charge of two drivers, helping to distribute evenly the processing load.
The drivers are integrated in the luminaires and are located behind the light sources.

The command functionality is realized through a set of distributed control and
monitoring applications. Programs run in S1000 nodes are implemented in Structured
Text (ST) language of IEC 61131-3 standard. The weather service is implemented
in Java programming language using the Spring framework. The application uses
the Weather-Yahoo! API to obtain weather information and interpret it in terms of
visibility characteristics defined in Table 1. This information complements the values
obtained from THL sensors and helps their adequate interpretation.

The application is implemented in set of atomic programs serving different aspects
of the overall solution (Table 3). Service applications are in charge of timely update
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of variables with data coming from various I/Os and do not communicate with other
control devices. Programs contributing to the monitoring acquire information follow-
ing different time patterns and communicate with other programs triggering measure-
ments via WS interface. Control program set uses results of service applications to
manage monitoring and derive control commands for setting up the required lighting
scene.

Control and monitoring functionality is implemented in parallel and there are two
processes executed in parallel in the devices. Sequence diagram in Fig. 4 illustrates
messaging patterns of two possible scenarios: profile change and energy consumption
measurements.

When main application receives sensor data it identifies the corresponding profile.
In order to avoid big amounts of nested IF statements, the profile ID is computed
as function of tree profile variables. Then the associated lighting scene is identified.
If the computed scene is different from the current one, main application sends a
series of messages to the drivers via gateway in order to set up the new scene. Then
a notification sent to the energy analysers about the profile change. This message
triggers response messages from analysers, containing data on energy consumption.
Main application receives data from the analysers and composes a message to be sent
to the data acquisition application. It is important to obtain the energy performance
information from all the lamps when the profile changes. Therefore, when the first
analyser receives the request from the main application, it updates own knowledge
about the profile and composes a message containing requested energy data. But,
instead of sending the data to the requesting device, it passes the request together
with own reply to the second analyser. The second device also updates its profile
data and ads requested energy information to the message received from the first
device. Finally the information is passed to the main application, where it is used to
compose the message to be sent to the adjacent systems via the Event Hub.

Besides the scenario described above, energy analysers perform regular measure-
ments of energy consumption and related parameters. The frequency of measure-
ments is dependent on the current profile. In order to reduce amount of traffic and
detect abnormal consumption patterns, measured data are sent to the data acquisition
application in the two following cases:

• The nominal time interval defined for the given profile has elapsed;
• The amount of total energy consumed has increased for a value bigger than the

threshold defined.

The above mentioned criteria are applied to each phase separately, as different
lamps connected to same analyser may be set to different operating modes in certain
lighting scenes.

The control box, containing the S1000 modules, is located inside the building,
while the lamps and sensors are located outside, which complicates the balancing and
commissioning. The correctness of the logic and message flows has been verified in
the testbed as depicted in Fig. 5. User presence was simulated by changing the status
of digital inputs of the PH device and the light intensity was illustrated through the
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Fig. 4 Sequence diagrams of possible operation scenarios

amount of digital outputs turning on in the same device. Dedicated digital outputs
of energy analysers were used to track the message flows, both between the devices
and to the external applications.

3.5 Integration with Industrial Applications

Support of SWS at the device level enables direct integration of the solution with the
other applications requiring the information produced by the smart lighting applica-
tion. Possible integration scenarios are considered in this section. During its execu-
tion, the designed smart lighting application produces data sent to the data acquisition
application for storing. However some of this information may be used in other real-
time monitoring and control applications.

As most of the data generated by the application relates to energy consumption
of the drivers and their operating modes, it can be included in energy monitoring
applications as a separate set of parameters as well as a component of a composite
key performance indicator (KPI) e.g. total energy consumption of the site. For the
discussed case-study the site consists of the testbed depicted in Fig. 1 and the neigh-
bouring facilities of the Factory Automation Systems and Technology laboratory
hosting the production line (Fig. 6).
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Fig. 5 Evaluation testbed

The line consists of 10 manufacturing cells, each containing at minimum one
robot and a conveyor system. The line is capable of drawing 729 different layouts of
mobile phones, using different combinations of frame, keyboard, and screen types.
Cell 1 is in charge with determining whether incoming pallets are occupied with
finished products and they need unload to be performed on them, or they need further
circulation in the line. Quality inspection takes place also here via a machine. The
buffer is implemented at Cell 7.

The integration becomes possible due to the availability of the Event Hub
(see Fig. 2), receiving the WS messages from the command devices and directing
them to the subscribed applications. A client application was developed to receive
the messages from the smart lighting application and store it in the MySQL database
(DB). It subscribes to for the required messages from the hub, parses them following
the information on the system configuration contained in the dedicated XML file and
stores information in the database using Hibernate library to interface the DB.

From the perspective of the aims of the lighting application, integration with shop-
floor systems is required for truly holistic control strategy both in the manufacturing
site and related outdoor area, as well as improved user experience. Extending the
described setup to a bigger scale, data received from the proximity sensors may be
used to create notifications for personnel and machines about readiness of the dock-
ing area for load and unload operations, avoiding centralised control and allowing
emergent behaviour of the system. Smart lighting application, in turn, could benefit
from receiving of information from the above mentioned applications or the line con-
trollers via the event hub. This opportunity enables implementation of light control
scenarios driven by the status of the production environment, e.g. setting up lighting
scene required for loading and unloading operation as soon as both truck and line
are ready for the process to be started, avoiding influence of human factor in the
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Fig. 6 Production line

environment adjustment process which can be regulated by safety and security poli-
cies. It could also save a lot of time for the personnel, especially when needed lighting
conditions are provided by a big amount of lamps with individual manual switches.

4 Conclusions and Future Work

Notions of CO and SO rely on the technological base similar to one of IoT and
WSN, and comprises features allowing taking applications for smart environments
to a new level. It enables creation of sustainable smart solutions for such complex
environments as smart grid, urban transportation systems, etc.

The paper presents an implementation of smart lighting application in a mul-
tipurpose environment following the CO’s vision to overall energy awareness of
the site. The use case presented is a smart lighting application for outdoor docking
environment at a university campus. The information about the status of the test-
bed is acquired via a set of wired and wireless sensors and the core functionality is
implemented in three networked embedded devices featuring SWS middleware. The
application evaluates status of the environment, and manipulates the lamps’ drivers
in order to set up proper illumination. It also measures the energy consumption
of individual drivers allowing evaluation of control strategy from energy efficiency
perspective.
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Future work will concentrate on such incremental improvements of the solution as
fine-tuning of the lighting scenes and optimisation of control application, optimized
device and application configuration, as well as its further integration with tools for
holistic energy management.
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A Service-Oriented Discovery Framework
for Cooperating Smart Objects

Marco Lackovic and Paolo Trunfio

Abstract The chapter presents a service-oriented framework designed to support
indexing, discovery and selection of network-enabled Smart objects. The frame-
work allows the dynamical discovery of distributed Smart objects and, specifically,
the services and operations they provide. To this end, a new metadata model has
been defined to describe features, services, and operations of network-enabled Smart
objects, and a service-oriented service, accessible through a REST interface, has been
implemented for registering, searching and selecting Smart objects on the basis of
application needs. The chapter describes the metadata model, the framework archi-
tecture and implementation, and the programming APIs.

1 Introduction

Smart objects are items equipped with sensors or actuators, a microprocessor,
a communication device, and a power source [13]. Their sensors can provide real-time
data such as temperature, pressure, vibrations, and energy measurement. Their com-
munication capability can be limited, such as with RFID tags, or bidirectional such
as with IEEE 802.15.4, Bluetooth or low-power Wi-Fi. The Smart object technology
is often found with other names such as the Internet of Things, the web of objects, the
web of things, and cooperating objects but, with the exception of slight differences
in the connotations and definitions, they basically represent the same fundamen-
tal type of technology. Smart Objects enable a wide range of applications in areas
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such as home automation, building automation, factory monitoring, structural health
management systems, smart grid and energy management, and transportation [2, 3].

The goal of our work was to design a service-oriented framework to support
the effective indexing, discovery and selection of Smart objects. The large number
of proprietary or semi-closed Smart objects systems available today, which has led
to partial and non-interoperable solutions, has motivated us to keep a very general
approach in designing the framework. We also take in consideration different levels
of complexity of Smart objects, including those embedded in everyday objects, such
as thermometers, car engines, light switches, and industry machinery, but also more
complex devices such as smartphones and personal computers.

The only assumption made in our design is that Smart objects are IP-reachable,
i.e. they are all connected to an IP-based network and can be reached through their
IP address. Despite the reputation of IP as being heavy to implement, it is in fact
entirely possible to have lightweight stacks in a Smart object: test networks were
described, where this was successfully done [13]. In recent years, to promote the use
of IP as the open and interoperable standard for Smart objects, a new open, non-profit
worldwide alliance of companies and organizations called the IP for Smart Objects
alliance (IPSO)1 has been formed.

The framework proposed in this chapter provides mechanisms for Smart objects
indexing, discovery and dynamic selection based on their functional characteris-
tics (the provided services) and non-functional features (the quality of service).
Indexing means a document containing the description of a Smart object is reg-
istered, or published, in a registry, when it is possible in a proactively way (the
devices register themselves), to facilitate its fast and accurate finding after a search
query. Discovery means searching for the Smart objects whose description matches a
specified query. Selection means finding, among the discovered Smart objects, those
that are closer to preference requisites (for example those with higher computing
power, with higher battery life, etc.). The term dynamic refers to the need to manage
the dynamic environment with Smart objects that are often turned on and off, and
whose characteristics change over time [4].

The remainder of the chapter is structured as follows. Section 2 discusses related
work. Section 3 describes the system architecture. Section 4 describes the metadata
model defined to represent the characteristics of Smart objects. Finally, Sect. 5 con-
cludes the chapter by describing the system’s APIs, the indexing engine, and the
client interfaces used to interact with the system.

1 IPSO Alliance: http://www.ipso-alliance.org.

http://www.ipso-alliance.org
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2 Related Work

A few research efforts can be found in literature about discovery services for Smart
objects. Systems such as Jini2 and UPnP3 provide mechanisms for discovering and
using arbitrary network services provided by distributed devices.

Jini is a network architecture for the construction of distributed systems in the
form of modular co-operating services. Originally introduced by Sun in 1998, its
responsibility has been transferred to Apache under the project name River. In a
process called discovery, a Jini service finds the lookup service (LUS). Once the
LUS is found, the join process takes place, that is the service register itself providing
information such as its id, the object which implements it and other attributes of the
service. When a client wishes to make use of a service, it will have first to find the
LUS, consult the lookup catalog on the LUS and search based on the type, name or
description of the wanted service, and then connect directly to the service through a
Java proxy returned by the LUS.

Universal Plug and Play (UPnP) is a set of networking protocols, published in
2008—10 years after Jini, based on established standards such as the TCP/IP, HTTP,
XML, and SOAP, that allow networked devices to discover each other’s presence
on the network and establish functional network services. A key component in a
UPnP network is the control point which is considered the client in a UPnP network
and control devices and services using UPnP protocols. A UPnP compatible device
can dynamically join a network, obtain an IP address, announce its name, provide
its capabilities upon request, and learn about the presence and capabilities of other
devices.

Once a device has established an IP address, the next step in UPnP networking
is discovery, which is accomplished using a protocol known as the Simple Service
Discovery Protocol (SSDP). When a device is added to the network, SSDP allows
that device to advertise its services to control points on the network. Similarly, when
a control point is added to the network, SSDP allows that control point to search
for devices of interest on the network. The fundamental exchange in both cases is a
discovery message containing a few essential specifics about the device or one of its
services, for example, its type, identifier, and a pointer to more detailed information.

Other discovery services get close to the Smart objects world, although they are
more related to smart environments than to Smart objects.

Project Aura [5], started in the year 2000, aims to create a system to support com-
putational needs of mobile users by satisfying two competing goals: maximize the
use of available resources and minimize user distraction. The system is specifically
intended for pervasive computing environments involving wireless communication,
wearable or handheld computers, and smart spaces. The system is based on the
concept of personal Aura which acts as a proxy for the mobile user it represents
to marshal the appropriate resources to automatically support the user’s task, as he
moves from one place to another.

2 Jini, also called Apache River: http://river.apache.org/.
3 UPnP Forum, UPnP Documents: http://www.upnp.org/resources/documents.asp.

http://river.apache.org/
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In the Aura architecture, components called Suppliers provide the abstract services
that tasks are composed of, which are implemented by wrapping existing applications
and services to conform to Aura APIs. Such wrappers map the XML-based abstract
service descriptions into application-specific settings. When Suppliers are installed
in an environment, they become registered with the local Environment Manager [11].
Such a registry is the base for matching requests for services: it embodies the gateway
to the environment, it is aware of which service suppliers are available to supply which
services, and where they can be deployed.

The Voyager framework [10] supports the implementation of dynamically
distributed user interfaces, which exploit, on-the-fly, the wireless devices available
at a given point in time. Its discovery mechanism relies on proximity considerations
to discover ambient devices (i.e., only devices close to the user are considered), and
is performed by a component of its architecture, the Application Manager Interface.
Device discovery is delegated to a single locally running server, which maintains an
up-to-date registry of proximate ambient device addresses by performing continuous
discovery tests. The client software library receives notifications of newly discov-
ered devices, or devices that go out of range, through a proxy API: this proxy can
communicate with the server to maintain a catalogue containing the descriptions of
all proximate devices.

All the systems mentioned above may be used with Smart objects but are not
specifically designed for their context. A discovery service specifically related to
Smart objects has been proposed in [6]: the work describes a framework for building
distributed Smart object systems where one of its primary components, called “Smart
object wrapper”, has a discovery module that allows service advertisement. Smart
objects are represented by XML documents that provide meta-information regarding
the Smart objects, contain links to the binaries of its services and are also used by the
secondary infrastructure FedNet to discover the services of the Smart objects and to
associate Smart objects with applications.

Even though the last system implements some of the functionalities provided
by our framework, it lacks a central indexing registry which makes difficult to use
it to register information about a set of Smart objects related to each other for a
given purpose. In addition, while the system above uses XML to represent Smart
object metadata, in our system we use JSON that offers a more compact metadata
representation which in turns results in a more efficient bandwidth utilization. Finally,
our system includes a complete API definition and implementation that allow to
integrate the discovery service into any existing Smart object middleware.

3 The Architecture

The definition of an architectural model tailored to the application scenarios of
reference is a key aspect for the implementation of the framework. Between the
options initially considered—centralized and peer-to-peer—a centralized solution
has been adopted as it appeared to be the most appropriate in view of the projected
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Fig. 1 A schematic representation of the architecture of the system

scenarios. On the other hand, fully decentralized peer-to-peer solutions to resource
discovery (as proposed, for instance, in [1, 9], and [12]) could be effectively adopted
in larger scale Smart object scenarios.

In the proposed architecture, there is a central registry exposed as a service that
indexes the information concerning the Smart objects of a given domain; the search of
resources (Smart objects, services or operations) in that domain can be performed by
contacting this central registry. Once the resource has been found, a direct reference
to it is given so that it may be controlled/queried directly from a client application.
To each Smart object it is associated an information provider which has the task to
generate the associated metadata.

The centralized architecture model defined, detailed with all its components in
Fig. 1, is composed of two main parts:

1. SmartSearch: a service that contains a central registry where Smart objects are
indexed, and which exposes methods for registering/publishing, searching and
selecting Smart objects;

2. ClientLibrary: a module, in the form of software library, which allows the appli-
cation level to interact effectively with the SmartSearch service using objects and
local methods, making the remote methods invocation completely transparent.

The SmartSearch service is implemented as a RESTful web service4 and it is
exposed through the Apache Tomcat web service container. REST (Representational
State Transfer) is an architectural style for distributed software systems. The term,
introduced and defined in 2000 by Roy Fielding (one of the main authors of the
HTTP protocol specifications), specifies a series of architectural principles for the
design of web services.

4 RESTful Web Services: http://www.oracle.com/technetwork/articles/javase/index-137171.html.

http://www.oracle.com/technetwork/articles/javase/index-137171.html
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The framework used in our implementation to develop RESTful web service
is Jersey,5 an open source framework that implements the JAX-RS (Java API for
RESTful Web Services) specifications using annotations to map a Java class to a
web resource. Specifically, Jersey manages the HTTP requests and the negotiation
of the representation, and provides the APIs that allow the extension according to the
developer needs. It supports natively JSON representations through the integrated
Jackson library.6

An important component of the SmartSearch service is the Smart object search and
indexing engine, implemented using the free/open source Apache Lucene library7

that provides a high performance and full-featured search engine.
Another important component is the id—IP addresses resolution table, which

allows to obtain IP addresses from the Smart objects ids and therefore to reach the
Smart object. The presence of such table, along with the fact that the Smart objects
are uniquely identified by their id and not by the IP, allows the Smart objects to be
able to change their IP in a way completely transparent to the client.

The communication network used is TCP/IP, because we assume the Smart objects
have their own IP address. The Smart objects level in fact provides an IP-based
protocol for interacting with the Smart objects, as well as the framework for their pro-
gramming. The communication among Smart objects can be based on IP (according
to the IPSO alliance).

The objects and methods of the ClientLibrary component and the methods of the
SmartSearch service interface are detailed later in the chapter, in Sect. 5.

4 The Metadata

In order to represent functional and non functional characteristics of Smart objects
in a structured way, we defined a metadata model. The adoption of metadata models
in distributed computing systems is fundamental to manage the heterogeneity of
resources and to effectively use them [7, 8]. The proposed model identifies a set
of metadata categories useful to index a Smart object in the domain of interest,
general enough to satisfy most of the application contexts. The metadata represent
the Smart objects static values, while the dynamic ones can be obtained by invoking
the appropriate operations on their services.

4.1 Metadata Model

Our metadata model is divided into four main categories:

5 Jersey: http://jersey.java.net/.
6 Jackson: http://jackson.codehaus.org/.
7 Lucene: http://lucene.apache.org.
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• Type: represents the type of Smart object (e.g., a smart table, a smart wall).
Each Smart object will have a tag taken from an enumeration of known tags
(a taxonomy) through which it will be identified. This category also contains the
id of the Smart object, which allows its unique identification within the system.
In case of structured Smart objects, it will also contain the id of the Smart object
within which it is contained, and the list of identifiers of the Smart objects contained
inside it.

• Device: defines the physical characteristics of the device that specify, for example,
if the device is running an operating system, what is its name, its version, how
many users can use the Smart object, how many objects it can contain, etc.

• Services: contains the list of services provided by the Smart object. Each service
is provided with an id through which it is possible to interact directly with it,
without necessarily knowing in advance the Smart object that exposes it. Every
service has a name, a description, the type (sensing or implementation), the return
type (boolean, natural number, real number, etc.). A service can be discovered for
example by knowing the name or a keyword contained in its description. Each
service can also be associated with a quality of service indicator, such as the
resolution of the operation performed by the service, its maximum and minimum
returned value, and so on. Each service may contain a list of one or more operations
that the service can perform. For example, given a “light” service, some operations
that may be invoked on the service are “switch on”, “switch off” or “invert state”;

– Operations: sub-category of Services, it defines the individual operations that
may be invoked on a service. As with the Smart object, and for its services,
each operation has an id with which the operation can be can reached and
invoked, without necessarily knowing the Smart object or service for which it
is defined. Each operation is equipped with a series of parameters necessary for
its invocation, and a description;

• Location: represents the position of the device, which can be indicated in absolute
terms, specifying the latitude and longitude, or in relative terms through the use
of tags, such as “building B”, “floor 3”, “room 15”. If the position of the Smart
object changes over time, then it should be obtained as a service, if it is provided
by the Smart object.

The generation of a metadata description document for a simple Smart object
can be done by the Smart object creator/manager who, knowing the Smart object in
details, can describe its characteristics following the required formalism. For complex
Smart objects, this procedure could be accomplished by a module installed on the
device, called information provider, which has the task to generate the metadata.

In the following tables are listed, for each category, the names of the metadata,
their types, a description and their admissible values. It is important to highlight that
the metadata represent static values of a Smart object; the dynamic values can be
obtained by invoking the appropriate operations on its services.

Geographical information about the location of the Smart object (eg. country,
region, province, city, etc.) can be derived starting from the coordinates of the Smart
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Table 1 Type metadata

Name Type Description Admissible values

Id String It uniquely identifies the Smart
object among all the Smart
objects known by the system;
it may be defined by the user
(prior uniqueness check) or
automatically generated by
the system

Alphanumeric characters,
hyphen and underscore,
except spaces, commas,
quotes, slash, backslash,
pipe, etc. (typically the type
of the Smart object, followed
by a progressive number)

Type Enumeration The type of the Smart object {Table, chair, sofa, desk, floor,
ceiling, room, wall, closet,
lamp, printer, computer,
phone, glasses, camera,
display, mirror, speaker, etc.}

So-parent String It contains the id of the Smart
objects which contains the
present Smart object (a smart
room contains a smart chair)

Any

So-children Array of
strings

It contains the id of the Smart
objects which are contained
by the present Smart object (a
smart chair is contained by a
smart room)

Any

object through different public geographic information repositories. For example,
Google Earth and Microsoft Virtual Earth offer some sort of API for geocoding:
the use of these resources, however, is governed by precise rules and restrictions.
GeoNames8 instead is licensed under Creative Commons: anyone is free to use as
they wish, provided the source is acknowledged: it contains 10 million geographical
names categorized into nine classes, in turn sub-categorized for a total of 645 sub-
categories (river, lake, park, road, rail, etc.). The data are accessible free of charge
through a variety of web services and daily exports of the database.

4.2 Metadata Representation

For the metadata exchange, the JSON (JavaScript Object Notation) text format is used
because it is lightweight and easy to read and write manually, as well as to analyze and
generate in an automatic way. JSON considerably reduces network traffic compared
to XML, which is very important for wireless applications, and is suitable to describe
attribute-value pairs.

An example of metadata in JSON format, regarding the description of a smart
chair, is shown in Fig. 2. The JSON consists of four members, each corresponding

8 GeoNames: http://www.geonames.org/.

http://www.geonames.org/
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Fig. 2 JSON representation of a smart chair
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Fig. 3 JSON representation of a smart lamp

to one of the four metadata categories described above (Type, Device, Service and
Location). By looking at the JSON in the example, one can easily derive that the
smart chair is located within a smart office (whose id is indicated in the so-parent
metadata) and offers three sensing services: the presence of a person in its immediate
vicinity, the orientation in degrees relative to the north direction, the presence of a
person sitting on the chair.

Another example of metadata in JSON format, which is the description of a smart
lamp, is shown in Fig. 3.

This JSON has two members Type and Services. As it can be easily inferred
by reading the JSON, the smart lamp is included in another Smart object (a smart
office denoted by the id office1 specified in the so-parent metadata) and provides one
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Table 2 Device metadata

Name Type Description Admissible values

Multitasking Boolean Able to execute more
operations at the same
time

{True, false}

Os-name String Operating system name Any
Os-version String Operating system version Any
Users-number Integer Represents the possibility to

be used by no one, one
or more persons at the
same time (e.g. a chair
can be used only by one
person at the same time,
while a room by more
persons). −1 represents
an unlimited value, not
measurable

−1, N

Capacity Integer Specifies how many items
can be included inside
the object

N

sensing service to check the luminosity of the surrounding environment expressed
in lux, ranging from 0.1 to 40,000. Two operations are provided to change the light
brightness: brighten that increases the light brightness by the amount specified as
parameter, and dim that decreases the light brightness by the specified amount.

5 The Implementation

The methods that are part of the middleware API, which must be invoked at various
levels of the architecture to perform the operations mentioned earlier, are listed and
described below.

5.1 Service API

The methods exposed by SmartSearch offer the possibility to register a Smart object
(the register method), search a Smart object (discover), obtain the IP address of a
Smart object (resolve), update the IP address of a Smart object (updateIP), remove
a Smart object from the registry (remove), and get the metadata of a Smart object
given its IP (getJSON).

A detailed description of such methods follows:
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Table 3 Services metadata

Name Type Description Admissible values

Id String It uniquely identifies the
Smart object service
among all the services
of all the Smart objects
know by the system; it
can be defined by the
user (prior uniqueness
check) or automatically
generated by the system

Alphanumeric characters,
dash and underscore,
except spaces, commas,
quotes, slash, backslash,
pipe, etc. (typically the
name of the service,
followed by a
progressive number)

Name String Name of the service {Acceleration, magnetic,
orientation, light, noise,
proximity, gravity,
rotation, temperature,
humidity, usage,
user-presence,
wind-speed,
wind-direction,
gps-coordinates,
relative-location,
battery-life, plugged,
tasks-queue, storage,
free-memory, etc.}

Description String Textual description of the
service

Any

Type String Type of service {Sensing, actuating}
Return-type String Returned type {Boolean, natural, integer,

real, string, multi-value}
Power Real Consumption in milliamps R+
Resolution Real Accuracy with which the

service is able to
provide the information

R+

Maxrange Real The maximum
value/interval provided
by the service

R+

Minrange Reale The minimum
value/interval provided
by the service

R+

Operations Compound Operations which can be
performed by the
service, that is the
service invocations with
specific parameters

List of the operations with
the specification of each
of the parameters

• String discover(String query): returns the list of Smart objects metadata that
match the received query in Lucene format;

• String resolve(String id): returns the IP address of the Smart object, service or
operation corresponding to the specified id;
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Table 4 Operations metadata

Name Type Description Admissible values

Id String Identifies the service
operation uniquely
among all the operations
of all the services of all
the Smart objects known
to the system; it can be
defined by the user
(prior uniqueness check)
or generated
automatically by the
system

Alphanumeric characters,
dash and underscore,
except spaces, commas,
quotes, slash, backslash,
pipe, etc. (typically the
name of the operation,
followed by a
progressive number)

Params String It contains the list of
parameters which must
be passed to the
operation in JSON
format

Any

Description String Textual description of the
operation

Any

Table 5 Location metadata

Name Type Description Admissible values

Latitude Real Latitude in decimal degrees
(DD)

R

Longitude Real Longitude in decimal
degrees (DD)

R

Place String Textual description of the
place in which it is
located (eg. the name of
the building)

Any

Floor Integer Floor of the building in
which it is located

N

Room String Name of the room in which
it is located

Any

So-nearby Array of strings It contains the id of the
Smart objects
permanently close to the
current Smart object

Any

• String register(String metadata, String ip): saves in the registry the Smart object
metadata, its IP address, and the date and time at which this method was invoked;

• String updateIP(String id, String ip): updates the IP address of the Smart object
having the specified id, with the specified IP;

• String remove(String id): removes from the registry the Smart object having the
specified id;
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Fig. 4 UML diagram of the classes of the client library

• String getJSON(String id): returns the metadata in JSON format of the Smart
object having the specified id.

The IP address, not being a structural information of the Smart object, is passed
as a parameter in its own right.

5.2 Client API

The objects and methods provided by the client library are summarized in Fig. 4
through a UML diagram of the classes.
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A detailed description of the classes follows:

• SmartClient: simple command line application that interacts with the Smart-
Search service.

• SmartSearch: reference class for the integration with the SmartSearch service. It
exposes the methods that allow to invoke the methods of the SmartSearch service.

• Metadata: the abstract class containing the elements shared by the classes that
model Smart objects, services and operations metadata, and provides the following
methods:

– String getId(): returns the id of the element (Smart object, service or operation)
to which the metadata applies;

– String getIP(): returns the IP address of the element (Smart object, service or
operation) to which the metadata applies;

– String getJSON(boolean indented): returns the metadata in JSON format. If
the specified parameter is true then the returned JSON is indented, otherwise
not;

– String getValue(String key): returns the value of the specified attribute;
– String getMap(): returns the metadata of the Smart object as a map, where the

key is a string and the associated value can be an ArrayList, a Map, a String or
a wrapper object of the basic types (Integer, Boolean, etc.).

• OperationMetadata: contains the metadata of an operation provided by the ser-
vice of a Smart object.

• ServiceMetadata: contains the metadata of a service of a Smart object and pro-
vides the following methods:

– OperationMetadata getOperation(String id): returns the OperationMetadata
object corresponding to the operation having the specified id. If such operation
is not provided by the service then null is returned;

– ArrayList<OperationMetadata> getOperations(): returns the list of opera-
tions provided by the service.

• SOMetadata: contains the metadata of a Smart object and provides the following
methods:

– String getID(): returns the id of the Smart object on which the method is invoked;
– Map<String, String> getType(): returns the map containing the metadata of

the group Type;
– Map<String, Object> getDevice(): returns the map containing the metadata

of the group Device;
– Map<String, Object> getLocation(): returns the map containing the metadata

of the group Location;
– ArrayList<ServiceMetadata> getServices(): returns the map containing the

metadata of the group Services;
– ServiceMetadata getService(String id): returns the ServiceMetadata object of

the service of the Smart object having the specified id;
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– OperationMetadata getOperation(String id): returns the OperationMetadata
object of the operation having the specified id.

The language used for the queries is the one supported by Apache Lucene.

5.3 Indexing

The SmartSearch service has been implemented as a RESTful Web service using
Jersey,9 an open source framework that implements JAX-RS (Java API for RESTful
Web Services) using annotations to map a Java class to a Web resource, and natively
supports JSON representations through the integrated library Jackson.10

The service discovery prototype is written in Java (version 1.7) and has been
deployed on Apache Tomcat11 (version 7.0) installed on a server machine having
Ubuntu Server12 (version 12.04) as operating system, but may be installed on any
Linux distribution. There are no special hardware requirements, given the relatively
small amount of memory required by Lucene. Regarding the ClientLibrary, it can be
used on any computer with a Java Development Kit (version 1.7 or higher), on any
operating system with no particular requirements in terms of hardware, except those
imposed by the application that uses the library.

5.3.1 Indexing Engine

The core component of the SmartSearch service is the indexing and search engine;
this component has been implemented by using the open source library Apache
Lucene (version 4.2.0), an open source library that implements a performant search
engine and rich of functionalities.

Another important component is the id-IP Table, a directory service that maps
Smart objects, services and operations to IP addresses. This table, along with the fact
that Smart objects are uniquely identified by their ids and not by their IP addresses,
allows for the Smart objects to change their IP addresses in a transparent way to the
client.

The Apache Lucene library provides a scalable and high-performance indexing
system with the following characteristics:

• low memory requirements (only 1MB of heap);
• incremental indexing as fast as the batch one;
• size of the index about 20–30 % of the indexed items.

Lucene also includes efficient search algorithms that provide:

9 Jersey: http://jersey.java.net/.
10 Jackson: http://jackson.codehaus.org/.
11 Apache Tomcat: http://tomcat.apache.org/.
12 Ubuntu: http://www.ubuntu.com/server.

http://jersey.java.net/
http://jackson.codehaus.org/
http://tomcat.apache.org/
http://www.ubuntu.com/server
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• classified search—the best results are returned first;
• a rich query language that supports a variety of functionalities, including:

– single and multiple wildcard searches;
– fuzzy searches based on sophisticated algorithms such as the Levenshtein dis-

tance (a measure of the difference between two strings): for example, a fuzzy
search of the word roam will find terms like foam and roams;

– search by range that allow to identify objects whose fields have the values within
the specified ranges;

– boolean operators allow terms to be combined through logic operators.

• search on date ranges;
• sort on any field;
• allow updating and searching simultaneously.

5.3.2 Indexing Structure

The data managed by Lucene are represented as documents with text fields that
contain classified information about the documents and allow to perform searches
on them. Hence, each Smart object metadata is saved as a Lucene document, whose
fields are the individual metadata of the Smart object.

The Lucene document corresponding to a Smart object consists of two fields: (1)
an “id” field containing the id of a Smart object, and (2) a “json” field containing the
metadata of the Smart object in JSON format.

5.4 Client Interfaces

To demonstrate the functionality of the service two types of clients have been
developed: the first one uses JSP web pages published by a web server which can
be accessed from a browser; the second one is a command line interface that can be
used from terminal. Sections 5.1 and 5.2 describe such components.

5.4.1 JSP Client Interface

A Web-based user interface has been implemented to expose all the discovery service
methods discussed above. A screenshot of such interface is shown in Fig. 5.

The JSP interface consists of a set of web pages that allow to interact with the
SmartSearch service through the invocation of its methods. Specifically it consists
of a page, shown in Fig. 5, which displays the list of all the Smart object indexed: for
each one of them is shown its type, its IP address, the list of the services provided by
it, and the date on which it was registered in the index. By clicking on a Smart object
or service id on that page, the respective metadata will be shown and by clicking
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Fig. 5 JSP client interface

on the red button in the Delete column the respective Smart object will be removed
from the index.

Another page is dedicated to the registering of a Smart object: the registration
is done simply by entering the IP address of the smart obejct in the proper field,
choosing the file which contains the metadata in JSON format of the Smart object to
be registered and by pressing a button to submit the request. If successful, a message
will be displayed to confirm the registration of the Smart object, otherwise an error
message will be displayed. Other pages show the Javadoc of the service and the client
library APIs.

5.4.2 Terminal Client Interface

The command line application that interacts with the SmartSearch service consists of
a jar file, called SmartClient, and can be executed by running the following command:

java -jar smartClient.jar address command parameter1 [parameter2]

where address is the server hostname or IP address where the service is deployed,
while command must be one of the following:

• register = registers a Smart object in the service registry
parameter1 = name of the file containing the metadata in JSON format
parameter2 = IP address of the Smart object

• discover = performs a search
parameter1 = query in Lucene format
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Fig. 6 A terminal client interface

• getJSON = returns the metadata of the specified Smart object
parameter1 = Smart object id

• resolve = returns the IP address of the specified Smart object
parameter1 = Smart object id

• updateIP = updates the IP address of the specified Smart object
parameter1 = Smart object id
parameter2 = the IP address of the Smart object

• remove = removes the specified Smart object from the service registry
parameter1 = Smart object id

Figure 6 shows an examples of invocation of the getJSON method from command
line.

6 Conclusions

Providing effective indexing and discovery services is fundamental in Internet of
Things scenarios, where a large number of heterogeneous Smart objects must be
dynamically discovered and integrated with each other to satisfy users’ and applica-
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tions’ needs, based on the services and operations they provide. We worked in this
direction by designing and implementing a service-oriented framework that supports
indexing, discovery, and dynamic selection of Smart Objects.

We have showed how the proposed framework can provide mechanisms for Smart
objects indexing, discovery and dynamic selection based on their functional charac-
teristics (the provided services) and non-functional features (the quality of service).
We have defined a metadata model useful to represent functional and non functional
characteristics of the Smart objects in a structured way; the proposed model identifies
a set of metadata categories useful to index a Smart object in the domain of interest,
general enough to satisfy most of the application contexts. We have implemented a
prototype, describing in details its API.

The comparison with similar systems showed that our framework combines a
series of distinctive features: (i) a Smart Object registry accessible as a network
service; (ii) the use of JSON for a more compact metadata representation, which
results in a better bandwidth utilization; (iii) the use of modern Web standards and
technologies (e.g. REST); (iv) an open design, which makes the system suitable for
integration in many infrastructures.
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Smart Manufacturing Through Cloud-Based
Smart Objects and SWE

Pablo Giménez, Benjamín Molina, Carlos E. Palau, Manuel Esteve
and Jaime Calvo

Abstract Smart manufacturing is a key aspect for innovation and competitiveness,
and involves several dimensions of the production chain to be analysed, assessed and
enhanced within a factory. To target this issue, concepts and ideas behind the IoT
(Internet of Things) are applied, so that connected smart entities cooperate in order to
achieve broader goals or increase the overall knowledge in the factory through infor-
mation sharing. Smart entities in the IoT are typically referred as WSNs (Wireless
Sensor Networks) that capture physical (real) data and events and produce virtual
(digital) information to be processed. Unfortunately, current WSNs have limited
interoperability and processing capabilities, reducing the integration degree with
existing applications. This chapter proposes a solution for both previous technical
challenges within a factory. Interoperability is achieved by means of SWE (Sensor
Web Enablement) whereas processing capabilities are provided through virtualizing
smart objects in a datacentre, placed commonly in the factory but it could also be
located elsewhere, applying cloud-based techniques. The architecture and deploy-
ment has been arranged for the specific use case of a manufacturing company and
a risk prevention scenario. Experimentation results show that smart objects could
be provided at runtime with fine granularity level depending on the tasks to be
performed. Moreover, smart objects are able to co-operate forming meta-objects
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to satisfy global tasks or minimize certain risks. Finally, smart objects are able to
encapsulate private (health and/or personal) data that should not be shared with other
objects or processes.

Keywords Smart objects · Industrial safety · Wireless sensor networks · Sensor
observation service

1 Introduction

Security technological advances in industrial environments have evolved
considerably in recent years but there are still risks concerning worker’s safety and
health. Therefore new integrated approaches from different scopes (legal, techno-
logical, socio-economic, etc.) should be built to ensure the continuous safety and
wellness of workers in the handling, machining and assembly factories, allowing
workers to become key factors of competitiveness and differentiation of the new
production model. In this chapter, we propose the usage of smart virtualized objects
to perform intelligent tasks such as increasing productivity and minimizing risks.
The architecture presented will be later deployed on a test bed in order to assess a
special risk (collision detection).

The IoT is evolving from simple sensors with network connectivity to a collection
of interrelated and interconnected objects, called Smart Objects (SO) [1–5]. Currently
there is an undeniable trend of increasing computing capabilities and using emerging
technologies such as Near-Field Communications (NFC), real-time localization and
embedded sensors of everyday objects to turn them into Smart Objects [6]. These SOs
are fully functional on their own, but added value is obtained through communication
and distributed reasoning. Such objects have become building blocks for the IoT and
enable novel computing applications.

The proposed system in this chapter consists basically of multiple objects and each
one may be perceived as a Wireless Sensor Network (WSN) capable of obtaining
multiple environmental data. WSNs are a set of small, low cost and low energy
devices that monitor an area of interest, and enable applications to obtain up-to-date
information about the physical world. The data is stored and processed according to
the scenario of application. This information is especially valuable for environments
in which it is inefficient, difficult or dangerous for people to collect data on site
by themselves, e.g. agriculture, maritime, healthcare, industrial and even military
applications.

WSNs are one of the most important elements in the IoT paradigm, as they provide
a virtual layer where any piece of sensing capable information about the physical
world can be potentially accessed by any computational system. The use of standards
such as 6LowPAN, defined by IETF, allows transmitting IPv6 packets through com-
putationally restricted networks [7]. Even if WSN’s use and popularity is increasing
they are still subject to huge research in several fields. Most of the research has been
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placed on reducing energy consumption [8], developing efficient routing protocols
[9, 10] and introducing or enhancing security issues [11].

Sensors and information gathering from the physical environment are incorpo-
rated to everyday life in multiple environments. A way of cheaply incorporating
sensors into such environments and testing their suitability is the usage of virtual
sensors. A virtual sensor is a software component that emulates a sensor and sends
periodically information, inserting observations and updating its position. In order
to test the feasibility and scalability of large systems it is necessary to introduce
simulation tools, as it would be extremely expensive to deploy hundreds of sensors
to replicate any potential risk scenario. Note that a simulated system may evaluate
all types of situations as exceptional cases or long-term behaviour whereas a real
factory may only require some of the sensor networks targeting those risks that are
relevant for them. The usage of simulation tools for testing environments allows a
faster, cheaper and riskless deployment timeline [12, 13]. Typically, WSN emulators
have focused in the analysis of communications, energy consumption or security.
Our proposal focuses on the upper layers on the data generated by the sensors and
how this information is made available and consumed by user applications.

Besides simulation tools, there are standards (protocols and specifications) that
target interoperability among sensor networks. Currently real sensor networks are
vendor specific and custom applications and adaptations are required if different sen-
sor networks from different vendors need to interoperate. Because the SDI (Spatial
Data Infrastructures) did not have a generic framework to integrate data from sensors,
it was necessary to extend the specifications. For such reason the Open Geospatial
Consortium (OGC) founded Sensor Web Enablement to set standards for access-
ing and controlling sensors and sensor networks over the Internet. The initiative
promotes interoperability, defining various services and components. The presented
work focuses on the Sensor Observation Service (SOS) which supports a common
data registration model from any sensor, and also a common data query and retrieval
model from any process entity [14, 15].

The SOS is used as a sink for all measurements provided by sensors, meeting the
standards set by the SWE, allowing the inclusion of any type of sensor in the system
and sending the measurements easily over an IP network, including the Internet. The
only restriction is the capacity of the SOS that in any real or virtual deployment may
need to be distributed, in order to support all data flows generated by the sensors.

A preliminary version of this initial design was presented in [16] with some inter-
esting results that will be extended in this chapter. Whereas the preliminary version
focussed on a centralized reasoning entity based on a CEP (Complex Event Process-
ing) this chapter covers the same problem statement from a different perspective
introducing smart objects, which allow an interesting distributed information man-
agement mechanism.

Besides capturing all available data present in a particular scenario (in our case a
factory) it is important to process and correlate it in order to detect relevant events
even before accidents occur. A typical approach consists in centralizing the process-
ing capability in a single entity that is configured to track special situations. The
processing entity may be also deployed in a distributed way so that multiple processes
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monitor different situations in a modular case. In any case, processing entities are
separate from WSNs, which means that there is a part in charge of sensing and another
for detecting events. The concept of smart object unifies both concepts and provides
a single logical entity able to understand what is happening internally (through its
own WSN) and what is happening externally (through communication activity).
Understanding here means far more than just sensing and sending messages, but the
ability to reason on the obtained data and to provide a higher level of interaction and
cooperation with the outside world.

The chapter is structured as follows. Section 2 presents the motivation and related
work. In Section 3 the outline of the system is described. Section 4 describes the
system and its main functionality. Section 5 evaluates the system in an operational
scenario with a particular use case. The chapter ends with the conclusions and further
work.

2 Motivation and Previous Work

Smart Objects are emerging entities increasing significantly as new Internet con-
nectivity points, and provide a set of new resources to be consumed by networks,
services and applications. The SO paradigm provides the relevant features to embed
new capabilities into an everyday object, allowing extended access information up to
complex services invocation and interaction. A SO typically provides the following
features [17, 18]:

• A unique identification
• Capability to communicate effectively with its environment
• Data storage about itself
• A language to display its features and its needs over its lifecycle
• Capability to participate in or making individual decisions relevant to its own

destiny
• Capability for surveying and controlling its environment
• Generation of interaction by services offering: contextual, personal and reactive

services

There are already many existing applications using SOs such as INOX [19], a
service management platform. It integrates the features of IoT and provides the
functionality which allows for a better use of sensors. Another example refers to
a system that transforms a product into a RFID SO capable of acting by itself and
achieving its objective throughout its life cycle [20].

One of the most innovative aspects proposed in this chapter is how SOs are man-
aged through virtualization. To the extent of our knowledge, there is little approach
in this direction [21]. Considering sensors (and even WSNs) as small systems with
limited (processing) capabilities, it makes sense to virtualize its capabilities in a data
centre, so that sensors (WSNs) perceive that they are as powerful as normal com-
puters. The idea seems logical for indoor environments, where a datacentre may be
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placed nearby and there is no need for too much communication between the real
WSN and the virtualized SO. For outdoor environments, communication require-
ments may guide to a non-practical or non-viable proposal.

The technological approach is driven by cloud computing technologies [22, 23].
Cloud computing is a model for on-demand access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, services, and
software) that can be easily provisioned as and when needed. Cloud computing
provides an abstract interface, aggregates resources to gain efficient utilization and
allows users to scale up to solve larger science problems. It enables the system
software to be configured as needed for individual application requirements. We will
use cloud computing for creating and managing SOs as needed; some SOs may be
available continuously whereas others may be created on the fly for a short (or long)
period of time. It mainly depends on the configuration of the system: a worker may
have a corresponding SO while it is at the factory, which can be a short time or a long
time. A fixed machine continuously working which is always tracked by sensors will
have a continuous SO. Other machines working from time to time will only require
temporal (on the fly) SOs.

Factory workers (e.g. automotive) typically employ different machinery from
various manufacturers that use their own set of sensors to control and automate
operation. For a big factory, it seems reasonable to unify the potential huge amount
of different WSNs in a centralized environment. For this purpose an interoperability
mechanism is necessary. Another innovative aspect in this chapter is the use of OGC
SWE in indoor environments, which will be described below.

The Open Geospatial Consortium created the SWE [14] as a group of specifi-
cations covering sensors, related data models and services that offer accessibility
and control over the Web. The SWE architecture is composed of two main models:
the information model and the service model (see Fig. 1). The information model
describes the conceptual models and encodings whereas the service model specifies
related services.

The conceptual models refer to: transducers, processes, systems and observations.
The information model also includes a core suite of language and service interface
specifications, such as: (i) Transducer Markup Language (TML), currently depre-
cated; (ii) Sensor Model Language (SensorML); (iii) Observation and Measurements
(O&M).

On the other hand, the service model describes the SWE framework services,
which include: (i) Sensor Alert Service (SAS); (ii) Sensor Planning Services (SPS);
(iii) Web Notification Service (WNS); (iv) Catalog Service Web (CSW); and (v)
Sensor Observation Service (SOS).

The SWE architecture component that has been used and analysed in this docu-
ment is the SOS [15]. The main purpose of this service consists in allowing access
to sensor observations in a standard way for any sensor system, including in-situ,
remote, fixed and mobile sensors. The SOS complies with the O&M specification for
modelling sensor observations, and with the SensorML specification for modelling
sensors and sensor systems.

The used SOS implementation is 52 north [24], which has been developed in Java.
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Fig. 1 Main blocks of the
SWE architecture [14]

Traditionally, simulators and emulators are useful tools for networking research
as they simulate or emulate real networking protocols and provide a controllable
environment for studies. This feature is even greater for WSN applications, because
real WSNs are in frequent upgrades and their deployment is tightly embedded in the
physical environment. As evidence, several sensor network simulators and emulators
have been developed for large-scale WSN studies. Use of WSNs has as main goal
the detailed knowledge of a certain environment or scenario. It implies sensing a
great number of features and conditions that can only be achieved by means of
deploying a large amount of WSNs. However, such situation is more theoretical and
less practical, and typically users and administrators perform a gradual deployment
of WSNs, depending on critical features to sense or available budget. Because of
the importance of the simulation, there are already several tools that facilitate the
study of sensor networks, such as TOSSIM [25], EmStar [26], NS-3 [27] OMNeT++
[28], and Glomosim [29]. However no previous simulator or emulator is suited to
our needs, because none of them have been designed to natively interoperate with
SWE architecture, and specifically with the SOS.

3 Outline of the System

The system architecture has two main parts on a high-level basis. On one hand the
data gathered from the sensors (WSNs) are inserted in the SOS implementation.
One or more WSNs are emulated by means of a Sensor Simulator [16] although
real WSNs may even coexist in the environment. There is a Control Center (CC)
that aggregates different applications that make decisions based on the information
available in the SOS. WSNs, CC and SOS may be connected by wired or wireless
communication networks. The HMI is responsible for offering a web monitoring
platform, as will be described later. The Event Processing Module is in charge of
proactively detecting alarms based on sensed data in the SOS. The Action Handler
performs the corresponding actions once an alert has been detected. The use case in
Sect. 5 will clarify this issue (See Fig. 2).
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Fig. 2 High-level system
architecture. Collection data
[16]
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In the first version presented in [16], the CEP was the only entity able to generate
alarms from SOS data, but in our new proposed architecture SOs are able to generate
more specific alarms from WNS and they are also able to sense the environment
either internally or externally.

Typical WSNs are only able to measure some data and have limited processing
power. In order to increase their capacity we propose the use of SOs to virtualize
really powerful WSNs in the system. In this way, each SO is able to obtain all the
sensed information needed from a SOS as well as any available resource available
in a Common Resource Repository (CRR). With such inputs, the virtualized SO is
able to perform not only powerful tasks but also take into account its environment
(factory). The processing capacity of each SO has two main objectives:

• To be able to perform powerful tasks in real time (e.g. monitoring)
• To be able to communicate with other SOs to perform cooperative or notification

tasks. Though each SO has access to environmental facilities (CRR) and measure-
ments (SOS), it is unaware of things going on with other. Considering a factory
with a significant amount of SOs, it seems sensible to provide interaction among
SOs. Two ways have been envisioned (see Fig 3):

– Event notification: each SOS generates a certain event and sends it to the system
through a Notification Center (NC) module. Any other SO in the factory can
subscribe to this event in order to receive notification whenever it is triggered.

– Multiple co-operation: SOs may cooperate in order to achieve a common goal
through consensus. From this point of view they compound a logical meta-SO.
Figure 3 depicts an example of meta-SO called Scheduler: here some SOs may
decide, plan and schedule together a certain activity. The test case that will be
presented later takes into consideration collision avoidance through a common
schedule of mobile machines.
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Fig. 3 High-level system architecture. Smart objects

4 Design and Development

The system is designed to generate and virtualize SOs on demand as they are needed.
Cloud computing strategies are used in order to address this goal. There are some
initial objects already available in the system (a factory in the scenario under study)
providing basic support to deployed WSNs. As example and test case we will use
collision detection between automated machinery which will facilitate the compar-
ison with our previous work [16]. Using smart objects that monitor in real time
their environment and generate notification through events allows a powerful and
decentralized risk management system.

There is a need to simulate the sensed data by means of the developed OGC
sensor simulator. It is a software component that allows the simulation of multiple
sensors of different nature, in order to represent all possible scenarios and use cases,
avoiding the expensive deployment of real sensors. Additionally the simulator can
be used only with virtual sensors or in conjunction with real sensors. The goal of
the simulator is twofold: (i) testing applications that require OGC-based sensor data
and (ii) evaluate the feasibility of different deployments prior to do them with real
equipment.

4.1 Description of the System

Though the system may be described from a general perspective, we will particularize
the description from the specific use case point of view, in order to facilitate the
understanding; focusing the research on a special process within virtualized objects
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and detect special aspects of the use case to consider. Each WSN will have its own
smart object that allows it to manage and process all the information. Besides, each
WSN will behave as normally and will regularly send measurements (e.g. position,
speed and other measurements) to the SOS. Thus, the WSN has two interfaces: (i) a
real interface to the SOS to send measurements, and (ii) a virtual interface to a virtual
internal process unit modelled by a SO and thus extending its internal processing
power. In our test case related to collision prevention between lift trucks in a factory
the real interface will send (at least) position and speed measurements to the SOS
and the virtual interface will monitor in real time if there is potential collision risk.

There are several ways to calculate or estimate potential risk for a SO. First, the SO
must know the position of all possible crosses involving some risk. For this purpose
the SO queries the Common Resource Repository (CRR) for a factory map including
all intersections. Then the SO obtains from the SOS position and speed of the lift
trucks. Note that this information may also be obtained directly from the WSN (in
fact it would be more efficient) but we develop a facility to obtain data (position and
speed) from the SOS of any truck; note that if a SO would need to retrieve such
information from a different WSN it would need to directly contact the SOS.

From such information (position, speed and map) the SO can estimate in real time
whether it is entering a risk area which may typically refer to an intersection (see
[16]). In case of collision risk, the SO notifies the event to the notification center (NC).
If another lift trucks enters the risk area of the same intersection, the correspondent
SO will receive the notification through the NC that serve as communication channel
among SOs. Note that several events may be defined associated to the same risk or
different actions might be taken when the event is notified (e.g. slow down, stop,
etc.) depending on internal or environmental status.

As commented previously, besides the event notification system there is also a
cooperative interaction among SOs. In order to avoid collisions before they happen,
SOs may co-operate forming a meta-object called scheduler. The scheduler allows
getting the optimal initial route for each SO before starting the drive. In this way one
can avoid collisions before they occur. It has to be highlighted that the scheduler is
created on real time by the association of SOs. This meta-object may disappear once
the initial route (for each SO) has been estimated or it may remain to monitor, track
and readjust if necessary for a certain while.

Another relevant feature of SOs consists in the encapsulation of personal and
private data (e.g. medical data). The SO is able to cross-check personal data with
environmental data and extract conclusions (e.g. a worker associated to a WSN might
not be exposed to specific amines longer than a certain amount of time) without
disclosing sensitive information. The SO is the only entity in the system that has
access to Personal Data Records (PDRs) or medical records and therefore knows the
risks of a specific person/worker. It is completely private and confidential, because the
only one who reads the information is the SO and then gets the necessary information
from the SOS or CRR to perform some reasoning process.
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4.2 Insertion of Data in the SOS

The simulator replaces an individual or a group of sensors, and the key communi-
cation component at application level is the interaction with the SOS. The simulator
not only generates data with a certain pattern, for each individual sensor, but inserts
their observations in the SOS. The main advantage is that the interface is provided
via web (HTTP) so that any emulated sensor can easily communicate with the SOS
(i.e. registering and inserting observations). The SOS is a service that basically offers
two levels of interface:

• An interface for sensors: the process consists in registering each sensor in the
SOS and sending measurements. The first step is performed by means of a regis-
terSensor operation, which allows saving a new sensor. Once the sensor has been
registered, it can start sending measurements at certain intervals, which depends
either on the physical quantity being measured or the need of control required. The
operation is called insertObservation. The SOS supports both fixed and mobile
sensors. In the latter case, mobile sensors must send (besides measurements in
the insertObservation operation) their current location. The operation is called
updateSensor.

• An interface for external processes, through which any application can access
historical data (even real-time data) regarding any registered sensor. Note that, as
the SOS service centralizes all sensors, it is possible to search and apply simple
spatio-temporal filters, e.g. “get all sensors that monitor temperature” or “get all
sensors located in an area”.

Note that there are currently two versions of OGC SWE, v1.0 and v2.0. The
diagram in Fig. 4 refers to version 1. The new version (2.0) has several enhancements,
but the main functionalities remain as in the previous version. For example, the
RegisterSensor operation has been replaced by the insertSensor operation in OGC
2.0. Authors of this chapter are currently porting the architecture from OGC 1.X to
2.0.

4.3 Functionality of the Simulator

The simulator is configured through an XML file that includes a list of all sensors
to be simulated with their description and specific configuration. Depending on the
scenario and the use case, different sensors may be used. Some examples of sensors
to be simulated are mobile sensors, such us workers in a factory (some property of the
worker, or just its location), temperature sensors, humidity sensors, sound sensors,
chemical sensors, machines (some property of the machine, or just its location), etc.
For each sensor the following parameters may be specified:



Smart Manufacturing Through Cloud-Based Smart Objects and SWE 117

Fig. 4 Basic sequence dia-
gram for the SOS service [16]

• Minimum and maximum provided by each sensor.
• Periodicity model (how often data is sent to the SOS). This is extremely important

as it is influenced by data loss (some packets will not be sent to the SOS) and delay
(some packets will not be sent to the SOS in time) within a real WSN.

• Simulation mode (sine, Gaussian, exponential, etc.). This mode describes how data
is generated during the simulation. Additionally, each mode is able to simulate
measurement errors and anomalies. Observations may be retrieved from a stored
file including real data.

• Location (latitude and longitude). This property can be random or linear; the linear
mode is useful for simulating moving paths and collisions. Though there may be
advanced mobility models, we are currently interested in linear ones, simulating
people and vehicles.

For simplicity and interactivity, the simulator includes a graphical user interface
which displays all sensors to simulate. Users can stop each sensor separately (inde-
pendently) to track in detail a single sensor. It also allows loading a new configuration
file or adding new sensors.

4.4 Simulator HMI

The used simulator is capable of generating measurements from a high number of
sensors considering also measurement errors and anomalies. The GUI is depicted
in Fig. 5. It basically displays all current information regarding any created sensor.
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Fig. 5 Simulator HMI [16]

One can see the Sensor ID, the (physical) property that is monitored, the location
(longitude and latitude) and the current measurement. Management and execution
of a sensor is independent from the others so each sensor may independently be
stopped, paused or played.

The process of loading data is performed by means of a configuration file. All
sensors listed in the configuration file are displayed in the GUI. Additionally, the
user may add new sensors and the configuration file is updated. When the simulator
is started all displayed sensors start sending measurements to the SOS, and the
columns in the GUI are updated when any of the longitude, latitude or observation
value changes.

The data generated by the simulator changes depending on the simulation mode.
As commented in the previous section, it is possible to introduce anomalies to sim-
ulate extraordinary situations, such as a fire in the case of a temperature sensor or
a loud noise in the case of a sound pressure sensor. One can also define the error
probability of the sensor, following a particular distribution. Or one can define a loss
probability that represents lost packets that will not reach the SOS.

Data loss and delay may not represent a serious problem if measurements and
observations are sent frequently, as the Event Processing module may estimate the
missing values.

Sensor observations are stored in the SOS server. Later, a user application reads
all data entered into the SOS by the simulator and represents it on a graphical inter-
face. Figure 6 shows a screenshot of the main screen, with some present sensors in
the scenario with particular areas where the risk level is being continuously mon-
itored. Such level is defined as the maximum risk level of any sensor (including
workers) within the specified area. The GUI also provides mechanisms to access all
the information stored and related to a sensor, by just clicking on each displayed
sensor (identification, location, related alarms, etc.) and even real-time data (as mea-
surements) are inserted in the SOS (see Fig. 7).



Smart Manufacturing Through Cloud-Based Smart Objects and SWE 119

Fig. 6 FASyS management HMI [16]

Fig. 7 FASyS sensor information detailed view [16]
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5 Use Case

5.1 Factory of the Future (FoF)

Safety technologies for industrial environments have evolved considerably in recent
years, but there are still risks related to the worker’s safety and health. In this context,
the European Factories of the Future (FoF) [30] concept focuses on the develop-
ment and integration of engineering technologies, Information and Communication
Technology (ICT), and advanced materials for adaptable machines and industrial
processes. In this new framework, workers represent an even more important asset
for the manufacturing competitiveness and productivity, and all necessary actions
must be done to improve their health and safety in their working environment. All
what happens in the factory, from ambient levels, to the position of all elements should
be tracked and potential risks should be anticipated through automatized preventive
actions.

The proposed use case belongs to a Spanish FoF project named FASyS [31]. The
project was related with the development of a large wireless sensor system in order
to provide safety to the workers. The project targeted a large number of use cases
associated with several risks identified in the operating environment. The use case
analyzed in this chapter is the collision detection, for which the simulator should
generate two mobile devices and simulate a logical movement. The linear simulation
model allows it.

5.2 Test Case 1: Collision Prevention Using a CEP

A typical safety scenario is the detection (avoidance) of a collision between two
mobile entities. Though they may involve either a worker or a mobile machine,
probably the worst case is between two lift trucks, as depicted in Fig. 8. This sce-
nario has already been studied in [16] but we will use it a starting point for further
experiments and also for allowing comparisons between the two different scenarios
analysed in this chapter. Anyway we will highlight the scenario briefly.

The problem can be defined as follows (see Fig. 8). The crossing of two corridors is
identified as a collision area (CA) in the factory and is determined by four coordinates
(x1, x2, y1, y2). Lift trucks a and b are equipped with sensors that provide their
position (posa, posb) periodically (Ta, Tb). For simplicity, we will assume uniform
speed for the lift trucks, thus it is easy to obtain the corresponding speeds (sa, sb)
from two consecutive positions. Depending on the distance to the crossing, the lift
truck drivers may be alerted or not as they may be in risk. This is denoted by xR(sa)
and yR(sb) respectively, and is represented by red dashed lines in Fig. 8. If both lift
trucks a and b have already crossed the red lines, then there is a real risk for collision
that must be avoided. Note that xR(sa) and yR(sb) depend on the speed of each lift
truck, and is in line with traditional traffic regulations for calculating the braking
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Fig. 8 Collision detection (test case) [16]

time of vehicles. Thus our system has to alert both drivers only when both lift trucks
have crossed their red (risk) lines. Otherwise there will be no collision, as depicted
in Fig. 8 in the timeline.

In order to monitor such situation, the Control Center (CC) must keep track of
the position of each lift truck and act accordingly. The scenario is depicted in Fig. 9
for vehicle a. It inserts its position in the SOS every Ta seconds. The control center
reads from the SOS every Tread seconds and establishes whether it has to alert lift
truck a (and also vehicle b). Alerting both vehicles takes some time (Tsend) and an
acknowledgment (Tack) from each vehicle. For the factory under consideration, we
have performed several tests and the mean time (Tsend + Tack) is 200 ms, with a
variability of 50 ms. If the CC performs correctly (successfully), the driver is alerted
τx meters before crossing the risk line (depicted as a green lift truck in Fig. 9). Note
that the driver may be alerted after crossing the risk line (depicted as a red lift truck
in Fig. 9) and therefore exist a potential risk. However, it is possible that the other
driver (b) is alerted in time and the collision risk significantly decreases.

In order to avoid alerting drivers a and b too late, there is a safety distance (xS and
yS). The CC controls if vehicles a and b cross the safety distance (instead of the risk
lines) in order to alert them shortly before they cross the risk lines. The safety lines
are depicted in Fig. 8. The experiment performed in this chapter consists in checking
if collision between lift trucks can be avoided or not. For this issue, we have used
our simulator for different speeds (sa and sb) in order to check the maximum speed
under which the collision risk is detected successfully. The results are presented in
Table 1 for different speed values. As can be seen, if both lift trucks move with a
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Fig. 9 Tracking of lift trucks (test case) [16]

Table 1 Simulation results for the testing scenario [16]

Speed (sa) τx(m) Speed (sb) τy(m) Result

1 18.96 0.65 22.92 1.82 Success
2 18.96 0.73 24.45 0.62 Success
3 18.96 0.67 29.03 1.09 Success
4 21.33 0.35 33.62 0.47 Success
5 24.38 1.15 33.62 0.61 Success
6 28.44 1.48 39.74 0.71 Success
7 34.13 0.88 33.62 0.36 Success
8 34.13 0.29 50.44 −2.46 Partially Success
9 42.67 −6.28 39.73 0.23 Partially Success
10 42.67 −4.06 50.44 −0.28 Failure

speed below 42 km/h (rows 1–7), both drivers are alerted before reaching the defined
threshold (risk line) and they will stop without any danger. Even if one of the drivers
moves with a higher speed (rows 8, 9), the other driver is alerted before the risk line
and there may be no accident (partially success).

For higher speeds on both vehicles (row 10), drivers will be alerted after the risk
line and it is possible that an accident may happen as both lift trucks enter the collision
area (CA).
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Fig. 10 Outline of events

Data loss has been set to 5 %. However, for linear movements and a low loss rate,
it is not relevant if some packets (updateSensor) are not sent to the SOS, as the values
can be estimated.

5.3 Test Case 2: Collision Prevention Using SOs

The employed testing scenario is the same that is designed in the first case. There are
two lift trucks which move through two corridors having an area of collision within
a factory.
Initialization

In general terms, any real time distributed system requires synchronization to
perform actions and check status within particular timeframes. The factory, or at
least some processes within it, must be considered a real time system. Initially all
SO’s clocks are synchronized with a time server (via NTP, Network Time Protocol)
to allow an accurate calculation of collisions and establish routes. Each SOs knows
beforehand the upcoming route that its corresponding vehicle will follow. This allows
detecting in advance the potentially risky crossings (the lift truck requests the CRR
for a factory map) and subscribing to the NC only to those events (corresponding
crosses) that interest each vehicle. We assume that each vehicle insert its position in
the SOS periodically; for vehicles a and b we refer to TInsertData (see Fig. 11).
Events

The first vehicle (say vehicle b) entering in the risk area of a crossing generates
that its associated SO sends an alert to the notification center (NC). This action is not
explicitly represented in Figs. 10 and 11 as the total amount of actions may difficult
the understanding. When the other lift truck (vehicle a) enters in the same risk zone
the associated SO detects this situation by a request to the SOS about the position
of the vehicle (Tread) and after processing this piece of information (Tproc, and then
it sends an alert to the NC too (TSO→NC). Immediately the NC communicates to all
SOs subscribed to the event (in the same crossing) to avoid a collision (TNC→SO).
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Fig. 11 Sequence diagram of the use case

Finally the SO notifies its corresponding vehicle to stop (TSO−a, TSO−b) and waits
for a response (Tack). Therefore the total amount of time for the vehicle a can be
estimated as follows (see Fig. 11):

T = Tread + Tproc + TSO→NC + TNC→SO + TSO−a + Tack

After receiving the response of the vehicle, the SO requests the position to the
SOS again to know where the vehicle has stopped and evaluates the result.
Results

To get these results we have simulated a factory with 25 vehicles and an area of
2500 m2. Random routes are established for vehicles through the factory corridors. If
there is a risk of collision we denote it as RC. We have established three fixed values
of RC per hour: 5, 10 and 20 during a whole day (24 h). The number of vehicles (25)
and the variability of RCs (between 5 and 20 per hour) seems realistic for the factory
under consideration.

As one can see in the Table 2, when the number of RC increases, the maximum
speed that can be used by the lift trucks to safely detect the collision decreases; this
is mainly originated by the increase in the number of messages exchanged (to/from
the SOS and to/from the NC). Therefore it increases the resulting time detection. For
small RC values vehicles can go to a higher speed.
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Table 2 Simulation results in
the SO scenario

RC (ph) Maximum speed (km/h)

5 44
10 35
20 27

Fig. 12 Factory represen-
tation without and with
scheduler

Although is difficult to compare both scenarios (test cases), because in the first one
the CEP is physically in a single computer and in the second one the smart objects
are distributed, we can qualitatively estimate that the final time is slightly higher. The
processing time in the SO is significantly low compared to a CEP, as the SO only
cares for a single vehicle whereas the CEP (test case 1) cares for the whole factory.
However the CEP does not require a NC as it interacts directly with the WSNs; the
SOs, on the contrary, require the NC to exchange notifications. Furthermore, the
CEP can query the SOS to retrieve more information on a single message whereas
each SO requires single (and simpler) messages. This increases the total amount of
messages exchanged and thus the resulting time.

As the SOs are independent objects, the system is decentralized, so if one of
them goes down it does not imply the failure of the whole system. The use of cloud
computing (self-healing) mechanisms also helps in detecting failures and recovering
immediately. However as there are multiple virtual objects there is a need for more
powerful computers in the factory.

Another experiment is related to the scheduler, which reduces the effective CRs
up to 150 %. In this case all SOs co-operate to establish optimal routes depending on
the number of vehicles in the factory. If there is a CR, timeouts are set to everyone
so that they can drive safely (see Fig. 12). Another possibility consists in changing
(scheduling) the speeds in advance so that lift trucks do not collide, but this approach
has not been studied here. In the end one gets a faster and more efficient system, and
also requires less power consumption (less messages and less processing power).
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6 Conclusions and Future Work

The system described in this chapter is a useful tool that allows analysing and assess-
ing safety scenarios for workers and machines in industrial environments. Though
the analysis has focussed on a specific scenario (collision detection and avoidance) it
is easily extendable to other environments and scenarios (e.g. smart cities, e-health,
etc.).

The presented system is able to avoid collisions between automatic machineries or
lift trucks in a factory. To achieve this goal several components are needed: (i) WSNs
to sense the environment (ii) a SOS to allow interoperability between WSN data, (iii)
a sensor simulator to replicate specific behaviours from different sensors, (iv) a cloud
computing environment to virtualize smart objects and provide processing capability
and intelligence to WSN, (vi) a CEP to centralize some processes and compare to
smart objects and (vii) an HMI to provide a graphical monitoring platform. Using
the data that the WSN inserts into the SOS, the SOs can calculate in real time when
a lift truck incurs in a risk of having an accident (collision) and automatically alerts
it. The use of virtual smart objects provides more processing power to the WSNs,
and also a private information management.

Smart objects provide a distributed management platform compared to a central-
ized CEP and some security concerns can be better encapsulated (e.g. personal data).
The modularity of the whole system is also enhanced as new SOs can be added from
different vendors with simple configuration through the SOS and NC. However cloud
computing infrastructures within a factory requires a significant initial (economical)
investment that has to be considered. However, energy consumption efficiency is one
of the cloud computing features and guides to the concept of a sustainable factory.

Another application in the control center is the HMI where sensors in the factory
are displayed and monitored. If an alarm associated to a sensor is detected, it is
immediately depicted in the HMI. The HMI is layer based and allows analysing
individual risks of a factory (e.g. collision detection)

As further work it would be interesting to analyse more risk scenarios within the
factory, comparing results obtained from a CEP with those obtained with SOs. The
correct management of SOs as they increase is also a research topic within the scope
of cloud computing techniques. Finally new models and evaluation scenarios are
envisioned, considering multiple sensors from different types (e.g. cameras, chemical
sensors, etc.).
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The Cloud of Things Empowered Smart
Grid Cities

Stamatis Karnouskos

Abstract The emergence of the Smart Grid era fuels a new generation of innovative
applications and services that are built upon fine-grained monitoring and control
capabilities pertaining the underlying infrastructure, such as that of future Smart
Cities. Collection, processing and analytics on the Internet of Things of massively
generated data, as well as potential management functions will emerge; therefore
making a reality informed real-time decision making as well as its enforcement in
a timely manner over complex infrastructures. The prevalence of the Cloud and its
services, can very well complement the Internet of Things when it comes to massive
data management, giving rise to the Cloud of Things (CoT). For the next generation
applications, the CoT can enable access to generic multi-modal energy services, on-
top of which development of more sophisticated solutions can be realized. We depict
here such Smart Grid services for the Smart City of the future, as well as experiences
from their realization.

1 Introduction

We witness a revolution that capitalizes on the Internet as well as the prevalence of
networked (embedded) devices (ranging from simple ones such as sensors to com-
plex systems) in order to empower a new generation of innovative anytime–anywhere
services. The “Internet of Things” (IoT) [13] revolution enables unprecedented inter-
connection of networked embedded devices that further blur the line between the real
and virtual world. The upcoming industrial revolution expectation heavily depends
on these smart devices [14], while their benefits can become tangible in key innova-
tion and economic growth areas such as Smart Cities, energy, industrial automation,
health, aviation [1].
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Predictions of 20–50 billions of connected devices by 2020 exist [28], while
according to Gartner [35] “…over 50 % of Internet connections are things. In 2011,
over 15 billion things on the Web, with 50+ billion intermittent connections. By
2020, over 30 billion connected things, with over 200 billion with intermittent con-
nections. Key technologies here include embedded sensors, image recognition and
NFC”. These highly interconnected devices constitute the backbone of modern criti-
cal infrastructures, a representative example of which is the energy and more specif-
ically the emerging Smart Grid [12, 17].

Integrating, interacting and meaningfully taking advantage of the benefits of
infrastructures composed of vast numbers of such smart devices, is not trivial and
several considerations need to be tackled. Integration requirements [21] reveal the
direct [19] or via middlewares [9] coupling of smart devices such as sensors and actu-
ators [31] with other systems and services. Even with the basic aspects of integration
addressed, more complex ones at system of systems level [29], such as security, trust,
privacy, reliability, management, etc., may become more critical [17], especially in
the light of impact in real-world (due to the strong coupling of these devices for
monitoring and control purposes in the physical world).

The Smart Grid vision [7, 8] goes beyond current efforts for smart metering
(which focus mostly on fine-grained monitoring) and in the long run promises real-
time decision making which may provide innovative solutions in energy manage-
ment, sophisticated demand-response (DR) and demand-side management (DSM),
optimal resource usage, reliability and security, new business opportunities etc.
[23, 33, 39]. The core of Smart Grid depends on the usage of modern information
and communication technologies [26, 43] that will enable real-time bidirectional
communication with all (old and new) participating stakeholders. This will lead to
the enhancement of existing processes but more importantly will enable a new gen-
eration of cross-layer collaborative services and the realization of applications that
are not possible or affordable today [15].

The Smart Grid and its services are seen as an integral part of the Smart City of
the future. Several ongoing efforts [10] strive towards capitalizing on the hyper-
connected information infrastructure [26] and the collaboration [15] among the
things, services, and systems expected to exist in the Smart City. Examples of them
include real-time multi-channel energy monitoring [24], better energy coordination
to take advantage of excess renewable energy or minimize costly peaks, usage of
existing infrastructure such as the public lighting system for energy management
and additional revenue generation [23, 32], engagement of electric vehicle fleets as
well as other sources that could act as flexible energy storage etc.

Increasingly it becomes evident that the capability of real-time monitoring and
management offered by the Internet of Things can have a significant impact on the
Smart Grid [43] and its applicability in Smart City scenarios. However, the network
effects [6] can only be capitalized upon, if an open infrastructure is in place where
its layers can evolve independently. In this work we focus on shedding some light on
emerging trends and the game-changing aspects they bring. As a example case, we
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will refer to the efforts within the NOBEL project [30] which has prototyped such an
energy service-based infrastructure [18, 20, 22–25] and point out some key aspects
for the future Smart Grid City.

2 The Cloud of Things Empowered Smart Grid

The prevalence of increasingly intelligent networked devices and systems in business
and private homes sets the basis for a high degree of energy monitoring. This cou-
pled with open formats for describing the data and exchanging it with other systems
will enable their massive processing and empower sophisticated management mecha-
nisms. Although at the “edge” of IoT multiple communication technologies might be
used (e.g., ZigBee, Bluetooth etc.), at some level while the information flows towards
Internet connected systems. IP support is offered nowadays at device level [19, 41],
even when we speak about very resource constrained devices. As an indicative exam-
ple for the latter we point to GreenWave Reality’s (www.GreenWaveReality.com)
WiFi-aware light bulbs that can be controlled by other devices such as smartphones.

Although today “smart meters” still refer to the enhancement of the legacy meters
with modern Information and Communication Technologies (ICT), the prevalence
of IoT means that probably any kind of networked device be considered as “smart
meter” as it will be able to offer monitoring and control capabilities including infor-
mation on the energy consumption and/or production. It may even go further offering
additional info on current state and potentially task-specific energy signature adjust-
ment capabilities for appropriate energy-wise task rescheduling. This is potentially
a game-changer, especially in highly-automated environments, since now we will
be able to know at very fine-grained level energy information that can flow into
enterprise systems, calculate accurately the energy impact of business processes and
optimize them dynamically considering a wide range of criteria such as environmen-
tal or financial impact etc.

Figure 1 depicts the paradigm change and the transition towards a Cloud-based
IoT i.e. the Cloud of Things (CoT) [20] when considering the Smart Grid. Appli-
ances (equipped with networked embedded systems) that are able to communicate
(mostly) wireless, will be able to integrate, interact and cooperate [15] in, both P2P
manner as well as via Cloud-based auxiliary services. This indicates that the “edge”
devices which are usually resource-constrained, can now complement their capabili-
ties with much more “powerful” ones running on the Cloud, thereby enhancing their
own functions. Being able to attach to global infrastructure services and bidirection-
ally interact with them will boost the information exchanged among the virtual and
physical world and will greatly benefit applications depending on their fusion.

The capability of not only offering the information acquired (provisioning) but
also consuming information that may enhance their own operations leads to the
enhancement of IoT edges (that were hardly possible before due to the increased
resources required or a system-view not available at the edge), and optimisations
at system level e.g. in a building, an enterprise, or even a smart grid city. A typical
example of information provisioning would be the real-time measurements offered

www.GreenWaveReality.com
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Fig. 1 The Cloud of Things in the Smart Grid context

by “edge” devices e.g. to a Cloud-based monitoring service. These can be energy
measurements as well as device operation measurements which due to the rich Cloud
resources available, can be analysed and decisions can be made for device specific
actions (e.g. remote maintenance) as well as global actions, e.g. massive control of
the consumption or generation systems. This enables new highly-scalable approaches
that were previously not possible or too costly to realize; for instance avoiding black-
outs by massively reducing energy consumption or rescheduling or adjusting specific
categories of non-critical devices (e.g. household appliances) while giving higher
priority to sensitive locations such as hospitals.

As discussed, the benefit of utilizing the Cloud of Things is that additional capabil-
ities potentially not available at resource constraint devices can now be fully utilized
taking advantage of Cloud characteristics such as virtualisation, scalability, multi-
tenacy, performance, lifecycle management etc. The manufacturer for instance can
use such Cloud based services in order to monitor the status of the deployed appli-
ances, make software upgrades to the firmware of the devices, detect potential failures
and notify the user, schedule proactive maintenance, get better insights on the usage
of his appliance and enhance the product etc. At smart grid city level, seamless mon-
itoring and adjustment can be done for public infrastructure to comply with the goals
pursued.

The fusion of information from the business (virtual) and physical (real) world
are key in achieving innovation and efficiency. The Cloud of Things makes it pos-
sible that information, generated at highly distributed points in the real world, is
now available offering high visibility to aspects that were not measurable at afford-
able costs before. Such massive data often referred to as “Big Data” can now be
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collected and analysed in the Cloud, and potentially enhance decision making
processes. Customized analytics can be offered to a plethora of end-devices in various
forms, e.g. of the individual user or in custom-aggregated form via content-delivery-
networks. The latter has the potential to empower a new generation of services that
are more accurate, near real-time, and can be applied at large scale. A typical exam-
ple scenario in Smart Cities would be the monitoring of Key Performance Indicators
at city- or neighbourhood-wide level that pro-actively enables tackling of issues and
also enhances city planning processes.

The “Big Data” acquired can be enriched with context-specific and system-wide
aspects as well as business relevant information in the Cloud and enable us (e.g.
through analytics) to better understand the physical world, its processes, the impact
on the business side and eventually take more informed decisions. Although “Big
Data” existence and analytics don’t necessarily guarantee better decisions, potential
new insights that may be acquired, may materialize to more effective problem tackling
and business advantages. As an example, in the Smart Grid, analytics empower sce-
narios [10] of grid infrastructure optimization, energy management scenarios (such
as demand-response schemes) with participation of residential prosumers (energy
producers and consumers), energy trading, better planning of energy infrastructure
in cities etc. Big data analytics is seen also as the key into understanding complex
system of systems, such as the emerging Smart Cities. For instance the SmartKYE
project (www.smartkye.eu) aims at enabling municipalities to better understand and
manage aspects of a Smart City via a business cockpit, by relying on analytics that can
be queried over a distributed infrastructure of energy management systems (EMS)
and their combination with business information as well as goals.

The existence of the Cloud of Things, will constrain the need for on-premise
middleware and proprietary solutions. New service providers will flourish and value
added services will be created such as real-time energy monitoring, real-time billing,
direct asset management, customized information services, marketplace interaction
etc. This is a significant shift for the energy domain, as we move away from heavy-
weight monolithic applications towards much more dynamic, up-to-date and inter-
active ones utilizing local capabilities. By increasing visibility via near real-time
acquisition and assessment of the energy related information, providing analytics
on it and allowing selective management [40], we expect the emergence of a new
generation of customized energy efficiency services offered potentially even at smart
grid city level [22, 25].

3 Envisioned Smart Grid City Energy Services

Although the IoT and is an area of high interest in industry, we have still to reach
common understanding even for matters such as what a smart meter should offer,
i.e. “basic services” to be offered by all smart meters or even data formats for open
communication of the acquired data. The same holds true for any potential “basic”
management capabilities that the smart meter should have in order to be able to take
the envisioned role in the Smart Grid ecosystem [20]. Generally, although there are

www.smartkye.eu
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several efforts and prototypes, the Internet of Things lacks even the basic standardized
API for interaction among its components i.e. the devices themselves as well as
between the devices and higher systems and services. The key message is clear:
To be able to capitalize on the IoT/CoT, we need to establish a common minimal
base and offer basic services upon which more sophisticated approaches can be
built.

As already discussed, we expect several energy services to exist in the future Smart
Grid infrastructure that can be integrated into applications and traditional systems in
order to enhance their functionality [18]. These services can then be integrated into
applications and other mash-up services and be part of a larger Smart City ecosystem.
Examples would include:

• Timely Energy Monitoring is expected to be a reality, especially when consider-
ing the vast investments in smart metering projects [10]. Information acquired at
several layers of the Smart Grid infrastructure can be validated and securely com-
municated among the different systems and the Cloud-based services at (almost)
real-time tempo.

• Fine-grained Control/Management capabilities are expected to complement exist-
ing scenarios of adaptive management of the infrastructure. This implies potential
understanding of the underlying processes to a certain extend and flexibility of the
energy consumption/production that can be negotiated; hence goes beyond simple
ON/OFF signals and consider the whole lifecycle of affected devices and systems
as well as their operational context, involved processes and goals locally and at
system level.

• Energy Brokering [11] may be seen as a value-added service with the help of
which financial management (soft-control) can be applied to the Smart Grid
infrastructure. Although this is still at early stage, the implications for applica-
tions build around it could have a significant impact on the dynamic operation of
the grid, as well as the offering of new innovative services and applications for all
stakeholders [18].

• Real-time Analytics are expected to operate on the “Big Data” provided by the
plethora of Smart Grid City stakeholders. Effective assessment of data will provide
new insights on the existing operational aspects and unveil optimization opportu-
nities. Additionally, informed decision making considering real-time data on an
unprecedented scale will be possible, which may lead to better decisions and future
planning for Smart Cities.

• Community Management services will provide customized information adjusted
to the goals of the specific community, e.g. a neighbourhood within a Smart City,
and hence actively enable a critical mass of prosumers in the Smart City. The com-
munityware Smart Grid [16] must support the creation of dynamic communities
where the (mobile) user may connect and participate with its assets (e.g. elec-
tric vehicle, white-label appliances etc.). These communities may be motivated
by several aspects, e.g. environmental, economic, social etc. Support for intra-
but also inter-community collaboration is wished in order to increase network
effects.
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Fig. 2 Energy Service Infrastructure: the NOBEL project approach

• Energy Application Stores will be required to manage the large number of energy
related services and applications available for the Cloud of Things enabled devices.
There users/devices may automatically find, install and maintain a variety of energy
related applications and services that may enhance their operational context.

As an example of emerging services the NOBEL project [30] has realized energy
monitoring, management and energy brokering services (Fig. 2). Others such as Bey-
Watch [34], OpenMeter (www.openmeter.com), AIM [38], DEHEMS [37], BeAware
[2], MIRABEL [36], ENERSip [5] and SmartHouse/SmartGrid [27] focused on intel-
ligent device integration for energy monitoring, and complementary factors such as
price-driven control, forecasting and scheduling. Similar efforts exist also in various
other R&D projects [10]; however the real-time analytics, community support focus,
and addressing of large-scale real-world infrastructures seem to be still at a very early
stage. Recently projects such as the SmartKYE (www.smartkye.eu) were initiated
with the aim to tackle the area of better decision making for municipalities based
on analytics and interaction with the Smart City energy management infrastructure
based on Cloud services and distributed data queries.

www.openmeter.com
www.smartkye.eu
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Fig. 3 Overview of the IEM architecture [22]

4 Realization Example: The NOBEL Energy Services Platform

The NOBEL [30] vision builds upon the expectation that the future energy monitor-
ing and management system will be in close cooperation with enterprise systems.
Enterprise services will integrate information coming from highly distributed smart
metering points in near real-time, process it, and take appropriate decisions. This will
give rise to a new generation of mash-up applications that depend on “real-world”
services which constantly hold actualized data as they are generated.

The NOBEL project has taken up the challenge to design, built and pilot an open
energy services platform, i.e. the Enterprise Integration and Energy Management
System (IEM) [22, 25] as depicted in Fig. 3. The approach was driven by the wish to
enable lightweight Internet accessible energy services for thin clients over multiple
channels, thus lowering the integration and application development costs.

As proof of concept a common set of energy services has been realized, and offered
to all stakeholders externally and internally to the platform via lightweight RESTful
services. More specifically these were accessed by a web application, various mobile
applications realized in android devices, enterprise systems and smart meters / smart
meter concentrators. Based on this common set of available public APIs, a variety
of services were built and piloted [24, 25].

In a Smart City, numerous systems (including potentially individual devices) may
connect directly or indirectly (e.g. via gateways) to the services provided by the IEM.
As seen in Fig. 3, there are several architecture parts such as the device layer, the
enterprise services and end-user mash-up applications. On the IEM service layer, one
can mash up services to provide customized functionalities for various applications,
such as an energy portal (accessible via web browsers), mobile applications, or a
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neighbourhood energy management centre (NOEM) [24]. Furthermore, enterprise
services process the collected data and provide advanced functionalities such as
validation, analytics, and business context specific processing.

The following services have been realized and assessed [22, 25]:

• Energy Monitoring for acquiring and delivering data related to the energy con-
sumption and/or production of prosumer devices.

• Energy Prediction for forecasting consumption and production based on historical
data acquired by IEM and other third party services (e.g. weather data).

• Management for handling the asset, user and configuration issues in the infrastruc-
ture.

• Energy Optimization for interacting with existing assets of the Smart City (as a
proof of concept a public lighting system [23]) and enable better usage of the
energy available at neighbourhood level.

• Brokerage offering energy trading to all prosumers citizens who, in a stock-
exchange manner, could interact via the platform and buy potentially cheaper
energy or sell excess production from their photovoltaic panels.

• Billing which offered real-time view of the energy costs and benefits (from trans-
actions on the Smart City energy market); hence avoiding “bill-shock” scenarios.

• Other value added services offering bidirectional interaction between the users
and the energy provider such as notification for extra-ordinary events etc.

The RESTful web services offered by the IEM platform were designed for high
performance and their API was conceived to cover the needs of the heterogeneous
stakeholders accessing them. The REST adoption imposes some architectural style
selections, e.g. client-server separation of concerns, stateless interactions, uniform
interfaces and a layered system. An example of Smart City wide functionality shown
to the city officials is depicted in Fig. 4. There a high level view of the energy produc-
tion and consumption by aggregating all device measurements is provided, including
some additional information such as the generation mix.

The platform (IEM) as well as example applications (e.g. NOEM) have been
extensively tested and used in a pilot [24, 25] in the second half of 2012 as part
of the NOBEL project pilot which took part in the city of Alginet in Spain. Data
in 15 min resolution of approximately 5000 m were streamed over the period of
several months to the IEM, while the IEM services were making available several
functionalities ranging from traditional energy monitoring up to futuristic energy
trading.

5 Considerations for Smart Cities

The hands-on experiences with the design, prototyping and piloting of the IEM and
NOEM have revealed several technical aspects that should be given attention prior to
productively deploying such systems [24, 25]. Apart from these however, high-level
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Fig. 4 Smart City cockpit showing city-wide demand, CO2 and energy mix [24]

lessons were also acquired that could serve future Smart City stakeholders in their
efforts to develop the next generation of services and applications in the Cloud of
Things empowered Smart Grid.

The evolution on the infrastructure (either by retrofitting or by replacement) with
the new IoT capable systems) has several challenges [4] and we will see a stepwise
evolution with varying degrees of IoT-enabling technologies deployed in different
parts of the Smart Cities. All these will be owned by a different stakeholders, hence
the focus should not be on tightly integrated and “island”, task- or process-specific
only solutions, but rather on having the bigger picture in mind. The latter implies
as key design criteria openness and compliance to standards, as well as focus on
collaboration [31] and interaction/communication potentially in a service-oriented
lightweight way. Therefore, design and deployment of Smart City wide services
should be extensible and easily enable integration in future scenarios.

The Cloud of Things is seen as an integral part of future Smart Cities. Although
IoT today focuses on the communication part among the different “things”, the CoT
makes some assumptions on the communication layer, e.g. focusing mostly on widely
accepted web technologies (without excluding of course others), and integration
with the Cloud in order to take advantage of its capabilities such as virtualisation,
scalability, multi-tenacy, performance, lifecycle management etc. The differentiating
part here is the “outsourcing” model where the edge of IoT is used for monitoring
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and control aspects but “heavyweight” processing can be moved from the edges to
the network (i.e. the Cloud) and hence combine the best of both worlds. In the next
decades with the advances in hardware capabilities of the edges, the Cloud of Things
might be able to migrate closer to them (i.e. the devices) and hence it should not be
treated solely with the view we have today about it i.e. running exclusively on huge
centralized data-centres.

With the enhanced monitoring capabilities at IoT layer as well as the increased
access and correlation with enterprise data, the era of IoT “Big Data” reaches the
Smart Cities. This has profound implications on the applications and services depend-
ing not only on the processed outcome of the data but also their quality and timely
acquisition. To this end, e.g. validation of data values and syntax based on model
semantics, correct time-stamping, duplicate detection, security validation and risk
analysis, anonymisation, data normalization, estimation of missing data, conversion
to other formats or models etc. may be necessary prior to release of the data for further
processing or consumption. Scalable data management [42] supporting acquisition,
processing and customized consumption by a multitude of devices is key to the
success.

As this is a complex system, any pitfalls may propagate and lead to high-impact
system-wide problems e.g. with financial impact, prediction estimations, operational
hazards etc. As the Smart City will not only monitor but also manage (control)
its assets, the development of these safety-critical applications will be increasingly
challenging. Since they will depend on various services (under the control of vari-
ous stakeholders) it will be difficult to do systematic testing and hence safety and
resilience has to be a priority [17].

The Smart City infrastructure and its services are expected to continuously evolve.
Hence there is need for robust services identified as “generic” that serve the majority
of applications and upon which more sophisticated interoperable [3] approaches can
be built. Additionally lifecycle management has to be supported in order to enable
consistent management of such a large infrastructure. In such a multi-stakeholder
environment, taking also into consideration the prevalence of IoT in personal and
business domains, security, trust and privacy are expected to be challenging issues.
These need to be an integral part of design, implementation and deployment of any
energy services and of the infrastructure they depend upon.

6 Conclusions

Once cooperative infrastructures are in place within a Smart City, a plethora of
applications are expected to flourish and offer new innovative services. The latter
will enable direct interaction between all Smart City stakeholders for the common
benefit. Smart Cities can harness the power of the emerging IoT/CoT enabled Smart
Grid and enhance their operation to better suit the needs of their citizens. Informed
decisions can now be taken that rely more on actual data and up-to-date analytics,
empowering decision-makers with new opportunities for better management and
eradication of inefficiencies.
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To harness the benefits, there are challenges at technology,business, and social
levels that need to be addressed. The future Smart Cities will need to be built on
principles of cooperation, openness/interoperability and trust. Extracting and under-
standing the business relevant information under temporal constraints and being able
to effectively integrate them into solutions that utilize the monitor-analyse-decide-
manage approach for a multitude of domains is challenging. The high heterogeneity
of systems, models, quality of data and associated information, uncertainties as well
as complex system-wide interactions, will need to be investigated to identify business
opportunities and realize (business) benefits for all stakeholders. Considering also
that for instance in Smart Cities much of the “Big Data” will be directly generated
by or affect its citizens, data lifecycle management approaches with security and
privacy aspects integrated will need to be well-thought.
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24. Karnouskos, S., Goncalves Da Silva, P., Ilić, D.: Developing a web application for monitoring
and management of smart grid neighborhoods. In: IEEE 11th International Conference on
Industrial Informatics (INDIN), Bochum (2013a)
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Trajectory Data Analysis Over a Cloud-Based
Framework for Smart City Analytics

Eugenio Cesario, Carmela Comito and Domenico Talia

Abstract The chapter presents a Cloud-based framework that can be tailored to
be used in different scenarios of urban planning and management occuring in Smart
Cities. The focus is on the management of large-scale socio-geographic data obtained
through the trajectories traced by smart objects. Our goal is to mine human activities
and routines from this socio-geographic data in order to catch user’s behaviour. To
this aim, we introduce a methodology for trajectory pattern mining consisting in
(a) finding frequent regions, more densely passed through ones, and (b) extracting
trajectory patterns from those regions. Experimental evaluation shows that due to
complexity and large data involved in the application scenario, the trajectory pattern
mining process can take advantage from a parallel execution environment offered by
a Cloud architecture.

1 Introduction

The concept of Smart City has been introduced as the application of ubiquitous and
pervasive computing paradigms to urban spaces focusing on developing city net-
work infrastructures, optimizing traffic and transportation flows, lowering energy
consumption, and innovative services for citizens [11]. This is implemented by the
integration of different control systems in commercial and public interest build-
ings, aimed at monitoring lighting and electricity, fire detection, video surveillance,
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access control and public address services. Smart Cities can dramatically improve
the citizen’s quality of life, encourage business to invest and create a sustainable
urban environment.

A fundamental aspect of a smart city is the availability of a network of intelligent
devices, i.e., smart objects, to support the development of a number of new services.
A smart object network provides a flexible approach to implement “the Internet of
things,” in which a large number of smart objects are connected to the Internet. By
2015, the number of smart objects connected to the Internet is expected to exceed
the number of computers connected [8]. Therefore, smart object networks will play
a critical role in making Smart Cities a reality.

Emerging technologies, such as wireless devices, Cloud computing and vehicular
networking, promote the developments of urban computing within smart city by
enabling, among other things, an alternative way for tracking and sensing exploiting
people’s mobile devices to track mobile events [2, 4, 5]. This leads to the generation
of a large number of trajectories drawn by the users during their daily activities. Such
amount of information can be analyzed to discover knowledge, i.e., patterns, rules
and regularities, on the user trajectories. The basic assumption is that people often
tend to follow common routes: e.g., they go to work every day by similar paths. Thus,
if we have enough data to model typical behaviors, such knowledge can be used to
predict and manage future movements of people [12, 16, 17].

The aim of the proposed work is twofold: (i) provide an integrated computing
framework for efficiently manage fragmented socio-environmental data, with a par-
ticular focus on the urban context of cities; (ii) provide a methodology to analyze
trajectories of mobile users and extract movement patterns in order to mine social
and environmental behaviors.

The design and implementation of a framework analysing cross-thematic socio-
environmental data coming from various application domains obtained by a variety
of tools, components and services is very challenging. Managing heterogeneous
data volumes while allowing inter-operability among different tools, it also needs
compliance to standards. In this regard, the Cloud computing paradigm is a suitable
infrastructure to fulfil most of the above requirements due to its characteristics such as
high-performance computing, on-demand processing, facilitating data accessibility
and storage across platforms.

Accordingly, we describe a Cloud-based architecture specifically designed for
urban computing supporting smart cities. The architecture includes computing and
network infrastructures integrated in a Cloud platform that interact with data source
generators like sensors, smart phones and other wireless devices. The framework
includes a set of services allowing to gather and collect environmental data, and
to process and analyze them in order to mine social and environmental behaviors.
Exploiting this information, a set of functionalities can be implemented atop the
basic services allowing to improve urban planning and management [22].

In this chapter one scenario is introduced as a case study. This scenario focuses on
the study of the trajectories followed by mobile devices with the aim to understand
trajectories in order to catch user’s behaviour. Towards this direction, the chapter
introduces a methodology that first detects dense regions within a given geographical
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area, more densely passed through regions, and then extracts trajectory patterns from
those regions. We apply the trajectory pattern extraction methodology to a real-world
dataset concerning mobility of citizens within an urban area. As result of the analysis,
useful insights, both in terms of common movements followed in the city and in terms
of evolution of the traffic density, are provided. Experimental evaluation shows that
due to complexity and large data involved in the application scenario, the trajectory
pattern mining process can take advantage from a parallel execution environment as
offered by the Cloud.

The chapter is structured as follows. Section 2 gives a background on both Cloud
computing and Smart City. The Cloud-based architecture is introduced in Sect. 3.
Section 4 presents the trajectory analysis scenario describing the trajectory pattern
detection methodology together with the designed workflow. Experimental evalua-
tion is reported in Sect. 5. Section 6 concludes the chapter.

2 Background

This section provides some background information on both Cloud computing (2.1)
and Smart City (2.2) also reviewing the most relevant research and projects about
the use of Cloud technology for the design and development of smart cities (2.3).

2.1 Cloud Computing

Different definitions of Cloud Computing paradigm have been conceived in litera-
ture. Some of them focus on on-demand dynamic provisioning of processing and
storage resources, others emphasize the service-oriented interface and the exploita-
tion of virtualization techniques. The National Institute of Standards and Technology
(NIST) has given a complete reference definition [7]. NIST defined Clouds as fol-
lows: “Cloud computing is a pay-per-use model for enabling available, convenient,
on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, services) that can be rapidly provi-
sioned and released with minimal management effort or service provider interaction”.
Moreover, according to NIST: “Cloud model promotes availability and is comprised
of five key characteristics, three delivery models, and four deployment models.”
The key characteristics of Clouds are: on-demand self-service, ubiquitous network
access, location independent resource pooling, rapid elasticity, and pay per use.

The delivery models of Clouds are very important because they define three dif-
ferent types of Cloud computing systems:

Infrastructure as a Service (IaaS). The capability provided to the user is to
rent computing, storage, networks, and other computing resources where the
user is able to deploy and run software, which can include operating systems
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and/or applications. The user does not manage or control the hardware Cloud
infrastructure but has control over operating environments, storage, deployed
applications, and possibly selects networking components. Examples for com-
mercial Cloud infrastructures are Amazon EC2 and Rackspace.

Platform as a Service (PaaS). The functionality provided to the user is to deploy
onto the Cloud infrastructure consumer-created applications using programming
languages, compilers and toolkits supported by the provider (e.g., Java, .Net).
The consumer does not manage or control the underlying cloud infrastructure,
network, servers, operating systems, or storage, but the consumer can control the
deployed applications and possibly the application hosting environment configu-
rations.

Software as a Service (SaaS). The capability provided to the consumer is to use
the provider’s applications running on a Cloud infrastructure and accessible from
various client devices through a thin client interface such as a Web browser (e.g.,
web-based email). The consumer does not manage or control the underlying cloud
infrastructure, network, servers, operating systems, storage, or even individual
application capabilities, with the possible exception of limited user-specific appli-
cation configuration settings

IT organizations can choose to deploy applications on public, private, community,
or hybrid clouds, each of which has its trade-offs. Different Cloud deployment models
are described in the following.

Public Cloud. The Cloud infrastructure is owned by an organization selling Cloud
services to the general public or to enterprises. Thus, it is public because it can
be rent by anyone for developing and/or running any kind of applications.

Private Cloud. The Cloud infrastructure is owned or leased by a single organiza-
tion and is operated only for that organization. No public access to it is permitted.
This model can be used in case of strict data privacy and/or security requirements.

Community Cloud. The Cloud infrastructure is shared by a limited number of
organizations and supports a specific community that has shared concerns (e.g.,
goals, security requirements, policy, and compliance issues).

Hybrid Cloud. This fourth class of Cloud infrastructure is a composition of two
or more Clouds (private, community, or public) that although they are unique
entities, are combined together by standardized or proprietary technology that
enables data and application portability (e.g., Cloud federation).

Cloud computing is the most recent results of the advancement of several com-
puter technologies both from the hardware side, such as virtualization and multi-
core architectures, and from the software side like cluster computing, Grid com-
puting, Web services, service-oriented architectures, autonomic computing, and
large-scale data storage. In particular, virtualization in Cloud computing is the
key element that separates system functionality and implementation from physi-
cal resources. By exploiting virtualization techniques, a Cloud infrastructure can be
partitioned in several parallel virtual machines, dynamically configured according to
the user requirements and devoted to run independent applications concurrently.
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Virtualization separates applications from hardware and users from other users
giving them the feeling that a large-scale computing infrastructure is devoted to
their applications by meeting a given quality of service (QoS). Virtualization is also
used to isolate applications avoiding that if one fails others can fail too. Finally,
virtualization is a way to improve security and privacy of concurrent applications
running on the same Cloud. Several companies set up large Cloud facilities and built
programming environments where developers can program applications as Cloud
software services. Just to mention some example, Amazon on his EC2 and S3 Cloud
platforms implemented Elastic BeanStalk, Microsoft implemented .Net technology
on Azure, Google provides the AppEngine, and VMware has Cloud Foundry. On
the other side, the research community developed open source software that can be
deployed and configured on servers, computer farms or data centers for implementing
private, public, community or hybrid Cloud infrastructures or for inter-Cloud com-
puting facilities. Examples of these systems are OpenNebula [19], Eucalyptus [20],
OpenQRM [9], Puppet [3], and OpenStack [15]. These open source software projects
are also working to systems and services that allow Cloud-to-Cloud interoperability
and federation.

2.2 What is a Smart City?

The Smart City concept has been introduced as a strategic paradigm to encom-
pass modern urban production factors in a common framework and to highlight the
growing importance of Information and Communication Technologies, social and
environmental capital in profiling the competitiveness of cities. The term was coined
in Australia for the cities of Brisbane and Blacksbourg where the ICT supported
the social participation and the accessibility to public information and services. The
smart city was later evolved to an urban space for business opportunities, and to
ubiquitous technologies installed across the city, which are integrated into everyday
objects and activities.

From literature the term Smart City is used to describe various aspects of the
city which range from Smart City as an IT-district to a Smart City regarding the
education of its inhabitants. In particular, Smart City can be identified along six
main axes: smart economy, smart mobility, smart environment, smart people, smart
living and, finally, smart governance. In the following the various aspects will be
summarized.

Smart economy includes factors all around economic competitiveness as innova-
tion, enterprise, trademarks, productivity and flexibility of the labour market as well
as the integration in the (inter-)national market.

Smart people is not only described by the level of qualification or education of
the citizens but also by the quality of social interactions regarding integration and
public life.

Smart governance comprises aspects of political participation, services for cit-
izens as well as the functioning of the administration. Good governance as an
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aspect of a smart administration often also referred to the usage of new channels
of communication for the citizens, e.g., e-governance or e-democracy.

Smart City concerns also the use of modern technology in everyday urban life. This
includes not only ICT but also modern transport and communication technologies.
Logistics as well as new transport systems which improve the urban traffic and the
inhabitants mobility.

Smart environment is described by attractive natural conditions (climate, green
space etc.), pollution, resource management and also by efforts towards environmen-
tal protection.

Finally, smart living comprises various aspects of quality of life as culture, health,
safety, housing, tourism etc.

A generic multi-tier architecture for smart cities should contain the following
layers:

• User layer. This layer appears both at the top and at the bottom of the generic
architecture because it concerns both the local stakeholders who supervise the
smart city, designing city services, and the end-users who use the smart city services
also having the possibility of participate in decision making.

• Service layer, which includes all the services offered by the smart city.
• Infrastructure layer that contains network, information systems and other facilities,

which contribute to service deployment.
• Data layer that maintains and made available all the information, produced and

collected in the smart city.

On top of the above architecture, various services can be offered in a modern
smart city, including the following ones:

• Government services concern public complaints, administrative procedures at
local and at national level, job searches and public procurement.

• Business services mainly support business installation.
• Health and tele-care services offer remote support to particular groups of citizens

such as the elderly, civilians with diseases etc.
• Learning services offer distant learning opportunities and training material to the

habitants.
• Security services support public safety via amber-alert notifications, school mon-

itoring, natural hazard management etc.
• Environmental services contain public information about recycling, while they

support households and enterprises in waste/energy/water management. More-
over, they deliver data to the State for monitoring and for decision making on
environmental conditions such as for microclimate, pollution, noise, traffic etc.
(in Ubiquitous and Eco-city approaches).

• Intelligent Transportation supports the improvement of the quality of life in the
city, while it offers tools for traffic monitoring, measurement and optimization.

• Smart Tourism services. The use and application of ICT technology to deliver inno-
vative approaches and technology solutions to enhance tourism sectors technology
base. As example, information about cities and powerful itinerary-planning tools
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can be synced across smartphones, Google calendars, and web browsers. These
tools should enable tourists to quickly find activities by type and proximity and fit
those activities into personalized itineraries, all without the need for a translator,
tour guide, or travel agent.

2.3 Cloud-Based Urban Computing in Smart Cities

Urban computing is emerging as a concept where every sensor, device, person, vehi-
cle, building, and street in the urban areas can be used as a component to enable a
citywide computing for serving people and cities.

More formally, urban computing can be defined as the process of acquisition,
integration, and analysis of big and heterogeneous data generated by a diversity of
sources in urban spaces, such as sensors, devices, vehicles, buildings, and human,
to tackle the major issues that cities face, e.g., air pollution, increased energy con-
sumption and traffic congestion.

Several Cloud enabled tools for urban planning and management in the Smart
City context have been recently proposed (e.g., land, etc.). Environmental Software
and Services (ESS) [5] exploits the Cloud paradigm to offer a range of services for
environmental planning and management, policy and decision making, world wide.
Analogously, the Environmental Virtual Observatory pilot (EVOp) [4] uses Clouds
to achieve similar objectives in the soil and water domains.

The European Platform for Intelligent Cities (EPIC) [1] combines the Cloud com-
puting infrastructure with the knowledge and expertise of the Living Lab approach
to deliver sustainable, user-driven web services for citizens and businesses.

The Life 2.0 project [6] offers a set of services ranging from basic geographical
positioning systems to socially networked services and to local market-based ser-
vices. The project aims to provide solutions that increase opportunities for social
contacts between elderly people in their local area, by providing new services for
elderly people, based on the use of tracking systems and social network applications.

IBM introduced Smarter City Solutions on the IBM SmartCloud Enterprise, a
public Cloud platform that includes hardware, network and storage [2]. The plat-
form provides pay-as-you-go services for urban management within cities. Those
services include application software, infrastructure, networking, systems software,
middleware and maintenance.

Differently from most of the systems described above, our framework has been
designed to provide general-purpose services for urban planning and management
within the city context. Thus, it is not been designed for a specific application domain
but it can be tailored to the different aspects concerning urban management (e.g.,
healthcare, transportation, tourism, etc.). Moreover, the framework has been designed
as a set of modular components allowing this way easy extensibility and integration
of different heterogeneous components (e.g., software, data sources, etc).
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3 A Cloud-Based Architecture for Smart Cities

In this section we introduce the architecture of a Cloud framework for Smart Cities.
This framework implements a set of services aming at improving the planning, man-
aging and monitoring of activities within a urban context of cities. Such activities
involve a number of aspects such as healthcare, smart transportation, smart home,
smart tourism and smart public services, emergency response and public information
services.

On defining an architecture for urban computing in smart cities, one has to take
into account the issues and challenges arising therefrom, including the following
ones:

• Urban computing involves the design and development of advanced algorithms
and computational platforms to solve problems in the smart city context.

• The gathering and management of massive large-scale environmental spatial-
temporal data.

• The integration of heterogeneous data coming from very different and disparate
sources.

• High computing power, is required due to the large size of data sets and the
complexity of basic computations.

• A secure software infrastructure is needed to access private data.
• Intelligent data analysis and decision support system: generation of environmental

indicators to support policy interventions and decision-making within the urban
environment.

Accordingly, the proposed architecture has been designed as a middleware sub-
strate allowing for the integration and handling of large-scale, fragmented, cross-
thematic environmental and socio-geographic data with the focus of mining human
behavior from such data for urban planning and management. As such, we can
envision a set of services ranging from acquiring data from disparate sources (e.g.,
sensors, smart phones, gps, etc) to the integration analysis and processing of such
data in order to define a set of services for urban planning and management. These
services include the following ones:

1. Data Acquisition. In this phase data are gathered from different sources including
traditional database systems, flat files, web services, real-time systems, sensors
networks, web portals.

2. Data Storage. Data acquired in the previous phase are then organized into repos-
itories.

3. Data Processing. This step includes traditional data processing techniques (e.g.,
traditional DBMS operations) as well as new techniques and methodologies intro-
duced to elaborate the new data models established with the diffusion of sensors
and ad-hoc networks and, in general, with the emergence of the ubiquitous par-
adigm. For example, the use of techniques like TinyOS and TinyDB to process
sensor data, new query languages and execution engines for spatio-temporal data
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(as it is the case for trajectory data), algorithms to process data from maps, method-
ologies and algorithms for image and signal processing.

4. Decision-making. Optimized planning and enhanced decision-making for invest-
ment projects are critical issues for dealing with the complexities of urban con-
texts. The use of data mining and other artificial intelligence techniques enables
users to take intelligent decisions for an action to be taken. The decision-support
system (DSS) provides solutions for urban management and planning, recom-
mending an optimal set of improvement strategies. The system should analyze all
possible improvement strategies and tradeoffs, balancing required budgets and
expected benefits. For example, focusing on the reference application scenario of
trajectory analysis, a DSS can easy the traffic control operations allowing for the
selection and best implementation of traffic management measures in response to
the occurrence of an incident, with the aim to minimize incident negative conse-
quences on traffic, as formation of congestion and queues, travel delays and risks
for secondary incidents.

5. Visualisation: the outputs of data processing can be visualized in a user-friendly
way by using various graphical user interface (GUI) tools, simulations and maps
for various platforms such as web and smartphones (e.g., using google map stan-
dards).

6. Social-networking: users interact to share experiences and information (e.g., twit-
ter, forums).

Due to the complexity of urban-related activities within a smart city context, we
aim to provide an integrated computing environment for composing and running
applications in the smart city area, leaving the user free to work at the application
level and not at the middleware programming level. To this aim, one of the main
objective of the framework is to assist users in formulating problems, allowing to
compare different available applications (and choosing among them) to solve a given
problem, or to define a new application as composition of available data and soft-
ware components. The Cloud computing paradigm allows to implement the above
urban-related services: facilitates data access and storage across platforms, provides
on-demand computational resources, and allows for integrated processing and data
analysis. The proposed architecture is based on the use of both proprietary and open
source software and the integration of both private and public-available environmen-
tal databases.

Figure 1 shows the architecture consisting of a set of layers. At the lower level,
the platform layer is based on a hybrid Cloud environment (also including mobile
devices at any type) that ensures cross-platform accessibility of environmental data.

The data acquisition layer allows to access environmental data collected from
disparate sources including remote database repositories, sensor networks, mobile
ad-hoc networks, satellites, camera, meters, etc. The devices at this level provide
measures and sensed values that are gathered by a set of software modules that
before storing them, classify the collected data into application specific thematic cat-
egories, perform pre-processing and/or data aggregation and update the data/service
catalogues for further use of the data. The activities found at this level can measure
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Fig. 1 A Cloud-based architecture for smart cities

water quality, collect electrical meter readings for a power grid, or provide building
measurements to determine its energy usage.

At the data storage level the data collected is organized in ad-hoc repositories.
More precisely, two types of repositories are available: those composing the historical
archiving of specific urban features and real-time repositories that maintain only
recently sensed data and their update-rate is high.

The software service layer is composed of a set of software components exposed
as services. Those services use data provided by the lower level and are invoked by
the upper level to compose applications. This layer includes, among the others, data
mining algorithms (e.g., DBScan, T-Apriori) and open-source GIS tools (e.g., QGIS,
GEOLocate, Google Maps, Google Earth, MapWinGIS, Image Georeferencer).

The service composition layer is responsible to design workflows, identify data
sources, and link necessary processing components to enact the workflows. This
layer is also responsible for the triggering of predefined workflows to handle the
specific situations, whether it is an emergency response or the application for a citizen
service. Further, this layer enables stakeholders to use existing tools and develop new
application domain specific components and services.

The Smart urban application services layer offers a set of services for urban
management. As the purpose of the platform is to present a high-level management
view within a set of domains, it provides means to model and define application-
specific performance indicators by implementing a set of software modules each of
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which addresses a specific urban feature. Existing applications (e.g, the outcomes
from the service composition layer in application domain specific tools) can be used
to perform intelligent analysis on environmental data.

4 Trajectory Data Analysis

This section provides a real-world application scenario as a case study of urban plan-
ning and management within the proposed framework. This scenario concerns trajec-
tory data analysis by exploiting mobile user movements. In particular, we focused on
the discovery of trajectory patterns from a dataset of trajectories, recently emerged
as a challenging task.

In the remainder of the section is first briefly presented the focused applica-
tion scenario (4.1). Then, it is illustrated the proposed trajectory pattern detection
methodology (4.2) and its parallel implementation is introduced (4.3). In particular,
it is shown how a workflow mechanism can be used to design the proposed method-
ology within a parallel setting as the one of the proposed Cloud-based smart city
architecture.

4.1 Application Scenario: Trajectory Pattern Mining

In this section we introduce one scenario as a case study. This scenario focuses on
the study of the trajectories followed by mobile devices with the aim to understand
trajectories in order to catch user’s behaviour and provide useful information about
mobility-related phenomena. In particular, we apply a trajectory pattern extraction
methodology allowing to predict future movements of citizens and exploit this infor-
mation to support decisions in various ways. In particular, the trajectory patterns
extracted represent a basic building block around which further analysis can be con-
structed, including the following ones:

• Predict the possible future location of a moving object from trajectory patterns
using the objects recent movements. This allows to anticipate or pre-fetch possible
services in the next location.

• Intelligent traffic management. Analysis of traffic congestion, providing real-time
updates on traffic flow, allowing for predictions of driving time. Congestion pat-
terns can be predicted days in advance, and traffic jams detected before they become
serious.

• Estimate the similarity between users in terms of their location histories so as to
promote, for example, car sharing, etc.

• Travel recommendations, e.g., mine the top interesting locations and travel seque-
nces among locations. For example, giving a set of locations of interests it is
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possible to determine the transportation modes that people took to get that place
or for example establish the best route to follow to reach a given location.

The problem of discovering periodic patterns from historical object movements is
very challenging. In [17] an approach to discovery hidden periodic patterns in spatio-
temporal data is proposed. In particular, authors define the spatio-temporal periodic
pattern mining problem and propose an algorithm for retrieving maximal periodic
patterns. Moreover, they devise a specialized index structure, aimed at supporting
more efficient execution of spatiotemporal queries over the discovered patterns.

A prediction approach to estimate an object future location, based on its pattern
information and recent movements, is proposed in [16]. Specifically, the discovered
trajectory patterns are stored in the TPT, a tree data structure exploited for an effi-
cient and accurate prediction of future locations. In addition, two query processing
techniques are presented, to perform both near and distant time predictive queries on
the TPT structure.

Reference [24] presents a smart driving direction system, where GPS-equipped
taxis are employed as mobile sensors aimed at probing the traffic rhythm of a city.
In particular, the main idea is to exploit the intelligence of experienced taxi drivers
so as to provide a user with the practically fastest route to a given destination at a
given departure time. The system has been tested on a real-world trajectory dataset
generated by over thirty thousands taxis in a period of 3 months, aimed at evaluating
the effectiveness of the approach.

In [13] the authors extend the sequential pattern mining methodology to analyse
moving objects. Some approaches of different complexity are proposed, that have
been empirically evaluated over real data and synthetic benchmarks, comparing their
strengths and weaknesses.

4.2 Trajectory Pattern Detection Methodology

This section describes the approach adopted to detect trajectory patterns, whose
inspiring idea is common to other approaches proposed in literature [16, 18]. Specif-
ically, the discovery process is composed of three steps, as drawn in Fig. 2.

1. The first step consists in the detection of frequent regions from the original trajec-
tory dataset. The goal of this step is detecting spatial areas more densely passed
through, in order to conduct the further analysis as movements through areas
rather than single points.

2. The second step consists in the synthesization of the trajectories, by changing
their representation from movements between points into movements between
dense regions. Precisely, each point of the original dataset is substituted by the
dense regions it belongs to.

3. The third step is aimed at extracting trajectory patterns, in the form of associative
rules, analyzing the trajectories of dense regions obtained at the previous step.
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In the following some notation used in the remainder of the chapter is introduced.
Let be T = < t1, t2, . . . , tH > a timestamp sequence, such that th < th+1,∀0<h<H .
A trajectory τK is a spatio-temporal sequence, τK = < (x1K , y1K , t1), . . . , (xH K ,

yH K , tH ) >, where each triple (xi K , yi K , ti ) indicates that an object of the trajectory
τK is in the position (xi K , yi K ) at time ti . The trajectory length is the number of
triples composing the trajectory (i.e., H ). A dense region is an area of points that
is more frequently visited by the object’s trajectories with respect to other areas; in
particular, we represent with R j

t the j th dense region at the time t . A structured

trajectory τK is a spatio-temporal sequence, τK =< R j1
t1 , . . . , R jH

tH
>, where each

element R ji
ti indicates that an object of the trajectory τK is in the dense region R ji

at time ti (see Fig. 3). A trajectory pattern is a special association rule, in the form
R j1

t1 ∧ R j2
t2 ∧ . . . ∧ R jr

tr →c R js
ts , with time constraints t1 < t2 < . . . < tr < ts .

The block on the left, i.e., R j1
t1 ∧ R j2

t2 ∧ . . . ∧ R jr
tr is the premise, while R js

ts is the
consequence of the rule. Finally, c is the confidence of the rule, meaning that when
the premise occurs then the consequence will occur with probability c.
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4.3 Trajectory Pattern Detection: A Parallel Implementation

The trajectory pattern detection process consists of a sequence of concatenated con-
nected steps involving different kinds of data and tools that can be located over geo-
graphically distributed environments. Thus, it may be suitably represented by exploit-
ing the workflow formalism, i.e., a graph in which nodes represent data sources, data
mining tools and algorithms, and edges represent execution dependencies among
nodes.

The workflow representing the proposed trajectory pattern detection methodology
is shown in Fig. 4. The original data set D is a raw trajectory data, populated by the
trajectories (represented in the previously described format) of some users collected
somehow. In particular, let us suppose that the original dataset is composed of N
trajectories, each one represented as a sequence of H (x, y, t)-triples.

Before going into the details of the application workflow, we give a brief descrip-
tion of the tools and algorithms involved in our application:

• Time Stamp Splitter: it receives a trajectory dataset and performs a vertical par-
titioning on it, by storing in the i th output dataset all the points that have been
covered at the i th timestamp;

• Trajectory Splitter: it receives a trajectory dataset and performs an horizontal
partitioning on it, by splitting the original trajectory set in M partitions of equivalent
sizes;

• Trajectory Synthesizer: it rebuilds the trajectories, by starting from the original
dataset and taking into account the points belonging to the frequent regions. In par-
ticular, it creates a new trajectory dataset, by substituting each point with the dense
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region it belongs to. The final dataset results populated by trajectories between
dense regions (but between single points);

• Frequent Regions Detection Algorithm: it detects frequent regions from the origi-
nal trajectory dataset, in order to discover geographical areas that are more densely
visited with respect to others; this step can be well performed by a density-based
clustering algorithm (e.g DBSCAN [21] or OPTICS [10]), whose detected clusters
are defined as areas of higher density than the remainder of the data set.

• Trajectory Pattern Extraction Algorithm: it discovers trajectory patterns, that can
be seen as concise descriptions of frequent behaviours, in terms of both space
(i.e., the regions of space visited during movements) and time (i.e., the duration
of movements). This step can be done by different algorithms (some approaches
are presented in [16, 17]), with the goal of extract rules whose elements respect
a monotonically increasing order in terms of time offset associated to each one;
that is, the timestamps of the antecedents are chronologically previous of those
appearing in the consequent.

The above described workflow can be implemented within the proposed Cloud-
based architecture that allows for composing, compiling and running urban-related
applications on the Cloud. This solution allow us to split the datasets and distribute the
computation on different nodes, in order to achieve better performances. Specifically,
the raw trajectories data can be gathered through the Data Acquisition Layer and then
stored in a database (or over multiple distributed databases) by means of the Data
Storage Level. The workflow can be designed and implemented through the Service
Composition Layer that interacts with both the Data Storage Service layer and the
Software Service Layer (where are located the DBScan and T-Apriori algorithms)
to compose the concatenated sequence of tasks.

In the following the parallel version of the workflow is described (see Fig. 4) .
Step 0—Vertical Data Splitting. The original trajectory dataset is partitioned by
the Time Stamp Splitter in a vertical way. In other words, all the points visited at the
same time stamp ti ∈ T will be gathered in the same dataset. At the end of this step,
|T | different datasets are available.
Step 1—Frequent Regions Detection. At this point, frequent regions are detected
by the parallel execution of |T | density-based clustering algorithm instances, each
one performed on one of the datasets built at the previous step. The result of this
step consists of |T | clustering models, each one corresponding to a single timestamp.
Each cluster of the tth model corresponds to a dense region. The number of detected
regions (i.e., number of clusters) may be different for each timestamp t .
Step 2—Trajectory Data Synthetization. The original dataset is horizontally split
in M partitions, each one containing N/M trajectories (or tuples). Such datasets
are represented in figure as TrajectoryDataPartition icons. Now, starting from these
datasets and the dense regions (discovered at the previous step), the composition
of the trajectory data as movements between dense regions (and not more between
points) is done. This task is performed by |T | instances of the Trajectory Synthesizer
tool, each one building a new dataset of dense region trajectories, by considering all
the points of the original trajectories belonging to the dense regions (discovered at
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the Step 1). All these trajectories are collected in a final dataset (Trajectory Data
(structured) in figure).
Step 3—Trajectory Pattern Extraction. Finally, a Trajectory Pattern Extraction
algorithm on the dense regions trajectory data is executed, to discover trajectory
patterns from them. The final mining model is a set of associative rules describing
spatio-temporal relations between the movement of the users under investigation.

5 Experimental Evaluation

In this section, we explore a real case study by applying the trajectory pattern detec-
tion method described in this chapter over a real-world dataset. The input dataset
chosen for the experiments is the T-Drive Trajectory Data Sample [23, 25], a col-
lection of GPS traces describing the movement of GPS-equipped cars in the urban
area of Beijing, China. The temporal span of the dataset is one week. The number of
vehicles tracked is 10,357 taxis. The total number of points is about 15 millions and
the total area covered by the trajectories reaches almost 9 million km. Starting from
this dataset, we extracted three different subsets of 25000, 50000 and 100000 tra-
jectories respectively, obtained by sampling taxi positions every 5 min. In particular,
trajectories are composed of |T | = 100 samples.

To evaluate the effectiveness and the efficiency of the proposed approach, we
carried out a performance analysis by executing different experiments in various
scenarios. Experiments have been conducted on Intel Pentium 4 processor machines,
with CPU frequency 1.36 GHz and 2 GB RAM.

The experimental evaluation aimed at analyzing the execution time of the tra-
jectory pattern task, by evaluating the time elapsed in each step and comparing the
performances obtained by both sequential and parallel implementation.

Let us start by analyzing the execution time of the sequential algorithm, whose
steps are reported in Fig. 2. In particular, the three steps of the sequential flow, i.e., the
Frequent Regions Detection, the Trajectory Data Synthesization and the Trajectory
Pattern Extraction (i.e., Step 1, 2 and 3) have been implemented by the DBScan, the
Trajectory Synthesizer and the T-Apriori tools respectively. Let TS be the sequential
execution time, i.e., the time needed to execute all steps sequentially. Formally, the
total time spent to complete the application can be expressed as

TS = TS1 + TS2 + TS3 (1)

where TSi represents the time spent to execute the ith step in the sequential execution.
Figure 5 shows the execution time (in a logarithmic scale) of each step with respect

to different data sizes, i.e., number of trajectories. It is worth noticing that the Dense
Region extraction is the most time consuming step of the whole process (taking more
than 99 % of the total execution time) and the time spent by the other two steps is
negligible with respect to the first one. Such time is very long because the dense
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region extraction step is performed by the execution of |T | algorithm instances, each
one to discover the dense regions at the tth timestamp (t = 1 . . . |T |).

Now, let us observe the workflow represented in Fig. 4, where the sequential
flow has been decomposed and modeled as a task-dependency graph. The critical
path of a workflow is defined as a path with the longest average execution time
from the start activity to the end activity. The amount of time needed to execute all
the tasks composing the critical path is named critical path length [14]. Since all the
paths of the workflow are executed in parallel, the critical path length determines the
execution time of the whole workflow. Let TP be the parallel execution time, i.e.,
the time needed to execute the workflow. Formally, the total time spent to complete
the execution can be expressed as:

TP = TP0 + TP1 + TP2 + TP3 (2)

where TP0, TP1, TP2, TP3 represents the time spent by the TimeStamp Splitter, the
DBScan, the Trajectory Synthesizer and Apriori respectively (Step 1, 2, 3 and 4).

Figure 6 shows the execution time of the four steps composing the critical path
of the workflow, for different data sizes, when |T | = 100 critical paths are executed
in parallel. We can observe a considerable reduction in the execution time of the
Frequent Regions Detection step compared to the sequential case. This is mainly
due to a reduction of the DBSCAN computation time. In fact, the DBSCAN instance
running in the critical path has to process a dataset whose size is |D|/|T |, resulting
in a computation time that is almost |T | times shorter than the sequential scenario.

This improvements can be better appreciated by observing Fig. 7, in which sequen-
tial and parallel execution times are plotted for different data sizes and different num-
ber of nodes. Parallel times are obtained considering a parallelism degree of n = 25,
50 and 100 nodes, respectively. It is worth noticing that the parallel execution times
are strongly reduced with respect to the sequential one.
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Table 1 Parallel scenario:
execution time and relative
speedup versus the number of
available nodes, for
|D| = 100 K

Number of nodes Execution time (s) Speedup

1 213923 1
25 9000 23.7
50 4746 45.0
100 2668 80.1

Table 1 reports the total execution time and speedup with respect to different
numbers of available nodes, for |D| = 100 K trajectories. The speedup is the ratio
of the turnaround time obtained with a single node to the turnaround time computed
with n nodes. In particular, Fig. 8 plots the achieved execution speedup: it ranges from
23.7 (using 25 nodes) to 80.1 (using 100 nodes). Such experiments show encouraging
trends that can be studied by a further and more detailed analysis.
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6 Conclusions

A large amount of movement data is daily collected, due to the increasing perva-
siveness of mobile and wireless devices, sensing technologies, GPS traces, etc. Such
collection of information can be analyzed to discover descriptive and predictive mod-
els, that can be exploited to have a smart management of the city resources and to
generally improve urban life.

This chapter presents an architecture of a Cloud-based framework for urban com-
puting, aimed at supporting smart cities development. Within such framework we
have described a parallel approach, modeled by the workflow formalism, for pat-
tern discovery from trajectory data. The main idea consists in (i) finding the more
densely passed through regions in a given geographical area, and (ii) then extracting
trajectory patterns from those regions in the form of association rules. Experimental
evaluation, conducted on a real-world dataset, shows that the trajectory pattern min-
ing process takes advantage from a parallel execution environment as offered by a
Cloud architecture.

As future work, our research will proceed in different directions. First, we will
introduce some optimizations on the trajectory analysis methodology proposed in
the chapter, to improve the efficiency and effectiveness of the approach. Second, we
are developing a visualization module for the input data and discovered models.
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Abstract Urban dwellers are soul of smart cities, and all final aims of city applica-
tions are people-centric. mHealth is a new generation method for personal healthcare,
specially smart phone is widely used to interact with surroundings by the disabled
and elderly people in smart cities. Existing massive of sensors, actuators, and smart
objects are separated and controlled in different owners and community. Mobile
devices of people-centric sensing (PCS) can receive data in opportunistic sensing
according to mobile geo-location, dynamic social relationship, and interests of peo-
ple, etc. In this work, we present a real-time health-driven model for people-centric
healthcare context, and present a social-aware architecture to support smart objects
mapping to online social networks, then present discovering and interacting with
shared smart objects in a virtual community. Finally, we present a prototype system
to validate the people-centric mHealth service model.

Keywords Smart cities · People-centric · mHealth · Smart object · Mobile social
wireless sensor networks

L. Yang · W. Li (B) · Y. Ge · X. Fu
Wuhan University of Technology, Wuhan, China
e-mail: liwf@whut.edu.cn

L. Yang
e-mail: Lyang@whut.edu.cn

R. Gravina
University of Calabria, Via Pietro Bucci, 87036 Rende, CS, Italy
e-mail: rgravina@unical.it

G. Fortino
DIMES, University of Calabria, Rende (CS), Italy
e-mail: g.fortino@unical.it

G. Fortino and P. Trunfio (eds.), Internet of Things Based on Smart Objects, 163
Internet of Things, DOI: 10.1007/978-3-319-00491-4_9,
© Springer International Publishing Switzerland 2014



164 L. Yang et al.

1 Introduction

mHealth is an efficient method for healthcare monitoring application of mobile and
large-scale daily activities [1]. Development and treatment of chronic diseases take
place in daily life outside of traditional clinical settings. To determine and adjust
treatment for these diseases, clinicians depend heavily on patient reports of symp-
toms, side effects, and functional status. In particular, for the problem of increasing
elderly and disabled people living alone, it’s necessary to develop new technology
for real-time monitoring the health status and interacting with living environment.

People-centric sensing network is suitable for large-scale, mobile and opportunis-
tic perception application in urban area, and obtaining individual information from
the big data of cities via the people’s interest, location, and mission [2]. The ability
of Dwellers to interact with city life environment is enhanced by using the Internet
of Things (IoT). Specifically, wheelchair for elderly and disabled people, integrating
the new generation information technology of smart object, social mobile comput-
ing, is a convenient tool for monitoring real-time healthcare and interacting with
environment according to the real-time health status, while they are living alone.

Community is defined to identify local device/node’s membership. People inter-
act with different physical device community to transform data and information
via social-driven methods in daily life. Existing IoT architecture supports physical
sensors or actuators virtualized to virtual nodes or IP-based resources on the inter-
net; physical objects are mapped to a cyber-world. The online resource is easy to
be inquired by mobile application [3–6]. Virtual nodes form a virtual community
according to function, physical communication range, physical topology and the
device ownership etc. Wireless body area networks, smart wheelchair and smart
phone build a people-centric physical community to complete a daily life healthcare
monitoring task. And a mobile people-centric healthcare device gets the shared data
from the large-scale environment in smart cities.

There are some issues in data sharing in smart cities. First, in public place, different
organizers build their own devices to complete the same sensing mission, and that
wastes money. Second, smart objects and surrounding environment are published to
the internet by different owners, while a smart wheelchair moves to unfamiliar room
or buildings, the wheelchair user need to get access to the shared resources by social
activity with the owners.

For a mobility of wheelchair user activities, we present a novel online mobile
social network to improve the efficiency of resource sharing. Section 2 presents a
context model of the real-time health status-driven model for people-centric sensing.
Section 3 presents an architecture of wheelchair users’ HealthCare device and social
aware method. Section 4 presents prototype system implement and discussion, and
Sect. 5 presents conclusion and future work.
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Fig. 1 Community of human, physical and virtual nodes

2 Model of People-Centric Healthcare for the Disabled

As shown in Fig. 1, a wheelchair user moves around a city, and that leads to
opportunistic data exchanging in physical world and virtual social world. In physical
community, opportunistic communications are created to interact with surround-
ing environments via the mobility of human or carried devices, such as smart phone,
wheelchair and vehicles. The social activity of person brings new human relationship
in social community. As a virtual node, the person is added into online social networks
to exchange their own shared devices, and that is aim to get access to unknown devices
unconnected directly before. Especially smart phone and smart object technologies
improve the people-centric healthcare application, as smart objects can be used to
detect vital physiological parameters and requirements. Compared to the existing
context-driven social sensing and analyzing, the people-centric healthcare percep-
tion realize the real-time requirement more truthful, accurate, and the physical status-
driven model can get accurate recommendation from big data. Section 2.1 presents
context modeling of people-centric healthcare. And Sect. 2.2 presents resource dis-
covering in unknown environment.

2.1 Context Modelling

Context models can be compared in terms of efficiency (to access data and exe-
cute reasoning procedures), scalability, and usability of the formalism [7]. Figure 2
presents people-centric healthcare context modeling, and depicts four parts: device,
health-context, social aware, and location.



166 L. Yang et al.

Fig. 2 People-centric healthcare context model

• Device—Human has kinds of devices, such as smart phone or a wheelchair. And the
devices store and update the fixed attribute of owner and devices, such as chronic
disease, historical health status, social information, the information of device itself
etc. and device is not only the tool for perception of local information, but also the
interface for interacting with cyber-physical world. For example, wheelchair can
perceive user’s health status in real-time as well as the surrounding environment.
The user, who carries the device as a whole people aware system, moves into a
community of other physical devices for exchanging data. While people take the
wheelchair into the different buildings, across different wireless sensor networks,
wireless sensor network can obtain data from different buildings. People participate
in social activities for having chance to get the new physical location and social
relations.

• Location—An activity of device located at location information. The mobility of
device creates dynamic physical position and online social community identifica-
tion. The location is the trigger to accuracy discovering surrounding resources from
online social community. The mobile wheelchair adds to the unknown physical
device communication network or get the access device belongs to other person.

• Healthcare context—the healthcare context model describes the rules of interop-
eration of online social resource, virtual history health information and real-time
healthcare diagnosis from the WBSN and smart wheelchair. The individual rule
comes and updates from device module via dynamic interacting with the commu-
nities. For example, physical device was visited by different person in different
time in cities, and the virtual nodes was ranked priority and weighted in virtual
community. Compared to the existing context definition„ healthcare context model
is from user participation and real-time diagnosis of physical device. Life critical
physiological warning thresholds can be input via smart phone, and priority of the
emergency contact list can be ranked by records of recent visited friends.

• Social aware—Social aware contains virtual community of resource and online
social networks. Human has or had the community via social activity to build or
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destroy the connection among human, physical device, social networks. IP-based
smart object is mapped to an independent service, and is virtualized as a virtual
node. The dynamic statuses of virtual nodes change the division of virtual com-
munity. When a physical device is sold, rent or broken, the virtual node quiets the
current communication. Surrounding environment status is accuracy discovered
by trigger of “location”, and captured by application of mobile devices.

2.2 Online Social Resource and Community Discovery

In mobile daily life, by using GPS device, RFID tags and WSN to geographically
locate the position of wheelchair, physical environment status and social networks are
discovered directly or indirectly, while healthcare device detects real-time abnormal
physiological parameters or requirement of interacting with surrounding environ-
ment.

Step 1: Input the location P, accuracy discovery community of virtual nodes in
the position registered.

Step 2: Inquiry community, get the resource community V of the best correlation
with healthcare context, according to priority of communities’ weight in commu-
nity, the geo-range of search radius, depth of the community traversal. Then wheel-
chair connects the found community, gets the resource and labeled the communities’
weight +1. Return access community.

Step 3: Get the resource of virtual nodes. If the found community is shared nodes
in public, get the resource N, and label weight of nodes +1. Else return the owner
or manager of the community of virtual nodes, and then inquire in the online social
networks.

Step 4: Inquire and request the access from the owner. If connected with the
owner, wheelchair user connects to the online social network, label the weight +1
of visited owner, and gets access community, return to Step 2.

Step 5: If wheelchair user has no connected relationship with owner initialization,
search the available rote path or bridges to build the connection with the own on
existing online social networks tools, such as third party platforms like Facebook,
Twitter, or WeiChat. Then return to Step 4.

Step 6: Move and create opportunistic communication. If unviable to contact with
owner, visit to neighbor nodes according to the priority of weight of nodes in virtual
community, or move to next geo-position in the recommendation of online social
networks. Then update location P, return to Step 1.

3 Architectures to Support Wheelchair Social Sensing

In smart cities, activities of person bring opportunistic sensing and service, and
can enhance the quality of life for wheelchair users. For the healthcare and assis-
tance of wheelchair users in daily life, we design a people-centric healthcare system.
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Fig. 3 Architecture of people-centric healthcare for wheelchair users

Wheelchair users get local vital physiological parameters and online shared envi-
ronment status. Smart wheelchair is not only the vehicle assistant for the elderly and
disabled person, but also can detect e.g. abnormal sitting status, falls of the user or
the vehicle itself, and sense the surrounding environments. Sensors, actuators, and
IP-enabled smart objects in the cities can be mapped in to virtual resources by using
IoT technologies. The architecture is shown in Fig. 3.

3.1 Physical Device of Healthcare

(1) Smartphone

Smart phone is the most popular embedded device in people’s daily life. The prolif-
eration of smartphone with sensing capabilities has created an opportunity to design
systems that capture vast amounts of information about people’s social behavior [8].
Existing smart phones, such as Android, IPhone, Blackberry, have common features:
build-in GPS module, build-in Bluetooth radio module. In this work, the GPS mod-
ule is used to perceive physical location of people. And Bluetooth module is used to
connect co-local smart objects, such as smart wheelchair and wireless body sensor
networks. Built-in Wi-Fi or 4GLte expands the perception range via visiting Cloud
sensing infrastructure.

(2) Smart wheelchair

Comparing with an basic wheelchair, smart wheelchair expands more functions via
installing sensors and actuators. In this work, the function of smart wheelchair con-
tains (a) user localization, (b) detecting falling from chair, (c) measuring falling of
chair itself and (d) local alarm triggering.
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• RFID identification—RFID technology is suitable for tracking goods in wireless
and mobile applications [9]. A RFID reader is fixed on the wheelchair, recognizes
tags carried by the user, reads the social attributions of the wheelchair user, and
joins the community of human relationship. While wheelchair user move to and
interact with living environments, reader in wheelchair can identify the real-time
location indirectly via reading RFID tags of register goods.

• Falling perception—an accelerometer sensor node is fixed on wheelchair, and
detects the falling status of wheelchair. Several force sensors build in the cushion
of wheelchair, and detect the sitting status of person.

• Alarm device—buzzers and LEDs are installed on the wheelchair; while the user is
detected as falling or with abnormal physiological parameters, the alarm devices
are activated, and also accessed/controlled remotely, if necessary.

(3) WBSN of Vital physiological parameter perception

WBSN is suitable for real-time healthcare application in daily life, and dedicated
frameworks offers effective programming and flexible management [10–12]. Heart
rate and ECG are common indicators of health status. We present a BSN to detect the
abnormal vital physiological parameters, the sensors are connected to smart phone
via Bluetooth..

There are features in the smart object of people-centric aware as following: (a)
wireless. Sensor nodes, actuators, and smart objects are connected with smart gate-
way/phone by using the IEEE 802.15.4 protocols, so there are great advantages in
energy efficiency. (b) Easy to use. These non-invasive devices work continuously,
without assistant need to be worn. (c) low cost. Extending sensor nodes add or remove
according to individual requirement, and as a core device smartphone becomes more
cheaply and widely sued in daily life.

3.2 Bring Smart Object and WSN to the Web

(1) Smart object virtualizing

How to integrate new generation IP-enabled smart objects is presented in this
paragraph. WSN has applied on almost every urban application domains, such as
localization, environment sensing, smart parking, smart light management, and intel-
ligence transportation systems [13]. Wireless sensor networks with 6LoWPAN and
IPv6 are used to perceive surrounding environment and bring objects to internet. As
shown in Fig. 4, a classic intelligent node contains sensors/actuators, CPU module,
radio module, battery management module. CPU module has feature of limited stor-
age and processing ability. The logic function of CPU contains device interface and
access layer, data encoder and store layer, device control and link table, message
or light-weight RESTful web service. Device interface and access layer is used to
transformation of A/D and encrypt/decrypt signal. Data encoder is used to provide
online/off line data formalism function. The micro format of smart object or nodes
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Fig. 4 Structure of a physical
node

can be inquired by search engine directly, such as Geo, hCard, hProduct and hReview
etc. After sematic encoding, the collected data is storage in light-weight database sys-
tem, such as SQLite. The layer of service control and link table is used to define the
service customer, authority, mechanism of even trigger, QoS of link. The link table
layer is used to store local topology, the current rote. The physical sensor/actuator
node is packaged as a virtual resource via RESTful web service, and is accessed via
API.

Physical devices are packaged into service visited by short URL. Smart objects are
connected to IoT platform directly or indirectly: (a) Connect directly. In future most
of microcontroller support TCP/IP protocol in IP-enabled embedded device, such
as 6LowPAN, IEEE 802.16.4g. (b) Smart gateway bridge nodes and IoT platform.
Sensor and actuator nodes can communicate using wireless protocols such as Zigbee,
Bluetooth, and ANT, or wire communications such as FiberBUS, or CAN. However,
such physical nodes cannot perform data transfer via HTTP. Light weight web service
is built in the smart gateway, and is aim to virtualize physical device to virtual nodes,
virtual nodes are visited by URL [14]. The real communication between physical
nodes and IoT platform is hidden by RESTful web service. It’s easy to define a
node community by the IP address, and the nodes from the same sensors/actuators
networks.

(2) Social aware resource

Figure 5 presents software architecture of community of social resource. Resource
of community can be divided into three parts: (a) data access layer, (b) cyber-physical
transformation layer, and (c) sharing layer.

• Data access layer—Smart gateway updates data to community platform in for-
mat of JSON. RESTful Crawler collects data from the lightweight RESTful web
service on internet via IPv6 protocol. We also present the following IPv4-based
modules: WS-* API, SOAP web service, socket service for collecting heteroge-
neous resource, such as video, stream media.
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Fig. 5 Software architecture of social recourses community

• Cyber-physical community layer—this layer is aims to divide community and
build context of formalism from the aggregated heterogeneous resource. It con-
tains modules of object register, virtual community, device and event management,
encoder module and real-time link table. Register module is used to input the ini-
tialization attribution and social ownership of physical device. Virtual community
module is used to manage the division of nodes community. Module of device
and event is used to record the mobility of wheelchair, social activities of person
and the rule of new community division because of activities. For example, while
smart wheelchair detects the abnormal vital physiological parameters, the device
and event module can give recommendation of sending alarm to whom and how
to, according to attributions of device and its community. Module of encoder is
used to build the internal correlation via EPCglobal codes of Auto-ID. Module of
link table is used to store the real-time connection relationship in the virtual nodes
community. Such as neighbor of nodes, connection of communities, friendship of
online social networks etc.
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Fig. 6 A sample of device relationship in a virtual community, a virtual node indoor

• Data sharing layer—this layer is aims to share the data and service to smart phone
or mobile device application. It contains modules of DNS management, online
social network (OSN) access, ranking, Atom publication, and WS-* API control
access. A DNS management module is used to format the heterogeneous resource
from different IP address or URL, and shorten the length of dominion. The OSN
module is used to register smart object to social networks via the third party API,
such as Facebook, Twitter, or WeiChat. Each object or community is mapped to a
unique ID on OSN. Thus, any resource or smart object can interact with users on
OSN, such as visit, comments, link and rank. The ranking module is used to record
the global ranking of visited virtual nodes and its community, and it’s updated by
smart phone or mobile device of wheelchair user.

3.3 Community Register

(1) Smart wheelchair and smartphone register

The manager or family manages the register of wheelchair and smartphone. As
shown in Fig. 6, before using the devices, it is needed to input initialization infor-
mation for building communities. Examples of wheelchair attributes are wheelchair
user’s history healthcare information, smart wheelchair sensors and actuators inte-
grated with the social relationship of its user, address, emergency contact and online
social network accounts.
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(2) Environment perceiving device register

The owner manages the register, sharing and lifetime of environment perceiv-
ing devices. Before using devices, it’s needed to input initialization information of
relationship of community and sharing context.

3.4 Web Portal for Wheelchair Warning Management

Wheelchair healthcare in large-scale application necessarily requires city manager
and organizations to deal with the emergency status. We present a web portal to real-
time remote monitor wheelchair. Relatives can visualize the disabled person’s loca-
tion, vital physiological parameters and status of alarm. Figure 7 depicts a screenshot
of the web portal, showing an alarm popup as a smart wheelchair detected abnormal
user’ health status. The manager can retrieve the alarm, the most available emer-
gency contact from social community, and visit the surrounding environments via
web portal.

4 Prototype System Implementation and Analysis

In this scenario, a wheelchair user moves into a room of his friend, and has no owner-
ship of indoor physical objects. The aim is to get access of local shared environment
status via internet, and open an RFID lock authorized by owner via OSN, while the
smart wheelchair detects abnormal parameter of heart rate.

The physical devices are presented in Fig. 8. Smart wheelchair contains basic
wheelchair and kinds of sensors and actuators, such as RFID reader, accelerator
sensor, and force sensor in cushion etc. The human wears watch-like heart rate sensor
node at wrist, ECG sensors at waist and sink node at the belt. Nodes connected
to smart phone via Bluetooth module of cc2540. We install smoke, IR, humidity,
temperature, light, air pollution sensors, and cameras with wireless relays nodes..
The environment gateway, based on ARM Cotex-9 and Android OS, collects data of
sensors and actuators via the CC2530 Zigbee-compliant module.

As shown in Fig. 9, the proposed people-centric mHealth framework can provide
access and control also in unknown environment within the urban boundaries. The
result is shown on a smartphone, the platform of Android 4.04, Cortex A9 1.2 GHz,
build-in Bluetooth V2.0.

As shown in Fig. 10, Smart wheelchair and WBAN can efficiently perceive the
health status and surrounding environment in method of social mobile sensing.
Table 1 lists measuring parameters of people-centric aware devices, and there is
a little response delay on vital physiological parameters device, smart object con-
trolling and emergency alarming. There are two factors leading to this phenomenon:
(a) the mobility and activity of human body leads to near/far-field effect and shadow
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Fig. 7 Web portal for wheelchair user’s healthcare remote management. a Smart wheelchair detects
abnormal physiological parameters and triggers an alarm. b Find the priority emergency contact
person via the social community. c Get shared camera stream via social community discovery
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Fig. 8 Indoor sensors, smart gateway and smart wheelchair. a HR sensor node from WBAB devices.
b Wheelchair integrated force cushion and RFID reader. c Smoke sensor from WSN of environment
perception devices, d Smart gateway bridge Zigbee nodes to internet

RFID reader

Fig. 9 Indoor WSN and RFID reader

effects, and effect the transformation of WBAN. (b) In the algorithm of detecting
abnormal data of Heart Rate, ECG, falling of wheelchair, we need to select a group of
continuum data to discovery features via sliding time window and comparing several
features, this processing leads to time delay.
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(a) (b)        (c)

Fig. 10 Screenshot of smart phone used by the wheelchair user. a The smart phone perceives
the vital physiology parameter of wheelchair user. b The smart phone controls the local shared
household equipment via remote online resource. c A wheelchair user interacts with RFID lock via
WeiChat, a IM of online social network

Table 1 Measuring parameters of healthcare devices

Parameter Range measurement Measurement
precision

Sampling
frequency
(Hz)

Response time
(s)

Heart rate 0 ∼ 350/min ±2 % full 100 <2
ECG N/A N/A 512 <2
Smart cushion 0.1 ∼ 10 Kg/cm2 0.5 % full 300 <1
Falling 0 ∼ 350 Hz, ±6 g 200 m V/g 300 <1
Temperature −20 ∼ +80 ◦C ±0.2 ◦C 300 <1
Humidity 0 ∼ 100 % RH ±2 % RH 300 <1
Household smart

device
N/A N/A N/A <1

5 Related Work

Existing daily healthcare systems, such as Independent LifeStyle Assistant, Aware-
Home, University of Rochester’s Smart Medical Home, assume the user owns the
smart devices and sensors [15]. However, a wheelchair user has some social activity
and enters into unknown areas, where the devices and environment sensing resources
are owned and managed by others. For example, when the wheelchair moves for
shopping, visiting friends, etc., it cannot interact with the surrounding environment
directly. The smart wheelchair needs to use shared devices or sensors on the IoT.
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For instance, OpenHealth [1] uses mobile applications and a large number of users
to conduct self-health monitoring. Comparing with OpenHealth’ approach, dynamic
physiological parameter from the real-time smart device is more accurate; alarm
triggering and resource requirement are driven by real-time health status.

The concept of smart wheelchair came into play since early 90’s; an interesting
work [16] surveys most of the older works. Furthermore, Simpson et al. in [17]
analyze the number of people actually requiring a wheelchair, and specifically of
what kind of features based on the type of motor and neurological disabilities.

It is interesting to note a lack of current literature on smart wheelchairs with
integrated support for smart cities and Cloud computing technologies. This sounds
peculiar as Smart City is one of the hottest topics today, along with Social Innovation
project calls and the wide interests to more generic personal mobility systems, par-
ticularly in urban environments. To our knowledge, on 2007 Satoh and Sakaue [18]
are the firsts to suggest the use of cellular connectivity to provide remote monitoring
and support to the wheelchair user. However, only the year later, a work introduc-
ing an information server to support safety and effectiveness of urban navigation,
to store status (actions, locations,…) information of the wheelchair, and to provide
information to the user, has been proposed [19].

Current smart wheelchair projects are indeed mostly focused on standalone wheel-
chairs instrumented with sensors and specific human-machine command/feedback
interfaces to add some sort of “smartness”, e.g. to enable for assisted navigation
support (including straight line following, obstacle/collision avoidance, and door
passage) [20–22]; just in few cases authors propose user’s posture/gesture detection
[18, 23] or health status monitoring [23].

6 Conclusions and Future Work

In summary, this work has following characteristics: (i) smart devices get accurate
“small data” from big data of cities via the real-time health status-driven; (ii) smart
device can get environment status at unknown areas via online social aware; (iii)
using the experienced third party platform of online social networks (OSN), smart
object is brought to OSN, and operated by human in different community. Comparing
with existing geo-driven or interest-driven context, this work expands the range of
support services for wheelchair users, and provides more accurate services. However,
because wheelchair users are elderly and disabled people, an existing user interface
or operation method is hard to learn. Future work is focused on exploring interactive
method of user interface on smartphone, making the user interface more user-friendly.
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Experiments with a Sensing Platform for High
Visibility of the Data Center

João Loureiro, Nuno Pereira, Pedro Santos and Eduardo Tovar

Abstract Data centers are large energy consumers and a substantial portion of this
power consumption is due to the control of physical parameters, which bring the need
of high efficiency environmental control systems. In this work, we describe a hard-
ware sensing platform specifically tailored to collect physical parameters (tempera-
ture, pressure, humidity and power consumption) in large data centers. Our system
architecture is composed of Smart Objects, the datacenter racks, that cooperate to
contribute for the overall goal of finding opportunities to optimize energy consump-
tion and achieving energy-efficient data centers. We also introduce an analysis of the
delay to obtain the sensing data from the sensor network. This analysis provides an
insight into the time scales supported by our platform, and also allows to study the
delay for different data center topologies. Finally, we exemplify some capabilities of
the system with a real deployment.

1 Introduction

Data center’s large power consumption justifies a special attention to the design of
energy efficient data centers. Power usage effectiveness (PUE) has become the metric
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to measure data center efficiency. It measures how much of the total energy consumed
is really spent on IT work other than on facility’s overhead, like lightning, cooling
and power distribution, and it is given by: PUE = (IT Equipment Energy + Facility
Overhead) / Energy IT Equipment Energy. It is desirable to measure it with a high
spatial and temporal granularity, so that the PUE metric is as accurate as possible
and to enable better understanding of the power consumption distribution in the data
center. This better understanding may lead to great reductions through e.g. better
load balancing, power distribution, or reduced air conditioning usage [1].

To have a full picture of the data center environment, it is important to collect air
pressure, temperature, humidity and power consumption data at a high granularity
(in time and space). The relevance of collecting these parameters is discussed in the
next paragraphs.

In a typical data center, IT equipment is organized into rows, with a cold aisle in
front, where cold air enters the equipment racks, and a hot aisle in back, where hot air
is exhausted. Computer-Room Air Conditioners (CRACs) are commissioned to cycle
the air, by pushing the cold air and returning the hot air to be cooled again. The CRAC
systems are responsible for a big share of the facility overhead energy, and in order
to achieve a more uniform thermal profile, special effort must be given on airflow
distribution, by preventing cold and hot air from mixing and by eliminating any hot-
spots. Better understanding of the airflow can be addressed by placing pressure and
temperature sensors.

By measuring the local pressure, it is possible to estimate the speed and direction
of the airflow between the sensed points and possibly identify unwanted mixtures
or flow bottlenecks, as shown in [2]. It can also be used for workload-balancing
among servers like in [3], where the patented application describes a system that
uses a load balancer to shift tasks among servers based on their particular cooling
needs, which is related to air pressure drop across the server. With fine grained
temperature measurement it becomes easy to localize hot-spots, and by crossing this
with pressure data, a better picture of the airflow can be taken, leading to better tuned
CRAC systems.

Another important environmental parameter is the local humidity. Higher relative
humidity decreases the chances of static electrical discharges that can damage the IT
equipment and, at the same time, increases the heat transfer from the server to the
cooling airflow. But too much water particles in the air reduces the lifetime of the IT
equipment and increases the chance of water condensation at the cold aisles, which is
not desirable. Several entities, such as the American Society of Heating, Refrigerat-
ing & Air-Conditioning Engineers (ASHRAE), provide guidelines with allowed and
recommended values of relative humidity, as well as for dry bulb temperature, max-
imum dew point, maximum elevation and maximum rate of temperature changes, as
seen in [4].

We present a sensing platform for collection of temperature, pressure, humidity
and local power consumption (at rack or even server level). The development of the
platform was centered on the specific application scenario of energy optimization
in large data centers, focusing on high resolution sensing: several sensing points
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per rack, sampled at sub-seconds time intervals. Evidently, for such system to be
practical, cost is an important factor to consider.

Our system architecture is composed of Smart Objects (SO), i.e. autonomous
physical objects that also include sensing/actuation, processing, storage and net-
working capabilities [5, 6]. These SO cooperate to achieve a common goal, in our
case, each rack (SO) provides access to processed data from its embedded sensor
network, as a contribution to the overall goal of achieving high energy efficient IT
rooms and data centers.

The middleware has essential role for this goal. As mentioned in [7], it provides
general and specific abstractions, to allow building up complete software structures.
Some generic midleware infrastructures were proposed, as in [8] for example. Ours
was suited to the data-center context, more specifically to provide means for data-
logging, visualization tools, alarm monitors, feedback data for the CRAC systems, or
any other application that can be developed in the future. We addressed the midleware
solution developed in our previous work at [9], which is not in the scope of this work.

In this chapter we will detail the design of the sensor network platform and develop
an analysis of the time to obtain the sensing data from the nodes. This is done in
order to study the time scales supported by our platform, and also allows to study
the delay for different data center topologies. We also exemplify some capabilities
of the system with a real deployment.

2 Related Work

Green data centers have received considerable attention in recent research literature.
Some recent approaches rely on building software models through a joint coor-
dination of cooling and load management [10, 11], or by formulating an energy
minimization problem, subject to service delay and Quality of Service (QoS) con-
straints. In this class it is worth to mention dynamic voltage scaling [12, 13] and
on/off power management schemes [14–16]. The complexity of data center airflow
and heat transfer is compounded by each data center facility having its own unique
layout, so achieving a general model is difficult [17]. For example, in [10], authors
stress that their model has several parameters that need to be determined for specific
applications.

Given such models, acquiring real-time data at a fine enough spatial and tem-
poral resolution becomes an important topic, as this data can be used to validate
models and keep their inputs updated at run-time. Nevertheless, this problem poses
new challenges and research issues concerning the type, number and placement of
sensors [17].

Some works [18, 19] pushed in the direction of deploying wireless sensor nodes
and monitor the thermal distribution, to figure out how to avoid hot-spots and over-
heating conditions. We differ from such approaches in the sense that we want very
fine-grained (in space and time) gathering of power and environmental parameters,
including physical quantities other than temperature. Using a mixed wire/wireless
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solution, [18] obtained a average one-round collection time of approximately 6 s for
50 nodes. They also deployed 694 sensor nodes in a data-center, reading every cluster
of 4 at most at every 30 s. In this work [18], for every cluster there was a wireless
station and nodes where powered via USB, which makes the system dependent on
having a powered USB port available (this might be a problem, since the server to
where the node is connected to cannot be powered off, for example). A pure wireless
solution was presented in [19], where it was reported a deployment of 107 battery
powered wireless nodes, taking 3 s to sample all of them (not considering data losses).
The experiment only lasted for 35 days before the battery had to be replaced, which
is not practical for large, long-lived deployments.

Our proposed system is based on a hierarchical, modular, flexible and fine-grained
sensor network architecture, where data is collected from heterogeneous sensors
(including power), placed in each rack. The analysis of their inter-correlations will
enable closer examination and a better understanding of the flow and temperature
dynamics within each data center [20]. To our knowledge, no previous work enables
correlating power and environment characteristics on a per rack or per-server gran-
ularity with such temporal resolution.

Multiple long-wavelength infrared image sensors can be used to capture thermal
maps of an environment [21]. While thermal cameras are an interesting approach,
we find that they suffer from several practical issues: (i) the current cost of thermal
cameras is substantial, and, due to field-of-view limitations (data centers are typically
organized in narrow rows), a high number of them should be required to cover a data
center; (ii) mapping the view of the camera with the infrastructure being monitored is
more challenging than relying on point sensors, and it is especially difficult to manage
when changes are made to the layout of the data center (e.g., addition/removal of
servers and racks), and (iii) by using cameras, the quantitative data analysis would
need to be provided by computer vision, which is feasible, but requires a very specific
tuning for each scenario and equipment. However, as claimed also by authors in [22],
our system has provisions to support thermal image sensors as a smart sensor that
can provide temperature field readings with a configurable resolution.

Another approach commonly used is to make measurements throughout the data
center manually, or using mobile robots to automate this task [23]. This approach
does not enable practical high-resolution real-time monitoring of the data center as
our system does.

3 Overview

The proposed sensor network architecture is a combination of wired and wireless
technologies, designed to achieve high spatio-temporal resolution of data center
rooms, keeping system’s flexibility and modularity, with a low latency and low cost.

Our system is designed to cover the data center first by a short range bus that
covers the communication needs inside each rack, a longer range bus that covers
each row in the data center and then wireless communication is used to gather the



Experiments with a Sensing Platform for High Visibility of the Data Center 185

WBS

802.15.4

µC

RS485

SN

RS485

µC

Switch
I2C

AD1

Buffer

AD6

A

B

Buffer

SU-E

Buffer

Switch
I2C

A

P H T

SU-P

Buffer

Power M

µC

RTC

RAM

Fig. 1 Network architecture and layout

data from the entire data center room. Four different types of devices cover each of
these levels (rack, row and room): (i) Sensing Units sense the physical parameters
(temperature, pressure, humidity, and power) in each rack, then (ii) Sensor Nodes
collect the sensing data for the entire rack, and (iii) Wireless Base Stations (WBSs),
collect data from several Sensor Nodes in a row, as represented in Fig. 1. Finally, (iv)
Gateways collect data from all of the WBSs in a data center room.

Starting at the lower level, our sensor network consists of two different types of
Sensing Units: (a) a small passive sensing unit for measuring environmental quan-
tities, with at most one temperature, one humidity and one pressure digital sensor,
and (b) a power metering unit with real, active, and reactive power measurement
capabilities, as presented in Fig. 1 by SU-E and SU-P respectively. The environmen-
tal Sensing Units can be manufactured according to the sensing and cost needs, by
having any combination of sensors on it, what is represented by the three different
shapes. Both sensing units deliver data to the next level in the hierarchy, through a
wired short range bus (I2C), projected to cover only one rack of servers (back and
front).

At the next level, the Sensor Node is responsible to collect the data of all the
Sensing Units attached to it and possibly to perform simple data aggregation and
sensor fusion before delivering it to the next level in the hierarchy using a longer
range wired bus (MODBUS).

WBSs are responsible for querying the Sensor Nodes within their respective clus-
ter, and again perform data aggregation, sensor fusion and data analysis. They com-
municate then with devices at the next level in the hierarchy to deliver the relevant
data. Gateways then provide the data gathered from the sensor network to the data dis-
tribution system in a standard format. From this point on, sensing data is published at
a publish/subscribe middleware that distributes the acquired data to different applica-
tions, where each of them will use such information with different proposes (alarms,
data logging, visualization, etc).

Each Sensor Node can be connected up to 52 temperature sensors, 54 power
meters, 14 pressure sensors and 14 humidity sensors. The following section describes
in more detail each of the system components.
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4 Platform Details

Well-known protocols, network architectures and of-the-shelf electronic components
had to be chosen to compose the system, considering that the final objective was to
build a fully functional, industry ready, sensor network with very low cost. Besides
the architecture, the technology chosen to implement the network is described below.

4.1 Sensing Unit

With the popularization of two-wire I2C buses on motherboards, cellphones and on
general embedded systems, many companies are nowadays developing sensors with
digital I2C output, by embedding the micro-mechanical sensor, signal amplifiers,
analogue to digital converters, memory and a I2C front end to manage with the
communication on the bus. These Systems-on-Chip enable high accuracy and reli-
ability measurements, since this decreases the probability of data corruption due to
any external interference. It also prevents calibration issues found on pure-analogue
sensors measurements, since digital sensors are factory calibrated and digitally com-
pensated. Due to these reasons, I2C sensors were used to connect the several sensing
units.

Some limitations of I2C buses had to be overcome to make its usage practical in
this application. First, buffers had to be added as an interface between the I2C bus
lines and every circuit board attached to it, in order to allow the I2C to operate over
longer distances, by increasing the robustness of the logic signals of the standard I2C
buses. Second, switches had to be added to every Sensing Unit on the bus in order to
allow the usage of more than one sensor with non-configurable addresses, making it
accessible from the main bus.

Figure 2b depicts one Sensing Units with temperature, humidity and pressure
sensors. The temperature sensor used is a low cost and low power device with 1.5 →C
accuracy, maximum resolution of 0.0625 →C and minimum and maximum conver-
sion times between 27.5 and 300 ms. The humidity sensor has 1.8 %RH accuracy,
with maximum 0.04 %RH resolution and minimum and maximum conversion times
between 3 and 29 ms, both the temperature and humidity sensors suitable for the appli-
cation, where the focus are in changes in major scales according to the ASHARE
guidelines [4], which specifies a range of dew points between 5.5 →C (for 60 %RH)
and 15→C. The pressure sensor ranges from 300 to 1100 hPa, with an accuracy of
+-1 hPa typical and 0.03 hPa of resolution with minimum and maximum conversion
times between 3 and 25.5 ms, also suitable for the application, where typical pressure
variation values inside data center’s are in greater orders of magnitude, as seen in [2].

The Power Meter Sensing Unit is composed by a dedicated chip which interfaces
with the power line, and provide real, reactive, and apparent power measurements to
the embedded computational unit, which is responsible for interfacing with the I2C
bus as a slave, and to deliver such information to the master, at the next level.
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Fig. 2 Hardware platforms. a Sensor node, b Sensing unit

To both Sensing Units, the power is carried into the same cable as the I2C data,
and locally converted from 5 to 3.3 V by a low-drop LDO converter, for more stable
and lower ripple power supply for the sensors, which are sensitive to such variations.

4.2 Sensor Nodes

A Sensor Node is a communication/computation enabled device, physically linked
over the I2C bus (also trough buffers) to a number of Sensing Units. The Sensor
Nodes gather the data from the Sensing Units and, in turn, answer to data requests
from the WBS. Figure 2a depicts a Sensor Node.

To keep cost and complexity low at this tier of the network architecture, the Sensor
Nodes communicate with one Wireless Base Station (WBS) over a bus, e.g., using
a RS485/MODBUS technology [24]. In particular, the WBS node acts as a local
coordinator and master of the bus.

The Sensor Node is also composed by: (i) six analogue inputs suited for current
measurement, connected to external current transducers attached to the power lines,
as a cheap and simple alternative for basic current measurement; (ii) two I2C buffered
ports through one switch, responsible for duplicating the bus capacity in terms of
addressable devices, and enabling a better mechanical placement for cables to go to
the back and front of a rack, and (iii) one RS485 port for the MODBUS.

The power supply for the Sensor Nodes is carried by a twisted pair cable, along
with the MODBUS data, in another pair. At every Sensor Node, a high efficiency
DC-DC step down converter, converts from 48 to 5 V for the local supply. This is
an important feature as it reduces the number of cables that connect to each node,
facilitating installation of the devices.
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4.3 Wireless Base Stations (WBSs)

The WBS is directly connected to a power source and supplies power through a
twisted pair cable to all the Sensor Nodes in that bus. In all the nodes on this bus, the
voltage is locally converted to lower values by a step-down switched power supply
for a higher system efficiency. Wires running in the same cable form a serial data
bus (MODBUS over a RS485 connection) that interconnects the Sensor Nodes.

The WBS is based on the same printed circuit board as the Sensor Node, missing
the sensors interfaces, and with some extra components, like one external non-volatile
ferrite random access memory (FRAM), used as a buffer and for diagnosing the
system in cases of failures or power cuts (by keeping the last operational state). The
WBS also includes a real-time clock used for time stamping the data packets.

The WBSs act as IEEE 802.15.4 cluster heads and are connected with each other
in a mesh topology. A common Gateway is in charge of gathering measurements
and sending them over long range communication technology (e.g., WiFi, Ethernet).
In terms of HW platforms, the WBS node will be the same platform as a generic
Sensor Node, with an on-board ZigBee radio. Thus, each Sensor Node can become
a WBS with minimal modifications, i.e., just by plugging the wireless module and
uploading a different firmware.

4.4 Gateways

The sensor network can have one or more Gateways. Gateways maintain representa-
tions of the data flows from the sensor network to the data distribution system. They
perform the necessary adaptation of the data received from the WSN. The gateways
can be deployed as one per room serving all the rows of racks in that room; more
gateways can also be deployed to improve radio coverage, for load-balancing or for
redundancy.

5 Delay Analysis

When performing deployments of our system, we need to answer questions related to
how the network should be deployed (for example, we can choose how many sensing
points should we deploy per WBS) and what is the impact of this in the performance
of the network. To answer such questions we have developed an analysis of the time
to transmit sensor data. This analysis also shows that our system can exhibit very
low delays in the presence of a large number of sensing points.

This analysis enables us to study the communication delay as we add Sensor
Nodes to the network. We consider that each Sensor Node added has Nsu−sn Sensing
Units attached to it, where each Sensing unit has three 16 bit sensors. For every
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Nsn−wbs Sensor Nodes added to the network, one WBS has to be added also. The
total number of Sensor Nodes is defined as Nsn. Clearly, these parameters (Nsu−sn

and Nsn−wbs) are defined according to the topology of the deployment and of the data
center room.

5.1 Calculating the Response Time

The response time R required to collect data from all the sensors is given by adding
together the time to transmit all the wireless requests to all WBS (treq) and also the
corresponding replies (trep), as given by Eq. (1).

R = (
treq + trep

)
(1)

The time to transmit all requests is computed by the sum of the time required to
transmit a request to each WBS (there are ∧ Nsn

Nsn−wbs
� WBS:s in the network) with the

worst-case blocking time, Bmb, is given by Eq. (2).

treq =
⌈

Nsn

Nsn−wbs

⌉
× (

twtx(Swreq) + Bmb
)

(2)

where the twtx(Swreq) is the time to transmit a request packet in the wireless 802.15.4
network including all protocol overhead for a packet with Swreq bits of payload, and
will be defined later. Bmb is a constant given by the longest data transaction over the
MODBUS, which corresponds to the largest task to be executed by the WBS in a
non preemptive system.

The time to transmit all replies is given by Eq. (3) as follows:

trep =
(⌊

(Nsu−sn × Nsn) × Ssd

Smwp

⌋
+ 1

)
× twtx(Smwp) (3)

where Ssd is the size of the sensor data to be transmitted by each Sensor Unit and
Smwp is maximum wireless data payload, after accounting for all protocols headers.
twtx(Smwp) is the time to transmit a packet in the wireless IEEE 802.15.4 network
with the maximum possible payload (mwp bits) and will be defined in Sect. 5.2.

5.2 Calculating the Wireless Transmission Time

The reasoning applied to calculating the wireless transmission time (twtx(S)) is similar
to the one found in [25, 26] when analyzing the maximum theoretical throughput of
a non-beacon enabled IEEE 802.15.4. The time to send a IEEE 802.15.4 packet with
payload size of S bits if given by:
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twtx(S) = Tib + tppdu(S) + Tack + Tifs (4)

where Tib is the initial back-off period, which depends on the parameter macMinBE,
and, by default, macMinBE = 3, resulting in Tib = 1120 μs). The time to transmit the
PHY protocol data unit (ppdu) with a payload size of S bits is denoted by tppdu(S). The
time to transmit an acknowledgment is defined as Tack = Tackppdu + Trxtx = 544 μs
since it must include the time to send the acknowledgment packet (Tackppdu = 352 μs
as defined in the standard [27]) and the time for the transceiver to switch from receive
to transmit (Trxtx = 192 μs is the maximum value defined in [27], and this is the value
found in the 802.15.4 transceivers employed [28]). The inter-frame spacing (IFS),
Tifs, is set to the value of the long IFS defined by the standard, 640 μs (actually, this
is only used when the size of the MAC protocol data unit (MPDU) to be sent is above
or equal to 18 bytes [27]).

The time to transmit the ppdu with a payload of size S bits, can be defined as:

Tppdu(S) = (Shdr + Szbee + S + Sftr) × τbit (5)

where Shdr is the sum of the sizes of the synchronization header (SHR), PHY header
(PHR) and MAC header (MHR; from [27]: SSHR = 40; SPHR = 8; SMHR = 56 bits).
The size of the ZigBee protocol headers is Szbee = 41 ∈ 8 bits, and the size of the
MAC footer is Sftr = 16 bits. The time to transmit one bit is τbit = 4 μs (for a data
rate of 250 kbps).

5.3 Delay Results

Instantiating the response time given by Eq. (1) results in Fig. 3a and b. For these
calculations, we have used Swreq = 16 bits (a request with a two-byte identifier) and
Smwp = 576 bits (the maximum IEEE 802.15.4 payload minus the overhead defined
in Eq. (5)).

With Fig. 3a, we analyzed the impact of adding SN to the network with varying
Nsu−sn. As expected, the increase in the delay is linearly proportional to the Nsu on
the network, when keeping Nsn−wbs constant. The higher the Nsu−sn, higher is the
slope. This is expected because the amount data is constantly added as we added
SU, however there is a more pronounced increase in response time whenever a WBS
is added. In this case, at every 20 SN ′s added, a higher step is expected due to the
overhead of adding wireless links to the network.

Figure 3b now shows the case where Nsu−sn is fixed, and we vary Nsn over Nsn−wbs.
With smaller Nsn−wbs, the response time increases very pronouncedly. For example,
if there is only one SN per WBS, for every SN added to the network, one more wireless
link will be added, causing significant increase in the response time. By increasing
Nsn−wbs, this effect decreases very rapidly also.

Figures 4a and b present another aspect related to the network topology, which
must be considered when designing the network. The horizontal line in both plots
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Fig. 4 Network response time. a Nsn−wbs = 20, b Nsu−wbs = 250

shows the time to gather the data from all Sensor Nodes attached to the WSB (20
Sensor Nodes in Fig. 4a, and 250 in Fig. 4b). The way the network is designed, if one
implements a network with Nsn below the intersection between the horizontal line
and the response time, the wireless communication cycle of the WBS will be faster
than the communication cycle on the MODBUS. Thus, the WBS would repeatedly
transmit data from previous communication cycles. Nsn−wbs should be set such that
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the lines intersect at the desired Nsn. Something that can be easily found, given the
analysis presented in this section. In Fig. 4a and b we can see a stepped behavior of
the response time, with the growth of the Nsu. One step happens at each 6 × Nsu−sn.
The reason for this step is that, as we add Sensor Nodes, there is the need for and extra
packet to be sent (the length of the packet and number of packets needed depends
on Nsu−sn and also on the maximum payload mwp). In this scenario, the sensor data
for the 7th Sensor Nodes fits in the same number of packets, and thus the delay does
not increase. A bigger step is given at every Nsn−wbs, due to the overhead of adding
one WBS more.

6 Data Center Visualization

The deployment of the described system in the data center enables interesting
opportunities to have better insight into the data center conditions. In this section
we will briefly provide some data from a real deployment. This data was selected
for its relevance in showing different aspects of the data center conditions that are
enabled by the deployment.

The deployment in this section was performed in a data center room owned by
the largest telecommunications operator in Portugal. All racks were fitted with two
temperature sensors in the front and two temperature sensors in the back. Per row,
sensors with additional humidity and pressure sensors were deployed such that the
row had three racks (at the top, end, and middle of the row) with such sensors.

Previously, data center operators add a few options to gather such pictures of the
data center conditions (e.g. thermal cameras or mobile robots), as discussed in the
Related Work Section. We claim that our systems enables high-resolution and real-
time monitoring of the data center. Something not available in practical systems to
date. Our system enables real-time maps temperature, pressure and humidity. These
maps are useful to have a detailed picture of the data center conditions. Because the
information is collected in real-time, automated control of the data center physical
conditions can be enabled.

6.1 Real-Time Thermal Profiling

To illustrate the maps enabled by our tool and to better demonstrate and exploit the
capabilities and improvements that our tool can bring the data center management, we
have chosen to depict the thermal map of one representative row, as shown in Fig. 5.

By analysing Fig. 5, it is possible to see the cold air concentration at the bottom
of the racks. It happens because the cold air comes from the perforated tiles on the
floor, and due to its higher density, compared to the hot air, it stays at the floor level.
Enough pressure drop from the bottom to the top of the racks would be required
in order to guarantee the cold air flow till the air intake of the server on the top of
the racks.
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Fig. 5 Heat map of one data center row

In more detail Fig. 5, shows that on the top region, the intake temperature is around
26 →C, which is much higher than the cooled air temperature, which is around 17 →C.
This is also explained by some air recirculation of hot air from the hot aisle (with
higher pressure) to the cold aisle. Therefore, the upper servers receive a mixture of
hot and cold air, with an intermediate temperature between its output and the cold
air temperature.

It is also possible to notice how the temperature at the bottom of the racks gradually
rises on the last four racks of the row (to the right). Correlating this with the pressure
data, it is possible to notice that the pressure drop between both extremes is not
equally distributed, explaining why the cold air does not reach well the last four
racks of the row.

Regarding the back side of the row, at the hot aisle, we can clearly see how the
air output temperature is correlated with the input air temperature. The colder the air
at the input, colder the output flow. Despite this, the workload can also significantly
interfere on the heat transfer to the air. One example can be observed at racks 12 and
13, that, even having low temperatures at the air intake at the bottom of the rack, the
output temperature raised much more, compared with the neighboring racks. This
is a very common effect in heterogeneous data centers, harboring different types
of machines, with different powers. Different heat outputs can also be found when
workload moves between machines, for example due to workload management in a
virtualized infrastructure.

6.1.1 Modifications and Discussion

An intervention was made to the row displayed in Fig. 5 in order to improve the tem-
perature distribution. The intervention consisted in manually adjusting the perforated
tiles located in the cold aisle of the row. Figure 6, presents the average temperature of
some selected racks in the row, and allows us to see the evolution of the temperature
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Fig. 6 Temperature of a row during perforated tiles adjustments. a Row front (Cold Aisle)

during that intervention, which took place around 5PM. We can see that the adjust-
ments momentarily caused the temperature to rise, to then stabilize to a value slightly
higher than before the intervention. With this intervention, the temperature distribu-
tion in the row became much more homogeneous, and the set point of air conditioning
system could be increased, bringing direct savings. It is important to note that the
data presented in Fig. 6 are provided directly by the monitoring tool developed, and
facilitates the observation of how the data center conditions evolve throughout time.

All of the described issues found in this scenario are commonly found in data
centers all over the world. In this case, small changes have brought a more homoge-
neous heat distribution. A second step, with a minor investment, could be to install
curtains on the top of the racks, and on its extremity. It could prevent the mixture of
cold and hot air, leading to a even better heat distribution and specially, minimizing
the waste of energy due to the mixtures. The servers on the top would be directly
impacted by this change, by receiving colder air on its intake, contributing to a better
distribution. The PUE of the data center can be dramatically decreased with such
simple actions.

Similar heat maps can be also obtained from the entire room with its view from the
top, possibly presenting any of the different sensors types and position, grouped in any
way. Even more, a 3D representation could be done, by using heat transfer models to
estimate the surroundings of the measured point with improved accuracy. This models
could include input parameters like rack or server instant power consumption, and
temperature, humidity and pressure at the air input and output. Externally, this data
could be correlated with the instantaneous workload of every server, allowing work
reallocation to minimize hot spots, for example.
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With such representations in real-time, the data center manager can have a new
representation of the operational condition of it. Local actuation can be done without
the need of data exchanges between higher and lower levels of the network, by having
a SN locally acting on an automated perforated tile.

These actions could be supervised by WBS′s due to its better overall picture of the
row. It could have some influence over the individual control parameters on every
SN for a more general control.

6.2 Real-Time Power Profiling

The system developed can also be used to collect real-time data about the power
being consumed in the data center. Power data can be collected by power circuit in
each rack, or even per server, when the cost is justified.

We took advantage of this feature see if the workload a typical modern server
influences the physical parameters measured by our system in a significant way and
if this change can happen fast (with, for example, power). This can justify automated
local actuation in the data center, and thus elicit the need for real-time data collection.

We deployed sensors around a rack server used for a virtualized infrastructure,
in a way similar to a normal data center deployment. We have then measured how
the temperature and current consumption varied in time and with changing server
workload.

Figure 7a, b shows the power trace when the workload of the server changes almost
instantaneously from an idle state to 100 % utilization. This change is reflected almost
immediately in the power consumption as seen in the figure. This measurement
incurs in the delay bounded by the Eq. (1). While much slower, we can see that
the temperature also increases significantly as a result of this workload increase.
However, it takes about 11 min to go up to the maximum of 44 →C.

Then, we have increased the utilization if steps of 25 % from 0 to 100 %. In
Fig. 7b it is possible to see these steps reflected in the current consumed by the
server. For the current, the first step presented a rise of 40 % over the background
consumption, while the following steps rise 20 % approximately, showing that the
power consumption and temperature have significant variations even for workloads
much lower than 100 %.

To conclude, we verify that a physical parameter measured (power) does change
very fast. The temperature, while being significantly slower still exhibits a large
variation over time.

7 Conclusions

We have presented a platform for acquiring the physical parameters of a data center.
This platform was developed as a mix of wired and wireless communicating nodes,
such that it can enable flexible monitoring of the data center at a very high temporal
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Fig. 7 Power and temperature traces. a Power and temperature trace in time, b power and temper-
ature as utilization increases

and spatial resolution of the sensor measurements, while keeping the cost per sensing
point very low. Compared to previous work, we enable much higher sensing resolu-
tion (several sensing points per rack, sampled at sub-second frequency), maintaining
cost low and ease of installation.

We also presented an analysis of the delay of our system. This analysis enabled us
to study the communication delay as we add Sensor Nodes to the network, and has
shown that our system can exhibit very low delays in the presence of a large number
of sensing points. This analysis also allows to try different network deployments and
check the trade off between different topologies (described by parameters Nsu−sn

and Nsn−wbs ) and the resulting delay.
Our experiments have exemplified the data that can be collected by the system

and that the physical parameters measured by the system are impacted directly and
in a dynamic way by the workload of the servers. Acquiring physical parameters
at a very high resolution is important to find opportunities to optimize energy con-
sumption, minimize local hot-spots, achieve more accurate predictive maintenance,
perform more accurate billing, and it also enables very fast response to changes in
the measured parameters, including automated actuation.
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