Dlstrlbuted
Systems
Security

Issues, Processes
and Solutions

Abhijit Belapurkar
Anirban Chakrabarti
Harigopal Ponnapalli
Niranjan Varadarajan
Srinivas Padmanabhuni

Srikanth Sundarrajan

F)WILEY

DISTRIBUTED
SYSTEMS SECURITY

Issues, Processes and Solutions

Abhijit Belapurkar, Yahoo! Software Development India Pvt. Ltd., India
Anirban Chakrabarti, Infosys Technologies Ltd., India

Harigopal Ponnapalli, Infosys Technologies Ltd., India

Niranjan Varadarajan, Infosys Technologies Ltd., India

Srinivas Padmanabhuni, Infosys Technologies Ltd., India

Srikanth Sundarrajan, Infosys Technologies Ltd., India

FWILEY

A John Wiley and Sons, Ltd., Publication

DISTRIBUTED SYSTEMS
SECURITY

DISTRIBUTED
SYSTEMS SECURITY

Issues, Processes and Solutions

Abhijit Belapurkar, Yahoo! Software Development India Pvt. Ltd., India
Anirban Chakrabarti, Infosys Technologies Ltd., India

Harigopal Ponnapalli, Infosys Technologies Ltd., India

Niranjan Varadarajan, Infosys Technologies Ltd., India

Srinivas Padmanabhuni, Infosys Technologies Ltd., India

Srikanth Sundarrajan, Infosys Technologies Ltd., India

FWILEY

A John Wiley and Sons, Ltd., Publication

This edition first published 2009
© 2009 John Wiley & Sons Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at .

The right of the author to be identified as the author of this work has been asserted in accordance with the
Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by
the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names
and product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The publisher is not associated with any product or vendor mentioned in this book. This
publication is designed to provide accurate and authoritative information in regard to the subject matter covered.
It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional
advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

The authorship of the book by Abhijit Belapurkar is in no way by, for, or in the name of Yahoo! and the views
expressed in the book are exclusively those of Abhijit and other coauthors and not Yahoo's.

Library of Congress Cataloging-in-Publication Data

Distributed systems security issues, processes, and solutions / Abhijit Belapurkar ... [ef al.].
p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-51988-2 (cloth)

1. Computer Security. 2. Electronic data processing — Distributed processing. 3.
Internet — Security measures. I. Belapurkar, Abhijit.

QA76.9.A25D567 2009

005.8 — dc22

2008034570

A catalogue record for this book is available from the British Library.
ISBN 978-0-470-51988-2

Typeset in 11/13 Times by Laserwords Private Limited, Chennai, India
Printed in Great Britain by CPI Antony Rowe, Chippenham, Wiltshire

www.wiley.com

«

T S
]

lJ‘

)

In memory of

Late Dr. Anirban Chakrabarti

Our esteemed colleague and co-author Anirban Chakrabarti., Ph.D passed away
on 7th September 2008 in an accident leaving a void in his family, friends as well
as colleagues. We deeply mourn Anirban’s untimely death and pray for his soul.
Anirban is survived by his wife Lopa, a 11 month old son Ishaan and mother. We
extend our deepest condolences as well as support to the mourning family.

Anirban was a Principal Researcher and Head of the Grid Computing Research
Group in Software Engineering Technology Labs (SETLabs) of Infosys Tech-
nologies, India. Anirban holds a Bachelor’s in Engineering degree from Jadavpur
University, India, and a Ph.D. degree from Iowa State University, USA. Anirban
has been an active researcher in conferences like HiPC, ADCOM, and INFO-
COM. Prior to this book he authored a book titled “Grid Computing Security” in
2006 (published by Springer). Anirban received the “Research Excellence Award”
from Iowa State University in 2003 and the Infosys Excellence Awards in 2006
and 2008.

Contents

List of Figures

List of Tables

Foreword

Preface

Chapter 1 Introduction

1.1
1.2

1.3

1.4

Background

Distributed Systems

1.2.1 Characteristics of Distributed Systems
1.2.2 Types of Distributed System

1.2.3 Different Distributed Architectures
1.2.4 Challenges in Designing Distributed Systems
Distributed Systems Security

1.3.1 Enterprise IT — A Layered View

1.3.2 Trends in IT Security

About the Book

1.4.1 Target Audience

References

Chapter 2 Security Engineering

2.1
2.2

23

Introduction

Secure Development Lifecycle Processes — An Overview
2.2.1 Systems Security Engineering Capability Maturity Model

(SSE-CMM)

2.2.2 Microsoft’s Security Development Lifecycle (SDL)
2.2.3 Comprehensive Lightweight Application Security Process (CLASP)

2.2.4 Build Security In

A Typical Security Engineering Process
2.3.1 Requirements Phase

2.3.2 Architecture and Design Phase

XV

xvii

Xix

xxi

21

21
22

23
24
27
29
30
31
32

viii

Contents

2.3.3 Development (Coding) Phase
2.3.4 Testing Phase

2.4 Important Security Engineering Guidelines and Resources
2.4.1 Security Requirements
2.4.2 Architecture and Design
2.4.3 Secure Coding
2.4.4 Security Testing
2.5 Conclusion
References

Chapter 3 Common Security Issues and Technologies

3.1 Security Issues
3.1.1 Authentication
3.1.2 Authorization
3.1.3 Data Integrity
3.1.4 Confidentiality
3.1.5 Availability
3.1.6 Trust
3.1.7 Privacy
3.1.8 Identity Management
3.2 Common Security Techniques
3.2.1 Encryption
3.2.2 Digital Signatures and Message Authentication Codes
3.2.3 Authentication Mechanisms
3.2.4 Public Key Infrastructure (PKI)
3.2.5 Models of Trust
3.2.6 Firewalls
3.3 Conclusion
References

Chapter 4 Host-Level Threats and Vulnerabilities

4.1

4.2

4.3

4.4

Background

4.1.1 Transient Code Vulnerabilities

4.1.2 Resident Code Vulnerabilities

Malware

4.2.1 Trojan Horse

4.2.2 Spyware

4.2.3 Worms/Viruses

Eavesdropping

4.3.1 Unauthorized Access to Confidential Data — by Users
4.3.2 Unauthorized Access to Protected or Privileged Binaries — by Users
4.3.3 Unauthorized Tampering with Computational Results
4.3.4 Unauthorized Access to Private Data — by Jobs

Job Faults

33
34
35
35
37
38
39
39
40

43

43
43
43
44
44
45
45
46
48
48
48
49
49
50
52
53
53
54

55

55
55
56
56
57
57
58
58
58
60
60
61
62

Contents

ix

4.5 Resource Starvation
4.6 Overflow
4.6.1 Stack-Based Buffer Overflow
4.6.2 Heap-Based Buffer Overflow
4.7 Privilege Escalation
4.8 Injection Attacks
4.8.1 Shell/PHP Injection
4.8.2 SQL Injection
4.9 Conclusion
References

Chapter 5 Infrastructure-Level Threats and Vulnerabilities

5.1 Introduction
5.2 Network-Level Threats and Vulnerabilities
5.2.1 Denial-of-Service Attacks
5.2.2 DNS Attacks
5.2.3 Routing Attacks
5.2.4 Wireless Security Vulnerabilities
5.3 Grid Computing Threats and Vulnerabilities
5.3.1 Architecture-Related Issues
5.3.2 Infrastructure-Related Issues
5.3.3 Management-Related Issues
5.4 Storage Threats and Vulnerabilities
5.4.1 Security in Storage Area Networks
5.4.2 Security in Distributed File Systems
5.5 Overview of Infrastructure Threats and Vulnerabilities
References

Chapter 6 Application-Level Threats and Vulnerabilities

6.1 Introduction

6.2 Application-Layer Vulnerabilities
6.2.1 Injection Vulnerabilities
6.2.2 Cross-Site Scripting (XSS)
6.2.3 Improper Session Management
6.2.4 Improper Error Handling
6.2.5 Improper Use of Cryptography
6.2.6 Insecure Configuration Issues
6.2.7 Denial of Service
6.2.8 Canonical Representation Flaws
6.2.9 Overflow Issues

6.3 Conclusion

References

Further Reading

62
63
64
65
65
66
66
66
67
69

71

71
71
72
76
77
79
82
82
86
88
92
92
95
96
98

101

101
102
102
105
106
108
109
110
111
112
113
114
114
114

Contents

Chapter 7

Service-Level Threats and Vulnerabilities

7.1 Introduction
7.2 SOA and Role of Standards

7.2.1

Standards Stack for SOA

7.3 Service-Level Security Requirements

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9

Authentication

Authorization and Access Control
Auditing and Nonrepudiation
Availability

Confidentiality

Data Integrity

Privacy

Trust

Federation and Delegation

7.4 Service-Level Threats and Vulnerabilities

7.4.1

Anatomy of a Web Service

7.5 Service-Level Attacks

7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8
7.5.9
7.5.10
7.5.11
7.5.12
7.5.13
7.5.14
7.5.15
7.5.16

Known Bug Attacks

SOL Injection Attacks

XPath and XQuery Injection Attacks
Blind XPath Injection

Cross-Site Scripting Attacks

WSDL Probing

Enumerating Service from WSDL
Parameter-Based Attacks
Authentication Attacks
Man-in-the-Middle Attacks

SOAP Routing Attacks

SOAP Attachments Virus

XML Signature Redirection Attacks
XML Attacks

Schema-Based Attacks

UDDI Registry Attacks

7.6 Services Threat Profile
7.7 Conclusion

References
Further Reading
Chapter 8 Host-Level Solutions

8.1 Background
8.2 Sandboxing

8.2.1
822
823
8.2.4

Kernel-Level Sandboxing
User-Level Sandboxing
Delegation-Based Sandboxing
File-System Isolation

115

115
116
116
117
117
118
118
118
119
119
119
119
119
120
120
122
122
123
124
126
126
128
128
129
131
133
134
136
136
136
139
139
140
140
142
143

145

145
145
146
147
148
148

Contents

xi

8.3 Virtualization
8.3.1 Full-System Virtualization
8.3.2 Para Virtualization
8.3.3 Shared-Kernel Virtualization
8.3.4 Hosted Virtualization
8.3.5 Hardware Assists
8.3.6 Security Using Virtualization
8.3.7 Future Security Trends Based on Virtualization
8.3.8 Application Streaming
8.4 Resource Management
8.4.1 Advance Reservation
8.4.2 Priority Reduction
8.4.3 Solaris Resource Manager
8.4.4 Windows System Resource Manager
8.4.5 Citrix ARMTech
8.4.6 Entitlement-Based Scheduling
8.5 Proof-Carrying Code
8.6 Memory Firewall
8.7 Antimalware
8.7.1 Signature-Based Protection
8.7.2 Real-Time Protection
8.7.3 Heuristics-Based Worm Containment
8.7.4 Agent Defense
8.8 Conclusion
References

Chapter 9 Infrastructure-Level Solutions

9.1
9.2

9.3

94

9.5

Introduction

Network-Level Solutions

9.2.1 Network Information Security Solutions
9.2.2 Denial-of-Service Solutions
9.2.3 DNS Solution — DNSSEC

9.2.4 Routing Attack Solutions

9.2.5 Comments on Network Solutions
Grid-Level Solutions

9.3.1 Architecture Security Solutions
9.3.2 Grid Infrastructure Solutions
9.3.3 Grid Management Solutions
9.3.4 Comments on Grid Solutions
Storage-Level Solutions

9.4.1 Fiber-Channel Security Protocol (FC-SP) — Solution for SAN Security

9.4.2 Distributed File System (DFS) Security
9.4.3 Comments on Storage Solutions
Conclusion

References

149
149
150
151
153
153
155
157
157
157
158
158
158
159
159
159
160
161
162
162
163
164
164
166
166

169

169
169
170
173
178
179
182
182
184
188
191
195
196
196
197
199
199
200

xii Contents

Chapter 10 Application-Level Solutions

10.1 Introduction

10.2 Application-Level Security Solutions
10.2.1 Input Validation Techniques
10.2.2 Secure Session Management
10.2.3 Cryptography Use
10.2.4 Preventing Cross-Site Scripting
10.2.5 Error-Handling Best Practices

10.3 Conclusion

References

Chapter 11 Service-Level Solutions

11.1 Introduction

11.2 Services Security Policy
11.2.1 Threat Classification

11.3 SOA Security Standards Stack
11.3.1 Inadequacy of SSL for Web Services

11.4 Standards in Depth
11.4.1 XML Signature
11.4.2 XML Encryption
11.4.3 Web-Services Security (WS Security)
11.4.4 Security Assertions Mark-Up Language (SAML)
11.4.5 WS Policy
11.4.6 WS Trust
11.4.7 WS Security Policy
11.4.8 WS Secure Conversation
11.4.9 XKMS (XML Key Management Specification)
11.4.10 WS Privacy and P3P
11.4.11 Federated Identity Standards — Liberty Alliance Project and WS Fed-

eration

11.4.12 WS-I Basic Security Profile
11.4.13 Status of Standards

11.5 Deployment Architectures for SOA Security
11.5.1 Message-Level Security and Policy Infrastructure
11.5.2 XML Firewalls

11.6 Managing Service-Level Threats
11.6.1 Combating SQL and XPath Injection Attacks
11.6.2 Combating Cross-Site Scripting Attacks
11.6.3 Combating Phishing and Routing Attacks
11.6.4 Handling Authentication Attacks
11.6.5 Handling Man-in-the-Middle Attacks
11.6.6 Handling SOAP Attachment Virus Attacks
11.6.7 Handling Parameter-Tampering Attacks
11.6.8 XML Attacks
11.6.9 Known-Bug Attacks

205

205
206
206
208
210
213
214
215
215

217

217
217
218
219
219
221
221
221
223
226
228
229
234
234
234
235

238
238
240
241
241
241
246
247
248
248
249
251
253
254
254
257

Contents

xiii

11.7 Service Threat Solution Mapping

11.8 XML Firewall Configuration-Threat Mapping
11.9 Conclusion

References

Further Reading

Chapter 12 Case Study: Compliance in Financial Services

12.1 Introduction
12.2 SOX Compliance
12.2.1 Identity Management
12.2.2 Policy-Based Access Control
12.2.3 Strong Authentication
12.2.4 Data Protection and Integrity
12.3 SOX Security Solutions
12.3.1 People
12.3.2 Process
12.3.3 Technology
12.4 Multilevel Policy-Driven Solution Architecture
12.4.1 Logical Architecture and Middleware
12.5 Conclusion
References
Further Reading

Chapter 13 Case Study: Grid

13.1 Background
13.2 The Financial Application
13.3 Security Requirements Analysis
13.3.1 Confidentiality Requirement Analysis
13.3.2 Authentication Requirement Analysis
13.3.3 Single Sign-On and Delegation Requirement Analysis
13.3.4 Authorization Requirement Analysis
13.3.5 Identity Management Requirement Analysis
13.3.6 Secure Repository Requirement Analysis
13.3.7 Trust Management Requirement Analysis
13.3.8 Monitoring and Logging Requirement Analysis
13.3.9 Intrusion Detection Requirement Analysis
13.3.10 Data Protection and Isolation Requirement Analysis
13.3.11 Denial of Service Requirement Analysis
13.4 Final Security Architecture

Chapter 14 Future Directions and Conclusions

14.1 Future Directions
14.1.1 Cloud Computing Security
14.1.2 Security Appliances

257
257
262
262
262

265

265
267
269
270
270
270
271
271
272
272
273
275
277
277
277

279

280
281
283
283
284
284
284
285
285
286
286
287
287
288
289

291

291
291
292

Xiv Contents

14.1.3 Usercentric Identity Management 294
14.1.4 Identity-Based Encryption (IBE) 295
14.1.5 Virtualization in Host Security 296
14.2 Conclusions 297
References 300
Further Reading 300

Index 303

List of Figures

Figure 1.1
Figure 1.2
Figure 2.1

Figure 2.2

Figure 2.3
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 5.1
Figure 5.2
Figure 6.1
Figure 7.1
Figure 7.2
Figure 7.3
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8

Distributed system landscape
Layered enterprise view

SSE-CMM process areas and common features
(source: SSE-CMM Ver 3.0)

Microsoft SDL activities (source: Microsoft Security
Engineering Explained)

Typical security activities through SDLC
Classification of host-level threats

Resident and transient codes

Eavesdropping vulnerability

Transient code eavesdropping/affecting other code
Buffer overflow

A typical stack before overflow attack

Stack after overflow attack

Taxonomy of infrastructure threats and vulnerabilities
Firewall requirements for grid

Sample table to illustrate SQL injection attack
Standards stack for SOA

High-level services threat profile

Compromised intermediaries via SOAP headers
A kernel-module-based sandbox

User-level sandboxing

Delegated sandboxing

Full-system virtualization

Para virtualization

Shared-kernel virtualization

Hosted virtualization

IA32 architecture

13

25

26
31
56
57
59
62
64
65
65
73
87

101

114

119

133

144

145

146

148

149

150

151

152

xvi List of Figures
Figure 8.9 Ring deprivileging 152
Figure 8.10 Additional VMM level 153
Figure 8.11 Resource manager and isolation 154
Figure 8.12 Terra architecture 154
Figure 8.13 Proof-carrying code lifecycle 159
Figure 8.14 Memory firewall 160
Figure 8.15 Real-time protection 161
Figure 8.16 Intel’s approach to heuristics-based worm containment 162
Figure 9.1 High-level working of CAS 183
Figure 9.2 MyProxy credential-management system 190
Figure 11.1 SOA standards 216
Figure 11.2 Sample XML Signature 218
Figure 11.3 Web Services Security model (WS Security Standard) 221
Figure 11.4 WS Security header of a SOAP message 222
Figure 11.5 Sample SOAP message with BinarySecurityToken 223
Figure 11.6 Sample SAML assertion 225
Figure 11.7 Implementing privacy among Web services 232
Figure 11.8 Implementing privacy among Web services with brokers 233
Figure 11.9 Reference security architecture for WS Security 238
Figure 11.10 DMZ deployment scenario 241
Figure 11.11 Federated deployment scenario 241
Figure 12.1 An IT compliance structure [1] 264
Figure 12.2 Different policies in the context of the bank requirement 270
Figure 12.3 Policy management for compliance architecture 271
Figure 13.1 Grid architecture 278
Figure 13.2 High-level architecture 285

List of Tables

Table 2.1 CLASP security activity role mapping 28
Table 4.1 Summary of the host-level threats 68
Table 5.1 Infrastructure threats 97
Table 7.1 Mapping of components to the actors involved in a Web

service conversation 119
Table 7.2 Threat profile of service-level attacks 139
Table 7.3 NIST standard of service-level attacks 140
Table 8.1 A summary of host-level solutions 163
Table 9.1 Overview of network solutions 181
Table 9.2 Overview of grid solutions 193
Table 9.3 Overview of storage solutions 197
Table 11.1 Key fields of a request token 227
Table 11.2 Key fields of a response token 229
Table 11.3 P3P vocabulary 233
Table 11.4 Comparison of WS Federation and Liberty Specs 235
Table 11.5 Web-services security standards 236
Table 11.6 Solutions to service-level threats 254
Table 11.7 XML firewall configuration-threat mapping 256

Table 12.1 Security requirements matrix for SOX compliance 265

Foreword

The area of information security is a classic example of a human endeavour
where the theorists and practitioners are completely polarized. This emanates
from the myth that cryptography and information security are one and the same.
While cryptography is an essential component of information security, it is not
an end in itself. The encryption of a message may ensure its secure passage
through a network but not at the end-points. The advent of Internet resulted in
the development of the secured socket layer protocol that only catered to the
movement of hypertext securely over a public network.

Around the turn of the new millennium, a new disruptive technology called the
Web Services emerged. It was a simple and beautiful idea: aligning self-contained
business functionalities in the form of software components that could be pub-
lished, found and consumed programmatically. On the technical front, interoper-
ability became the buzzword; XML became the lingua franca for silicon-based life
forms. The published interfaces replaced the APIs. Web Services were followed
by the generic Service-Oriented Architecture. This called for a paradigm shift in
thinking about architecture, software transactions and information security. Tak-
ing a cue from the information security text books, it no longer remained a Bob
and Alice issue — it became a Bob, Alice, Ted, Carroll and others issue.

Contemporaneous to the development of SOA, the rise of high-performance
or grid computing is another important milestone. The grid consists of
loosely-coupled systems that work in unison to carry out computationally-
intensive tasks. It also employs the principle of CPU scavenging. One serious
security challenge is due to the presence of untrustworthy systems acting as
malicious nodes.

This book covers the entire secure software development lifecycle
process — from requirements analysis to testing and implementation. In addition,
it also looks at the abstract picture from an Enterprise IT point of view. It
follows a layered approach: hosts, infrastructure, applications and services.
The vulnerabilities and threats as well as the solutions for each layer form the
backbone of this book. For the sake of completeness, the authors have made a
serious attempt to discuss the four basic pillars of information security in terms
of issues and techniques keeping in mind the typical software developer. The

XX Foreword

real highlight of the book is the inclusion of security standards for distributed
systems that have been developed over the last eight years. The book includes a
compliance case study involving policies and identity management as well as a
case study concerning the grid. Finally, the authors provide us a sneak preview
into the future through the coverage of security issues around Cloud Computing,
the emerging area of Usercentric Identity Management and a relatively new
cryptosystem called the Identity-Based Encryption.

I firmly believe that this book is a treasure for those practitioners who are
involved in design, implementation and deployment of secured distributed
systems.

Hemant Adarkar, PhD
Enterprise Architect

Preface

Overview

As we move more and more to a better-connected world, systems are becoming
more distributed in terms of geography as well as functionality. The phenomenon
of distributed systems and computing is becoming increasingly relevant in a con-
sumer world in which social networking sites like Orkut, Facebook and so on
are becoming tremendously popular, with the user count crossing tens of millions
in a few years of their existence. Enterprises are now witnessing increasing col-
laboration and data sharing among the different participating entities, resulting
in the need for and use of distributed resources and computing. Another impor-
tant element that has increased the complexity of IT operations is the need for
integration of different applications: middleware developed in different platforms
and by different vendors. We are also seeing a spurt of mergers and acquisitions
which require integration of technologies across enterprises. Moreover, the enter-
prises are outsourcing the nonessential elements of the IT infrastructure to various
forms of service provider. Distributed computing is therefore a necessity that most
enterprises are embracing.

Distributed computing technologies followed a very classical pattern of evolu-
tion. They were initiated in the academic and research communities, to fulfill the
need to connect and collaborate, and slowly they were adopted by the enterprises.
Presently, enterprises and user communities cannot live without some application
of distributed computing. However, with the widespread adoption of distributed
computing, experts are pointing out the security issues that can hurt these enter-
prises and user communities in a huge way. Analyzing the security issues and
solutions in distributed computing is not simple. Different solutions exist and
hence it is necessary to identify the different layers of the distributed computing
environment and analyze the security issues in a holistic manner. In this book,
Distributed Systems Security, we provide a holistic insight into current security
issues, processes and solutions, and map out future directions in the context of
today’s distributed systems. This insight is elucidated by modeling of modern-day

Xxii Preface

distributed systems using a four-tier logical model: host layer, infrastructure layer,
application layer and service layer (bottom to top). We provide an in-depth cover-
age of security threats and issues across these tiers. Additionally, we describe the
approaches required for efficient security engineering, as well as exploring how
existing solutions can be leveraged or enhanced to proactively meet the dynamic
needs of security for the next-generation distributed systems. The practical issues
thereof are reinforced via practical case studies.

Organization

In this book we have made very few assumptions on the prerequisites for readers.
In the different sections, we have provided sufficient information and background
material for readers new to this area. The book is organized into fourteen chapters.
In Chapter 1, we provide a brief overview of distributed systems. We felt the need
to inform readers about the general issues in distributed systems, before delving
deep into the security aspects. We talk about the characteristics and different types
of distributed system, and also provide an overview of challenges faced in this
area. Though challenges like synchronization and fault tolerance are critical, due
to the explosive growth of distributed systems and their complexities, the security
challenge is paramount. In this chapter, we also provide a brief motivation for
the layered approach to dissecting distributed systems. Finally, we provide a list
of trends in distributed systems security.

In Chapter 2 we talk about the diverse security engineering aspects. We
stress that security is to be treated as an integral part of the software devel-
opment lifecycle (SDLC). We provide an overview of some of the prevailing
security-aware software development lifecycle process models and processes,
including SSE-CMM, Microsoft SDL. and CLASP. In terms of the SDLC
activities, we cover in detail related security engineering activities including
security requirements activities, threat modeling, security architecture and design
reviews, code reviews and security testing.

In Chapter 3 we provide an overview of the common security issues and tech-
nologies that are relevant to distributed systems. In the first half, we elucidate
the typical security concerns of confidentiality, integrity, access control and avail-
ability. Additionally, the issues of trust and privacy are explained. In particular,
the emerging need for identity management is explored. In the second half, we
explore the different technologies typically used to address these security issues,
including encryption mechanisms, PKI, firewalls and digital signatures.

From Chapter 4 to Chapter 7, we delve into the threats and vulnerabilities of
different layers defined in Chapter 1.

In Chapter 4, look at security threats and vulnerabilities at the host layer. We
broadly group the host-level threats into two categories: transient code threats
and resident code threats. In the category of transient code vulnerabilities, we

Preface xxiii

cover various malwares including Trojan horses, spyware, worms and viruses.
Additionally, under transient code vulnerabilities, we cover threats in the form
of eavesdropping, job faults and resource starvation. In the category of resident
attacks, we primarily look at overflow attacks, privilege-escalation attacks and
injection attacks.

In Chapter 5, we carry the same thread forward by providing details about
threats and vulnerabilities in the infrastructure layer. We divide the infrastructure
threats and vulnerabilities into three main categories: network threats and vul-
nerabilities, grid and cluster threats and vulnerabilities, and data systems threats
and vulnerabilities. In the first category we talk about denial-of-service (DoS)
attacks, domain name server (DNS) attacks, routing attacks, high-speed network
threats and wireless threats. In the second category we talk about threats and
issues in grid and cluster architecture, infrastructure and management, and also
trust. In data systems, we talk about storage area networks (SAN) and distributed
file systems (DFS) threats.

In Chapter 6, we talk about application threats and vulnerabilities. We cover in
detail the various injection attacks, including SQL injection, LDAP injection and
XPath injection attacks. We go on to cover in detail cross-site scripting attacks.
We study attacks caused by improper session management or improper error
handling, or due to improper use of cryptography. We also describe other attacks,
including DOS attacks and attacks caused by insecure configuration, or canonical
representation flaws, or buffer overflows.

In Chapter 7, we talk about the diverse service-level issues, threats and vulner-
abilities. Key requirements for service-level security include the need to lever-
age typical mechanisms of encryption and digital signatures while making sure
partial-content encryption and signing is possible. Likewise, it is important to
note that mechanisms for interoperation of diverse security solutions are essen-
tial, as services operate across heterogeneous systems. Hence the need for a
standards-based approach to security is highlighted. In the latter half of the
chapter, a detailed analysis of the various threats is provided in the context
of services. The plaintext nature of XML, the lingua franca of service-based
applications, makes attacks on services easier. The majority of these attacks are
morphed forms of conventional attacks for services. We provide a detailed clas-
sification of the relevant service-level threats in a logical hierarchy, ranging from
attacks purely on services, through attacks on the inter-service communication, to
service-authentication attacks.

From Chapter 8 to Chapter 11, we talk about different solutions pertaining to
the threats and vulnerabilities mentioned before.

In Chapter 8, we look at some of the host-level security solutions relating to
isolation, resource management and host protection. The key solutions studied
in depth include sandboxing, virtualization, efficient resource management, anti-
malware and memory firewalls. In the context of sandboxing, kernel-loadable
modules, user-level sandboxing, delegated architectures and file-system isolations

XXiv Preface

are studied. The diverse models of virtualization, including full-system virtual-
ization, para virtualization, shared-kernel virtualization and hosted virtualization
are studied, and the inherent security offered via isolation is explained. In the
context of resource management, techniques like advance reservation and priority
reduction are studied. In antimalware, both signature-based scanning and real-time
scanning techniques are explored.

In Chapter 9, we talk about solutions in the infrastructure layer. We refer back
to the threats categories, namely network, grid and cluster, and data systems. As
part of the network solutions, we discuss information security solutions such as
Secure Socket Layer (SSL), IP Security (IPSec) and Virtual Private Networks
(VPN). We also talk about DoS solutions and research by looking at application
filtering, packet filtering, location hiding, logging and other solutions. As part of
the DNS solution, we briefly talk about the DNSSec solution. Routing and wireless
solutions are dealt with in detail by talking about several existing techniques. As
part of the solution to grid security issues, architectural solutions like Grid Security
Infrastructure (GSI) are discussed in detail. We also discuss authorization solutions
like VO-level authorization systems (e.g. CAS) and resource-level authorization
systems (e.g. PERMIS). In addition to these, we discuss management solutions,
such as credential-management systems like MyProxy and trust-management sys-
tems like TrustBuilder. As part of the security solution for data systems, we talk
about Fiber Channel Security Protocol (FC-SP), DFS Security and security in
highly-distributed data systems like OceanStore.

In Chapter 10, we talk about industry best practices to help prevent the
common application security vulnerabilities discussed in Chapter 6. First, the
role of input-validation techniques is explored in depth. Next, secure session
management-related best practices are outlined. Also outlined are best practices
for cryptography and encryption. Finally, best practices in error handling and
input/output filtering for XSS attack prevention are given.

In Chapter 11, we concentrate on different solutions to the diverse service-level
issues, and mechanisms to handle these threats and vulnerabilities. First, we
explore why SSL, the predominant solution for Web-based systems, is not enough
for Web services-based systems. Further, we highlight the role of standards in pro-
moting interoperability, a key requirement for service-oriented IT systems. We
explore in detail the complete services security standards stack, right from the
bottom layers of XML Encryption/Signature to the Federated identity standards.
Finally, the emergence of a new breed of firewalls, XML firewalls, is explained,
looking at their critical role in addressing various service-level threats. We provide
an exhaustive drill-down view of a typical XML firewall, including an outline of
the different configurable parameters. We also explore the role of policy-centered
security architectures in satisfying key service-oriented security requirements. We
then provide a detailed threat-by-threat solution mapping for better elucidation.

One of the key contributions of this book is to come up with a couple of
detailed case studies, which we describe in Chapters 12 and 13. In Chapter 12 we

Preface XXV

talk about a compliance case study in the financial industry. We highlight how a
multilevel, policy-based, service-oriented security architecture is suited to solve
such a scenario. In Chapter 13 we give a grid case study, where we look again at
a financial organization, running its financial applications in a grid environment.

Finally, in Chapter 14, we look into the crystal ball and predict some important
security technologies which may assume importance in the future. In this chapter,
we talk about cloud computing security, security appliances, usercentric identity
management and identity-based encryption (IBE).

Acknowledgments

We would like to thank all the people who have contributed directly and indirectly
to the book’s development. Special thanks should go to the reviewers, Vishal
Dwivedi, Bijoy Majumdar, Anish Damodaran, and several others whose comments
have been invaluable in the progress of the book. Moreover, we would like to
thank Birgit Gruber, Sarah Hinton, Sarah Tilley and Emily Dungey of Wiley for
their help throughout the book-creation process. Finally, we would like to thank
our respective families, without whose support the book could not have been
completed.

1

Introduction

1.1 Background

In the 1960s, the great science-fiction writer Isaac Asimov [1] predicted a future
full of robots, protecting and sometimes controlling human destiny. Fifty years
later, a human-like and all-purpose robot still remains a dream of the robotics
research community. However, technological progress in the last couple of
decades have ensured that human lifestyle, human interactions and collaboration
patterns have changed so dramatically that if anyone like Asimov had written
about today’s world 50 years back, it would have seemed like science fiction.
If we compare the interaction and collaboration patterns of today with those of
a decade back, we will find stark differences between the two. E-mails, blogs,
messengers and so on are common tools used nowadays which were unknown
ten years ago. People seldom stand in a queue in a bank; automated teller
machines (ATMs) have become an essential commodity. Similarly, credit cards
have taken over from cash and cheques as the new mode of transaction. Internets
have become the de facto source of information for millions of people. The new
technologies have redefined the ways in which interaction and collaboration
between different individuals take place, which in turn are creating a new
social-interaction methodology. For example, English is fast becoming a lingua
franca for the technical community across the world and the interactions of that
community are redefining the English language in a significant way. In addition,
geographical and cultural borders are slowly disappearing as social networking
sites like Orkut [2], Facebook [3] and so on change the ways people interact.
Similar changes are also taking place in the enterprise-computing scenario. Until
recently, application developers could safely assume that the target environment
was homogeneous, secure, reliable and centrally-managed. However, with the
advent of different collaborative and data-sharing technologies, new modes of
interaction are evolving. These evolutionary pressures generate new requirements

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan
and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

2 Distributed Systems Security: Issues, Processes and Solutions

for distributed application development and deployment. Enterprises are now
witnessing increasing collaboration and data sharing among the different
participating entities, resulting in the need for and use of distributed resources
and computing. Another important element that has increased the complexity
of IT operations is the need for integration of different applications, with
middleware developed in different platforms and by different vendors. We
are also seeing a spurt of mergers and acquisitions which require integration
of technologies across enterprises. Moreover, the enterprises are outsourcing
the nonessential elements of the IT infrastructure to various forms of service
provider. The technologies that have transformed the world so significantly fall
under the bracket of distributed computing technologies.

Distributed computing technologies follow a similar pattern of interaction,
where disparate and sometimes heterogeneous systems interact with one another
over a common communication platform. Initiated by the academic and research
community to fulfill the need to connect and collaborate, slowly this technology
was adopted by enterprises. Finally, enterprises and user communities cannot live
without some application of distributed computing. However, with the widespread
adoption of distributed computing, experts are pointing out security issues that
can hurt the enterprises and user communities in a huge way. Analyzing the
security issues and solutions in distributed computing is not simple as there is
a need to identify the interactions between different layers of the distributed
computing environment. Different solutions exist and it is necessary to identify
the different layers of the distributed computing environment and analyze the
security issues in a holistic manner. This book is an effort in that direction.

1.2 Distributed Systems

Distributed systems involve the interaction between disparate independent entities,
bounded by common language and protocols and working toward a common goal.
Different types of distributed systems are found in real life. One of the biggest
and perhaps the most complex distributed system is human society itself. In the
digital world, the Internet has become a very important distributed environment
for everybody.

1.2.1 Characteristics of Distributed Systems

If we look at any distributed system, for example the Internet, there are several
mandatory characteristics, in addition to ‘good-to-have’ or desirable characteris-
tics. Mandatory characteristics determine the basic nature of distributed systems,
such as having multiple entities, heterogeneity, concurrency and resource sharing.

(1) Multiple entities: One of the key characteristics of a distributed system is the
presence of multiple — in many cases a great many — entities participating

Introduction 3

2)

3)

“)

in the system. The entities can be users or subsystems which compose the
distributed system.

Heterogeneity: Another key characteristic is the heterogeneous nature of the
entities involved. The heterogeneity may lie in the type of system or user,
underlying policies and/or the data/resources that the underlying subsystems
consume. The heterogeneity of distributed systems can be best observed in the
Internet, where multitudes of systems, protocols, policies and environments
interact to create a scalable infrastructure.

Concurrency: Another important characteristic that distinguishes any dis-
tributed system from a centralized one is concurrency. Different components
of distributed systems may run concurrently as the components may be loosely
coupled. Therefore there is a need to understand the synchronization issues
during the design of distributed systems.

Resource sharing: Sharing of resources is another key characteristic of dis-
tributed systems.

In addition to the above mandatory characteristics, there are several desirable
characteristics for a distributed system.

ey

2

3)

Openness: A desirable characteristic for a distributed system is openness of
the underlying architecture, protocols, resources and infrastructure, where they
can be extended or replaced without affecting the system behavior. If we
look at the Internet, this issue is nicely handled through the use of open
standards: we can see the interplay between different protocols, standards,
infrastructures and architectures without affecting the activities of the Internet
as a whole.

Scalability: One of the key motivations for going from a centralized system
to a distributed one is to increase the overall scalability of the system. Hence
to have a highly scalable system is desirable in any form of distributed system.
Transparency: Another desirable characteristic is to have transparency in the
operation. From the user’s and the subsystem’s point of view, the under-
lying systems should be transparent. Primarily, transparency can be of two
types — location transparency and system transparency. The first type talks
about the need to be transparent regarding the location disparity between dif-
ferent systems. The second talks about the need to be transparent about system
issues like failure, concurrency, scaling, migration and so on.

1.2.2 Types of Distributed System

Distributed systems can be divided into mainly three types: distributed comput-
ing systems, distributed information systems and distributed pervasive systems.
The first type of system is mainly concerned with providing computations in a
distributed manner. The second type of system is mainly concerned with providing

4 Distributed Systems Security: Issues, Processes and Solutions

Distributed Integration System

CORBA |
DCOM |

Distributed Computing System

[> Web Services

CC-NUMA —J Clusters) Grid

Distributed Information System

Distributed Distributed P2P based
Storage File System (OceanStore)

Figure 1.1 Distributed system landscape.

information in a distributed manner, while the third type is the next-generation
distributed system, which is ubiquitous in nature.

1.2.2.1 Distributed Computing Systems

Distributed computing systems provide computations in a distributed manner.
Computing power is needed in many different industries, including banking and
finance, life sciences, manufacturing and so on. If we look at the computing
resources available, we shall find that the laptops of today are perhaps as pow-
erful as servers a decade ago. Moore’s law, which states that computing power
doubles every 18 months, is valid even today and will probably be true for the
next 5—6 years. With the growth of the multicore technologies, Moore’s law can
be extended even further [4]. Computing power is increasing and so is demand.
In this rat race, researchers have found an able ally in the form of networking.
Between 2001 and 2010, while processing power is supposed to increase 60 times,
networking capabilities are supposed to increase by 4000 times. This means that
at the same cost, 4000 times the same bandwidth will be available in 2010 as
compared to 2001 [5]. Therefore, the computing architectures developed a decade
back will probably require a rethink based on the technological progress in the
fields of computers and networks. Last decade saw the development of a field
called cluster computing [6], where different computing resources are connected

Introduction 5

together using a very-high-speed network like Gigabit Ethernet or more recently
Infiniband [7]. In addition to the technological progress and the huge requirement
of computing power, the enterprises have also undergone a radical shift in IT
operations in the last few years. Enterprises are now witnessing increasing col-
laboration and data sharing among the different participating entities, resulting in
the need for and use of distributed resources and computing. Another important
element that has increased the complexity of IT operations is the need for integra-
tion of different applications: middlewares developed on different platforms and
by different vendors. We are also seeing a spurt of mergers and acquisitions that
require integration of technologies across enterprises. Moreover, the enterprises
are outsourcing the nonessential elements of the IT infrastructure. The dual pull
of requiring more computing power and the integration of heterogeneous compo-
nents into the IT infrastructure has led to the development of grid technology. This
technology is seeing a classical evolution pattern. Initiated by the academic and
research community to fulfill its needs, it is slowly being adopted by the enter-
prises, especially those who have high computing needs, such as the life sciences,
finance and manufacturing industries. However, the promise of grid computing
goes beyond that and the next few years should see a gradual adoption of grid as
the natural choice among the other enterprises. But a widespread adoption of grid
computing depends upon the ability of researchers and practitioners to reduce the
pitfalls that lie along the way. One such pitfall is security, which is the focus of
this book as a whole. In this chapter we will briefly talk about grid computing’s
evolution, benefits and concerns.

1.2.2.2 Distributed Information Systems

Distributed information systems are responsible for storing and retrieving infor-
mation in a distributed manner. There are many manifestations of this type of
distributed system. The underlying storage system can be distributed in the form
of storage area networks (SANs). SANs have become de facto storage infras-
tructures in most enterprises. SAN is a high-speed data storage network that
connects different types of storage device. One of the most popular modes of
storage communication is the Fibre Channel fabric. Another paradigm of the dis-
tributed information system is the distributed file system (DFS). The first secure
DFS in common use was atheos file system (AFS) [8]. This file system was
later followed by DFS [9]. AFS servers store sub-trees of the file system and
use Kerberos [10] to provide authenticated access to the trees. Network file sys-
tem (NFS) is another very popular DFS, which allows users distributed over the
network to access distributed files. With the growth of peer-to-peer (P2P) tech-
nologies, highly-distributed storage is in vogue. Systems like OceanStore [11] are
becoming popular. This uses a large number of untrusted storage devices to store
redundant copies of encrypted files and directories in persistent objects. Objects
are identified by globally unique identifiers (GUID), which are generated in a

6 Distributed Systems Security: Issues, Processes and Solutions

similar fashion to the unique identifiers in SAN file system (SFS). Each identifier
is a hash of the owner’s public key and a name. Objects can point to other objects
to enable directories. All objects are encrypted by the client. By replicating the
objects among servers, clients can even avoid malicious servers deleting their
data. The extensive use of replication and public keys makes revocation of access
and deletion of data difficult to achieve, but it does provide a nice model for a
completely decentralized DFS.

1.2.2.3 Distributed Integration Systems

Distributed integration systems are responsible for integrating applications, poli-
cies and interfaces across diverse distributed systems. The last couple of decades
have seen numerous implementations of distributed computing, such as CORBA
[12], Java RMI [13], DCOM [14] and so on. None of these systems were taken up
in a big way by the industries, mainly because of their tightly-coupled nature. Cur-
rent trends in the application space suggest that enterprises are moving away from
monolithic tightly-coupled systems toward loosely-coupled dynamically-bound
components. With the growth of the Internet as a premier means of commu-
nication, a new paradigm called the Web Services [15] emerged, facilitating a
new style of architecting systems, termed as service-oriented architecture (SOA).
Web Services can be thought of as reusable, loosely-coupled software components
that are deployed over the network, or specifically the World Wide Web. There
are some advantages that the experts claim as the major reasons for the adoption
of Web Services as a de facto standard for application integration. These are:

(1) Simplicity: Implementation of Web Services is very simple from the point of
view of programmers and as a result, easy and fast deployments are possible.
All the underlying technologies and protocols are based on Extended Markup
Language (XML) [16], which is simple and intuitive.

(2) Loosely coupled: Since the very design of Web Services is based on loose
coupling of its different components, they can be deployed on demand.

(3) Platform independent: Web Services architecture is platform- and language-
independent since it is based on XML technologies. Therefore, one can write
a client in C++ running on Windows, while the Web Service is written in
Java running on Linux.

(4) Transparent: Since most of the deployed Web Services use Hypertext Trans-
fer Protocol (HTTP) [17] for transmitting messages, they are transparent to
firewalls, which generally allow HTTP to pass through. This may not always
be the case for CORBA, RMI and so on.

According to many experts, CORBA and RMI provide a much better alternative
to Web Services because of the flexibility and features that CORBA provide.
Moreover, performance-wise the CORBA/RMI combination may be better than

Introduction 7

protocol designed over HTTP. However, because of its simplicity and the backing
of the big commercial vendors, Web Services is steadily becoming a standard
which none can ignore. There are many forums where debates are being pursued
as we move on to the different components which constitute the Web Services.
There are three main components of Web Services:

e SOAP: The Simple Object Access Protocol (SOAP) [18] is a lightweight pro-
tocol for exchange of information between diverse and distributed computing
environments. It combines the extensibility and portability of XML with the
ubiquitous Web technology of HTTP. It provides a framework for defining how
an XML message is structured, using rich semantics for indicating encoding
style, array structure and data types.

e WSDL: The Web Service Description Language (WSDL) [19] can be used to
describe a Web Service, providing a standard interface. A WSDL document is
written in XML and describes a service as a set of endpoints, each consisting of
a collection of operations. XML input and output messages are defined for each
operation and their structure and data types are described using an XML Schema
in the WSDL document. The Web Description Services Language (WDSL) and
XML Schema provide a complete definition for the service interface, allowing
programmatic access to the Web Service in the manner of an API. Tasks like
data requests or code executions can be performed by sending or receiving
XML messages using, for example, SOAP.

e UDDI: The Universal Description, Discovery and Integration (UDDI) [20] spec-
ification defines a way to publish and discover information about Web Services.
It is a collaboration between Ariba, IBM and Microsoft to speed interoperabil-
ity and adoption of Web Services. The project includes a business registry (an
XML document) and a set of operations on it. The registry can be used by
programs to find and get information about Web Services and check compat-
ibility with them, based on their descriptions. UDDI allows categorization of
Web Services so that they can be located and discovered, and WSDL enables
a programmatic interface to a service once it has been located.

1.2.3 Different Distributed Architectures

There are four different types of architecture that are used for designing dis-
tributed systems, namely client—server-based systems, Multinode systems, P2P
systems and service-oriented systems. The first type of system is a client- and a
server-based system, the second type of system distributes the data or the infor-
mation across multiple nodes or systems, the third type of system is a P2P-based
architecture where all components are peers or at the same level, and the last type
of system is a federated model where interactions happen via standards-based
messages.

8 Distributed Systems Security: Issues, Processes and Solutions

1.2.3.1 Client-Server-Based Architecture

Client—server-based architecture is the most popular distributed system that has
been used over the years. In this architecture, the server is responsible for provid-
ing service to the client or a set of clients. In a client—server kind of environment,
a client requests a service from the server, which the server provides over the net-
work in a remote environment. The main advantage of a client—server system is
that the business services are abstracted from the set of clients accessing them.
Security is implemented at the link and the end server, while fault tolerance is
applied at the server end by replicating the functionality. Though extremely pop-
ular, there are some inherent limitations in this type of architecture, which led
practitioners and researchers to other models.

e Scalability: One of the primary limitations of this model is scalability. If the
number of users increases significantly, the system fails to handle such a large
load. There are two ways to handle this issue: scale up or scale out. Scaling
up means moving to a higher end server to handle the same type of request.
Though this may be an effective solution in some cases, it does not scale as
there is a limitation to scaling up. The second approach, or scale-out approach,
distributes the server into multiple servers, which improves scalability. We will
talk about this approach later.

e Flexibility: Just having a client and a server reduces the overall flexibility of
the system, the reason being that database management, application business
logic and other processes are embedded in the server code and hence inflexible.
Practitioners and designers slowly moved to a three-tier architecture mainly to
tackle this problem.

1.2.3.2 Multinode

One variation of the client—server technology distributes the server into multiple
nodes that can be used for parallel processing. There are several advantages of
such a multinode configuration, namely performance, fault tolerance and scalabil-
ity. Performance can be improved, since the different nodes involved in the process
provide part of the service a single node was supposed to perform. Different com-
ponents of the multinode system are: processing nodes, scheduler or load balancer
and clients. Having different nodes perform similar actions can result in improve-
ment of fault tolerance. Moreover, multinode systems improve scalability since
they can scale out instead of scaling up. However, the advantages of multinode
systems come at a cost, which is complexity. Managing synchronization, security,
load balancing and so on in such an environment is extremely challenging.

Introduction 9

1.2.3.3 Peer-to-Peer

The third type of architecture, which is becoming at the moment, is P2P. This type
of system is different from client—server-based systems as, in P2P systems, all
the nodes in the distributed system participate in the same hierarchy. This means
that there is no concept of client and server, and each participant assumes the
role of client and server based on need and requirement. Systems like Gnutella,
Napster and so on are based on such principles. P2P systems have found signifi-
cant applications in the area of file distribution and transfer. They are also being
applied in the area of data and information storage. P2P systems have several
advantages in terms of scalability and fault tolerance. Since the system is depen-
dent on end systems and nodes, it scales infinitely. The scalability property is
exhibited by all the P2P systems. Similarly, fault tolerance is also an important
characteristic of such a system. However, several challenges exist, in the form of
security and service level agreement (SLA). Since the end systems are responsi-
ble for performance, guaranteeing service is almost impossible. Management of
security is also extremely difficult as maintaining security at the end systems is a
challenge.

1.2.3.4 Service-Oriented Architecture

SOA is the latest in the evolution of distributed architectures, which builds upon
the client—server and other such distributed architecture models. SOA implemen-
tations revolve around the basic idea of a service. A service refers to a modular,
self-contained piece of software, which has a well-defined functionality expressed
in abstract terms independent of the underlying implementation. Basically, any
implementation of SOA has three fundamental roles: service provider, service
requestor and service registry, and three fundamental operations: publish, find
and bind. The service provider publishes details pertaining to service invocation
with a services registry. The service requestor finds the details of a service from
the service registry. The service requestor then invokes (binds) the service on the
service provider. Web Services, described earlier, represent the most popular form
of implementation of SOA.

1.2.4 Challenges in Designing Distributed Systems

The challenges in designing a distributed system lie in managing the different dis-
parate entities responsible for providing the end service. Synchronization between
the different entities needs to be handled. Similarly, security and fault tolerance
are extremely important and need to be handled as well.

10 Distributed Systems Security: Issues, Processes and Solutions

1.2.4.1 Synchronization

One of the most complex and well-studied problem in the area of distributed
systems is synchronization. The problem of synchronizing concurrent events also
occurs in nondistributed systems. However, in distributed systems, the problem
gets amplified many times. Absence of a globally-shared clock, absence of global
shared memory in most cases and the presence of partial failures makes synchro-
nization a complex problem to deal with. There are several issues, like clock
synchronization, leader election, collecting global states, mutual exclusion and
distributed transactions, which are critical and have been studied in detail in
literature.

e Clock synchronization: Time plays a crucial role as it is sometimes necessary
to execute a given action at a given time, timestamping data/objects so that all
machines or nodes see the same global state. Several algorithms for clock syn-
chronization have been proposed, which include synchronization of all clocks
with a central clock or through agreement. In the first case, the time server or
external clock periodically sends the clock information to all the nodes, either
through a broadcast or through multicast mechanisms, and the nodes adjust the
clock based on the received information and the round-trip time calculation. In
the second mechanism, the nodes exchange information so that the time clock
can be calculated in a P2P fashion. It is to be noted that clock synchroniza-
tion is a major issue in distributed systems and clock skew always needs to be
considered when designing such a system.

e Leader election: This is another critical synchronization problem used in many
distributed systems. Many varieties of solution are available, ranging from the
old leader forcing the new leader on the group members based on certain
selection criteria, to polls or votes where the node receiving the maximum
number of votes gets elected as the leader.

e Collection global state: In some applications, especially when debugging a
distributed system, knowledge of the global states is especially useful. Global
state in a distributed system is defined as the sum of the local states and states
in transit. One mechanism is to obtain a distributed snapshot which represents
the consistent and global state in which the distributed system would have been.
There are several challenges in moving a process to the consistent state.

e Mutual exclusion: In some cases, it is required that certain processes access
critical sections or data in a mutually-exclusive manner. One way to tackle
such a problem is to emulate the centralized system by having the server man-
age the process lock through the use of tokens. Tokens can also be managed
in a distributed manner using a ring or a P2P system, which increases the
complexity.

Introduction 11

1.2.4.2 Fault Tolerance

If we look at the issue of fault tolerance from the distributed systems perspective,
it is both an opportunity and a threat. It is an opportunity as distributed systems
bring with them natural redundancy, which can be used to provide fault tolerance.
However, it is a threat as the issue of fault tolerance is complex, and extensive
research has been carried out in this area to tackle the problem effectively. One
of the issues that haunts distributed systems designers is the source of many
failures. Failures can happen in processing nodes and transmission media, and
due to distributed agreement.

e Processing sites: The fact that the processing sites of a distributed system are
independent of each other means that they are independent points of failure.
While this is an advantage from the viewpoint of the user of the system, it
presents a complex problem for developers. In a centralized system, the failure
of a processing site implies the failure of all the software as well. In contrast,
in a fault-tolerant distributed system, a processing site failure means that the
software on the remaining sites needs to detect and handle that failure in some
way. This may involve redistributing the functionality from the failed site to
other, operational, sites, or it may mean switching to some emergency mode of
operation.

o Communication media: Another kind of failure that is inherent in most dis-
tributed systems comes from the communication medium. The most obvious,
of course, is a permanent hard failure of the entire medium, which makes com-
munication between processing sites impossible. In the most severe cases, this
type of failure can lead to partitioning of the system into multiple parts that are
completely isolated from each other. The danger here is that the different parts
will undertake activities that conflict with each other. Intermittent failures are
more difficult to detect and correct, especially if the media is wireless in nature.

e Errors due to transmission delays: There are two different types of problem
caused by message delays. One type results from variable delays (jitter). That
is, the time it takes for a message to reach its destination may vary significantly.
The delays depend on a number of factors, such as the route taken through the
communication medium, congestion in the medium, congestion at the process-
ing sites (e.g. a busy receiver), intermittent hardware failures and so on. If
the transmission delay is constant then we can much more easily assess when
a message has been lost. For this reason, some communication networks are
designed as synchronous networks, so that delay values are fixed and known in
advance. However, even if the transmission delay is constant, there is still the
problem of out-of-date information. Since messages are used to convey infor-
mation about state changes between components of the distributed system, if

12 Distributed Systems Security: Issues, Processes and Solutions

the delays experienced are greater than the time required to change from one
state to the next, the information in these messages will be out of date. This can
have major repercussions that can lead to unstable systems. Just imagine trying
to drive a car if visual input to the driver were delayed by several seconds.

e Distributed agreement: The problem of distributed agreement has been briefly
touched upon in the previous subsection. There are many variations of this
problem, including time synchronization, consistent distributed state, distributed
mutual exclusion, distributed transaction commit, distributed termination, dis-
tributed election and so on. However, all of these reduce to the common problem
of reaching agreement in a distributed environment in the presence of failures.

1.2.4.3 Security

Perhaps the most compelling challenge associated with distributed systems is the
issue of security. The complexity of the issue arises from the different points of
vulnerability that exist in a distributed system. The processing nodes, transmission
media and clients are the obvious points that need to be secured. With the growth
of heterogeneity in different layers of enterprise infrastructure, the complexity
increases enormously. This whole book is devoted to this subject. In the next
section, we will provide a brief motivation for different layers of distributed
systems in an enterprise scenario and touch upon the security issues to be delved
into in this book.

1.3 Distributed Systems Security

As mentioned earlier, security in distributed systems is critical and absolutely
essential. However, it is also extremely challenging. Distributed security in the
digital world is akin to security in the real world. As the last few years would sug-
gest, protecting physical infrastructure is turning out to be a nightmare for security
professionals. The reason is that malicious adversaries can reside anywhere, and
everything is their potential target. In the digital world as well, protecting the
infrastructure is turning out to be a catching game. The main reason for this is
that the IT infrastructure in all enterprises is distributed in nature. Before under-
standing the security in distributed systems in relation to enterprise I'T, we need to
understand the enterprise IT landscape. In this section, we will discuss the enter-
prise IT scenario in a layered perspective. The whole book will then be aligned
to this layered view with respect to distributed IT security.

1.3.1 Enterprise IT — A Layered View

Figure 1.2 shows a high-level view of the layered enterprise. The view consists
of four main layers: hosts, infrastructure, applications and services. While the

Introduction 13

Infrastructure Layer

Figure 1.2 Layered enterprise view.

host layer consists of client desktops and low-end servers, forming the lowest
stratum of the enterprise IT, the infrastructure layer consists of network, storage
and middleware functionalities, which are used by the application, host and
service layers. The applications are custom and component of the shelf (COTS)
applications that are used in the enterprises in a day-to-day manner. Finally, we
have the service layer, which provides standards-based services to the external
world as well as to the enterprise itself. We will take this view into account for
all our subsequent discussions.

1.3.1.1 Hosts

The lowest layer in the enterprise consists of hosts, which are mainly composed
of client desktops and low-end servers. Even a few years back, hosts were meant
only to submit requests to servers and perform some low-end user-level tasks like
editing Word files and so on. However, with the growth of grid computing, con-
cepts like cycle stealing, scavenging and so on are coming to the fore. Middleware
technologies are able to take advantages of idle desktops or low-end servers like
the blades for distributed processing. With the growth of P2P technologies, hosts
are also managing distributed files in a much more scalable manner. Technologies
like Torrent [21] are redefining the way storage is carried out today. With the
growth of dimensions of hosts, several issues need to be tackled which were not
a problem before.

14 Distributed Systems Security: Issues, Processes and Solutions

e Manageability: The issue of managing heterogeneous systems is becoming
increasingly complex. With hundreds and thousands of hosts a part of the com-
puting and storage infrastructure, this is an administrator’s nightmare. Several
management and monitoring tools are needed to address this problem.

e Metering: With hosts becoming more and more important in the overall business
scenario, metering assumes a very important role. How to meter and what to
meter are serious questions.

e Security: Perhaps the most challenging issue in the host-based storage and
computation is security. Not only do hosts need to be protected from mali-
cious outside agents, infrastructure needs to be protected from malicious hosts
as well.

1.3.1.2 Infrastructure

The second layer in the IT enterprise is the infrastructure. It is diverse and complex
because of the sheer heterogeneity of products, technologies and protocols used
in enterprises today. The infrastructure is basically composed of two main com-
ponents: the physical infrastructure, consisting of high-end servers, storage and
networks, and the middleware, consisting of the cluster and grid middlewares.

e Physical infrastructure: Physical infrastructure consists of the server infrastruc-
ture, network infrastructure and storage infrastructure. One of the key character-
istics of the physical infrastructure is heterogeneity. From the size and type of
servers used, through the networking speed to the storage devices, heterogene-
ity remains a key ingredient. Another key characteristic is that each component
of the physical infrastructure is distributed in nature, making security a major
concern.

e Middleware: Cluster and grid middleware dominates in a high-performance
environment. Integration of grid technologies with mainstream IT is a
challenge.

1.3.1.3 Applications

Applications address the diverse enterprise needs of an enterprise, be they business
applications or horizontal technological applications. Of special importance is
the emergence of Web-based applications as a crucial component of enterprise
landscape, essential for delivering the right functions to consumers via the Web.
From a security perspective, application security has assumed major importance
in the recent past. Security issues may crop up due to either weakness in the
design of an application, or an insecure coding practice, which can compromise
some of the security requirements. In the case of the Web, the openness of the
medium and the protocols is responsible for further security complexity.

Introduction 15

1.3.1.4 Services

Services represent a higher level of interaction in distributed systems, building
over the underlying applications and data. Hence the typical underlying distributed
system security issues (including confidentiality, integrity and so on) are appli-
cable; additionally, the specific concerns arising out of the loose coupling and
interaction via XML messages introduce extra complexities. The higher level of
loose coupling required for SOA mandates more flexible ways of handling secu-
rity for SOA. Additionally, standards will be key as there is a need to interoperate
across heterogeneous implementations of underlying systems. Finally, the open-
ness and plain-text nature of XML-based distributed invocations is a cause of
further complexity and higher vulnerability. Likewise, typical distributed-system
attacks like DOS, cross-site scripting attacks and so on manifest at service level
too, albeit with variations.

1.3.2 Trends in IT Security

As we move toward a distributed IT infrastructure, security issues become more
and more critical. The pervasive growth of the IT infrastructure, along with its
heterogeneous nature, makes security a really complex issue to look at. If we
look at a typical IT infrastructure, there are hundreds of different applications that
are interacting with one another. The applications are either custom built, vendor
products or even open-source systems. Each of the products interacts with com-
plex sets of infrastructure components, including servers, desktops, middlewares
and so on. Added to this complexity is that of the heterogeneous networking
infrastructure, including wired, wireless and so on, and devices like BlackBer-
rys, personal digital assistants (PDAs) and others. With the growth of sensor
networks, integration of IT infrastructure and small sensor motes will make the
problems exceedingly challenging. With the heterogeneity and pervasive nature of
enterprises set to grow, several security trends have been identified in this section,
which are slowly being adopted by enterprises around the world. The key security
trends that can be observed are: movement of security to higher layers, protec-
tion of the periphery, protection of identities, standardization and integration of
heterogeneous policies and infrastructure.

1.3.2.1 Security in Higher Layers

One of the security trends that is observed currently is the movement of security
implementation to higher layers. If we look at the different layers of enterprise
systems, security protocols and systems are available at each and every one. For
example, most of the enterprises conform to SOA. Different security protocols are
available at the infrastructure layer, the middleware layer and so on. Enterprises
are slowly exploring the ideas of having security at the Web Services layer, which

16 Distributed Systems Security: Issues, Processes and Solutions

has led to the standardization and development of WS-Security standards. Simi-
larly, enterprises are looking at securing the higher layers so that more flexibility
can be obtained. However, one of the issues in moving security up the layers is
performance versus scalability. The higher the security implementation the more
the security overhead, and hence the more the performance overhead. Therefore,
the decision to have security at a particular layer depends on the amount of flex-
ibility that the system requires and the performance requirement of the system.
Taking the above example, instead of WS-Security, one can implement Transport
Layer Security (TLS). The performance of a TLS-based system will be more than
that of a WS-Security-based system; however WS-Security provides an end-to-end
secure environment which is not provided by TLS.

1.3.2.2 Protection of the Periphery

Another important trend that can be observed in enterprise-security cenarios is that
the security is provided at the periphery to protect the network by filtering the
traffic flowing to and from it. Different types of filtering technique are employed
to protect the data flowing into the network. Filtering can be as simple as going
through the packets and preventing data coming from certain ports. Similarly,
requests going to a particular port can be prevented. However, enterprises are
also moving toward more sophisticated methods of filtering, like application-level
filtering and XML-based filtering techniques. In these techniques, the filters or
firewalls actually look into the XML or application payload and identify whether
the packet is of a malicious nature.

1.3.2.3 Protection of Identities

When I reflect upon my activities today, I find that I have used multiple cre-
dentials to access resources of different forms. I used my company identity card
to enter the office premises, entered the password to get into the office network,
used my smart card to access the high-security lab, used my personal identifica-
tion number (PIN) to access my ATM account, and used my passport to get a
US visa — and this was just one day. Different identity checks were required by
different systems, and my identities were in different forms, which I either carried
in my head or as a card or a paper. I am surely not an exception; every one of
us is doing the same, maintaining multiple credentials to access different forms
of resource. This has really become pronounced with the growth of Information
Technologies, where there are multitudes of system interfaces which require some
sort of user authentication. As a result, individuals possess multiple digital iden-
tities and credentials, many of which are short-lived. At this point, one may be
concerned about the relationship between identities and credentials. The identity
of an individual user is unique; however, it may be manifested in different ways
to disparate systems through user credentials. For example, my identity credential

Introduction 17

to the United States consulate is my passport, while to the company network
it is the combination of the network’s user ID and password. Therefore, when
we talk of managing different user identities, it is actually the user-identification
credentials we are talking about. However, credentials go beyond just identifying
the user: they may authorize a user to access a certain resource or be used as a
proof of authentication. Credentials can be short-lived, for example identity cards
or passwords which expire when the individual leaves a company, or after a fixed
amount of time. Other examples of short-time credentials are the tickets issued in
busses for a short ride. Individuals manage their credentials by a combination of
papers, cards and their own memory, as I did today. Secure management of user
credentials is a very important challenge. Identity theft topped the list of com-
plaints to the United States Federal Trade Commission in 2002, accounting for
43% of all complaints [22]. Therefore, identity and user-credential management
is surely a very important problem, and several research and development efforts
are being undertaken in this direction.

1.3.2.4 Standardization

With the growth of heterogeneity in the enterprises, standardization is fast becom-
ing a key for any enterprise security system. If we look at any enterprise, the
number of heterogeneous elements available is mind-boggling. Several enterprises
over the years have custom-built applications, even middlewares, to interact with
vendor products. When architects look at the security issues in such enterprises,
they find the need to integrate security across these products, middlewares and
applications. The way to solve the problem is through standardized interfaces
and protocols. There are a couple of advantages to taking the standardized route,
especially in designing the security systems in enterprises. Firstly, rather than
designing a custom protocol, standards are based on well-established theoretical
bases and principles. Hence, through standards, one can be sure that vulnerabilities
are not introduced in those layers. Secondly, standard interfaces make integration
a slightly less cumbersome problem.

1.3.2.5 Integration

Perhaps the most complex and challenging problem in any enterprise is the inte-
gration of different protocols, standards, applications, middlewares and so on.
This becomes especially complex for new and evolving technologies, like grid
computing for example. Though technically grid computing is a powerful technol-
ogy which provides flexibility and performance in the current infrastructure setup,
when enterprises move into the grid environment, the challenges of integration
just hide all the benefits that exist. Enterprises which have application servers,
data-base tiers, different business intelligence products and monitoring tools, and
management systems, would integrate with an open-source Globus toolkit that

18 Distributed Systems Security: Issues, Processes and Solutions

is based on standards like Security Assertion Markup Language (SAML) and
WS-Security. However, the enterprises do not support those standards and either
the enterprise applications have to move to the newer standards, which may
involve a lot of work and customization, or the grid systems must be customized
to work with the existing standards and protocols. In most cases, enterprises pre-
fer the second route as they generally do not want to touch the systems which
‘work’. As a result, the vicious circle of newer technologies and integration dif-
ficulties persists.

1.4 About the Book

In this book we look at the global picture of the distributed computing systems
and their security vulnerabilities, and the issues and current solutions therein. We
divide the distributed systems into four layers: infrastructure, host, application and
service. The reason for this layering lies in the fact that enterprises have systems
built in this manner, and integration issues come to the fore when analyzing
them as we have done. The host issues look at the issues pertaining to a host in
a distributed computing system and the vulnerabilities that it will be subjected
to; vulnerabilities include mobile codes coming into the system and tasks being
executed. The infrastructure level issues concern the infrastructure as a whole,
that is the networking and the mobile infrastructure on which the distributed
systems are perched. The application layer is concerned with applications that are
being developed on top of the infrastructure. Lastly, the service layer looks at
building distributed services. As we can see, each of the layers presents unique
challenges in terms of security. Moreover, the book looks at the orchestration
of applications and services across the different layers in order to look at the
global picture.

1.4.1 Target Audience

The book does not assume that the reader is an expert in security or distributed
systems technologies. However, some prior knowledge about general security
principles and/or distributed computing technologies will be required to under-
stand the chapters covering advanced security issues. The book is primarily
targeted at architects who design and build secure distributed systems. It would
also benefit managers who make business decisions and researchers who can find
research gaps in existing systems.

e Professionals and architects: Through this book, professionals and architects
working on distributed systems will be made aware of the security require-
ments. It will also enlighten them about the security features of some existing
open-source as well as proprietary products. The book also aims at identifying
processes and models which could help architects design more secure systems.

Introduction 19

e Managers and CIOs: Though the book has significant technical depth, managers
and CIOs will gain significantly from it by understanding the processes, gaps
and solutions which exist. The book therefore will be able to provide them with
information which will be useful for making important business decisions.

e Researchers and students: Experienced researchers and students in the field of
distributed computing will be able to get a comprehensive overview of all the
security issues in distributed computing. This will help them make important
research decisions by analyzing the existing gaps.

References

[1] Isaac Asimov Online (2008) http://www.asimovonline.com, accessed on June 13th, 2008.
[2] Orkut (2008) http://www.orkut.com, accessed on June 13th, 2008.
[3] Facebook (2008) http://www.facebook.com, accessed on June 13th, 2008.
[4] Koch, G. (2005) Discovering Multi-Core: Extending the Benefits of Moore’s Law , Technology
Intel® Magazine.
[5] Vilett, C. (2001) Moore’s Law vs. Storage Improvements vs. Optical Improvements, Scientific
American.
[6] Rajkumar B. (eds) (2003) High Performance Cluster Computing: Architectures and Systems,
Kluwer Academic Publishers.
[7] InfiniBand Trade Association (2008) InfiniBand Architecture Specification, Vol. 1, Release 1.1,
November 2002. Available from http://www.infinibandta.org, accessed on June 13th, 2008.
[8] Howard, J.H., Kazar, M.L., Menees, S.G. et al. (1988) Scale and Performance in a Distributed
File System, Vol. 6.1, ACM Transactions on Computer Systems, pp. 51-81.
[9] Kazar, M.L., Leverett, B.W., Anderson, O.T. ef al. (1990) Decorum file system architec-
tural overview. Proceedings of the Usenix Summer 1990 Technical Conference, USENIX,
pp- 151-64.
[10] Neumann, C. and Ts’o, T. (1994) Kerberos: an authentication service for computer networks.
IEEE Communications Magazine, 32(9):33-38, September 1994.
[11] Kubiatowicz, J., Bindel, D., Chen, Y. etal. (1999) Oceanstore: An Architecture for
Global-Scale Persistent Storage, ASPLOS.
[12] Vinoski, S. (1997) CORBA: integrating diverse applications within distributed heterogeneous
environments. [EEE Communications Magazine, 14, 2 February 1997.
[13] Grosso, W. (2001) Java RMI, O’Reiley.
[14] Ruben, W. and Brain, M. (1999) Understanding DCOM , Prentice Hall. ISBN 0-13-095966-9.
[15] Cerami, E. Web Services Essentials, O’Reilley, ISBN: 0596002246, 2002.
[16] Ray, E. Learning XML, O’Reilley, ISBN: 0596004206, 2003.
[17] Fielding, R., Gettys, J., Mogul, J. et al. (1999) Hypertext Transfer Protocol — HTTP 1.1, IETF
RFC 2616, June, 1999.
[18] W3C Team (2003) SOAP Version 1.2, Part 0: Primer, W3C Recommendations, June 2003.
[19] W3C Team (2001) Web Services Description Language (WSDL) 1.1, W3C Note, March
2001.
[20] Computer Associates (2005) IBM, Microsoft, Oracle, SAP, SeeBeyond Technologies, Systinet,
and Others, UDDI v.3.0, OASIS Standard, Feb 2005.
[21] BitTorrent (2008) http://www.bittorrent.org, accessed on 13th June 2008.
[22] Basney, J., Yurcik, W., Bonilla, R. and Slagell, A. (2006) Credential Wallets: A Classification
of Credential Repositories, Highlighting MyProxy. 31st Annual TPRC, Research Conference
on Communication, Information, and Internet Policy, Sep. 2006.

2

Security Engineering

2.1 Introduction

Security engineering as a subject is essentially about the activities involved in
engineering a software application that is secure and reliable and has safeguards
built in against security vulnerabilities. It is a very vast subject that covers a wide
range of topics, from technologies addressing specific security requirements such
as authentication, authorization, confidentiality and nonrepudiation, to security
architectural solutions, patterns and design principles, and a plethora of other
activities that are required to develop secure software.

Many of these technologies are well understood and well covered in several
security engineering books. However, the often ignored, but equally (if not more)
important dimension of security engineering is about how to engineer an appli-
cation that is secure by specification, design and development. The fundamental
reason for the existence of so many security vulnerabilities is defective software.
For many an enterprise, developing business functionality takes precedence over
almost everything else; as a result, security is often considered something to be
plugged in as an after thought. The prevalent industry approach to security seems
to be ‘patch what is found to be breakable’. Security is rarely considered by soft-
ware development firms as an integral part of the software development lifecycle
(SDLC). As a result, security cross-checks are almost never defined as a part of
the SDLC. Moreover, software engineers are typically not aware of or trained on
common security vulnerabilities and the techniques to guard against them.

Defective software causes several billions of US dollars’ worth of financial
losses every year across the globe [1]. Fixing a security bug only after a vul-
nerability has been reported and/or exploited is the least desirable situation and
is often very expensive in terms of financial loss and brand loss. Organizations
are increasingly realizing that it is much cost-effective if the security vulnerabil-
ities can be prevented from appearing in the software in first place. Finding and

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan
and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

22 Distributed Systems Security: Issues, Processes and Solutions

fixing security vulnerabilities in the development phase is the best possible way of
addressing security. Security is best achieved when it is considered at every step
of the software development process. In that sense, security is just like software
quality — it has to be built in rather than added on as an extra layer.

Incorporating aspects of security into the SDLC is still evolving as a concept,
although there are a few documented processes and process models available to
practitioners [2—7]. As a matter of fact, many organizations have started taking
this seriously fairly recently. For example, Microsoft took a strategic decision
to start addressing security as part of its development culture in the year 2002,
under the broad umbrella of what it calls Trustworthy Development [8]. This has
helped it make very good progress in reducing the number of security bulletins
it needs to issue on its products. Process models such as the systems security
engineering capability maturity model (SSE-CMM) [2] have been around for
some time; however, the adoption of most of them has been very minimal until
recently.

In this chapter, we will cover in depth this often ignored subject of addressing
security as an integral part of the SDLC. We will provide an overview of some
of the prevailing secure development lifecycle processes. We will also cover a
few common minimal security engineering activities like security requirements,
threat modeling, security architectures and code reviews, and security testing. This
topic is not covered in details in most books, with a notable exception of a couple
[8, 9] whose focus is primarily on security in the software development lifecycle.

2.2 Secure Development Lifecycle Processes — An Overview

There are very few software development processes and process models available
in the industry today in which security is considered from the ground up as an
integral part of the entire process. Though many of the widely popular process
models like the capability maturity model (CMM) guarantee good-quality soft-
ware, security is not explicitly considered in them and hence they are not directly
amenable for use in developing secure software.

While a process model defines a set of best practices and provides a generic
architecture (high-level logical process areas), it does not define any specific
process. This means several processes can be defined following the same guiding
principles, as established by a single process model. A process is an instance of
a process model template which provides a specific set of activities, and details
on how those activities are to be carried out.

This section provides details on some of the prevalent process models as well as
a few proven industry processes. However, a comprehensive survey of the secure
development processes is out of the scope of this book. We will cover SSE-CMM
[2], Microsoft’s Security Development Lifecycle (SDL) [8], the comprehensive
lightweight application security process (CLASP) [3] and the US Department of

Security Engineering 23

Homeland Security (DHS)’s Build Security In (BSI) security assurance initiative
[5]. There are other secure development lifecycle processes, like trusted capability
maturity model/trusted software methodology (T-CMM/TSM), team software pro-
cess (TSP), information security system development lifecycle from NIST, IEEE
P1074, common criteria [10] and so on. A detailed coverage of all these methods
and initiatives is out of our scope. Interested readers may refer to [6, 7] for a very
detailed coverage of the state of the art in software security assurance.

2.2.1 Systems Security Engineering Capability Maturity Model (SSE-CMM)

SSE-CMM is a process reference model that focuses on implementing informa-
tion technology systems securely. The SSE-CMM is a community-owned model,
and is a result of the dedicated work of many individuals. Being a process ref-
erence model, it does not specify any specific set of processes or methodologies
to be followed to develop secure software; rather, it expects that organizations
will use their existing processes based on some security guidance. In other words,
it defines WHAT activities are to be performed rather than HOW they are to
be performed. The scope of SSE-CMM includes security engineering activities
to develop secure software, including: requirements analysis, design, develop-
ment, integration, installation, maintenance and decommissioning. The objective
of SSE-CMM is to advance security engineering as a well-defined, mature and
measurable discipline that enables organizations to make focused security invest-
ments in tools/training, and capability-based assurance.

SSE-CMM categorizes security engineering into three process areas: risk, engi-
neering and assurance. The risk process area identifies, prioritizes and helps in
managing the risks associated with the system. The engineering process area deals
with the implementation of solutions and countermeasures to minimize the risks
identified by the risk process area. The assurance process area deals with provid-
ing the necessary confidence level in the security solutions implemented for/by
the customers.

Further, SSE-CMM practices are divided into two dimensions: domain and
capability. Domain practices are the best practices in security engineering; they
are also called base practices. Capability practices pertain to process management
and institutionalization capability; they are referred to as generic practices. Generic
practices represent the activities to be undertaken as part of carrying out a base
practice. Putting the base practices and generic practices together helps check an
organization’s capability in performing a particular activity.

SSE-CMM contains 129 base practices (categorized into 22 process areas), of
which 61 base practices (organized into 11 process areas) cover all the security
engineering activities. The rest cover project and organization domains that have
been drawn from the Systems Engineering and Software CMM. The 11 security
engineering-related process areas in base practices are as follows:

24 Distributed Systems Security: Issues, Processes and Solutions

(1) administer security controls
(2) assess impact
(3) assess security risk
(4) assess threat
(5) assess vulnerability
(6) build assurance argument
(7) coordinate security
(8) monitor security posture
(9) provide security input

(10) specify security needs

(11) verify and validate security

Generic practices are activities that apply to all processes. Generic practices
are grouped into logical areas called ‘common features’, which are organized into
five ‘capability levels’ that represent increasing levels of organizational capability.
Unlike the base practices of the domain dimension, the generic practices of the
capability dimension are ordered according to maturity. Figure 2.1 provides a
depiction of SSE-CMM process areas.

A detailed coverage of these different process areas and their related activities
is out of the scope of this book. Interested readers may refer to [2]. SSE-CMM
provides a comprehensive framework that gives best practices to develop and
maintain secure software.

2.2.2 Microsoft’s Security Development Lifecycle (SDL)

The trustworthy computing Security Development Lifecycle is a process adopted
by Microsoft for the development of secure software. The process comprises a
series of security activities for and deliverables to each phase of Microsoft’s devel-
opment lifecycle. These cover both security engineering and assurance activities.
The Microsoft SDL has evolved over the last five years, since it was begun in
2002 to show Microsoft’s commitment to improving the security of its prod-
ucts. According to Microsoft, any product that has significant security risk must
undergo the SDL. Applications with significant risk include any application that
processes sensitive or personal data, is connected to the Internet or used in a
networked environment, processes financial data, or is used in an enterprise or
other organization.

The SDL involves modifying the organization’s development process by inte-
grating a set of well-defined security checkpoints and deliverables. The SDL
covers all phases of Microsoft’s development processes, including: requirements,
design, development, verification, release and response. During the requirements
phase, security objectives are clearly specified and the security feature require-
ments captured. During design, threat models are developed to identify all possible
threats to the application in a structured manner. Focused security architecture and

Security Engineering 25

5.2 Improving Proc. Effectiveness

5.1 Improving Org. Capability

4.2 Objectively Managing Perf.

4.1 Establish Meas. Quality Goals

3.3 Coordinate Practices

3.2 Perform the Defined Process

3.1 Defining a Standard Process

2.4 Tracking Performance

2.3 Verifying Performance

2.2 Disciplined Performance

2.1 Planned Performance

1.1 Base Practices Are Performed

Comman .)
€ 2 =
Features L 31 e RS
bt o |9 i
w oleleclel2
K] Sla|8|g|S
K] - > 2 =) 5|g kel
o = £ £ ||| 3|c|eo
= 5] o E S 2lu|>|o|s|5
< £ 5 o | ©)] w| 2
o] 5 2lg|o|a c e (2] o|2 |35
° 5 >| D 2123|28|D slx|Elelel|lEl|l2|S|lT| g
> iz} 2121211820 Z=l2|s|s|lele|S5|d|5]|S
” £ o HMIE IR EE SlE (sl |Bl2| e @
S ol 3 > Sleldlxl223 S|l=|s|Y|a|l>lB6l| 2|
oa |8l slEl=|S|cl8|EIEIEIZE=I2|I8|RIc|>9|3|5|E|E
o o QoS |l |l a| € 5/5|5 || |€ |20 @ NE- AR AR RS
8 8lw|s|3|e|lc|s|9|3]|3 SRR Qo o8| | o=
Sc|-|(2|8|e|l3|5|e|8[2|8 SISIEIBIc|o|ISIElalEle
x s|E|Q|S|3|3|2 3 o Ol gl |P|o|la|d|o| =
2=l |F|>]2|®|P n|c|C KA EREe) ©
2l plololo|lllEl5|22|%)o|S(S]5]° 21&Sle|s
Clao|lao|lal|la AR AR Y B L2 |3 S| T
ololo|lo|lo|5|E o=z |8 |8 |E c|le|8|E =
Elaolaloaloal=lclcs|l383lo|Elal|ls|cs|slsl=lals|s|3| o
sla|la|la|la|3|ol8|8|lalojc|8|8|8|=8|® gl s o o
| << |<|<|@ |02 || |>|w |2 |2 (2| o|E|=|=|a|O
(1 (T T A I T O T T A A A A
rla|lols|lv|olrn|lo|lo|lo|rja ot |w]jorn|o]|lo|o|-|a
(=} o (=] (=] (=} (=] (=] (=] o — Lol B - - — - — — - a 3] o
|l ||| ||| ||| g g (g (g g ||| |<g|«g|<
aclajaja|a|a|a|a|a|a|afa (oo |a | oo |a|a|a|a
Security Engineering Project and Organizational
Process Areas Process Areas

Figure 2.1 SSE-CMM process areas and common features (source: SSE-CMM Ver 3.0).

design reviews form a key checkpoint during the design phase. During develop-
ment, secure coding guidelines are followed to develop secure software. Static
code analysis tools and fuzz testing techniques are used to verify the security of
software developed. Code reviews are carried out, with specific focus on security.
During the security push (verification) penetration testing, fuzz testing techniques
are used to analyze the security posture of the application from a black-box per-
spective. Before the software is released, a final security review is carried out by
a team independent of and different from the development team. The post-release
activities are supported through the Microsoft Security Response Center, which
analyzes any identified security vulnerabilities and releases security bulletins and
security updates. A central security team coordinates the entire gamut of security
activities and a security buddy is associated with every project to help it fol-
low the SDL. The security buddy is identified right at the beginning (during the
requirements phase) and stays associated with the project till the final security
review.

26 Distributed Systems Security: Issues, Processes and Solutions

Activities Core / Security \\
Planning

Functional Requirements

RS ERELE Non Functional Requirements | Security Obejectives

and Analysis

Security Design Guidelines
Threat Modeling
Security Architecture and Design Review

Architecture Design Guidelines
and Design Architecture and Design Review

Unit Tests

Development Code Review Security Code Review
Daily Builds

Integration Testing

Testing System Testing Security Testing
Deployment Deployment Review Security Deployment Review
Maintenance \ o {

Figure 2.2 Microsoft SDL activities (source: Microsoft Security Engineering Explained).

Figure 2.2 shows a simplified security overlay from Microsoft, depicting typ-
ical security engineering activities and the places where they are best fit into an
application development lifecycle.

Though the process looks like a typical waterfall, many of the activities are
performed repetitively; thus, in reality, it is a spiral model.

Measuring the usefulness and effectiveness of any process is crucial for
continually improving it. Moreover, user awareness and training play important
roles. Microsoft mandates all its engineers to undergo security training and
to attend a refresher course once a year, in order to keep abreast of the
changing trends in security attacks. Though not much information is released
to the public on the specific security metrics, it is apparent that Microsoft
measures the results from security metrics it collects from its projects. Some
metrics include training coverage, rate of discovered vulnerabilities and attack
surface.

Microsoft SDL focuses on the technical aspects of developing secure software,
and does not explicitly cover the business and nontechnical requirements, such
as regulatory compliances and so on. Moreover, Microsoft SDL does not cover
activities related to deployment and configuration, secure operation of software,
secure disposal of software and so on.

Security Engineering 27

When compared to older software (that has not been subject to the SDL), new
software (that is developed using SDL guidance) does, in fact, display a signif-
icantly reduced rate of external discovery of security vulnerabilities. Microsoft
started releasing the SDL and its experiences with it for public consumption from
2004, and this provides an excellent source of information for those who want to
institutionalize security as part of their SDLC. For more information on Microsoft
SDL, interested readers may refer to [8, 11].

2.2.3 Comprehensive Lightweight Application Security Process (CLASP)

CLASP was primarily authored by John Viega and Secure Software, Inc. [3],
with contributions from IBM and WebMethods. This section gives an overview
of the publicly-released free CLASP 1.0 documentation. CLASP is based on an
activity-centric approach and is a set of security-focused processes (activities) that
can be easily integrated into any SDLC. CLASP provides a well-organized and
structured approach for locating security vulnerabilities and issues in the early
stages of software development, where it is most cost-effective to fix them. As
the documentation states, CLASP is an outcome of extensive work with different
development teams and a compilation of best practices from public information.

CLASP is primarily targeted as a set of security-focused activities, without
too many recommendations regarding the SDLC phases per se. This allows the
CLASP activities to be SDLC method agnostic and practitioners can choose the
set of activities that fits their processes and integrates at specific life cycle phases.
CLASP 1.0 is made up of several parts, which include both security activities
description and an extensive set of security resources and guidance.

CLASP 1.0 primarily defines a set of 24 security-focused activities that can be
integrated into any SDLC process. These activities include not just technical but
managerial activities, since CLASP believes that buy-in-from-the-top management
is crucial for the success of such a program, and has even clearly defined a
set of security activities targeted at managers. CLASP also provides suggestions
regarding organization roles required for carrying out security activities. Besides
the project manager, architect, requirements specifier, designer, implementer and
test analyst roles, CLASP also introduces a new role called security auditor. The
security auditor will be associated with the team throughout the development and
will help in auditing the effectiveness and completeness of the security activities.

Table 2.1 summarizes the CLASP 1.0 security activities based on the roles that
perform those activities.

One of the key aspects of CLASP is its comprehensive vulnerability ‘root-cause’
database. A good understanding of the root causes of security vulnerabilities is
very important in order for all team members to be able to avoid them. CLASP
1.0 provides detailed explanations of more than 100 vulnerabilities, organized
logically into several groups. The root-cause database provides information like
the root cause of the vulnerability’s existence, illustrative code samples, advice

28 Distributed Systems Security: Issues, Processes and Solutions

Table 2.1 CLASP security activity role mapping.

Role Activities

Project Manager Institute security awareness program
Monitor security metrics

Manage security issue disclosure process

w =

Requirements Specifier Specify operational environment
Identify global security policy
Document security-relevant requirements

Detail misuse cases

bl

[

Architect Identify resources and trust boundaries

Identify user roles and resource capabilities

3. Integrate security analysis into source management
process (Integrator)

4. Perform code signing (Integrator)

N

Designer Identify attack surface

. Apply security principles to design

3. Research and assess security posture of technology
solutions

4. Annotate class designs with security properties

Specify database security configuration

6. Address reported security issues

N =

b

Implementer Implement interface contracts
. Implement and elaborate resource policies and security
technologies

3. Build operational security guide

N =

Test Analyst 1. Identify, implement and perform security tests
2. Verify security attributes of resources
Security Auditor 1. Perform security analysis of system requirements and

design (threat modeling)
2. Perform source-level security review

on avoidance of the same and so on. CLASP states that it updates this root-cause
database on a regular basis, as and when new vulnerabilities are discovered.
Another important contribution from CLASP 1.0 is its implementation guid-
ance targeted toward practitioners. Implementing all 24 security-focused processes
may not be necessary for every project in an organization. CLASP 1.0 provides
an implementation guide that helps project managers or process engineers with

Security Engineering 29

information like activity applicability, risks associated with not performing the
activity, indicative implementation cost (man hours per iteration) and any other
considerations, such as dependencies between processes and so on. This helps
project managers decide which particular activities can/should be adapted and
adopted.

CLASP also provides a lot of other very useful information for practitioners.
This includes templates, checklists and guidelines to support the various activi-
ties. The supporting material includes detailed explanations of the set of security
principles to be followed in the design, guidelines on security requirements and
SO on.

A more detailed coverage of the specific security activities of CLASP 1.0 is out
of the scope of this chapter. Interested readers may refer to [3] for more details.

2.2.4 Build Security In

BSI [5] is a project of the Software Assurance program of the Strategic Initiatives
Branch of the National Cyber Security Division (NCSD) [1] of the US DHS
[12]. The Software Engineering Institute (SEI) [13] was engaged by the NCSD
to provide support in the Process and Technology focus areas of this initiative.
The SEI team and other contributors develop and collect software assurances and
software security information that help to create secure systems. BSI publishes
best practices, tools, guidelines, rules, principles and other resources that software
developers, architects and security practitioners can use to build security into
software at every phase of its development. BSI content is based on the principle
that software security is fundamentally a software engineering problem and must
be addressed in a systematic way throughout the SDLC.

The DHS Software Assurance Program is grounded in the National Strategy to
Secure Cyberspace, which states that: ‘DHS will facilitate a national public-private
effort to promulgate best practices and methodologies that promote integrity,
security, and reliability in software code development, including processes and
procedures that diminish the possibilities of erroneous code, malicious code, or
trap doors that could be introduced during development’ [5].

There are several security-enhanced methodologies and processes, and there is
no magic bullet to achieve security. BSI is a believer of this principle and is cer-
tainly not about recommending a specific security SDLC. BSI provides references
to a very useful set of alternative approaches, best practices and design principles
to secure software development and maintenance. It provides references not only
to security-enhanced process improvement models and SDLC methodologies, but
to the secure use of nonsecurity-enhanced methodologies.

BSI serves as a very good reference to the different security-enhanced method-
ologies, and provides lots of informative resources on security design principles,
vulnerability root causes and so on. Interested readers may refer to [5] for more
details.

30 Distributed Systems Security: Issues, Processes and Solutions

2.3 A Typical Security Engineering Process

As demonstrated in many of the above security-enhanced process models and
methodologies, development of secure software requires us to address security
as part of every aspect of the development process, starting from requirements
analysis and moving to architecture, to design, to implementation, to testing,
to deployment and to subsequent maintenance. Developing secure software is
not a task to be assigned to a few select individuals; instead, it is a combined
responsibility of everyone involved in the process, including folk from both man-
agement and technical streams. It requires a fundamental change in the approach
to addressing the security of software. Such an initiative has to be subscribed
to wholeheartedly by the top management as well — their sponsorship is critical
for the success of this initiative. Any framework that wants to address security
assurance in a comprehensive manner has to deal with multiple tasks, which
include:

e Acquiring or developing a well-tested security-enhanced process or methodol-
ogy that best fits the development culture of the organization.

e Making the fundamental changes to the organizational process that help in
smoothly implementing the security cross-checks and measuring the benefits in
terms of metrics.

e Creating security awareness at each and every level in the organization. This
may require running different training programs, tailored to meet the interests of
their respective target audiences (e.g. managers, architects, developers, testers,
auditors, etc.), and conducting relevant refresher courses for every stakeholder
at least once a year.

e Equipping the consultants on job with the right kind of tools and guidance, and
providing adequate training and support.

e Implementing processes to audit the security posture and manage the vulnera-
bility life cycle.

e Implementing processes to track the latest happenings in the industry, in terms
of best practices, recent trends in vulnerability attacks, new vulnerability
remediation techniques and so on, and to update the organization’s own
processes/checklists/guidelines accordingly.

In this section, we cover a typical set of baseline security activities to be incorpo-
rated at different phases of SDLC. The focus here is on technical aspects, omitting
details on other aspects such as training, management activities, organizational
changes required and so on. Readers interested in a more comprehensive set of
security activities are encouraged to refer to the process models like SSE-CMM
[2] and so on.

Figure 2.3 shows a typical SDLC, with requirements, architecture and design,
development (coding) and testing phases. It shows the minimal set of security

Security Engineering 31

Requirements

Architecture

Security
Architecture &
Design Review

H &
) Design
:
. Development
! > (Coding)
:
! .
- e Testing
: -
]
Security Code { Threat Model Security Code
Requirements 1 Review Security Testing
L]

Figure 2.3 Typical security activities through SDLC.

activities recommended at each of the SDLC phases to ensure a minimum level
of security assurance.

Though from the figure it looks like a waterfall model, many of these
security-focused activities can be repeated at different stages of development and
hence suit a spiral (iterative) model as well. The following subsection covers
each of these phases in more detail.

2.3.1 Requirements Phase

Just as it is not possible to build features which are not known, security cannot be
built into a product if the precise security requirements are not known up front.
Requirements for security functionality in software systems are often confused
with requirements for secure software. While the requirements for the security
functionality of software systems are those that help implement the security policy
of an organization (e.g. access control, authentication, etc.), the requirements for
secure software are different and concentrate on security as a quality parameter.
The requirements for secure software focuses on processes that aim at reducing
software security vulnerabilities, providing software security assurance, improving
dependability and so on.

Our experience shows that in most software projects, security requirements
are either not captured at all or captured only partially. Most security requirement
specifications are limited to aspects such as user-authentication and access-control

32 Distributed Systems Security: Issues, Processes and Solutions

mechanisms only. However, there are several other dimensions to security require-
ments, such as nonrepudiation, exception handling, logging and so on. Common
Criteria [10] forms a very good reference for different dimensions of the security
functional requirements.

Similarly, it is very critical to capture security nonfunctional requirements,
which are quality parameters like reliability, survivability, dependability, avail-
ability and so on. It is important to capture security requirements from both these
dimensions in order to build secure software.

Security requirements specification defines the structured way in which differ-
ent dimensions of the security requirements of the target application are captured
as part of the overall software requirements specification phase. Security is often
viewed as an afterthought, but experience shows that security is better addressed
through capturing security requirements up front during the requirements defini-
tion phase, and then later designing, building and testing for security. Security
requirements form the critical input for every security decision throughout the
rest of the life cycle.

2.3.2 Architecture and Design Phase

The architecture and design phase is where the architects and designers define
the overall architecture of the application in terms of the major systems and their
components, interfaces, inter-component communication mechanisms and so on.
It is this phase in which the architects design for nonfunctional requirements like
performance, flexibility and so on. To architect security into applications, it is
very important for the architects to be aware of different security threats and
their root causes. Architects have to think like hackers in order to identify the
possible security threats and plan for their mitigation. It is generally not feasible
to address every possible security threat. Architects need to make a call on how
much of the security functionality must be actually implemented to keep the risk
at a manageable level. During the architecture and design phase the architect
typically dons the hat of a security expert and uses proven security patterns and
design principles to develop the security functionality.

During this phase, the security architect typically builds threat models to ana-
lyze the security threats, uses proven security patterns and design principles, and
reviews the architecture and design from a security point of view, to ensure the
required level of security assurance. The combined wisdom gathered over many
years says that a lot of security vulnerabilities stem from architecture and design
defects. It is much more economical and efficient to identify the security vulnera-
bilities early in the design phase where they are introduced, rather than identifying
them during testing or, in the worst case, in a live system.

Threat modeling and security architecture and design review are considered
two important software security assurance best practices in the architecture and
design phase. Other artifacts like detailed guidelines on security design principles

Security Engineering 33

and security design patterns have proven very effective in enforcing consistent
security architecture.

The threat model technique helps in the systematic identification of threats,
attacks and vulnerabilities that could affect the target application, so that coun-
termeasures can be built to guard against them. There are many possible security
threats and vulnerabilities, but not all of them may be applicable to the target
application. Similarly, because of limited resources (time, money) or the current
state of technology, not every security threat and vulnerability can be addressed
in an application. As a result, every application has to live with some risk that is
left after implementing all security measures. This is referred to as residual risk.
A threat model helps in identifying all threats, and also in prioritizing them based
on the risk exposure, so that the limited number of available resources can be
utilized in an optimal manner to achieve the required level of security.

Threat modeling is typically done either as part of requirements analysis or in
the early stages of the architecture and design phase. This is most effective if
done in an iterative manner, where the threat model is revisited and updated after
every critical SDLC milestone. Threat modeling can be used to shape the target
application’s design, to meet the organization’s security objectives and to reduce
risk. A documented threat model forms the key for all the security activities in
SDLC. Different security process models use different names for this activity;
‘threat model’ is the name used by Microsoft SDL.

Many software development shops carry out a security architecture and design
review as part of the design phase; however, such reviews typically lack security
focus. It is very easy to miss security architecture and design defects unless a
review is carried out with a security focus, and by eyes trained to do so. Security
defects that go undetected at this phase prove very costly later, when they are
caught during testing or in production. An architecture and design review that
is done with a security focus using security checklists and best practices makes
it easy to catch most subtle security defects early in the design stage itself, just
where they are introduced.

Security architecture and design review is typically carried out by the archi-
tects, using the security guidelines/checklists/best practices available, and is done
with the objective of identifying the architecture and design defects that could
potentially lead to security vulnerabilities. During the review, the architects also
typically look for the right usage of security patterns and secure design principles.

2.3.3 Development (Coding) Phase

Many security vulnerabilities can be primarily attributed to insecure programming
practices followed by developers while coding. Security awareness is often min-
imal amongst the developer community. The consultants on job are not trained
in security and not many schools even teach secure coding techniques as part
of their curriculum. Given that even experienced developers find it difficult to

34 Distributed Systems Security: Issues, Processes and Solutions

identify secure coding bugs without the necessary security awareness, that fresh
developers find it even more so isn’t surprising. A vast majority of security vul-
nerabilities, like buffer overflows, injection vulnerabilities and so on, can be easily
addressed by simply following good secure coding practices and principles.

A security code review is when a code review is conducted with the objective
of finding security bugs. This is a critical activity in the SDLC, where most of
the security vulnerabilities can be caught accurately even before the testing phase
begins.

While code reviews form a regular part of any software development lifecycle,
many of the current industry processes don’t have the rigor that is required to
identify security bugs. Security bugs are often difficult to find and special guidance
can be required to uncover them. Though code reviews are looked at as daunting
tasks involving substantial manual effort, they are the ideal place to capture a lot
of security vulnerabilities. A common experience of organizations that do security
code reviews is that they form the most effective way to identify security bugs
early and thereby help in reducing the overall cost.

Security code review typically follows a checklist-based approach, where expe-
rienced developers review the code to find potential security defects. The focus is
on uncovering insecure coding practices, and also on ensuring that the code is in
compliance with enterprise secure coding guidelines. A recommended best prac-
tice is to de-link the security code reviews from the other regular code reviews
so that the focus on security is not diluted. Moreover, repeated code reviews (at
different levels, such as with peers and with senior developers) are seen to be
very effective. Code that is scrutinized by multiple pairs of eyes is more likely to
have security bugs detected early on.

2.3.4 Testing Phase

Traditional testing processes concentrate only on functional aspects, at the expense
of security-focused test cases. This phase provides the last opportunity for the
organization to identify bugs before the application goes live and hackers get
their first crack at doing so.

Security testing is the process that defines how to perform a black box-based
security analysis. The main objectives of software security testing include verify-
ing that the software does not exhibit any exploitable features and that the features
are implemented in a secure manner. While security testing can also be used to
verify that the software implements the security functionality well, its primary
objective is to verify that the business functionality is implemented in a secure
manner. A typical security testing exercise follows a risk-based approach, where
the testers use fault injection techniques to verify that the software hasn’t made any
incorrect assumptions that might compromise the overall security of the system.

Security Engineering 35

The processes described above (security requirements, threat model, security
architecture review, security code review, security testing) form a minimal set
of security activities for software security assurance, but by no means a com-
prehensive one. For an enterprise to integrate security as an integral part of its
development culture a lot of other aspects like user education, training, continu-
ous research and so on need to be addressed. Also, any process that cannot be
measured for its effectiveness is rendered ineffective; hence the processes related
to software security assurance measurement are also necessary. These include
security metrics identification, collection and so on. Different organizations fol-
low different software development methodologies, such as waterfall, iterative,
agile methods and so on. This section has tried to provide an indicative list of
baseline security activities that can be adapted and used with any development
methodology that the organization may choose to go with. Similarly, different
security-enhanced process methods provide different techniques to carry out these
activities; the interested reader is referred to [6] for a detailed coverage of the state
of the art in software security assurance and security in the software development
lifecycle.

2.4 Important Security Engineering Guidelines and Resources
2.4.1 Security Requirements

Security requirements come from different sources, which include business peo-
ple, policies, regulations and so on. Capturing good requirements is a difficult
task, and capturing good security requirements a much harder one. A good secu-
rity requirements specification needs the requirements specifier to be aware of the
threat environment of the target application, regulatory compliance requirements
to be met, security policies of the organization, security classification of the infor-
mation dealt with by the applications, business needs, user constraints, knowledge
of evolving security vulnerabilities and so on. Some of the common reasons why
security requirements engineering is difficult include:

e Stakeholders are not good at specifying security nonfunctional requirements
and assume they are in place, developed by the software vendor.

e Security is considered as an afterthought, as it is perceived to constrain the
performance and system usability.

e Specifying different ways in which bad things could impact the system if they
happen needs creativity, experience and an abuser’s mindset. It is very difficult
to specify what a system should not do or protect from.

e The available requirements engineering process focuses more on functional
requirements, not on security.

36 Distributed Systems Security: Issues, Processes and Solutions

These reasons necessitate multiple specialized roles to be included as part of the
security requirements capturing process, including: stakeholders, users, managers,
developers, testers, security engineers, risk analysts, security auditors and so on.

There are two types of security requirement. The first one is about security
functional requirements like authentication, access control and so on. The second
is about nonfunctional requirements, which are often constraints on the system,
expressed as negative requirements.

Security mechanisms are often confused with security requirements and as a
result we commonly see security mechanisms specification in place of security
requirements. There are several dimensions in which the security requirements
of an information system can be analyzed. Common criteria provide a good ref-
erence to the security functional requirements of applications. Similarly, Federal
Information Processing Standards (FIPS) 200 [14] describes minimum security
requirements for Federal information and information systems. Unlike common
criteria, FIPS 200 covers security areas including operational, technical and man-
agement aspects and is a very useful set of references for security requirements.
Other good sets of references for security requirements engineering include the
columns from Firesmith [15]. Some of the high-level technical security functional
requirements areas include:

Identification — how a system recognizes the entities (humans/systems) inter-
acting with it.

Authentication — how a system validates the identity of entities.

Authorization — what privileges are to be provided to an entity interacting with
a system?

Nonrepudiation — how a system prevents entities from repudiating their inter-
actions with it.

Integrity — how a system protects information from intentional or unintentional
modification/tampering.

Auditing — a facility by which a system allows auditors to see the status of the
security controls in place.

Privacy — how a system prevents the unauthorized disclosure of sensitive infor-
mation.

Availability — how a system protects itself from intentional disruptions to ser-
vice so that it is available to users when they need it.

Security nonfunctional requirements are often constraints on the software sys-
tem, expressed as negative requirements (e.g. the system must not be vulnerable
to injection-based attacks) which are not testable until they are mapped as positive
functional requirements (e.g. the system must have a proper input validation strat-
egy to restrict, deny and sanitize all forms of input to prevent injection attacks).

Security requirements engineering is an active research area and several inno-
vative methods are proposed in the literature as to how security requirements can

Security Engineering 37

be best elicited, analyzed and captured. These include the use of misuse or abuse
cases, attack trees, threat models, risk-based approaches, security use cases and so
on. While some of them are very useful in identifying the security threats, others
are useful in capturing the security requirements of the system. Please see [6] for
more details.

2.4.2 Architecture and Design

Architecture and design helps map the requirements to the components of the
application. Identification and prioritization of threats (as part of the threat model
process) to the application in the target environment and a critical security review
of the application architecture can increase the likelihood of identifying possible
vulnerabilities early in the SDLC, when they are introduced. This greatly reduces
vulnerabilities due to weak architecture and design choices.

A standardized set of security design principles and security architecture patterns
will help in implementing proven security best practices. Similarly, during this
phase, a critical review of the security implications of integrating any third-party
products will help in detecting possible vulnerabilities in the application, and
hence provide an opportunity to address them right at beginning.

Security design principles are well covered in several of the books and articles
published on this subject. While the following subsections mention a very few
well-known security principles, there are many others, such as economy of mech-
anism, reluctance to trust, securing the weakest link, complete mediation and so
on. A detailed coverage of all these security design principles is out of the scope
of this book; interested readers may refer to [3, 5, 6].

2.4.2.1 Principle of Least Privilege

This principle advocates the assignment of only a minimal required set of rights
(privileges) [3, 5] to a subject that requests access to a resource. This helps in
reducing the intentional or unintentional damage that can be caused to the resource
in case of an attack. For example, for an application that just needs to read the data
from database tables, it is sufficient for the application to be granted read-only
access to the requisite tables, rather than read/write. Implementing this principle
often requires a very granular definition of privileges and permissions.

2.4.2.2 Principle of Separation of Privilege

This principle [3, 5] states that a system should not allow access to resources
based upon a single condition. Before allowing access, the system should ensure
multiple conditions are met. This means the system should be abstracted into
different components, where each component requires different conditions to be

38 Distributed Systems Security: Issues, Processes and Solutions

met. This principle indirectly ensures accountability, as the system requires mul-
tiple conditions (assuming each is owned by a different subject) to be met. This
principle also localizes the damage arising from a vulnerability to a small portion
of the system, while other components that require different conditions can still
function.

2.4.2.3 Defence in Depth

The key idea behind this principle is to have multiple redundant defence mech-
anisms [3, S]spread across different layers of the system architecture. This helps
in enhanced security as the attackers have to circumvent multiple defence mecha-
nisms to break into the system. Having varied security mechanisms across different
layers can further strengthen the protection, as it means the attacker has to break
the controls not only at multiple layers, but of different mechanisms altogether.
Defence in depth promotes redundant security controls and avoids single points
of failure.

2.4.2.4 Fail Securely

This principle [3, 5] requires the system to go into a default secure state when it
fails. On failure, the system should immediately move itself into a secure condition
and should not leak any sensitive information that an attacker could potentially
misuse. On failure, attackers should not be given access to unauthorized resources.

2.4.3 Secure Coding

Code review from a security perspective provides the best gate by which most
security bugs can be detected before testing. However, code review is a daunting
job that requires huge manual efforts, given the size of the code base of current
enterprise applications. Secure coding guidelines and a checklist prepared based
on them form the most critical key factor for successful security code review.
Recently, security as part of code review has been gaining popularity and plenty
of secure coding guidelines have been getting published. Microsoft has released
a very comprehensive and useful set of secure coding guidelines for its popular
.NET languages [11]. Similarly, CERT [16] started an initiative to compile secure
coding practices for C4++ and Java environments. C++ guidelines have been
published and a preliminary version of the secure Java coding guidelines is avail-
able. Sun [17] has also published a minimum set of security coding guidelines
for the Java environment, though it has not been updated in recent years. Fur-
thermore, there are a couple of popular books [18] on secure coding guidelines
which deserve a place on every developer’s bookshelf.

While a manual security code review is the best method from a security assur-
ance point of view, with the increased complexity and the huge code base of the

Security Engineering 39

current enterprise systems, it is very laborious and often not a practical idea for
many organizations. Security code reviews can be well supported through the use
of automated static code analyzer tools. A tool can never be a replacement for the
human brain; however, security code review tools help in improving productivity
by making non-security experts be productive in security code reviews. Also, the
tool usage helps non-experts to learn the security bugs over time and eventually
to become experts. Today, more mature static security code analyzers [19] that
accurately detect security defects with minimum false positives are available com-
mercially. However, they are far from human perfection and are not suitable to
detect all possible security vulnerabilities. A general recommended best practice
is to use a combination of both manual and tool-based techniques. Use the auto-
mated tool-based scanning first to identify critical sections that need a manual
code review. [19] provides references to plenty of security code analyzers that
are available both commercially and from the open-source community.

2.4.4 Security Testing

Testing the security of a system is the last gate through which to detect any pos-
sible security vulnerabilities before production. There are several sorts of security
testing technique in use today, of which black-box security testing (or vulnerability
assessment) is the most commonly used. The black-box security testing technique
provides an attacker’s view of the application to the testers, and the idea is to be
innovative in how the system can be compromised on its security objectives. The
most typical practice is to feed insecure payloads to the application and analyze
the response to detect any possible bugs. Usually, testers maintain a list of known
security vulnerabilities and the insecure payloads for each. To get control over the
data being transacted with the application, the testers use a wide variety of tools,
which include proxies, special plug-ins to the browsers that give more control
in editing the user input inline and so on. There is also a new breed of auto-
mated vulnerability assessment tool that is available both commercially and from
open-source communities, which helps in automating the security testing [19].

While the security engineering support tools (secure static code analyzers, vul-
nerability scanners [20]) help in improving the productivity of the testers in
detecting security bugs, they all suffer from false positives (something the tools
identify as a security problem, but which in reality is not a bug). The security
tools market is evolving and more mature products have started coming up. [20]
provides references to some of the popular commercial and open-source web
application vulnerability scanning tools.

2.5 Conclusion

Defective software causes several billions of US dollars’ worth of financial losses
every year across the globe. Fixing a security bug only after a vulnerability has

40 Distributed Systems Security: Issues, Processes and Solutions

been reported and/or exploited is the least desirable situation and is often very
expensive in terms of financial loss and brand loss. Organizations are increas-
ingly realizing that it is much more cost-effective if the security vulnerabilities
can be prevented from getting in the software in the first place. Finding and fix-
ing security vulnerabilities in the development phase is the best possible way of
addressing security. Security engineering [23] as a subject is essentially about the
activities involved in engineering a software application that is secure and reli-
able and has safeguards built in against security vulnerabilities. In this chapter,
different security-aware software development lifecycle process models and pro-
cesses have been discussed, including SSE-CMM, Microsoft SDL and CLASP.
A core minimal set of security processes to be followed at different stages of the
software development lifecycle and some important guidelines on these processes
have been described.

References

[1] National Cyber Security Division, Department of Homeland Security (DHS), http://www.
dhs.gov/xabout/structure/editorial_0839.shtm.

[2] Systems Security Engineering Capability Maturity Model (SSE-CMM), Model Description
Document, version 3.0, July 15, 2003, http://www.sse-cmm.org/index.html.

[3] Dan, G.The CLASP Application Security Process, Secure Software Inc.

[4] Davis, N. Secure Software Development Lifecycle Processes: a Technology Scouting Report,
Noopur Davis, CMU Technical Note CMU/SEI-2005-TN-024, Software Engineering Institute,
2005.

[5] Build Security In at https://buildsecurityin.us-cert.gov/.

[6] Goertzel, K.M. (2007) Software Security Assurance — State of the art report (SOAR), July 31,
2007, Joint endeavor by IATAC with DACS. 392 pages. A report by Information Assurance
Technology Analysis Center (IATAC), an Information Analysis Center within the Defense
Technical Information Center (DTIC), DoD, USA.

[7] Security in the Software Lifecycle, Making Software Development Processes — and Software
Produced by Them — More Secure, DRAFT Version 1.2 - August 2006, Department of
Homeland Security, accessible https://buildsecurityin.us-cert.gov/daisy/bsi/87-BSL.html.

[8] Lipner, S. and Howard, M. The Trustworthy Computing Security Development Lifecycle,
Microsoft Corporation, 2005.

[9] Software Security — Building Security, Gary McGraw. Addison Wesley Professional, January
23, 2006, ISBN-10: 0-321-35670-5

[10] Common Criteria for Information Technology Security Evaluation, Part 2: Security func-
tional components, September 2006, Version 3.1, Revision 1, accessible http://www.
commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R2.pdf.

[11] Patterns and Practices Security Engineering Index, at http://msdn.microsoft.com/hi-in/library/
ms998404(en-us).aspx

[12] Department of Homeland Security, http://www.dhs.gov/index.shtm.

[13] Software Engineering Institute, www.sei.cmu.edu/.

[14] Minimum Security Requirements for Federal Information and Information Systems, FIPS 200,
NIST, accessible http://csrc.nist.gov/publications/PubsFIPS.html.

[15] Firesmith, D.G. (2003) Engineering security requirements. Journal of Object Technology,
2 (1):53-68.

Security Engineering 41

[16]
[17]

(18]
[19]
[20]

(21]

(22]

(23]

CERT’s secure coding initiative, http://www.cert.org/secure-coding/.

Secure coding guidelines for the Java Programming Language, version 2.0, http://java.sun.
com/security/seccodeguide.html.

Howard M. and LBlanc, D. Writing Secure Code’, 2nd edn, Microsoft Press, Paperback, 2nd
edition, Published December 2002.

Source Code Static Analyzers list at http://samate.nist.gov/index.php/Source_Code_Security_
Analyzers.

Web Application Vulnerability Scanners list at http://samate.nist.gov/index.php/Web_
Application_Vulnerability_Scanners.

Security Considerations in the Information System Development Lifecycle, NIST Spe-
cial publication 800-64, Revl, accessible http://csrc.nist.gov/publications/nistpubs/800-64-
Rev2/SP800-64-Revision2.pdf.

The Economic Impacts of Inadequate Infrastructure for Software Testing, http://www.nist.gov/
director/prog-ofc/report02-3.pdf

Open Web Application Security Project (OWASP), http://www.owasp.org.

3

Common Security Issues
and Technologies

3.1 Security Issues
3.1.1 Authentication

The process of ensuring that the individual is indeed the person who he/she claims
to be is crucial in any computing scenario. This process is called authentication.
Authentication is a fundamental step, required before allowing any person/entity
to carry out an operation on a computer or to access any part of a system. The
person, technically termed as the principal, usually interacts with the system by
providing a secret or a piece of information which the principal alone knows or
is able to generate.

3.1.2 Authorization

A common security need is to provide different levels of access (e.g. deny/permit)
to different parts of or operations in a computing system. This need is termed
authorization. The type of access is dictated by the identity of the person/entity
needing the access, and the kind of operation or the system part needing to be
accessed. The access control can be enforced in many forms, including by manda-
tory access control, role-based access control and discretionary access control. We
shall explain each of these in the following subsections.

3.1.2.1 Discretionary Access Control

Usually different principals need to be provided different levels of access for
the same component; this is facilitated by capturing different privileges and

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan
and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

44 Distributed Systems Security: Issues, Processes and Solutions

permissions for different principals. A common manifestation of such permis-
sions is sometimes extended to groups of individuals too. Such principal-focused
access control is termed discretionary access control. This is enforced by attaching
access-control lists (ACLs) with each principal. ACLs are typically maintained in
databases or in file systems.

3.1.2.2 Role-Based Access Control

Typical enterprise users usually perform a specific role at any point of time.
Further, the access to any operation or any system is usually dependent upon the
role of the principal. For example, any principal in the role of an administrator
needs a different level of access to regular users. Such access-control mechanisms,
where access is based on the role of the principal, are termed role-based access
control (RBAC). RBAC models require maintenance of the list of roles, and
mappings from a role to a group of users.

3.1.2.3 Mandatory Access Control

In many access-control scenarios it is necessary to provide access to resources
based on certain discrete levels associated with the principal. The level is also
associated with resources. If the principal’s level is higher than the level of the
resource, access is granted. This kind of access control is termed mandatory access
control (MAC). This is simpler to enforce than RBAC, as we do not need to keep
detailed ACLs. Only a hierarchy of access control levels need be maintained.

3.1.3 Data Integrity

In the case of online systems, it is necessary to make sure that during transmis-
sion from one location to another, a piece of data arrives at the target destination
without having been tampered with. It needs to be ensured that the arrived data
is correct, valid, sound and in line with the sender’s expectations. This require-
ment, usually termed as data integrity, is key in any online transaction. It could
be prevented from being achieved due to multiple factors, including deliberate
tampering in transit, transmission errors, viruses or even problems caused by
natural disasters. Common techniques to achieve data integrity include message
authentication codes (MAC) and digital signatures.

3.1.4 Confidentiality

The most important requirement in the case of business transactions, namely
confidentiality, refers to the need to restrict access to any information to authorized
persons only, and to prevent others from having access to that information. Breach
of confidentiality must be avoided to ensure that unauthorized personnel do not

Common Security Issues and Technologies 45

access data. For example, it is important that we do not say our passwords out
loudwhen we speak on a phone, or transmit passwords via any written or online
medium.

Specifically, it is important that, even though it might be theoretically possible
for unauthorized persons to get access to data, this is made as difficult as possible.
The aim of encryption techniques is precisely to achieve this.

3.1.5 Availability

Any piece of information must be available to authorized users when they need it.
This requirement of availability states that systems be architected so that informa-
tion is not denied to authorized users for any reason. Availability could sometimes
be thwarted due to physical or communication factors like disk crash or improper
communication channels. However, from an attack perspective, the typical hin-
drances to availability of a service occur in the form of the popular attacks, termed
as denial of service (DOS) attacks.

3.1.5.1 Denial of Service Attacks

DOS attacks are specific attacks on a network or a computational resource,
designed to make that network/resource unavailable. These DOS attacks are typ-
ically carried out via exploitation of vulnerabilities in a piece of software or in
a network protocol. Hence, protocol and software designers need to constantly
innovate and release newer versions to plug the gaps so that DOS attacks are
minimized. In fact, in later chapters, we shall study detailed versions of the dif-
ferent DOS attacks at host, infrastructure, application and service layers. Typical
DOS attacks aim at making a resource unavailable by flooding the system with
multiple requests so that no more slots are available for legitimate consumers.
Sometimes, this can even be caused by software, termed as malware, which is
specifically designed to cause loss of availability, and cannot be trusted.

3.1.6 Trust

‘It takes years of hard work to establish trust but only a few seconds of madness to destroy it.”

The maxim ‘Trust then verify’ should be applied to distributed systems.

Trust has always been one of the most significant influences on customer confi-
dence in services, systems, products and brands. Research has shown that trust in
brands or companies often has a direct correlation to customer loyalty and reten-
tion. Trust begets customer loyalty. Consumers who have a high level of trust in
their bank are more likely to perform a wider variety of more complicated online

46 Distributed Systems Security: Issues, Processes and Solutions

banking tasks, such as automated bill payment or applying for new products or
services.

Surveys have revealed that consumers with a high level of trust in their primary
bank are loyal — they aren’t seeking services from other institutions, with a major-
ity not having visited another bank’s Web site. However, the studies also clearly
reveal most consumers with high trust in their primary bank say they would cease
all online services with their current bank in the event of a single privacy breach.
That could translate into the potential loss of millions of customers, making even
a single breach a very costly problem for banks. Although gaining and maintain-
ing consumer trust is challenging, it must be a priority. Building consumer trust
in the Web channel will impact customer acquisition and retention rates.

People often tend to be transparent in a known ‘circle of trust’. It is well
documented that people share their passwords, ATM PINs, e-mails and so on
among their perceived ‘circle of trust’. However it has always been difficult for
systems to be designed for this ‘perceived trust’.

3.1.6.1 Definition of Trust
As per the ITU-T X.509 [1], Section 3.3.54, trust is defined as follows:

‘Generally an entity can be said to “trust” a second entity when the first entity makes the
assumption that the second entity will behave exactly as the first entity expects.’

The following principles are generally impertinent for trust modeling in security
architecture.

(1) Trust is a key attribute of security architecture.

(2) The security architecture should ensure a trust level that is in the comfort
zone of most of the users of the system.

(3) Trustis also a mirror of security as a whole. It is a trade-off between balancing
of risk and efforts needed to mitigate that risk. There must always be a
symmetric view of trust.

(4) Trust is the enabling of confidence that something will or will not occur in a
predictable and defined manner. This could extend to other quality-of-service
attributes like availability, reliability and so on as well.

3.1.7 Privacy

Privacy, a broader issue than confidentiality, is about the provision for any person,
or any piece of data, to keep information about themselves from others, revealing
selectively. Privacy issues are sweeping the information-security landscape, as
individuals demand accountability from corporations, organizations and others
that handle their data. In today’s world of outsourcing and off-shoring, customers
are very wary about privacy of their personal data and enterprises are investing a

Common Security Issues and Technologies 47

lot to ensure that their customers continue to trust them. Consumer surveys have
frequently shown that the Number 1 reported answer is to limit the sharing of
personal information with third parties [4].

Recently a lot of targeted e-mail phishing scams have been reported. It is not
surprising that a survey points [4] to identity theft as the biggest customer concern
in the event of a breach or violation of personal information. The recent contro-
versies around loss of personal information like social security details and credit
card information have also been linked to antisocial activities. For example, in
2004, an unscrupulous employee at AOL sold approximately 92 million private
customer e-mail addresses to a spammer marketing an offshore gambling Web site
[2]. In response to such high-profile exploits, the collection and management of
private data is becoming increasingly regulated. This has led to the establishment
of new laws to ensure information security. As an information-security profes-
sional, it’s important that you have a basic understanding of data privacy laws and
know the legal requirements your organization faces if it enters a line of business
regulated by these laws.

The Health Insurance Portability and Accountability Act (HIPAA) contains a
substantial Privacy Rule that affects organizations which process medical records
on individual citizens. HIPAA’s ‘covered entities’ include health-care providers,
health-care clearing houses and health-care plans.

The HIPAA Privacy Rule requires covered entities to inform patients about
their privacy rights, train employees in the handling of private information, adopt
and implement appropriate privacy practices and provide appropriate security for
patient records.

The most recent addition to privacy law in the United States is the Gramm-
Leach-Bliley Act of 1999 (GLBA [3]). Aimed at financial institutions, this law
contains a number of specific actions that regulate how covered organizations
may handle private financial information, the safeguards they must put in place
to protect that information and prohibitions against their gaining such information
under false pretenses.

Data privacy is a complex and rapidly-changing field. The legal landscape sur-
rounding it is fluid and subject to new legislation and interpretation by government
agencies and the courts. Organizations creating, managing and using the Internet
will often need to state their privacy policies and require that incoming requests
make claims about the senders’ adherence to these policies. Basic privacy issues
will be addressed by providing privacy statements within the service policy. More
sophisticated scenarios, involving delegation and authorization, will be covered
in specifications specific to those scenarios.

A customer could state a set of ‘privacy preferences’, which could set the limits
of acceptability and the underlying contexts. The customer could also decide the
parameters allowing applications dealing with their personal information to act
on their behalf.

48 Distributed Systems Security: Issues, Processes and Solutions

3.1.8 Identity Management

Identity management is a process in which every person or resource is provided
with unique identifier credentials, which are used to identify that entity uniquely.
Identity management is used to control access to any system/resource via the
associated user rights and restrictions of the established identity.

Examples in our daily life of identity management systems could include our
citizenship cards, driving licenses or passports. When a citizen enters a country
displaying their passport, by virtue of the citizenship rights associated with that
person’s identity, they can enter that country. The passport also gives them access
to the resources of the country, and to perform certain operations, for example
voting.

Identity management systems are important in today’s enterprise context in
the management of large numbers of users/employees. These systems automate
a large number of tasks, like password synchronization, creation of user identi-
ties, deletion of user identities, password resetting and overall management of
the identity life cycle of users. A key benefit of such systems is that when
new applications are provisioned in an enterprise, they can leverage the iden-
tity management system data, without the need for specialized data for the new
application.

Some specialized identity management system functionalities include a single
sign-on usability imperative, wherein a user need not log in multiple times when
invoking multiple applications and can reuse the logged-in status of a previous
application in the same session. Single sign-on is a key imperative for enterprise
usage of identity management solutions.

3.2 Common Security Techniques
3.2.1 Encryption

An important technique that is employed for the purpose of achieving confidential-
ity is encryption. The notion of encryption is based on the idea of transforming a
piece of text (plaintext) into an encoded text (ciphertext), such that it is extremely
difficult to guess the original plaintext even if someone gets access to the cipher-
text. Two types of encryption mechanism exist: symmetric and asymmetric (also
known as public key cryptography).

Symmetric encryption uses a single secret key to transform plaintext into an
unreadable message. In order to retransform the unreadable message back into
plaintext, people need to exchange the secret key between them. The secrecy of
key exchange has to be ensured if we want to achieve confidentiality.

Asymmetric encryption, on the other hand, uses a pair of keys, one the private
key and the other the public key. The private key is a secret known only to the
owner, and the public key is known to all. A message encrypted with the owner’s
public key can only be decrypted with the owner’s private key and in this way

Common Security Issues and Technologies 49

confidentiality is ensured. A message encrypted with the owner’s private key can
only be decrypted with the owner’s public key, thereby providing a mechanism
for preserving integrity.

3.2.2 Digital Signatures and Message Authentication Codes

A key requirement in enterprise security is that of integrity. Message authen-
tication codes (MAC) and digital signatures have emerged as the forerunner
technologies to ensure message integrity. The process of digitally signing a doc-
ument begins with the taking of a mathematical summary (called a hash code or
digest). This digest is a uniquely-identifying digital fingerprint of the document.
If even a single bit of the check changes, the hash code will dramatically change.
The next step in creating a digital signature is to sign the hash code with a key;
in the case of MAC it is the symmetric shared key, while in a digital signature it
is the private key. This signed hash code is then appended to the document. This
becomes the MAC/digital signature of the document.

The recipient of the message can verify the hash code of the sender, using
the shared key in a MAC or the sender’s public key in a digital signature. At
the same time, a new hash code can be created from the received document
and compared with the original signed hash code. If the hash codes match then
the recipient has verified that the document has not been altered. In a digital
signature, the recipient also knows that only a particular sender could have sent
the document because only they have the private key that signed the original
hash code.

3.2.3 Authentication Mechanisms

Various techniques have evolved over the years for persons (principals) to authen-
ticate with systems. Some of the common techniques that have emerged as popular
mechanisms include:

(1) password-based mechanisms
(2) certificate-based mechanisms
(3) biometrics-based mechanisms
(4) smart cards-based mechanisms.

3.2.3.1 Passwords-Based Mechanisms

A popular form of authentication, the password refers to a secret value uniquely
associated with the principal. When the principal enters the password to gain
access to a system, the system verifies the equality of the entered password with
the stored password, and accordingly authenticates. While user authentication
based on passwords is a common technique, the path between the principal and

50 Distributed Systems Security: Issues, Processes and Solutions

the authentication system needs to be secure to ensure that the shared secret,
that is, the password, does not get revealed. Some of the best practices to avoid
common issues like password stealing/hacking include changing of passwords at
regular intervals and inclusion of a combination of numeric, alphabet and special
characters as part of a password.

3.2.3.2 Certificate-Based Mechanisms

A popular form of authentication on the Internet. A principal is uniquely identified
by a digital certificate in many online systems. A digital certificate contains the
unique public key associated with the principal, information on an authority which
certifies the public key, the dates of validity of the certificate and a signature
generated by the issuer.

3.2.3.3 Biometrics-Based Mechanisms

A biometrics-based authentication mechanism is based on a physical aspect of a
principal that can be used to uniquely identify that person. In most cases, it is
either the retinal characteristics or the fingerprints of the person. The basic premise
here is that the physical characteristic is unique to the principal. However, the
issue in such a system is that if a hacker somehow gets access to the physical
part (finger or eye), access to the system cannot be stopped, because generating
a new finger or new eye is difficult.

3.2.3.4 Smart Cards-Based Mechanisms

A popular form of authentication used by banks. A principal is uniquely identified
by the information encoded physically on a card with an embedded microproces-
sor. These cards are now very often used in ATMs and online kiosks. The risk in
a smart cards-based mechanism is the necessity to store the physical card securely
in a safe place.

3.2.4 Public Key Infrastructure (PKI)

The infrastructure to support the ecosystem of managing public key systems is
paramount to making a scalable secure ecosystem of broad-based public authen-
tication systems. The infrastructure to manage public keys is based on the notion
of digital certificates for validating users. While the need for a digital certifi-
cate in ensuring authentication is not doubted, the real issue is the problem of
evolving a scalable mechanism for managing the proliferation of public digital
certificates. The notion of a certification authority (CA) comes in handy when
it comes to managing the life cycle of digital certificates, right from issue to
revocation.

Common Security Issues and Technologies 51

3.24.1 Components of PKI

A public key infrastructure needs diverse infrastructural elements to cover the
diverse services which manage the life cycle of the public keys. Some of the key
elements of the PKI infrastructure include the CA, registration authorities (RA)
and repositories.

Certification authority

The role of a CA is to sign the digital certificates and make available their public
keys to all users. A common mode of accessing public keys of popular CAs is
via Web browsers, which typically contain the preconfigured certificates of many
common trusted CAs.

CAs issue certificates with different valid periods. Each CA periodically main-
tains a certification revocation list (CRL), which manages certificates that have
been revoked before the expiry of their validity. Clients can enquire into the
validity of such URLs by consulting the CRLs.

Registration authority
A registration authority in a PKI system is responsible for verifying that a cer-
tificate requester has a valid reason to have a digital certificate, as well as other
attributes like physical address and so on. It then follows an established proce-
dure for issuing the certificate, like sending a one-time PIN to the physical mail
address of the requester.

Repositories

A repository is an online, publicly-accessible system for storing and retrieving
digital certificates and other information relevant to certificates, such as CRLs. In
effect, a certificate is published by putting it in a repository. Typically repositories
use some form of directories, such as ‘lightweight’ directory access protocol
(LDAP) directories or X.500 directories.

3.2.4.2 Services of PKI

The key services in the context of security for public systems, typically govern-
ment systems, provided by PKI cover the whole range of tasks for managing
digital certificates. The important services among them include:

(1) Issuing of certificates: A key function of PKI is to combine physical and other
verification mechanisms to ascertain the identities of certificate requestors, and
issue the certificates.

(2) Revoking of certificates: To manage the proliferation of digital certificates, by
using CRLs the infrastructure should be able to revoke public key certificates
when required.

52 Distributed Systems Security: Issues, Processes and Solutions

(3) Governance: The PKI infrastructure, including the constituent RAs, CAs, and
so on, should establish the policies that govern the issuance and revocation
of certificates.

(4) Archival: The infrastructure should archive the information needed to validate
digital certificates at any date.

3.2.5 Models of Trust

Various models have evolved over the years for establishing trust in distributed
systems. Some key models are explained below.

3.2.5.1 Implicit Trust Model

In this trust model, there are no explicit mechanisms for validation of credentials.
An example is an e-mail originating from a sender. It is assumed in most cases by
the recipient, particularly in a known domain, to have been actually sent by the
apparent sender. This exhibits an implicit trust model. In today’s digitally secure
e-mail world there is a lot of spam and fraud, and hence this model does not fit in
completely in a business realm. It also depends on the criticality of the underlying
data. This trust model is also known as an assumptive trust model. This model is
unobtrusive and inexpensive but is also prone to higher risks and susceptible to
frauds. The trust relationships that are formed are complex and governed by a lot
of human and technology factors.

3.2.5.2 Explicit Trust Model

This model of trust is used when we perform an entity confirmation in isolation
without dependence on any other entity or preexisting credentials. This is the
most commonly used trust model in the industry. The biggest advantage of an
explicit trust model is that the authentication of the credentials is done using
self-reliant mechanisms without any delegation. This leads to a higher degree of
trust, with every entity associated with the trust mechanism. This trust model is
required to reduce the liability of organizations and also to comply with regulatory
policies.

The most common examples of explicit trust models are password-based authen-
tication or even the PKI architectures. The password authentication is controlled
by the host system and may have multiple underlying authentication algorithms.
In a typical PKI architecture, the CA initiates all trust relationships. The CA is
the common trust entity that performs all original entity authentications and the
generation of credentials that are bound to specific entities. Though this model
provides a high level of trust, it requires more effort and is traditionally expen-
sive. However, this model is a prerequisite for financial transactions like payment
gateways and e-commerce.

Common Security Issues and Technologies 53

3.2.5.3 Intermediary Trust Model

This model of trust is used when trust or ‘proof of trust’ is transmitted through
intermediaries. It is commonly used in peer-to-peer and distributed systems.

An example would be the following:

You are throwing a party and you invite friend B through a direct trust model.
Friend B in turn comes with his friend C. If you trust friend C, it would mean
you have switched to an intermediary trust model. The intermediary trust model
can be complex and extremely contextual. There can ‘n’ levels associated with an
intermediary trust model. It also involves selective associative trust models based
on certain policies for certain contexts.

Enterprises today use an intermediary trust model within their own boundaries,
but use it selectively with business partners and the extended enterprise.

3.2.6 Firewalls

As we saw in the section on the issue of availability, it is important that systems
be rescued from diverse threats to availability, including DOS attacks, malware
attacks and other such factors leading to loss of availability.

A firewall is a specialized software/hardware which inspects any network access
made to a private network. It is deployed to regulate the flow of traffic from a
public network to a private network. In this context, the regulation of the traffic
happens via certain rules, which are configured in the firewall.

Firewalls can be of multiple forms and multiple techniques. The most common
form of firewall includes those at the network level, which work by packet filter-
ing, These packet-filtering firewalls inspect every incoming packet and, depending
upon the fields, reject or accept packets to go through. These decisions are made
based on filtering rules.

Likewise, proxy firewalls are meant to control access to external sites by pro-
viding a layer between the private network and the external network, in some
cases helping optimize the performance of the network and Internet access by
prefetching.

Yet another category of firewall includes application-level firewalls, which are
aware of the needs of a consuming application. Depending upon the need of an
internal application, we can configure more application-specific filter rules; further,
these application firewalls work at the application layer of the network stack.

3.3 Conclusion

In this chapter, we have summarized some key security issues and concerns of
interest to distributed system building. We shall elucidate detailed layer-specific
issues and concerns in later chapters. This chapter is just meant to provide a
heads-up on the basic relevant concepts, with more details in the later chapters.

54 Distributed Systems Security: Issues, Processes and Solutions

Later, we shall explore some typical solutions and solution mechanisms in
distributed systems to enable realization of architectures addressing the key issues
and concerns outlined in this chapter.

References

[1] ITU-T Recommendation X.509, ISO/IEC 9594-8: Information Technology — Open Systems
Interconnection — The Directory: Public-Key and Attribute Certificate Frameworks, accessible
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43793.

[2] Oates J. (2005) AOL Man Pleads Guilty to Selling 92m Email Addies, The Register,
http://www.theregister.co.uk/2005/02/07/aol_email_theft/.

[3] Graham-Leach-Biley Act, details at http://www.sec.state.ma.us/sct/sctgbla/gblaidx.htm.

[4] (2005) Privacy Trust Survey for Online Banking, details at http://findarticles.com/p/articles/
mi_mOEIN/is_2005_April_5/ai_n13506021 .

4

Host-Level Threats
and Vulnerabilities

4.1 Background

Whether in a traditional n-tier system or a parallel computing infrastructure such
as grid or cluster, threats to host (server as well as client) in a distributed system
are numerous. These threats arise due to either mobile codes (both trusted and
untrusted) that are downloaded and executed or vulnerabilities in pieces of trusted
software installed on the host that could be exploited. Figure 4.1 depicts a broad
classification of host threats.

4.1.1 Transient Code Vulnerabilities

“Transient code’ is any binary, object code or script that is mobile and executes on
a remote host. A remote host is one which executes the mobile code either inten-
tionally or accidentally. An end user on the host could inadvertently download
and execute a mobile code that has malicious intent, which could compromise
the security of the host and pose serious challenges to all other hosts on the net-
work. Attacks through Trojan horses, spyware and eavesdropping are common
in the distributed world, particularly through content or applications published on
the Internet. The need to deliver rich and intelligent content to users has forced
the networked applications such as Web browsers, e-mail clients and so on to
allow scripts to be executed, for example Java script, or an Applet or ActiveX
object. A person with malicious intent can use this scripting ability to take control
of a host or cause permanent damage to its content.

In cooperative computing environments such as grid or cluster, the host trusts
remote jobs to behave. The reality, however, is that there are jobs that spy on
the host and share confidential information about it, jobs that destroy or corrupt

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan
and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

56 Distributed Systems Security: Issues, Processes and Solutions

Host threats

gl

[r ll
Transient code Resident code
= Malware Overflow =
. Privilege
— |Eavesdropping escalation —
—| Job faults Injection attack| =

Resource
starvation

Figure 4.1 Classification of host-level threats.

content, and less seriously, jobs that hog host resources and don’t relinquish them
to other, native jobs.

4.1.2 Resident Code Vulnerabilities

‘Resident code’ is a piece of trusted software installed on the host with the knowl-
edge of the user. Resident code, however trusted, may contain some vulnerabili-
ties. Historically, most attacks have happened by exploiting these vulnerabilities.
See Figure 4.2.

4.2 Malware

Spybot, Sasser, Trojan.Spy.Win32.Logger and Stash are perhaps familiar to most
people, and security experts recognize them as the top malwares to have affected
hosts worldwide in recent times. Some malwares are Trojan horses, some are
spyware and some are worms or viruses, but all can pose a serious security threat
to hosts [1]. In the rest of this section, we briefly look at each of these types of
threat and at the vulnerability of hosts to them.

Host-Level Threats and Vulnerabilities 57

° 0

Transient code + data I
with/without malicious intent "

Resident code + data
O Host system

000

Figure 4.2 Resident and transient codes.

4.2.1 Trojan Horse

“Trojan horse’ [2] in the context of systems normally refers to a software facade
that seems genuine or innocuous, but has the potential to be destructive. Often the
victim is unaware of the fact that their system has been compromised. Unlike other
malware, such as viruses or worms, Trojan horses cannot operate autonomously.
Trojan horses typically reach the victim in the form of an attachment in an e-mail
or data in a sharable media such as a CD-ROM, a flash drive and so on, or as a
file sent through online chats/messenger or downloaded from a Web site/ftp site.
In May 2000, an e-mail message originating from East Asia, widely recognized
as ‘Love Bug’, caused havoc by flooding e-mail systems worldwide and led
to severe financial losses. This was a simple e-mail, which attracted people’s
attention through its subject line. It contained an attachment that was in vbscript.
When an unsuspecting victim opened the attachment, the script distributed itself
to others in their address book.

Trojan horses are scripted with the intention to create back doors for remote
access to the host under attack, disable the security scanner/firewall setup on the
host and prepare the host to participate in a distributed denial-of-service or even
crypto-viral attack. Attractive screen savers, catchy attachment names and games
are some of the methods that hackers have used to infect hosts. In some operating
systems, file extensions are hidden to make it easy for users to manage their
information. Often this has been exploited to infect an unsuspecting host.

4.2.2 Spyware

Spywares [3] are programs that covertly install themselves through some
back-door mechanism, including Trojan horses, and spy on a user’s private/
confidential data. Once installed, spyware also monitors the user’s access

58 Distributed Systems Security: Issues, Processes and Solutions

behaviour, collecting information and using it to make commercial gains for its
author. SearchSeekFind, ShopAtHomeSelect and Surfairy are three well-known
spywares from recent times.

4.2.3 Worms/Viruses

Unlike Trojan horses and spyware, which largely rely on social engineering
and user action, viruses and worm [4] have the ability to spread on their own.
Viruses are generally malicious in intent and are created by their authors to
replicate themselves on all executable files and macros on a host. Viruses
then rely on the users to share infected files with users on other hosts.
Michelangelo, Brain and Jerusalem are among the popular viruses that infected
many PCs/desktops in the 1990s. As systems began to network, virus authors
found an easier means to infect hosts over networks. This led to the advent of
worms. Compared to viruses, worms adopt a more active propagation technique
and use vulnerabilities in networks and hosts to infect them. Nimda, Melissa,
Sasser and Code Red are three popular worms, which caused havoc and brought
down several hosts concurrently, by exploiting the fact that systems were
networked heavily and were running software with vulnerabilities such as buffer
overflow.

4.3 Eavesdropping

In collaborative computing platforms such as grid, business users often share
their desktops and other computing resources. Some of these users are genuinely
interested in sharing their computing resources for a common cause; others have
malicious intent, and still others inappropriately handle information that passes
through their system. There are three classes of vulnerability under this cate-
gory, namely unauthorized access to confidential data, unauthorized access to
protected or privileged binaries and unauthorized tampering with computational
results (Figure 4.3). Similarly, there are jobs that users submit on the grid which
are malicious in intent. Jobs may eavesdrop into execute nodes’ protected data
and share this with the job submitter. We discuss each of these vulnerabilities in
depth in this section.

4.3.1 Unauthorized Access to Confidential Data — by Users

Consider a lengthy computation that involves analysis of critical business perfor-
mance data. Often the timeliness of the report is very crucial. Its availability within
a stipulated period could be the difference between staying competitive and losing
business. This problem makes a compelling case for a distributed solution. How-
ever, there are security challenges in implementing this as a distributed solution
in a cooperative resource-sharing platform [5].

Host-Level Threats and Vulnerabilities 59

Porous boundary

. [System configuration data] 7 .
PR — _> Resident code has access to
R unprotected mobile
fo] 7 application/job's code base,
3 Resident . % intermediate program data and
% code a final computed result
> ~ =
g 3
> Transient a ’ Mobile/transient code has
4 / code g access to unprotected system
i \ o configuration information and
s > | host user's private/confidential
—) data
s [Code base and program data]

Host system

Figure 4.3 Eavesdropping vulnerability.

Typically, in such computing environments there are schedulers, which identify
a node for job execution based on machine load and uptime. Once a node is
identified, the scheduler provisions both the executable binaries/script and the
relevant data. As the grid system does not assume any privileges on a remote
host, all the files related to this job are hosted in a folder (such as tmp) to which
every logged-on user on the system has access.

If the scheduled job runs on the host even for less than a minute, users on
the host with malicious intent have adequate time to copy sensitive data to an
alternative location. They can then examine, analyze, interpret and misuse the data
offline, and employ brute force or similar techniques against encrypted staged data.

Another serious issue may arise if staged data contains some access privilege
information such as a user ID and password or other authentication keys. This is
required if the scheduled job has to impersonate the user or use alternative cre-
dentials to access some external systems. Such access credentials, if they become
available to a user with malicious intent, can have severe security repercussions
which are difficult to trace or identify.

In summary, grid or similar jobs, typically provisioned on remote hosts for
execution along with their data, become vulnerable to attacks from users who
either own the execution host or have access to it.

In a more conventional distributed system such as a Web application, user inter-
actions are through a Web browser. The limitation of Web browsers and the HTML
language in providing a rich interface [6] has led to several innovations, such as
Applets, scripting and ActiveX controls. All these mechanisms require the Web
browser to download and execute mobile alien code on the host. This can pose
serious threats to the system, ranging from eavesdropping on private information,
through corrupting system data, to taking complete control of the system.

60 Distributed Systems Security: Issues, Processes and Solutions

Netscape introduced cookies to overcome challenges in HTTP protocol (partic-
ularly related to HTTP being stateless). Web sites use cookies to store information
on a user’s machine, so that some information about the user’s interaction with the
site is available the next time they access it. Cookies by themselves are harmless
and do not pose any security threat. However, the data available in cookies can
provide insights into the user’s browsing habits, which malicious users can use
for commercial or other gains. Cookies which store access control information
are even more dangerous. They can be accessed by a sniffer on the network, and
reused to impersonate the user and steal their identity.

4.3.2 Unauthorized Access to Protected or Privileged Binaries — by Users

In this subsection we turn our attention to issues that may arise out of inappropriate
use of job binaries.

First, a binary may actually implement some proprietary algorithm or trade
secret, and a malicious user gaining access to such a piece of code or executable
could cause an organization great losses. For example, take a rate calculator used
by an insurance firm. Apart from the service and other product features, insurance
rate/premium often provide competitive advantage to an insurance company and
any theft of this information could lead to severe losses.

Second, some binaries contain certain access privilege information, such as a
user ID/password, hardcoded in them. Merely copying such a binary and reusing it
would provide a malicious user with elevated privileges to a system. For example,
applications that connect to a database often store the database access credentials
in the code or some libraries. Malicious users can use these to gain access to
the database system. This may not only give unprecedented access to sensitive
information, but makes data manipulation/tamper a definite possibility.

Finally, malicious users may simply re-execute the binary without having any
knowledge of the data on it. If the binary happens to alter some external system,
it can perhaps make the system inconsistent and affect business. In this case, the
intent of the user is not to gain information or access to a privileged system, but
to cause inconvenience or disturbance.

To summarize, access to grid job binaries by malicious users can negatively
affect a system and is clearly a security vulnerability.

4.3.3 Unauthorized Tampering with Computational Results

Next, we look at security vulnerability in a collaborative compute platform related
to action by a malicious user. In this case, the malicious user alters the results
of a computation with the intent to corrupt or mislead the system [7]. It is rather
difficult to initiate such attacks, and they are largely dependent on the type of
application, the output it generates and the duration of the run.

Host-Level Threats and Vulnerabilities 61

Typically, such attacks are possible only if the application’s output structure
is well understood and it runs for a certain minimum duration. It is difficult to
tamper with the results of very short-lived jobs that run for less than a second.
Similarly, jobs that post their computation results directly to a centralized system
without storing them in intermediate files are difficult to tamper with. Jobs whose
source code is available, and which run for several minutes to hours and use
intermediate files to store results, are often easy targets for such attacks. Reports
show that data returned by nodes on the SETI@Home project are at times not
reliable due to tampering.

4.3.4 Unauthorized Access to Private Data — by Jobs

Earlier in this section, we discussed potential security vulnerabilities which could
be exploited by malicious users. In this subsection we focus on the issues arising
from malicious jobs.

Though grid schedulers tend to deprivilege grid jobs and let them run with
minimal privileges on the host, most hosts leave a lot of sensitive data acces-
sible to anyone with basic privileges. Potentially, the grid jobs which run on a
remote host could exploit this vulnerability to read and expose private and sen-
sitive information stored there. For instance, if not properly secured, password
shadow/cache files on the host could be used to get access to it. A host of sys-
tem configuration and other files might also be vulnerable to such attacks. See
Figure 4.4.

A//—— Porous boundary

. System configuration data

% Tran3|ent code
©° Resident) .
1) code Transient/mobile code
g eavesdropping or affecting
= Computed results] functions of another
© AN transient/mobile code.
3 L7 N Code base & program] (Particularly in a grid
s N data scenario.)

e

N
7 AN
7 N
Ve . N
L7 Transient code
7
7

[Computed results]

Code base & program] N
data

Host system

Figure 4.4 Transient code eavesdropping/affecting other code.

62 Distributed Systems Security: Issues, Processes and Solutions

While hosts are vulnerable to attacks from mobile jobs that execute on them,
equally vulnerable are other mobile jobs that execute at the same time. By default,
most grid schedulers allow more than one job to run on the host concurrently. The
number of jobs typically allowed on a host is equal to the number of CPU slots
available. This creates the possibility of sensitive information from an innocuous
job falling into the hands of a malicious one which happens to execute concur-
rently on the same host. In this case, the host facilitates the attack without being
aware of it.

4.4 Job Faults

Often with enterprise applications built on traditional three-tier architecture or
packaged applications such as SAP, Oracle and so on, the application binaries
or scripts are well known. However, in the case of ad hoc distributed computing
platforms such as grids, which may be used heavily by research departments or
engineering departments to solve computationally-intense or simply long-running
batch applications, the complete inventory of possible applications/binaries is not
available a priori. Engineers, researchers and other users write applications that
solve specific problems they are working on. These applications do not normally
undergo quality tests or certification. When scheduled to run over the grid, they
can potentially cause faults (though in this case, the faults are generated uninten-
tionally), which can bring down the entire host, along with all the applications
running on it.

In other cases, the job owners may have malicious intentions and script jobs
targeting a particular host to inject a fault that will corrupt the host or simply
cause reboot/shutdown.

This does not imply that the host alone is vulnerable to mobile jobs that run on
it. It is equally possible for the host applications and users to be harmful to the
grid applications and to inject faults that cause the grid applications to either fail
or behave inappropriately.

4.5 Resource Starvation

In the literal sense, resource starvation [8] may not be termed entirely as a security
vulnerability. However, it is important to consider it, simply because it is a con-
tentious issue when it comes to building a distributed shared computing platform
such as grid out of nondedicated compute resources such as production servers
and desktop machines. The primary objectives of production servers and desk-
top machines are different. Grid is just one of the applications of these compute
resources and in many cases it does not even feature in the top three in terms of
importance. In this context, any job/application that negatively affects the primary

Host-Level Threats and Vulnerabilities 63

objective of the resource (desktop/production servers) is more than an irritant and
is undesirable.

Grid applications tend to be resource intensive. They are either CPU-bound
or memory-bound and are written in such a way that there are hardly any syn-
chronization or other waits. Once initiated, they saturate the hosts, on which
they run completely, leaving very little behind for other applications to use. For
instance, a computational fluid dynamics application works with a large data set
consuming most of the physical memory on the host and, depending on the prob-
lem size, can run for long periods, while soaking up all available CPU slots on
the host.

In today’s enterprise, most compute resources, particularly the mid-range UNIX
and lower-end x86 servers, are very poorly utilized, and 24-hour utilization in
many cases hovers below the 10% threshold. The challenge really is to use this
spare capacity without affecting the applications/jobs already running on these
hosts. The easiest way to use this idle capacity is to augment this to an existing
grid or cluster. The resource starvation issue makes it difficult to guarantee quality
of service to both existing applications on the host (native applications) and the
grid applications. In the case of production servers which are used as grid nodes,
the response times or the throughput of the native host applications are affected
because of the computationally-intense nature of the grid jobs. Similarly, in the
case of desktop nodes, the interactive nature of the host may be in jeopardy. In
either case, resource starvation on the grid node affects the smooth operation of
the node’s primary function.

Job starvation occurs when a long-running job is ahead of the job queue, block-
ing out several reasonably smaller jobs. This kind of job starvation is more to do
with job and queue management in a grid or cluster platform and less to do with
hosts, and is not in the scope of this book.

4.6 Overflow

Buffer overflow [9] (see Figure 4.5) vulnerabilities constitute nearly half of all
vulnerabilities reported by CERT. In 2001, a worm known as Code Red exploited
over a quarter of a million systems that were on the IIS Web server. This worm
exploited the buffer overflow vulnerability that existed in the IIS implementation.
Buffer overflow is a vulnerability on the host that can lead to memory access
exceptions, predominantly left in the system due to programming oversights or
errors.

Buffers are used by software programs to store data. They typically have an
upper and a lower bound. Any location outside these bounds does not belong to the
program. Either accessing or storing data in locations outside the bounds leads to
program faults or unexpected behavior. Numerous host vulnerabilities in the past

64 Distributed Systems Security: Issues, Processes and Solutions

— A J
'l '

Buffer for Variable A Buffer for Variable B

Data about to be written to Variable A

Buffer overflow occurs

— A J
—~ ~

Buffer for Variable A Buffer for Variable B

Figure 4.5 Buffer overflow.

have arisen due to buffer overflow issues. Among the overflow vulnerabilities, the
most important are stack-based buffer overflow and heap-based buffer overflow.
These are discussed further below.

4.6.1 Stack-Based Buffer Overflow

Programs use a stack segment to store local variables and function return infor-
mation. A malicious user may manipulate inputs or bytes transferred over the
network to the program to corrupt the stack, thereby altering the behavior of the
program to suit their needs.

The first type of stack-based buffer overflow [10] threat attempts to overwrite
adjacent locations in the stack, modifying variables either intentionally or acci-
dentally. This causes erratic or incorrect program behavior, sometimes causing
the application to fail abruptly. Exploiting such vulnerabilities, it is possible for
a user with malicious intent to bring down a critical service or application on a
host. Each day security experts are identifying more and more stack-based buffer
overflow vulnerabilities and threats on the host.

The second type of stack-based buffer overflow threat modifies a function
pointer or return address to execute arbitrarily different code. Programs store
the function argument and the return location in stack frames. Program control
transfers to a location specified in the altered value when the buffer overflows.
Malicious user may carefully place the block of code they would like to execute
and smash the stack to jump to this program location.

Host-Level Threats and Vulnerabilities 65

Lower address «— Stack segment — Higher address

Buffer Function code Function Function
segment base code segment arguments
pointer instruction

pointer

Figure 4.6 A typical stack before overflow attack.

Lower address <~ Stack segment — Higher address

NOP + Exploit code New exploit New exploit
code's base code's
pointer instruction

pointer

Figure 4.7 Stack after overflow attack.

NOP-sleds and jumps to registers are common techniques used by malicious
hackers to exploit any stack buffer overflow vulnerability that may exist in a
program. See Figures 4.6 and 4.7.

4.6.2 Heap-Based Buffer Overflow

Heap-based buffer overflows are different from the stack-based buffer overflows
in the sense that the data contained in the heap are predominantly program data
allocated dynamically during the lifetime of the program’s execution and do not
contain function pointers/return location. Though stack-based buffer overflows
tend to outnumber heap-based buffer overflows, there are still a few vulnerabilities
on the host that arise due to heap overflows. For instance, the heap overflow
vulnerability in the Microsoft Telnet server is well known.

4.7 Privilege Escalation

Privilege escalation [11] is an issue related to an unauthorized user elevating their
authorization level on a host in order to perform tasks that they are not otherwise
allowed to perform. In most cases, the elevated privilege desired by malicious
users is that of root or the user equivalent of root. By elevating privilege to
that of root, a malicious user can take absolute control of the host. This can have
severe repercussions, including the host being part of distributed denial-of-service
or other similar attacks, which are difficult to trace. There are two possible types of
privilege escalation, namely horizontal privilege escalation and vertical privilege
escalation.

In the case of horizontal privilege escalation, a malicious user tries to assume
the identity of a peer in the system. The objective of the malicious user is not

66 Distributed Systems Security: Issues, Processes and Solutions

to take complete control of the machine, rather they are trying to access another
user’s private data or conceal their own identity and present themselves to others
as the compromised user.

Vertical privilege escalation occurs when a malicious user assumes the identity
of a system administrator (root in Linux or LocalSystem account in Windows).
This allows the malicious user to access all information stored on the host and
perform tasks which are otherwise not permissible.

Buffer overflows are often the easiest way to achieve privilege escalation. Hack-
ers have exploited buffer overflows more than anything else to gain root privileges
on a host, as is apparent from the CERT vulnerability reports [12].

4.8 Injection Attacks

Injection attacks are attempts by malicious hackers to exploit an application vul-
nerability that does not handle user inputs securely. Injection attacks generally use
an executable code/script to intrude into a host system. There are several ways
to inject malicious code through user inputs. Shell/PHP injection [13] and SQL
injection [14] will be explored briefly in this section.

4.8.1 Shell/PHP Injection

In this type of injection attack, an execute shell command or script is fed as
input to a field, with the knowledge that the text will form part of an executable
command string.

Consider the following ‘C’ code:

sprintf (buffer, "grep {-}i %s x.txt", argv([l]);
/* form cmd string */
system(buffer); /* execute command string */

Running the above executable passing an argument formatted as "search-
string; init 6; echo " would cause the system to reboot, provided the script
is running with root privilege. As is evident from the example, it is possible to run
arbitrarily any command on the host. The entire host will be under the attacker’s
control if the vulnerable application is running with root privileges.

PHP/ASP injection commonly refers to such a code injection vulnerability on
applications built over a server-side scripting engine such as PHP or ASP.

4.8.2 SQL Injection

Similar to the shell injection, an SQL injection attack exploits vulnerabilities in
applications involving databases. In this type of attack, a malicious user uses

Host-Level Threats and Vulnerabilities 67

an insecure application input field to inject a harmful query string or retrieve
unauthorized data. The injection attack is best illustrated with an example. Con-
sider an input field that accepts an authentication code and an ID for access
control, and internally uses a query similar to this:

"SELECT * FROM USERS WHERE ID = '" + id + " AND
ACCESSCODE = '" + AccessCode + "'"

The system accepts the ID and AccessCode as inputs from the users. The system
does not perform any tests to validate the inputs. A malicious hacker can now
use this to stage an SQL injection attack.

First, we look at an input a hacker can use to bypass the access control applied
through this SQL. Using a value such as “‘password” OR ‘A’ = ‘A’” for Access-
Code, the entire ‘where’ clause is made redundant. Next we look at an input
which can cause some serious damage to the application data. Using a value
“‘password’; DELETE FROM USERS WHERE ‘A’ = ‘A’”, the entire access
control table can be wiped out. It is evident from the examples that SQL injection
attacks can be serious threats to application security.

Certain database servers allow execution of external operating system shell
commands through special stored procedures. A malicious hacker can use this to
cause serious irrecoverable damage to the database server host.

4.9 Conclusion

We have walked through several host-level threats and vulnerabilities that can
cripple the host and other interconnected systems. We broadly classify applica-
tions running on the host as either resident code or transient code depending on
whether the user/administrator on the host trusts the piece of code. Security vul-
nerabilities and threats on hosts are entirely dependent on the code that is running
on them. Security vulnerabilities introduced due to transient code are of particular
importance given that new and emerging paradigms such as grid/cluster and more
mainstream platforms based on intranet/Internet rely on transient code executing
on remote hosts. Hosts are equally vulnerable, if not more so, to trusted resident
code, mainly due to engineering faults in them.

We have classified all the host vulnerabilities discussed thus far based on the
impact of the vulnerability and on the period in which this assumes significance
(Table 4.1). We classify a vulnerability to be of high impact (can cause serious
damage to monetary or reputation, or human loss), medium impact (some dam-
age to business or reputation) or low impact (marginal loss commercially, very
insignificant). Similarly, we classify period of impact as immediate/near-term,
medium-term (three-to-five years) or long-term (beyond five years).

If we look at host vulnerabilities exposed by transient code, malwares tend to
be authored with malicious intent and are normally destructive in nature. The

68 Distributed Systems Security: Issues, Processes and Solutions

Table 4.1 Summary of the host-level threats.

Attack Impact Period Remarks

Transient code

Malware High Immediate Attacks by viruses, worms and
Trojans on a host could cause
serious irrecoverable damage to
the host and the business the host
supports. This requires immediate
attention

Eavesdropping High Immediate For mainstream intranet/Internet
application, eavesdropping can
lead to security and privacy
breach. For newer platforms such
as grid, the issue is not of
immediate significance

Job faults Medium Medium These are particularly important in
the context of shared computing
environments. This threat is not in
the critical path

Resource starvation Low Long This again is particularly focused on
shared computing platforms such
as grid. The threat is not
immediately significant

Resident code

Overflow High Immediate Any resident code vulnerability has

Privilege escalation ~ High Immediate the potential to cause serious

damage to the host as well as the

applications running on it and in a

highly networked environment, it

has a tendency to spread fast.

These security vulnerabilities

require immediate attention

Injection High Immediate

impact of such attacks is high and they need immediate attention. User pri-
vacy/confidentiality is assuming more importance every day and any breach to
this has social and legal implications. In this context, any issue relating to eaves-
dropping has to be classified as a high-impact issue which requires immediate
solution. Resource starvation and prevention against faults are not issues related
to mainstream applications and they may assume significance in the future as grid
and other shared computing/scavenging platforms become pervasive.

In the case of resident code, the security vulnerabilities need to be treated rather
seriously. There is a general assumption that transient code is rogue, but the same

Host-Level Threats and Vulnerabilities 69

cannot be said about resident code. It is resident and voluntarily installed on the
host by the user/administrator under the premise that it is from trusted, genuine
sources. All vulnerabilities under this category are to be treated as high-impact
as well as immediately relevant.

References

(1]

(2]
(3]

(4]
(5]

(6]
(7]

(8]
(9]
[10]
(11]
[12]

[13]

[14]

(2008) The Crimeware Landscape: Malware, Phishing, Identity Theft and Beyond,
http://www.antiphishing.org/reports/ APWG_CrimewareReport.pdf, accessed on June 12th
2008.

Schneier, B. (1999) Inside Risks: the Trojan Horse Race. Communications of the ACM , 42
9, 128.

Sipior, J.C., Ward, B.T. and Roselli, G.R. (2005) A United States Perspective on the Ethical
and Legal Issues of Spyware. Proceedings of the 7th International Conference on Electronic
Commerce.

Kurzban, S. (1989) Viruses and worms - what can they do? ACM SIG SAC Review, 7 1,
16-32.

Waldburger, M. and Stiller B. (2007) Regulatory Issues for Mobile Grid Computing in
Europe. 18th European Regional ITS Conference (ITS 2007), September 2007, Istanbul,
pp- 1-10.

(2008) Ajax Security Dangers, http://www.spydynamics.com/assets/documents/
AJAXdangers.pdf, accessed on June 12th 2008.

Golle, P. and Mironov, I. (2001) Uncheatable distributed computations. In David Naccache,
editor, Topics in Cryptology — CT-RSA 2001, volume 2020 of Lecture Notes in Computer
Science, pages 425—-440. Springer, April 2001.

Chakrabarti, A., Grid Computing Security, pp. 154—156, Springer, 2007, ISBN:
3540444920.

(2008) Buffer Overflow Demystified, http://www.enderunix.org/docs/eng/bof-eng.txt,
accessed on June 12th 2008.

(2008) Smashing The Stack For Fun And Profit, http://insecure.org/stf/smashstack.html,
accessed on June 12th 2008.

Chess, B. and West, J., Secure Programming with Static Analysis, pp. 421-456, ISBN:
0-321-42477-8, Addison Wesley, Published: June 2007.

(2008) CERT Vulnerability Statistics, http://www.cert.org/stats/fullstats.html, accessed on
June 12th 2008.

Younan, Y., Joosen, W. and Piessens, F. (2004) Code Injection in C and C++: A Survey
of Vulnerabilities and Countermeasures. Technical Report CW386, Departement Computer-
wetenschappen, Katholieke Universiteit Leuven, July 2004.

Breidenbach, B. (2002) Guarding your Web Site against SQL Injection Attacks, ASP Today.

S

Infrastructure-Level Threats
and Vulnerabilities!

5.1 Introduction

In the real world when the word ‘infrastructure’ is mentioned it refers to the
highways, roads, bridges, flyovers, power grids, transmission towers and other
structures which support the movement, communication, power and other essen-
tial elements of human society. There are similar elements which support the basic
functioning of IT systems, like the networking infrastructure, the middleware and
the storage infrastructure. Securing the IT infrastructure is being identified as crit-
ical by different government agencies, as attacks may have serious consequences
on the security and the economic vitality of a society [1]. As Richard Clarke, for-
mer US homeland security advisor for combating cyber terrorism, puts it (CNN
News, October 9, 2001), ‘Our very way of life depends on the secure and safe
operations of critical systems that depend on cyberspace.” In this chapter, we
acknowledge the importance of IT infrastructure security and focus on the threats
to and vulnerabilities of the same.

5.2 Network-Level Threats and Vulnerabilities

The most critical component of the IT infrastructure is the networking infrastruc-
ture. It forms the core of any system and is similar to the roads and highways in
real life. However secure we make our cars, if the roads and highways are fraught
with security dangers, the whole system suffers. The networking infrastructure has
seen a huge growth over the last few years, especially with the advent of wireless

! Contents in this chapter reproduced with permission from Grid Computing Security, Chakrabarti, Anirban, 2007,
X1V, 332 p. 87 illus., Hardcover, ISBN: 978-3-540-44492-3

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan
and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

72 Distributed Systems Security: Issues, Processes and Solutions

technologies. But research and development efforts have been mostly in the areas
of performance and scalability, with security taking a back seat. The importance
of securing the network has grown rapidly in recent years due to the series of
attacks which shut down some of the world’s most high-profile Web sites, like
Yahoo! and Amazon. Several examples of such attacks can be found in CERT
reports. Securing the networking infrastructure is clearly the need of the hour and
different components of the networking infrastructure, like the routers, servers,
wireless devices and so on, need to be protected for a sustained IT security.

5.2.1 Denial-of-Service Attacks

One of the most dangerous network-level threats is the denial-of-service (DoS)
attack. These attacks have a simple objective, to deny service to the service con-
sumers. This is generally achieved by overwhelming the networking infrastructure
with huge numbers of data packets. In DoS attacks, the packets are routed cor-
rectly but the destination and the network become the targets of the attackers.
DoS attacks are very easy to generate and are very difficult to detect, and hence
they are attractive weapons for hackers. In a typical DoS attack, the attacker
node spoofs its IP address and uses multiple intermediate nodes to overwhelm
other nodes with traffic. DoS attacks are typically used to take important servers
out of action for a few hours, resulting in DoS for all users. They can also be
used to disrupt the services of the intermediate routers. Generally, DoS attacks
can be categorized into two main types: (i) ordinary and (ii) distributed. In an
ordinary network-based DoS attack, an attacker uses a tool to send packets to
the target system. These packets are designed to disable or overwhelm the tar-
get system, often forcing a reboot. Often, the source address of these packets is
spoofed, making it difficult to locate the real source of the attack. In the dis-
tributed denial-of-service (DDoS) attack, there might still be a single attacker, but
the effect of the attack is greatly multiplied by the use of attack servers known
as ‘agents’. To get an idea of the scope of these attacks, over 5000 systems were
used at different times in a concerted attack on a single server at the University
of Minnesota. The attack not only disabled that server but denied access to a very
large university network [2].

Experts are studying DoS attacks to identify any trends that can be inferred from
attack patterns. Unfortunately, no such trends have emerged. However, the experts
have unanimously declared that DoS attacks are the most potent of all infrastruc-
ture attacks. A Computer Security Institute (CSI) survey [3] shows that 30% of all
attacks on the Internet are of the DoS type. Given the amount of impact these can
generate, the CSI result is extremely frightening. Though the survey was done a
few years ago, evidence suggests that the percentage of DoS attacks has increased
rather than decreased. Figure 5.1 shows the different categories of attacker respon-
sible for attacking the Internet infrastructure, based on the same survey. It shows

Infrastructure-Level Threats and Vulnerabilities 73

Infrastructure Threats and Vulnerabilities

Networks Grid and Cluster Data Systems
—— DoS — Architecture
Issues
— +—— SAN
DNS Threats Threats
—— Infrastructure
I Routing Attacks Issues
L— High Speed N/W —— Management L DFS
Threats Issues Threats

L— Trust Issues

L— Wireless Threats

Figure 5.1 Taxonomy of infrastructure threats and vulnerabilities.

that despite the popular image of cyber terrorism and corporate-based cyber war-
fare, most attackers are independent hackers or disgruntled employees doing it
for the fun or due to animosity against their employer.

Though there have been indications of the importance of DoS attacks, the actual
data are mostly hidden because most companies prefer to keep attack stories
from the public. One of the interesting works on the importance of DoS attacks
was carried out by Moore et al. [4]. In the paper, the authors tried to answer
the simple question, how prevalent are DoS attacks on the Internet today? The
results are far-reaching and remain an important warning about the importance
of tackling DoS attacks. As a means to demonstrate this, the authors described
a traffic-monitoring technique called the ‘backscatter analysis’ for estimating the
worldwide prevalence of DoS attacks. Using backscatter analysis, the authors
observed 12 805 attacks on over 5000 distinct Internet hosts belonging to more
than 2000 distinct organizations during a three-week period. The authors further
estimated a lower bound on the intensity of such attacks — some of which are in
excess of 600 000 packets per second. The paper showed the importance of DoS
attacks in the context of the Internet.

As is quite evident from the above paragraph, DoS attack is becoming one
of the most potent attacks carried out over the Internet. With what little data
is available, the damages seem to run to millions of US dollars. Most of the
attackers are amateurs rather than corporations or rogue countries engaged in
cyber warfare. Now the natural question that comes to the mind is, how do these
amateurs have the firepower to break the security of the biggest corporations of
the world? There are two answers to this. First, the wide availability of DoS
launching tools. If one searches for ‘DoS attack tool’, one will get over 1000 hits
and lots of open freewares for launching DoS attacks. Second, the defense against

74 Distributed Systems Security: Issues, Processes and Solutions

this type of attack is still in its nascent stage, and lots of research is required to
provide protection against DoS attacks. In the next section, we will concentrate
on the different types of DoS attack.

5.2.1.1 Distributed Denial-of-Service Attacks

One of the deadliest forms of DoS attack is when the attackers are distributed in
nature. Such an attack is called a DDoS attack. According to the computer incident
advisory capability (CIAC), the first DDoS attacks occurred in the summer of
1999 [5]. In February 2000, one of the first major DDoS attacks was waged
against yahoo.com. This attack kept Yahoo! off the Internet for about 2 hours
and cost Yahoo! a significant loss in advertising revenue [6]. Another DDoS
attack occurred on October 20, 2002 against the 13 root servers that provide the
domain name system (DNS) service to Internet users around the world. They
translate logical addresses such as www.yahoo.edu into a corresponding physical
IP address, so that users can connect to Web sites through names (which are
more easily remembered) rather than numbers. If all 13 servers were to go down,
there would be disastrous problems for anyone accessing the World Wide Web.
Although the attack only lasted for an hour and the effects were hardly noticeable
to the average Internet user, it caused 7 of the 13 root servers to shut down,
demonstrating the vulnerability of the Internet to DDoS attacks [7]. If unchecked,
more powerful DDoS attacks could potentially cripple or disable essential Internet
services in minutes.

Let us now discuss about some of the common DDoS attacks carried out by
malicious agents. Most of these attacks target a particular network protocol, like
the Transfer Control Protocol (TCP), User Datagram Protocol (UDP) and so on.

SYN flood attacks

Perhaps the most popular DDoS attack is the synchronize (SYN) flood attack.
This type of attack targets the TCP to create service denial. The TCP protocol
includes a three-way handshake between the sender and the receiver before data
packets are sent. The protocol works in the following manner:

(1) The initiating system sends a SYN request. This indicates the system’s inten-
tion to create a TCP session.

(2) The receiving system sends an ACK (acknowledgement) with its own SYN
request. This indicates that the receiving system would like to carry on with
the connection.

(3) The sending system then sends back its own ACK and communication can
begin between the two systems. It has been proved that three-way handshake is
an efficient and effective way to create a network connection. If the receiving
system is sent a SYNX packet but does not receive an ACKY+1 to the SYNY
it sends back to the sender, the receiver will resend a new ACK+SYNY after

Infrastructure-Level Threats and Vulnerabilities 75

some time has passed. The processor and memory resources at the receiving
system are reserved for this TCP SYN request until a timeout occurs.

In a DDoS TCP SYN flood attack, the attacker instructs the zombies
(systems previously compromised by the attacker for this purpose) to send bogus
TCP SYN requests to a victim server in order to tie up the server’s processor
resources, and hence prevent the server from responding to legitimate requests.
The TCP SYN attack exploits the three-way handshake by sending large volumes
of TCP SYN packets to the victim system with spoofed source IP addresses,
so the victim system responds to a nonrequesting system with the ACK+SYN.
When a large volume of SYN requests is being processed by a server and
none of the ACK+SYN responses are returned, the server begins to run out of
processor and memory resources. Eventually, if the volume of TCP SYN attack
requests is large and the requests continue over time, the victim system will run
out of resources and be unable to respond to any legitimate users.

PUSH+ACK attacks

In this type of attack, the attacker again uses the properties of the TCP protocol
to target victims. In the TCP protocol, packets that are sent to a destination are
buffered within the TCP stack and when the stack is full, the packets get sent on
to the receiving system. However, the sender can request the receiving system
to unload the contents of the buffer before the buffer becomes full by sending a
packet with the PUSH bit set to one. PUSH is a one-bit flag within the TCP header.
The TCP stores incoming data in large blocks for passage on to the receiving sys-
tem in order to minimize the processing overhead required by the receiving system
each time it must unload a nonempty buffer. The PUSH+ACK attack is similar to
a TCP SYN attack in that its goal is to deplete the resources of the victim system.
The attacking host or the zombies and reflectors (any system that responds with
an IP packet if sent one) send TCP packets with the PUSH and ACK bits set to
one. These packets instruct the victim system to unload all data in the TCP buffer
(regardless of whether or not the buffer is full) and send an acknowledgement
when complete. If this process is repeated with multiple agents, the receiving
system cannot process the large volume of incoming packets and will crash.

Smurf attacks

In a DDoS Smurf attack, the attacker sends packets to a network amplifier (a
system supporting broadcast addressing), with the return address spoofed to the
victim’s IP address. The attacking packets are typically ICMP ECHO REQUESTS:,
which are packets (similar to a ‘ping’) that request the receiver to generate an
ICMP ECHO REPLY packet. The amplifier sends the ICMP ECHO REQUEST
packets to all of the systems within the broadcast address range, and each of these
systems will return an ICMP ECHO REPLY to the target victim’s IP address. This
type of attack amplifies the original packet tens or hundreds of times.

76 Distributed Systems Security: Issues, Processes and Solutions

5.2.2 DNS Attacks

The DNS is a distributed, hierarchical, global directory that translates
machine/domain names to numeric IP addresses. The DNS infrastructure consists
of 13 root servers at the top layer, and top-level domain (TLD) servers (.com
and .net) as well as country-code TLDs (.us, .uk and so on) at the lower layers.
Due to its ability to map human memorable names to numerical addresses,
its distributed nature and its robustness, the DNS has evolved into a critical
component of the Internet. Therefore, an attack on the DNS infrastructure has
the potential to affect a large portion of the Internet.

Attacks of this type have illustrated the lack of authenticity and integrity of the
data held within the DNS, as well as in the protocols that use host names as an
access control mechanism.

5.2.2.1 Impact of ‘Hacking’

DNS, being a critical infrastructure, is contacted by all hosts when they access
servers and start connections. The impact of DNS attacks is quite widespread;
effects include:

(1) Denial-of-Service: DoS is one of the most dangerous impacts of DNS ‘hack-
ing’. DoS can be achieved in several ways: one is to send back negative
responses indicating that the DNS name does not exist. Another is to redirect
the client’s request to a server which does not contain the service the client is
requesting. DoS attacks on DNS servers can achieve the same objective with
greater effect.

(2) Masquerading: The attacker can use DNS attacks to redirect communication
to masquerade as a trusted entity. If this is accomplished, they can intercept,
analyze and/or intentionally corrupt the communications [8].

(3) Information leakage: DNS threats also include leakage of information
concerning internal networks to an attacker. Frequently, host names can
represent project names that may be of interest, revealing the operating
system of the machine.

(4) Domain hijacking: By compromising insecure mechanisms used by
customers to update their domain registration information, attackers can take
over the domain registration process to hijack legitimate domains.

5.2.2.2 Types of ‘Hacking’
DNS consists of a distributed database, which lends to its robustness and also leads

to various types of vulnerability, which can be categorized into three main types:

(1) Cache poisoning: Generally, to hasten the process of query response, DNS
servers store common information in a cache. If a DNS server is made to cache

Infrastructure-Level Threats and Vulnerabilities 77

bogus information, the attacker can redirect traffic intended for a legitimate
site to a site under the attacker’s control.

(2) Server compromising: Attackers can compromise a DNS server, thus giving
them the ability to modify the data served to the users. These compromised
servers can be used for cache ‘poisoning’ or for DoS attacks on some other
server.

(3) Spoofing: In this type of attack, the attacker masquerades as a DNS server
and feeds the client wrong and/or potentially malicious information. This type
of attack can also redirect traffic to a site under the attacker’s control, and
launch a DoS attack on the unsuspecting client. In order to address DNS
attacks, the IETF added security extensions to the DNS, collectively known
as DNSSEC [9].

5.2.3 Routing Attacks

Routing tables are used to route packets over any network, especially the Internet.
Routing protocols like distance vector, link state and path vector protocols have
been designed to create routing tables through the exchange of routing packets.
Routing table ‘poisoning’ is a type of attack on the routing protocols where the
routing updates are maliciously modified, resulting in the creation of incorrect
routing tables.

5.2.3.1 Impacts of Routing Table Poisoning

Routing table poisoning can have impacts like suboptimal routing, congestion,
partition, overwhelmed host, looping and illegal access to data.

(1) Suboptimal routing: With the emergence of the Internet as a means of sup-
porting soft real-time applications, optimality in routing assumes significant
importance. Routing table poisoning attacks can result in suboptimal routing,
which can affect real-time applications. Similarly, in a grid scenario this type
of attack may lead to suboptimal routing, resulting in a Quality of Service
(QoS) violation.

(2) Congestion: Routing table poisoning can lead to artificial congestion if pack-
ets are forwarded to only certain portions of the network. Artificial congestion
thus created cannot be solved by traditional congestion control mechanisms.

(3) Partition: The poisoning attack may result in the creation of artificial
partitions in the network. This can become a significant problem since hosts
residing in one partition will be unable to communicate with hosts residing
in another.

(4) Overwhelmed host: Routing table poisoning may be used as a weapon for
DoS attacks. If a router sends updates that result in the concentration of
packets into one or more selected servers, the servers can be taken out of
service because of the huge amounts of traffic. This type of DoS attack is

78 Distributed Systems Security: Issues, Processes and Solutions

more potent as the attacker is not spoofing identity, and is thus impossible to
detect by standard detection techniques.

(5) Looping: The creation of triangle routing, caused due to packet mistreat-
ment attacks, can also be simulated through improper update of the routing
table. Loops thus formed may result in packets getting dropped and hence in
lowering of the overall network throughput.

(6) Access to data: Attackers may gain illegal access to data through the routing
table poisoning attack. This may lead to the attackers snooping packets.

5.2.3.2 Different Routing Protocols

Routing protocols can be broadly grouped into three main categories: distance

vector, link state and path vector routing protocols.

(1) Distance vector: In this set of protocols, the nodes in the network create a
vector of shortest path distances to all the other nodes in the network. This
distance vector information is exchanged between the nodes. After receiv-
ing the distance vector information from its neighbors, each node calculates
its own distance vector. One point to note about these protocols is that no
node has the full topology information and each depends on its neighbors
for creating its routing tables. It has been shown that several problems, like
the count-to-infinity problem, can result from not having the full topology
information. The Routing Information Protocol (RIP) [10] is an example of a
distance vector protocol.

(2) Link state: In link state protocols, each node sends its connectivity informa-
tion to all the other nodes in the network. Based on the information received
from the other nodes, each node computes the shortest path tree by apply-
ing the Bellman Ford algorithm. Unlike the distance vector protocol, each
node participating in the link state protocol has the full topology information.
As a result, link state protocols are inherently robust. Open Shortest Path
Forwarding (OSPF) [11] is an example of a link state protocol.

(3) Path vector: This protocol is a variation of the distance vector. In this proto-
col, each node sends the full shortest path information of all the nodes in the
network to its neighbors. It has been shown that problems associated with stan-
dard distance vector protocols can be avoided in the path vector protocol. The
Border Gateway Protocol (BGP) [12] is an example of a path vector protocol.

5.2.3.3 Routing Attacks

Routing table poisoning can be broadly categorized into (i) link and (ii) router
attacks. Link attacks, unlike router attacks, are similar in the case of both link
state and distance vector protocols.

(1) Link attacks — interruption: Routing information can be intercepted by an
attacker, and the information can be stopped from propagating further.

Infrastructure-Level Threats and Vulnerabilities 79

However, interruption is not effective in practice. The reason for this is that
in the current Internet scenario there is generally more than one path between
any two nodes, since the average degree of each node is quite high (around
3.7). Therefore, even if an attacker stops a routing update from propagating,
the victim may still be able to obtain the information from other sources.

(2) Link attacks — modification/fabrication: Routing information packets can be
modified/fabricated by an attacker who has access to a link in the network.

(3) Link attacks — replication: Routing table poisoning can also take the form of
replication of old messages, where a malicious attacker gets hold of routing
updates and replays them later.

(4) Router attacks — link state: A router can be compromised, making it mali-
cious in nature. Router attacks differ in their execution depending on the
nature of the routing protocol. In the case of a link state routing protocol, a
router sends information about its neighbors. Hence, a malicious router can
send incorrect updates about its neighbors, or remain silent if the link state of
the neighbor has actually changed. A router attack can be proactive or inac-
tive in nature. In the case of a proactive router attack, the malicious router
can add a fictitious link, delete an already existing link, or change the cost of
a link proactively. In the case of an inactive router attack, the router ignores
a change in link state of its neighbors.

(5) Router attacks — distance vector: Unlike with link state, in the case of dis-
tance vector protocols, routers can send wrong and potentially dangerous
updates regarding any nodes in the network, since the nodes do not have the
full network topology. In distance vector protocols, if a malicious router cre-
ates a wrong distance vector and sends it to all its neighbors, the neighbors
accept the update since there is no way to validate it. As the router itself is
malicious, standard techniques like digital signatures do not work.

5.2.4 Wireless Security Vulnerabilities

Network technologies are slowly moving in the wireless direction as more and
more transactions take place using mobile systems. In developing countries like
India and China, the potential of wireless networks is enormous and more and
more of the rural population is jumping on the wireless bandwagon. However,
even with the growth of wireless technologies, enterprises are slow in going fully
mobile. Other than operational issues, security concerns are their primary reason.
In this section, we will briefly outline the security concerns present in wireless
technologies.

5.2.4.1 Traffic Analysis

One of the simplest attacks that can be employed against a wireless network is
to analyze the traffic in terms of the number and size of the packets transmitted.

80 Distributed Systems Security: Issues, Processes and Solutions

This attack is very difficult to detect as the attacker is in promiscuous mode and
hence mostly hidden from any detection techniques. In addition to getting the
information that there is a certain amount of wireless activity in the region, the
attacker can learn the location of the access point in the area. Also, the attacker
may be able to obtain information about the type of protocol used. For example,
if TCP is used, a three-way handshake will be employed. Once knowledge of the
protocol is obtained, further attacks like man-in-the-middle or session hijacking
can be performed [13].

5.2.4.2 Eavesdropping

This is another technique that can be used to get information about the packets
and data transmitted through the wireless channel. In this type of attack, the
attacker is assumed to be passive, getting information about the data transmitting
through the wireless channel. In addition to the payload, source and destination
information can be obtained, which can be used for spoofing attacks. It is to be
noted that encryption can be used to prevent this type of attack [13, 14]. However,
gathering enough information through eavesdropping can help in breaking some of
the simpler security encryption protocols like Wireless Equivalent Privacy (WEP).

5.2.4.3 Spoofing

In this type of attack, the attacker is not passive, but rather actively participates
in the attack. The attacker changes the destination IP address of the packet to the
IP address of a host they control. In the case of a modified packet, the authentic
receiving node will request a resend of the packet and so the attack will not
be apparent. Another approach is to resend the packet with the modified header.
Since the receiver judges whether a packet is valid, the resend should not cause
any response from the access point or access controller, which kindly decrypts the
packet before sending it to the attack receiver, thus violating the confidentiality
of the communication.

The attacker can inject known traffic into the network in order to decrypt future
packets in the wireless network. This type of attack can be useful in detecting the
session key of the communicating parties. Stricter measures of encryption like
changing the session keys and using stronger security protocols are needed to
prevent this attack from taking place.

5.2.4.4 Unauthorized Access

While the above attacks are directed at the users of the wireless technologies, this
attack is directed at the wireless network as a whole. After gaining access to the
network, the attacker can launch additional attacks or just enjoy free network use.
Due to the physical properties of WLANS, the attacker will always have access

Infrastructure-Level Threats and Vulnerabilities 81

to the wireless component of the network. In some wireless security architectures
this will also grant the attacker access to the wired component of the network.
In other architectures, the attacker must use some technique like MAC address
spoofing to gain access to the wired component.

5.2.4.5 Man-in-the-Middle Attack

This is a classical attack which is applicable to the wireless domain as well. In this
type of attack, the attacker acts as an interface between the two communicating
parties. For example, let A and B communicate with one another. The attacker
C gets into the middle such that A communicates with C thinking that it is B,
and B communicates with C thinking that it is A. The attacker can sneak into the
middle of the conversation by gaining access to header information and spoofing
the header information to deceive the recipient. An ARP poison attack is one
manifestation of man-in-the-middle attack. In this type of attack, the attacker
sends a forged ARP reply message that changes the mapping of the IP address
to the given MAC address. The MAC address is not changed, just the mapping.
Once the cache has been modified, the attacker can act as a man-in-the-middle
between any two hosts in the broadcast domain.

Man-in-the middle attacks can be simple or quite complicated depending on the
security mechanisms in place. The more security mechanisms in use, the more
mechanisms the attacker will have to subvert when re-establishing the connection
with both the target and the access point. If authentication is in place, the attacker
must defeat the authentication mechanism to establish new connections between
themself and the target and themself and the access point. If encryption is in use,
the attacker must also subvert the encryption to either read or modify the message
contents. This type of attack can be used to launch eavesdropping, spoofing or
even DoS attacks.

5.2.4.6 Session Hijacking

Session hijacking is an attack against the integrity of a session. The attacker
takes an authorized and authenticated session away from its proper owner. The
target knows that it no longer has access to the session but may not be aware
that the session has been taken over by an attacker. The target may attribute the
session loss to a normal malfunction of the WLAN. Once a valid session has
been owned, the attacker may use the session for whatever purposes they want
and maintain the session for an extended time. This attack occurs in real time but
can continue long after the victim thinks the session is over. To successfully exe-
cute session hijacking, the attacker must accomplish two tasks. First, the attacker
must masquerade as the target to the wireless network. This includes crafting
the higher-level packets to maintain the session, using any persistent authenti-
cation tokens and employing any protective encryption. This requires successful

82 Distributed Systems Security: Issues, Processes and Solutions

eavesdropping on the target’s communication to gather the necessary information.
Second, the attacker must stop the target from continuing the session. The attacker
normally will use a sequence of spoofed disassociate packets to keep the target
out of the session [13—-15].

5.2.4.7 Replay Attacks

This is also a very common technique which finds manifestation in wireless net-
works. In this type of attack, the attacker saves the current conversation or session,
to be replayed at a later time. Even if the current conversation is encrypted, replay-
ing the packets at a later time will confuse the recipient and create some other
dangerous after-effects. Nonce or timestamps are generally used to prevent this
type of attack from taking place. However, if the attacker is able to selectively
modify the contents of the packets, this type of solution does not work.

5.3 Grid Computing Threats and Vulnerabilities

Grid computing [16, 17] is widely regarded as a technology of immense potential
in both industry and academia. The evolution pattern of grid technologies is very
similar to the growth and evolution of Internet technologies that was witnessed
in the early 1990s. Similar to the Internet, the initial grid computing technologies
were developed mostly in universities and research labs to solve unique research
problems and to enable collaboration between researchers across the globe.
Recently, the high-computing industries like finance, life sciences, energy,
automobiles, rendering and so on have been showing a great amount of interest in
the potential of connecting standalone and silo-based clusters into a department-
and sometimes enterprise-wide grid system. Grid computing is currently in the
middle of evolving standards, inheriting and customizing from those developed
in the high-performance, distributed and, recently, web-services communities.
Due to the lack of consistent and widely-used standards, several enterprises are
concerned about the implementation of an enterprise-level grid system, though
the potential of such a system is well understood. The biggest concerns are the
security aspects of the grid [18]. The grid security issues can be grouped into
three main categories: architecture-related issues, infrastructure-related issues
and management-related issues.

5.3.1 Architecture-Related Issues

Architecture-level issues address concerns with the grid system as a whole.
Issues like information security, authorization and service-level security generally
destabilize the whole system, hence an architecture-level solution is needed to
prevent these.

Infrastructure-Level Threats and Vulnerabilities 83

5.3.1.1 Information Security

We define information security as security related to the information exchanged
between different hosts or between hosts and users. The concerns at the
information-security level of the grid can be broadly described as pertaining to:

(1) Unauthorized access: Unauthorized access is one of the most dangerous
attacks possible upon a grid infrastructure. An unauthorized and malicious
user can gain access to a grid and get information which they were not
supposed to get. If they are able to access the grid, they can launch more
dangerous attacks in the form of DoS attacks. Therefore, grid security require-
ments should contain authentication mechanisms at the entry points. Different
authentication mechanisms should be supported. It is possible to have differ-
ent authentication mechanisms for different sites within a grid. Therefore, the
security protocol should be flexible and scalable to handle all the different
requirements and provide a seamless interface to the user. Also, there is a
need for management and sharing of context.

(2) Confidentiality: Data flowing through the grid network, if not properly pro-
tected, can be read by unauthorized users. Therefore, the grid security mech-
anisms should protect the confidentiality of the messages and the documents
that flow over the grid infrastructure. The confidentiality requirements should
include point-to-point transport as well as store and forward mechanisms.
Similar to the authentication mechanisms, there may be a need to define,
store and share security contexts across different entities.

(3) Integrity: Grid security mechanisms should include message integrity, which
means that any change made to the messages or documents can be identified
by the receiver.

(4) Single sign-on: In a grid environment, there may be instances where requests
have to travel through multiple security domains. Therefore, there is a need
for a single sign-on facility in the grid infrastructure.

(5) Delegation vulnerabilities: There may be a need for services to perform
actions on a user’s behalf. For example, a computational job may require
accessing a database many numbers of times. When dealing with delegation
of authority from one entity to another, care should be taken so that the
authority transferred through delegation is scoped only to the task(s) intended
and a limited lifetime, to minimize misuse.

5.3.1.2 Authorization

Another important security issue is that of authorization. Like any resource-sharing
system, grid systems require resource-specific and system-specific authorizations.
It is particularly important for systems where the resources are shared between

84 Distributed Systems Security: Issues, Processes and Solutions

multiple departments or organizations, and department-wide resource usage pat-
terns are predefined. Each department can internally have user-specific resource
authorization as well. If we were to design an authorization system for such a
library, the first thing we need to consider is that the system does not have too
much overhead. In other words, there is a need to authorize users; however,
there should not be a long queue in front of the library. Therefore, scalability
is one of the primary concerns for designing such a system. Second, one has
to keep in mind the effect should the system be tampered with. In that case,
a user may be given more or less authorization than they deserve. Therefore,
security is a very important concern. Third, it is possible that after a user has
been authorized and allowed to enter, the authorities receive information that
they are a thief. Therefore, there should be a mechanism to deny them access
to resources once such information has become available. In other words, there
should be a method for revocation of a user’s authorization. Lastly, if differ-
ent stakeholders in the library employ different authorization systems, is the
current system interoperable between them? Some details about the issues are
provided below:

(1) Scalability issues: Scalability is one of the most important and desirable
characteristics of a grid authorization system. A system is said to be scalable
if there is no perceived difference when many more entities access it.
There are two aspects to grid scalability: one is based on the number of
users, and the other is based on the amount of grid dynamism. The first
is straightforward — the grid authorization system should perform well
when the number of users increases. As for the second, grid systems have
an inherent dynamism embedded into them. In a grid system, users may
join or leave the grid system quite frequently. Furthermore, resources may
be added to or removed from the grid infrastructure in an on-demand
basis.

(2) Security issues: Like any other system, one has to analyze the security vul-
nerabilities existing in grid authorization systems. If an attacker hacks into a
grid authorization system, one has to understand the effect of such a mali-
cious activity. Two types of compromise are possible in a grid authorization
system: user level and system level. In the former case, a user is compro-
mised, allowing the attacker to use the grid as the user would. In the latter,
the authorization system is taken over by the attacker.

(3) Revocation issues: Another important issue that needs to be considered before
designing a grid authorization system is that of revocation of authorization.
Consider the following scenario: a user logs into the grid system and is autho-
rized to access its resources. After some time, it is learned that the user has
been compromised. In this case, the user should be denied access to the
resources.

Infrastructure-Level Threats and Vulnerabilities 85

(4) Inter-operability Issues: Different authorization systems may be used by dif-
ferent parties or virtual organizations and the important issue here is that of
inter-operability of these different authorization systems.

5.3.1.3 Service-Level Security

The word ‘service’ or ‘services’ is finding wide usage is day-to-day business
transactions. According to Merriam Webster, one definition of service is ‘the
occupation or function of serving’ or ‘the work performed by one that serves’. As
one can observe, the definition of service is intrinsically linked with the service
provider or ‘one who serves’. Therefore, a service should always contain four
basic components:

(1) A service provider or one who is providing the service to users.

(2) A set of service consumers who accesses the service provided by the service
provider.

(3) A service infrastructure on which the service is provided.

(4) A set of service publishers which publish the type and nature of service
provided.

We can extend the definition of ‘service’ and its components to real-life
examples. Let us take the example of a banking service. Here the service provider
is the bank, with the customer-service executives being the front-end to which
the customers are exposed. The service consumers are the customers of the bank,
and the service infrastructure includes the host of databases and other servers, the
communication networks, and the buildings and other infrastructures that support
the bank. Finally, the service publisher may be a Web site which describes the
services provided by the bank, which may help the service consumers in making
a service decision. Generally, a service is published in multiple channels. For
example, there may be Web sites indicating the number of banking service
providers in a district, and banks may have call centers to provide more details
about the service they are providing.

Let us now get into the mind of the attackers who are hell-bent on disrupting
the service offered by a service provider. Generally, attackers go by the principle
of maximum effect. Among the four components mentioned in the previous sub-
section, compromising the service infrastructure or the service publisher will have
the greatest effect. The reason is that if infrastructure is compromised, the service
to a large number of customers is disrupted. Similarly, if the service publisher
publishes wrongly or maliciously, the effect will be devastating. Again, the effects
can be minimized if the infrastructure is protected, or if the publisher publishes
through multiple channels. These tactics come under the purview of service dis-
ruption prevention mechanisms. If we take a look at different service providers,
we find that enormous efforts are being made to make infrastructures secure. There

86 Distributed Systems Security: Issues, Processes and Solutions

are also laws and regulations to keep attackers from manipulating published infor-
mation. This is true in the case of the physical world. Therefore, in the digital
world too, there is a need for techniques and methods to counter such threats.
Before looking at the different methods, techniques and research outputs available
in the domain of service-level security, let us look at the different vulnerabilities
and threats present there.

The different categories of threat present in services are QoS violation, unau-
thorized service access and DoS.

(1) QoS violation: Let us assume that there is a pizza delivery company whose
unique selling point is that they deliver pizza within 30 minutes of the cus-
tomer call. If the company is not able to deliver within the stipulated time,
the customer gets a free pizza. If a malicious ‘pizza eater’ tries to stop the
company from delivering on time, the ‘pizza eater’ gets a free pizza and the
company loses a lot of goodwill. Now, translate the same problem to the
digital world. A company may end up losing a lot of money if service level
agreements (SLAs) are not met.

(2) Unauthorized access: In this type of threat, illegitimate or unauthorized users
get access to the service. This problem is similar to the traditional problems
of authentication and authorization. Standard authentication and authorization
techniques discussed in this book can be used to solve this problem.

(3) DoS attack: Perhaps the most deadly of the service-level threats is denial
of service to consumers. This type of attack is similar to the network DoS
attacks described before.

5.3.2 Infrastructure-Related Issues

The grid infrastructure consists of the grid nodes and the communication network.
The security issues related to the grid infrastructure are of paramount importance.
Host-level security issues are those issues that make a host apprehensive about
affiliating itself with the grid system. The main sub-issues here are: data protection
and job starvation. Whenever a host is affiliated with the grid, one of the chief
concerns is the protection of the already-existing data in the host. The concern
stems from the fact that the host submitting the job may be untrusted or unknown
to the host running the job. To the host running the job, the job may well be a virus
or a worm which can destroy the system. This is called the data protection issue.
Job starvation refers to a scenario where jobs originating locally are deprived of
resources by alien jobs scheduled on the host as part of the grid system.

In the context of grid computing, network security issues assume significant
importance, mainly due to the heterogeneity and high-speed requirements of many
grid applications. Please refer to Section 5.2 for network-related vulnerabilities
which can also apply to grid infrastructure. Two specific issues discussed here are
the network issues related to grid computing and host-related issues.

Infrastructure-Level Threats and Vulnerabilities 87

5.3.2.1 Grid Network Issues

Currently most research and development activities in grid computing take place
for the e-sciences community. The community is big and the research challenges
are enormous. However, when grids move to the enterprises, several interesting
and critical challenges will be witnessed. Some of the challenges and possible
efforts have been highlighted in previous chapters. Another big challenge is inte-
gration with firewall technologies. Most of the enterprises employ firewalls and
packet filtering, and efforts will need to be taken to solve the problem of easy
integration with these.

Globus and firewall

Figure 5.2 shows the firewall requirements for different components of Globus.
In the figure, a controllable ephemeral port describes the port which is selected
by the Globus Toolkit, which is constrained by a configurable limit. On the other
hand, an ephemeral port describes a nondeterministic port assigned by the system
in the range less than 1024. The requirements of the different components are
described as follows:

(1) GSI: GSI involves the authentication, confidentiality, integrity and
secure-delegation modules of Globus. The request should originate from an
ephemeral port and, similarly to ssh configuration, the server listens to port 22.

GT4 GRAM GT4 MDS GSI Enabled SSH
Eon 2 gg/?cp
8443/tcp 8443/tcp

Ephemeral Port

/ Port
\ 2811/t
POrt 00(\“0 / CP
7512/tcp Controllable
Ephemeral Port
MyProx o)
y y Uy Controllable
Ephemeral
Port
 GrdFTP

Figure 5.2 Firewall requirements for grid.

88 Distributed Systems Security: Issues, Processes and Solutions

(2) GRAM: GRAM is the resource management module of Globus. In the GT4
GRAM, connections are initiated by the client from an ephemeral port. To
initiate and control jobs, all traffic goes through a single hosting environment
defined by port 8443/tcp. For GT3, this port is 8080/tcp.

(3) MDS: MDS is the monitoring service of Globus. Similar to GRAM, connec-
tions are initiated by the client from an ephemeral port and all traffic goes
through a single hosting environment defined by port 8443/tcp. As in GRAM
GT3, for MDS GT3 this port is 8080/tcp.

(4) MyProxy: As mentioned in Chapter 9, MyProxy is a credential storage service
for X.509 credentials. MyProxy connections are authenticated and secured
with GSI and are normally from ephemeral ports on the client to 7512/tcp on
the server.

(5) GridFTP: Similarly to any FTP service, GridFTP requires two different chan-
nels: control and data channels. The control connection is established from
a controllable ephemeral port on the client to the well-known static port of
2811/tcp on the server. In the case of a single data channel, the connection is
established from a controllable ephemeral port on the client to a controllable
ephemeral port on the server. In the case of third-party transfers (a client
controlling a file transfer between two servers), this connection may be from
a server to another server. In the case of multiple parallel data channels, the
direction of the connection establishment is dependent on the direction of data
flow — the connection will be in the same direction as the data flow.

5.3.3 Management-Related Issues

The management issues that grid administrators are worried about are credential
management- (CM-) and trust management-related issues.

5.3.3.1 Credential Management

Management of credentials becomes very important in a grid context as there are
multiple different systems, which require varied credentials to access them. CM
systems store and manage the credentials for a variety of systems and users can
access them according to their needs. This mandates that the CM system should
provide secure transmission of credentials and secure storage of credentials, and
should cater to different types of system and mechanism. Let us now look at the
different characteristics that a CM system requires:

(1) Initiation: Every CM system should provide mechanisms so that users can
obtain the initial credentials from it. The CM system should provide the
required credential after authenticating the user. The authentication can
be based on multiple different mechanisms, for example password-based,
certificate-based and so on.

(2) Secure storage: As mandated by the SACRED RFC [19], the long-term
credentials and the private keys should be stored in the CM systems in a

Infrastructure-Level Threats and Vulnerabilities 89

secure manner, preferably encrypted. This is a very important requirement,
as compromise of the long-term credentials would have disastrous conse-
quences.

(3) Accessibility: This is more related to the utility of the CM system. The CM
system should be able to provide credentials when the user needs them. Proper
access control mechanisms need to be provided when credentials are accessed.

(4) Renewal: Most credentials have a specific expiration time. The CM system
should be able to handle renewal of expired credentials.

(5) Translation: This is important if there are multiple systems with different
authentication and security mechanisms. The credentials used in one domain
or realm may have to be translated into credentials in other domains, which
should be handled by the CM system.

(6) Delegation: Delegation is really important from the grid perspective. CM
systems should be able to delegate specific rights to others on the user’s
behalf.

(7) Control: Monitoring and auditing of credential usage is very important
because it not only helps prevent credential compromise, it can be used for
pricing if required. Therefore, CM systems should be able to monitor and
audit the credentials provided to the users.

(8) Revocation: Finally, the CM system should provide mechanisms to revoke
credentials in case of user compromise.

5.3.3.2 Trust Management

In our everyday life, we come across different types of people, situations,
events and environments. Interactions between individuals depend on an implicit
understanding of relationships across society. This implicit understanding
between individuals is based on the confidence that the individuals experience
and emanate during their relationships; the personal and professional connections
bonding the individuals, societies and cultures; and a host of other factors.
When we meet a new car mechanic, we feel confident to give them the
responsibility of repairing a car based on our personal interactions with them,
or on a hunch about their abilities, their credentials, the company they represent
and so on. In other words, our decision to ask for their help depends upon
the amount of frust we can put into the claims that they are making. Trust
pervades through different strata of human society and extends beyond the
human—human relationships. For example, trust can act as a means of developing
relationships between electronic gadgets like computers and human beings.
Trust is a complicated concept, and the ability to generate, understand and
build relationships based on trust varies from individual to individual, situation
to situation, society to society and environment to environment. For example,
we may trust the car mechanic to repair our car. However, we may not have
enough trust to allow them to repair our computer. Each individual, in general,

90 Distributed Systems Security: Issues, Processes and Solutions

carries some amount of prejudice based on past experiences or history, which is
generally used to determine the trustworthiness of a person they are interacting
with.

The Trust Management System (TMS) lifecycle is mainly composed of three
different phases: trust creation phase, trust negotiation phase and trust manage-
ment phase. The trust creation phase generally occurs before any trusted group is
formed, and it includes mechanisms to develop trust functions and trust policies.
Trust negotiation, on the other hand, happens when a new untrusted system joins
the current distributed system or group. The third phase, the trust management
phase, is responsible for recalculating trust values based on transaction informa-
tion, distribution or exchange of trust-related information, and update and storage
of trust information in a centralized or distributed manner.

Trust creation phase

This phase actually takes place before any transactions and is responsible for
setting up the trust functions and the policies that will be used by the trust man-
agement system. The first step in the trust creation phase is to determine the type
of trust management system: whether it will be policy-based or reputation-based.
The type of TMS system is decided and the policies are defined and created.
The next important step in this phase is to determine the trust function. As men-
tioned earlier, trust functions can be of several categories: objective or subjective,
transaction-based or opinion-based, complete or localized and threshold-based or
rank-based. The choice of trust function depends on the type of application the
TMS is catering to.

Trust negotiation phase

The second phase in the lifecycle of the TMS is the trust negotiation phase,
which begins when a new entity or node joins the system. Figure 5.3 shows a
very high-level overview of a typical trust negotiation phase. The phase essentially
consists of three different steps: request, policy exchange and credential exchange.
At the heart of the trust negotiation lie the policies and the policy language
acceptable to both parties. Several policy languages have been developed as part
of the distributed trust management solutions [20]. The different steps in the trust
negotiation phase are:

(1) Request: This step identifies the client and the type of service the client wants
from the system. This step can succeed a key establishment phase, where the
session key can be established by the two parties.

(2) Policy exchange: This step exchanges the policies between the new entity
and the system. The policies can be expressed in policy languages like the
PeerTrust [21]. At this step, the trust computation of the new node can also
be evaluated based on the system’s trust function.

Infrastructure-Level Threats and Vulnerabilities 91

3)

New node System
Request

Node sends join

request [

Policy exchange

Policy mapping Policy mapping

Credential exchange

Trust computation

VANERVAN

Transaction

> Trust computation

Figure 5.3 Taxonomy of infrastructure threats and vulnerabilities.

Credential exchange: In this step, secure exchange of credentials like keys,
certificates and so on takes place. Proper security measures need to be taken
to ensure the secure exchange of credentials.

Trust management phase

After the trust negotiation phase comes the trust management phase, which is
concerned with the general running of the distributed system. The different steps
that make up this phase are:

e))
2

3)
“)

Trust computation: In this step, the trust value is computed based on the
decided trust function.

Trust distribution: This step includes the secure distribution of trust infor-
mation to other nodes in the distributed system. Since secure distribution is
a necessity, all the principles of security, viz confidentiality, authentication,
integrity and nonrepudiation, need to be maintained. This step also requires
keeping in mind the type of trust function in use and the number of nodes in
which the information needs to be broadcast.

Trust storage: The trust information needs to be securely stored. The creden-
tial repositories can be used for this purpose.

Trust update: Updating the trust needs to be carried out either on an
event-by-event basis or in a timely manner. Event-based trust update can

92 Distributed Systems Security: Issues, Processes and Solutions

happen after a set of transactions or when the trust value or opinion crosses
a threshold.

5.4 Storage Threats and Vulnerabilities

One of the most important and underestimated areas of IT infrastructure is the
storage infrastructure. The importance of the storage infrastructure lies in the fact
that it contains enterprise data, which is possibly the most important resource
in any modern enterprise. Though extreme precautions are taken at the network,
server and transport levels, the storage infrastructure must be securely protected as
well. Keeping the storage unprotected is like keeping your valuables in a locker
without any lock. However protected the doors, windows, elevators are, there
will always be a vulnerability if the locker is kept unlocked. Similarly, whatever
strong protection there may be at the different layers of an enterprise IT stack,
if the storage remains unprotected, the enterprise will always be vulnerable. In
this section, we will briefly look at the vulnerabilities present in centralized and
distributed file systems.

5.4.1 Security in Storage Area Networks

Storage area networks (SANs) have become de facto storage infrastructures in
most enterprises. SANs are high-speed data storage networks that connect different
types of storage device. One of the most popular modes of storage communication
is the Fibre Channel fabric. In this subsection we will touch upon the Fibre
Channel protocol, before discussing the threats to SANS.

5.4.1.1 Fibre Channel Overview

Fibre Channel [22, 23] uses frames for communication purposes. Similar to the
TCP/IP layer, Fibre Channel works on the principle of network layers. Each
layer in the Fibre Channel network interacts with the layers below and above to
transmit the frames to their destination. Most SANs use either a switched Fibre
Channel topology, similar to what we use in an IP-enabled switch network, or a
Fibre Channel arbitrated loop (FC-AL). In either topology, each layer performs a
specific function depending on the architecture that has been deployed. The five
different layers of Fibre Channel frames are as follows:

(1) FC-0 or the physical layer: The lowest level (FC-0) defines the physical links
in the system, including the fibre, the connectors, and the optical and electrical
parameters for a variety of data rates.

(2) FC-1 or the transmission layer: FC-1 defines the transmission protocol,
including serial encoding and decoding rules, special characters and error
control. The information transmitted over a fibre is encoded 8 bits at a

Infrastructure-Level Threats and Vulnerabilities 93

time into a 10-bit transmission character. The primary rationale for use of a
transmission code is to improve the transmission characteristic of information
across a fibre.

(3) FC-2 or the signaling/framing layer: The signaling protocol (FC-2) level
serves as the transport mechanism of Fibre Channel. The framing rules for the
data to be transferred between ports, the different mechanisms for controlling
the different service classes and the means of managing the sequence of a
data transfer are defined by FC-2. The different building blocks defined are
ordered sets or 4-byte transmission words containing data and special char-
acters, frames or information to be transmitted. The sequence is formed by
a set of one or more related frames, to be transmitted uni-directionally. The
exchange is composed of one or more nonconcurrent sequences for a single
operation. The protocol is related to the service offered by Fibre Channel.

(4) FC-3 or the common services layer: The FC-3 level of the FC standard is
intended to provide the common services required for advanced features such
as striping (using multiple ports to send a single piece of information), hunt
groups (the ability of more than one port to respond to the same alias address)
and multicasting.

(5) FC-4 or the applications interfaces layer: FC-4, the highest level in the FC
structure, defines the application interfaces that can execute over Fibre Chan-
nel. It specifies the mapping rules of upper-layer protocols using the FC
levels below it. Fibre Channel is equally adept at transporting both network
and channel information and allows both protocol types to be concurrently
transported over the same physical interface.

5.4.1.2 Threats to SANs

In this subsection, we will describe the possible attacks on a SAN. We assume
that Fibre Channel is used as the communication infrastructure for the SAN. It is
to be noted that most of the attacks discussed here can be recreated in some form
or other for topologies which do not use Fibre Channel [24].

Session hijacking

In session hijacking attacks, a malicious attacker takes control of a valid session
between two trusted entities. Several weaknesses in the Fibre Channel protocol
allow the attacker to launch such attacks. The first is due to clear text messaging:
this is required due to performance constraints; any type of encryption significantly
reduces the overall throughput of the system. The second is due to the lack
of authentication in the basic Fibre Channel protocol. The third is due to the
predictable frame sequence: an attacker can easily hijack a session by sending
frames to an authorized node with the correct sequence ID and sequence count;
this is possible since the sequence ID never changes in a session and the sequence
count increments in a predictable manner. However, due to the heavy traffic

94 Distributed Systems Security: Issues, Processes and Solutions

volume and data speed these attacks are not easily attainable and may have limited
attack potential.

Address spoofing

There are three types of login which are important in a Fibre Channel. They
are Fabric Login (FLOGI), Port Login (PLOGI) and Node Login (NLOGI). The
first allows a node to log in to the fabric and receive an assigned address from
a switch. The node sends its information (node name, port, service parameters)
to a well-known fabric address; it uses a static 24-bit address to do this as it
has not received its own address. The FLOGI will be sent to the well-known
fabric address and the FC switches and fabric will receive the FLOGI at the same
address. After a switch receives the FLOGI, it will give the port associated with
the node a 24-bit address that pertains to the fabric itself. After the node has
completed the FLOGI and has a valid 24-bit fabric address, it will perform a
PLOGI to another well-known address to register its new 24-bit address with the
switch’s name server. The switch then registers that 24-bit fabric address, along
with all the other information submitted, with the name server and replicates that
information to other name servers on the switch fabric. A NLOGI is somewhat
similar to a FLOGI, but instead of logging in to the fabric, the node would log
in to another node directly (node-to-node communication). A malicious node can
spoof the 24-bit address of a valid zone and send the PLOGI request to the
well-known address. This will allow the malicious attacker to transfer any trusted
information to another location, to be used for malicious purposes. Using the
same techniques, a man-in-the-middle attack can be performed. In such an attack,
the attacker obtains spoofs using the above method and gets into the conversation
between trusted nodes A and B. To node A, the malicious attacker acts as node B,
while to B, the attacker acts as node A. Address spoofing can be really dangerous
and can be exploited effectively by attackers.

Zone hopping

Switches are currently the only entities to grant/deny access to the SANs. Access
is granted mainly based on world-wide names (WWN), which are the MAC
addresses of host-bus-adapter (HBA) or network-interface cards. Switch zoning
is a technique which allows specific nodes to access other nodes in the fabric using
different zoning policies. To launch a zone-hopping attack, the malicious attacker
spoofs a WWN address and subverts the zoning table, allowing an unauthorized
WWN to access the information of the spoofed WWN. Without spoofing a WWN,
if an unauthorized WWN knows the route to another WWN in a different zone
which can be enumerated via the fabric, access will be granted.

Infrastructure-Level Threats and Vulnerabilities 95

LUN masking attacks

Logical unit number (LUN) masking is the process of hiding or revealing parts
of the storage disk or LUN to the client node. LUN masking creates subsets of
storage within the SAN virtual pool, allowing only designated servers to access
them. LUN masking can take place at a client node, the FC switch, the storage
node or a third-party storage device. If a LUN masking occurs on the client node
using HBA drivers, the malicious attacker can change or view the mask settings
if the client does not have specific authentication.

5.4.2 Security in Distributed File Systems

Distributed file systems have evolved over the years from easy-to-use remote
file systems to highly-distributed file systems with several independent servers
spanning multiple networks.

5.4.2.1 Distributed File Systems Overview

Distributed file systems can be broadly grouped into three main categories: remote
file systems, network-attached devices and highly-distributed systems.

Remote file system

In the beginning, remote file systems were simply designed to be as easy to use
as local file systems. With few exceptions, the majority of these file systems were
more concerned with making data available than with securing it. NFS, the de
facto UNIX network file system, and CIFS [25], the de facto personal computer
network file system, are the distributed file systems in common use today. They
are not appropriate for use on untrusted networks due to their weak security
features. Now that the Internet is in general use and vast quantities of data are
shared over it, the problem of malicious agents has become more important. The
susceptibility of the Internet to malicious agents has been known for a long time,
but the increased connectivity to it has increased the exposure to such agents.

Network-attached devices

To increase file-system performance, network attached secure disks (NASDs) [26]
are used to allow clients direct access to file data stored in object storage devices.
NASDs provide clients with secrets which are used to access the object storage
devices and prove to them the ability to request an operation on an object. The
communication between client and NASD is both encrypted and authenticated.
Although each NASD device does not know how the object it holds fits into the
file system, the file server still has full access to the file system metadata and the
ability to access all of the file system data.

96 Distributed Systems Security: Issues, Processes and Solutions

Highly-distributed systems

OceanStore [27] is another highly-distributed file system. It uses a large number
of untrusted storage devices to store redundant copies of encrypted files and direc-
tories in persistent objects. Objects are identified by globally unique identifiers
(GUID), which are generated in a similar fashion to the unique identifiers in Self-
certifying file system (SFS). Each identifier is a hash of the owner’s public key
and a name. Objects can point to other objects to enable directories. All objects
are encrypted by the clients. By replicating the objects among servers, clients can
avoid malicious servers deleting their data. The extensive use of replication and
public keys make revocation of access and deletion of data difficult to achieve, but
it does provide a nice model for a completely decentralized distributed file system.

5.4.2.2 Threats to Distributed File Systems

The threats that are common in distributed systems can be divided into passive
attacks and active attacks.

Passive attacks

Passive attacks include analyzing traffic, monitoring unprotected communications,
decrypting weakly-encrypted traffic and capturing authentication information
(such as passwords). Passive intercept of network operations can give attackers
indications and warnings of impending actions. Passive attacks can result in the
disclosure of information or data files to the attacker without the consent or
knowledge of the user. Examples include the disclosure of personal information
such as credit card numbers and medical files.

Active attacks

Active attacks include attempts to circumvent or break protection features,
introduce malicious code, or steal or modify information. These include attacks
mounted against a network backbone, exploitation of information in transit,
electronic penetrations into an enclave and attacks on an authorized remote user
when they attempt to connect to an enclave. Active attacks can result in the
disclosure or dissemination of data files, denial of service or modification of data.

5.5 Overview of Infrastructure Threats and Vulnerabilities

In this section we will briefly provide an overview of the infrastructure threats
and vulnerabilities. We have analyzed the threats based on two main categories:
impact and time frame. The importance of a threat can be high, medium or low
based on the destruction it can generate. Similarly, threats can also be categorized
into: immediate, medium-term and long-term threats. Threats are immediate if
they can happen any moment, or rather such attacks are immediately feasible.

Infrastructure-Level Threats and Vulnerabilities 97

Table 5.1 Infrastructure threats.

Attack Attack Impact Time frame Remarks
category
DoS Network High Immediate DoS attacks are the most
threats popular attacks on any

networking infrastructure
and immediate solutions

are needed
DNS Medium Immediate These attacks are important,
but not as rampant as DoS
Routing Medium Long-term These attacks are

theoretically feasible and
dangerous, but can only
happen in the long term

Wireless High Immediate This is a high-impact area, as
wireless applications and
users are increasing

Architecture Grid High Immediate This is an immediate
threats potential threat
Infrastructure Medium Medium-term With the evolution of

scavenging grid, this threat
will increase

Management Medium Medium-term This threat will also increase
with increasing use of grid
Trust Low Long-term Not immediate, will be im-

portant when there are
more autonomic grid

networks
SAN threats Storage High Immediate Threats need to be addressed
threats immediately
DEFS threats High Immediate/ These also need immediate
medium-term attention. Highly-

distributed file systems are
still evolving

Medium-term threats are those which can take place in three-to-five years’ time.
Finally, long-term threats will not take place within five years as either the tech-
nology is not mature enough to be attacked or it is not popular enough to generate
the amount of destruction that the attackers want.

If we look at the network infrastructure, the denial-of-service (DoS) attack
is an immediate threat and its impact is very high. It can be easily generated
and its potential is huge, as whole enterprises can be shut down, resulting in
millions of US dollars of loss of revenue. Similarly, attacks targeting the wireless

98 Distributed Systems Security: Issues, Processes and Solutions

infrastructure have huge potential, as more and more and more applications are
becoming wireless. In addition, the wireless user base is increasing exponentially.
Therefore, targeting the wireless infrastructure not only has immediate impact,
but the attacks can be enormously destructive.

In grid computing, the architectural threats are immediate as well as destructive,
as the infrastructure can be subverted maliciously for these purposes. Since most
of the current grid infrastructure resides within an organization, the impact of
infrastructure attacks are limited and can only be felt in the medium term. Similar
argument can be put forward for management issues as well. These issues will
gain in importance when the scavenging grid and inter-organization grid grow in
prominence.

In the case of storage infrastructure, the threats to SANs are immediate and have
destructive potential, as most of the enterprise data are stored there. Similarly,
the threats to distributed file systems are also important. However, some of the
highly-distributed file systems like OceanStore are still evolving and threats to
these will only be important in the medium term

References

[1] Chakrabarti, A. and Manimaran, G. (2002) Internet infrastructure security: a taxonomy.
IEEE Networks, 16 (6), 13-21.

[2] Houle, K.J. and Weaver, G.M. (2001) Trends in Denial of Service Attack Technology, CERT
Advisory, Vol. 1.0.

[3] CSI/FBI (2001) Computer Crime and Security Survey, available at http://www.crime-
research.org/mews/11.06.2004/423, accessed on June 13th, 2008.

[4] Moore, D., Voelker, G.M. and Savage, S. Inferring Internet Denial-of-Service Activity.
Proceedings of the 2001 USENIX Security Symposium, Washington, DC, 2001.

[5] Criscuolo, P.J. (2000) Distributed Denial of Service Trin00, Tribe Flood Network, Tribe Flood
Network 2000, and Stacheldraht CIAC-2319, Department of Energy Computer Incident
Advisory Capability (CIAC), Lawrence Livermore National Laboratory, UCRL-ID-136939,
Rev. 1.

[6] Web Report (2000) Yahoo on Trail of Site Hackers. Wired.com, available on http://www.
wired.com/news/business/0,1367,34221,00.html, accessed on 13th June, 2008.

[71 Web Report (2002) Powerful Attack Cripples Internet, Associated Press for Fox News,
available at http://www.linuxsecurity.com/content/view/112716/2/, accessed on June 13th
2008.

[8] Computer Emergency Response Team (1998) Multiple Vulnerabilities in BIND, CERT Advi-
sory, Nov. 1998.

[9] Eastlake, D. (1999) Domain Name System Security Extensions, RFC 2535, Mar. 1999.

[10] Malkin, G. (1998) RIP Version 2, IETF RFC 2453.

[11] Moy, J. (1995) OSPF Version 2, IETF RFC 1583.

[12] Rekhter, Y. and Li, T. (1995) A Border Gateway Protocol 4, IETF RFC 1771.

[13] Welch, J. and Lanthrop, S. (2003) Wireless security threat taxonomy, Information Assurance
Workshop, 2003, IEEE Systems, Man and Cybernetics Society, June 2003, pp. 76—83.

[14] Potter, B. (2003) Wireless security’s future. Security and Privacy Magazine, IEEE, 1(4),
68-72.

[15] Earle, A.E. (2005) Wireless Security Handbook, Auerbach Publications.

Infrastructure-Level Threats and Vulnerabilities 99

[16]
[17]

(18]
[19]

[20]

(21]

(22]
(23]
[24]
[25]

[26]

(27]

Foster, L., Kesselman, C. and Tuecke, S. (2001) The anatomy of the grid: enabling scalable
virtual organizations. International Journal of Supercomputer Applications, 15(3), 200-222
Foster, 1. and Kasselman, C. (2004) The Grid 2: Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufman.

Chakrabarti, A. (2007) Grid Computing Security, Springer.

Gustafson, D., Just, M. and Nystrom, M. (2004) Securely Available Credentials
(SACRED) - Credential Server Framework, IETF RFC 3760.

Mui, L., Mohtashemi, M. and Halberstadt, A. (2002) A Computational Model of Trust and
Reputation. The 35th Hawaii International Conference on System Science (HICSS), Maui.
Xiong, L. and Liu, L. (2002) Building Trust in Decentralized Peer-to-Peer Electronic Com-
munities. The 5th International Conference on Electronic Commerce Research (ICECR),
Montreal.

X3T9.3 Task Group of ANSI (1993) Fibre Channel Physical and Signaling Interface
(FC-PH), Rev. 4.2, October 8, 1993.

Fibre Channel Association (1994) Fibre Channel: Connection to the Future, ISBN 1-878707-
19-1.

Dwivedi, H. (2005) Securing Storage: A Practical Guide to SAN and NAS Security,
Addison-Wesley.

The Open Group (1992) Protocols for X/Open PC Internetworking: SMB, Version 2,
September 1992.

Gibson, G.A., Nagle, D.F., Amiri, K. eral. (1997) File Server Scaling with
Network-Attached Secure Disks. Proceedings of the ACM International Conference on Mea-
surement and Modeling of Computer Systems (Sigmetrics), June 1997, pp. 272—-84.
Kubiatowicz, J., Bindel, D., Chen, Y. etal. (1999) Oceanstore: An Architecture for
Global-Scale Persistent Storage, ASPLOS, December 1999.

6

Application-Level Threats
and Vulnerabilities

6.1 Introduction

Over the last few years there has been a tangible shift in the targets of attacks
from networks/hosts to the applications themselves. Today attackers are increas-
ingly concentrating on exploiting the design and coding weaknesses inherent to
applications, which is facilitated by a number of factors, such as: a lack of secu-
rity focus and awareness in software developers, who end up producing buggy
software; the wide availability of public information about security vulnerabilities
and exploits; availability of sophisticated free and commercial tools which help
in exploiting the weaknesses without requiring in-depth security knowledge; and
so on. The National Institute of Standards and Technology (NIST) [1] estimates
economic impact due to buggy software in the order of tens of billions of US
dollars every year. Gartner [2] estimates that 75% of malicious attacks come from
application-layer vulnerabilities rather than network or host vulnerabilities.

There are several popular public sources, like the Open Web Application Secu-
rity Project (OWASP) [3] and Web Application Security Consortium [4], which
publish the latest information pertaining to application security threats and vul-
nerabilities.

This chapter focuses on some of the more critical application-layer vulnera-
bilities commonly found in applications. While many of these vulnerabilities are
applicable to all sorts of applications, some vulnerabilities are very specific to Web
applications. This list is not exhaustive but covers the typical security vulnerabil-
ities that every developer should be aware of. A comprehensive coverage of all
possible application security vulnerabilities is outside the scope of this book. The
References section provides links to some very detailed treatments of this subject,

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan
and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

102 Distributed Systems Security: Issues, Processes and Solutions

which are must-reads for any developer who would like to develop sensible code
that is inherently secure and difficult to hack.

6.2 Application-Layer Vulnerabilities

An application-layer vulnerability is fundamentally either a weakness in the design
of an application, or an insecure coding practice which comprimises some of
its security requirements. These vulnerabilities are introduced into the code by
a variety of factors, such as lack of security awareness among the designers
and developers, lack of security check points (reviews) at different stages of
the development lifecycle, invalid assumptions about the application deployment
environment and so on.

Some of the more commonly found application-layer vulnerabilities are covered
in the following sections.

6.2.1 Injection Vulnerabilities

Injection vulnerabilities represent a class of vulnerability which primarily result
from improper input validation or putting excessive trust on the input of the
user. Specifically, the injection vulnerability is one where the user-supplied input
is used as part of a command execution or query. If the user-supplied data is
not properly sanitized and validated, a malicious user can inject carefully-crafted
malicious data to change the semantics of the query or command, which leads
to an undesirable consequence. Injection vulnerabilities can have a severe impact
and result in loss of confidentiality/integrity, broken authentication and arbitrary
command execution. In the worst case, they can result in complete compromise
of the underlying application or system.

There are several attacks which exploit the injection vulnerabilities; these
include SQL injection [5-8], LDAP injection [9], XPath injection [10], blind
injection and so on. A complete treatment of all these attacks and their variations
is beyond the scope of this book; the interested reader can refer to [5—10] for
more details. However, we do cover some injection attacks below as examples
of the fundamental approach followed in exploiting injection-based flaws.

6.2.1.1 SQL Injection

SQL injection occurs when an application does not validate and sanitize user
input sufficiently well to discard bad data and uses it directly to construct SQL
commands. In such a case, an attacker can inject one or more malicious SQL com-
mand as part of the input, to change the meaning of the original SQL. command
from that intended.

Application-Level Threats and Vulnerabilities 103

Users
UserName Password

Figure 6.1 Sample table to illustrate SQL injection attack.

The use of SQL injection allows the attacker to insert, delete and modify data,
bypass authorization and run arbitrary SQL commands. The impact can be dev-
astating if the database is accessed through a high-privilege user account.

Let us visualize SQL injection with an example. Assume the user credentials are
in a table called ‘users’, as shown in Figure 6.1, and the following SQL statement
is written to access user credentials:

SELECT * FROM Users WHERE UserName = '" + strUserName + " ' AND
Password = '" + strPassword + "'"

Here assume ‘strUserName’ and ‘strPassword’ are the UserName and Password
values entered by the user in the login screen. If the user enters the correct
UserName and Password, this statement returns the corresponding row. Assume
the authentication logic checks to see if a record is retrieved or not, and if a record
is returned by the query, the user is authenticated.

However, assume an attacker enters the UserName as “ OR 1 = 1 --” in the
UserName field and leaves the Password field blank. With this input the above
SQL statement is built as:

SELECT * FROM Users WHERE UserName = '' OR 1=1 -- ' AND
Password = ''

As you can see above, this input effectively changes the meaning of the original
SQL statement. The ‘--’ is treated as comment by most database servers; therefore,
the following statement effectively gets executed on the database:

SELECT * FROM Users WHERE UserName = '' OR 1=1

In the above SQL statement, the OR condition 1 = 1 always evaluates to true
and as a result this SQL statement returns all rows in the users table. This allows
the attacker to login to the application as the first name in the users table without
requiring any password.

The same logic can be extended to gain unauthorized access to, and modify and
delete, tables/records in the database. A complete treatment on how the attackers
detect the presence of the SQL injection vulnerabilities is out of the scope of this
book and interested readers can refer to [S—8] for more details on SQL injection
attack.

104 Distributed Systems Security: Issues, Processes and Solutions

Since SQL injection is primarily caused by lack of input validation, prevention
is possible by using parameterized stored procedures over and above sanitizing
and validating the input for the ‘good’ input and denying all other input. More
details on the specific solutions are provided in Chapter 10.

LDAP, XPath, XSLT and blind injection, as well as XSLT, are variations of
the SQL injection where the attacker tries to inject the appropriate commands to
change the logic.

6.2.1.2 LDAP Injection

The Lightweight Directory Access Protocol (LDAP) is the protocol most com-
monly used to access information from directories which primarily organize and
store information in hierarchical (tree) structure. In today’s enterprises, directories
are the common storage for user data and other most frequently-accessed data.
For example, directories are used in organizations to store user credentials, user
attributes and information about other resources like printers, fax machines and so
on. The users are typically authenticated to LDAP directories. These directories
often contain sensitive data and are a hot target for attackers.

LDAP injection vulnerability is where the user-supplied input is directly used
without proper validation to construct an LDAP query statement. An attacker can
exploit this vulnerability by supplying carefully-crafted LDAP statements as part
of the input, changing the semantics of the LDAP statement. If successful, the
LDAP injection vulnerabilities can cause information disclosure, bypassing the
authentication and access-control mechanisms and so on. Interested readers can
refer to [9] for a more comprehensive treatment of these attacks.

6.2.1.3 XPath Injection

XPath is the language used to refer to parts of an XML document. XPath is
either used directly to retrieve specific portions of an XML or in conjunction with
XQuery or XSLT transformations.

XPath injection is where the user-supplied input is directly used without proper
validation to construct XPath queries. An attacker can inject XPath constructs as
part of the user input, changing the semantics of the originally-intended XPath
statement. If executed, this results in advantage being given to the attacker and
compromises the security of the system. Interested readers can refer to [10] for a
more detailed explanation of XPath attacks.

6.2.1.4 Blind Injection

There are many variations on how an attacker can exploit the SQL, LDAP
and XPath injection vulnerabilities. One specific variation of interest is Blind
injection, where the attacker is not aware of the underlying structure of the

Application-Level Threats and Vulnerabilities 105

SQL/LDAP/XPath statement but can determine the complete structure of the
underlying statement and ultimately exploit the system. Interested readers can
refer to [6] for more details on Blind injection attacks.

6.2.2 Cross-Site Scripting (XSS)

Cross-site scripting (XSS) attacks are made possible by injection vulnerabilities in
the application code. Although XSS is a specific attack belonging to the general
class of injection vulnerabilities, it is covered here separately due to its severe
impact on applications. XSS typically occurs in sites which allow user input, and
echoes this back to the client without proper validation. In XSS attack, an attacker
injects malicious client-side script as part of the input data, which is subsequently
echoed back to the client browser. As the malicious script is served through the
genuine server, the browser trusts it and executes it with the security privileges
applicable to the site, which means the script can access the cookies set by that
site and steal or manipulate the data silently to a remote server, read/alter the
page content and so on.

XSS is one of the more prevalent exploits on Web applications and is com-
mon in applications like search engines, where the user-entered search key words
are echoed; message forums, where the user-submitted messages are seen by
everyone; error messages, which echo the user-entered data; and so on.

Consider an on-line message forum portal that is vulnerable to XSS attack. Users
of the messaging portal typically post messages or view the messages posted by
other users. Assume an attacker with malicious intent enters a message like ‘This
is a bad post script alert(‘XSS’)’.

Any other user of the portal who views that message receives ‘This is a bad post
script alert(‘XSS’)” and the user’s browser interprets the script tags as JavaScript
and executes it to display an alert as ‘XSS’. Once such a vulnerability is discovered
in a page, the attacker can write more malicious scripts to steal cookies, session
tokens and so on. Though we have demonstrated here an example of this attack
that uses JavaScript, an attacker can inject any client-side executing script like
HTML, Flash and so on. XSS attacks can be launched to disclose confidential
data, or to break the access control restrictions of the application.

There are primarily two types of XSS attack that are possible: persistent and
nonpersistent (reflective). In a nonpersistent XSS attack the attack is carried out
as the victim is interacting with the application. The attacker typically sends a
specially-crafted link to the victim and persuades him to click on it. An unsus-
pecting victim, upon clicking the link, is presented the page with the said XSS
vulnerability by the unsuspecting genuine server. This leads to the vulnerable
script being executed on the client’s browser. In a persistent XSS attack, the
attacker typically posts the maliciously-crafted code to the server, which stores
it in a repository (e.g. files, database) and subsequently presents it to other users
when they request that content. A typical scenario is a message forum that is

106 Distributed Systems Security: Issues, Processes and Solutions

vulnerable to this kind of attack. An attacker posts a malicious message to the
forum, and subsequently all other users are affected when they view that message.
For a detailed treatment of the XSS attack and exploit codes, see the References
section.

XSS attacks are primarily caused by echoing the user input as part of the
response as it is entered, without proper validation. Interested readers may refer
to [4, 11] for more details on XSS attacks. Remediation strategies for XSS attacks
include proper validation of input, encoding the input data when it is echoed back
and so on. More details on the specific solutions are provided in Chapter 10.

6.2.3 Improper Session Management

Session management flaws are very common in Web applications. HTTP is a state-
less protocol, which means that a Web server cannot relate a series of requests
as coming from the same user. Since this is a necessary ability for stateful appli-
cation, the concept of user sessions was introduced to Web applications. There
are predominantly three types of technique used to support sessions: hidden form
fields, URL rewriting and cookies. Typically in all these techniques, a session
identifier that identifies a user session on-server will be exchanged in every sub-
sequent request and response between client and server. The design and secure
implementation of this session management logic is often the responsibility of the
application and is critical for the security of the application.

Any flaws in the session management architecture and its implementation result
in broken authentication and access control and provide inadvertent advantage to
the attacker. For this reason, session identifiers and session-management tech-
niques are often the targets for attackers. In spite of the critical role of session
management in Web applications, it is astonishing to note that many Web applica-
tions continue to be vulnerable to improper session management flaws, resulting
in compromised systems.

Different attacks are possible, depending on how the session management is
designed and implemented. The session IDs can be subjected to interception,
prediction and brute-force analysis attacks, and any flaws in the session man-
agement architecture can lead to session hijacking, session fixation, replay and
man-in-the-middle attacks.

As obtaining a valid session ID often allows an attacker to gain direct access to
the application without any credentials, session IDs are the prime target for attack-
ers. Session ID interception attack exploits the weakness in session management
design, where the session identifiers are exchanged over an insecure communica-
tion channel. This allows the attacker to use a wide variety of tools to intercept
the traffic and gain access to the session ID being exchanged. The spoofed ses-
sion IDs can be used to hijack the victim’s session. Use of encrypted sessions
or secure sockets-layer (SSL)/transport-layer security (TLS) is a recommended
way of discouraging session ID interception attacks. In session-prediction attack,

Application-Level Threats and Vulnerabilities 107

the attacker successfully predicts the valid session identifiers. This can be due to
a weakness in the design and implementation of how the application generates
the session identifiers. For example, the use of sequential session IDs in propri-
etary session ID generation modules makes the prediction of session identifiers
an easy task for attackers. Cryptographically-secure random number generators,
along with random seeds, are a more secure choice, since they make the prediction
of session identifiers a tough job for attackers. Brute-force analysis of session IDs
is where an attacker tries all possible combinations of session IDs in an exhaustive
manner. Choosing sufficiently large session identifiers relative to the number of
simultaneous sessions present at any given point of time helps in countering the
brute-force analysis attacks on session identifiers.

In a session fixation attack [12], the attacker utilizes a design or implementation
flaw in session management logic of the application to fix the session ID to a value
of their choice and subsequently lures the victim to use that session ID for login.
Session fixation is possible when the session identifiers are either chosen by the
user or set by the server. For example, consider the case of an online banking
application that has a session management flaw.

Assume that the bank’s online portal creates a session identifier for the user
when they first connect to the banking site using their browser, even before they
have logged in using their credentials. Further assume the bank uses the same
session identifier to continue to maintain the user’s session after the event of
successful user login. This is an ideal scenario for an attacker to launch a session
fixation attack. The attacker connects to the banking site first. The banking site
creates a session and passes the session identifier to the attacker’s browser (say,
as a URL parameter). The attacker intercepts this session identifier and creates a
carefully-crafted link that points to the bank’s login page, where their own session
ID is already set as a URL parameter, and lures the legitimate user to click on
it. If the legitimate user clicks on the link and connects to the banking site, the
banking site simply reuses the session identifier and supplies the login screen in
the context of that session. Now if the legitimate user logs in to the bank’s site
using their credentials, they share a session ID with the attacker. The attacker can
then bypass the login screen and access the bank’s site as the legitimate user.

There are several other techniques with which an attacker can get access to a
valid session identifier belonging to a legitimate user. For example, consider a
banking site that has XSS vulnerability. Further assume the bank sets the session
identifier as part of the cookies on the client’s browser. An attacker who is aware
of the XSS vulnerability can create a message with a carefully-crafted link and
lure the user to click on it. When the user clicks on the link, the script injected
by the attacker can silently steal the cookie information and send it to them.
Now they have access to the legitimate session identifier and can connect to the
application without having to prove their credentials.

In conclusion, there are many variations in how the design and implementation
flaws in session management can be exploited by an attacker to gain access to a

108 Distributed Systems Security: Issues, Processes and Solutions

system. Session management forms a critical aspect of Web application design and
has to be carried out with security in mind. Interested readers may refer to [12]
for more details on session fixation attacks. Several solutions and best practices
for secure session management are discussed in Chapter 10.

6.2.4 Improper Error Handling

Error handling is one of the rather frequently ignored aspects of secure
application design. Improper error handling vulnerabilities in applications lead
to disclosure of sensitive information like database details, platform version
details, SQL statements, stack traces and so on to attackers. Many times the
error messages generated by applications contain lots of useful information
that inadvertently helps an attacker instead of being helpful to the user.
Sometimes error messages differ for the same error conditions but different
versions of the product or for different input. All this leads to leakage of
important information which helps the attacker know more about the application
environment and thereby launch specific attacks against the known vulnerabilities
of the application.

Attackers inject malformed inputs to specifically force applications to fail. This
helps the attacker either in getting the sensitive useful information that is leaked
through error messages or, in some cases, in causing denial of service (DoS).

For example, consider an application that throws different error messages during
the login process depending on the particular sequence of user actions. Assume
that if an invalid login name and password is supplied to the login page, after
validation it returns an error saying ‘invalid login user name or password’. This
by itself is a ‘good’ error message because it does not reveal exactly which of
the ID or password is actually incorrect. Suppose the attacker has access to one
valid login user name and he enters it (along with an incorrect password) in the
login screen. If the application now returns a different error message (one that
says ‘invalid password’, for example), it provides a sufficient hint to the attacker
that he now possesses a valid login user ID for sure and only has to guess the
right password to get access to the application.

Many times, the error conditions are not properly caught in the application
layers, and this results in displaying the stack trace (corresponding to the instant
when the exception was actually thrown) directly to the user. The stack trace is
typically provided primarily for the developers, to help them debug the applica-
tion; hence, it often contains sensitive details like SQL commands, line numbers,
the technology stack being used and so on. This information is of no use to the
end user, but proves to be of immense help to attackers. For example, because of
some SQL query error a stack trace might return the database name, table name,
column name and the specific reason why the query failed. If this is displayed to
the attacker, they can carefully craft messages to determine the entire database
schema and subsequently launch attacks. A more detailed example of how an

Application-Level Threats and Vulnerabilities 109

attacker can perform SQL injection attacks with the aid of stack traces is given
in the References.

To prevent information disclosure or leakage, security issues are to be thor-
oughly considered while designing the error handling strategy of an application.
Enough care must be taken to ensure that error messages are consistent and only
contain the minimum information required to reveal the possible cause. Also, care
must be taken to see that error messages are consistent across different versions of
the same software. A centralized exception handling is a recommended approach.
More information about the best practices for secure exception handling is given
in Chapter 10. Interested readers may refer to [13, 14] for detailed discussions of
the issues related to improper error handling.

6.2.5 Improper Use of Cryptography

The use of cryptography in applications often leads to a false sense of security
among the developers. However, the reality is that cryptography is not the solution
for every security problem; it only provides solutions for specific problems like
authentication, data secrecy, nonrepudiation and so on. For example, coding bugs
that lead to security breaches cannot be addressed by cryptography. The other
huge misconception is that all crypto implementations are equally secure. It is
very dangerous to assume that all cryptography is equal. Different cryptographic
algorithms have different security strengths. It can cost one dearly if cryptography
is not implemented safely. Defective implementations of crypto algorithms, wrong
assumptions made about randomness sources, bad use of crypto algorithms in
applications, in-house developed algorithms and so on all prove costly and often
end up lulling an organization into a false sense of security.

For example, developers often believe that a crypto algorithm that has been
developed in-house and hence is not known to the public at large is safe from
attackers. That this is really not so has been proved many time. Given enough
resources (time, computing power), any crypto algorithm can be broken. For
example, RC4 was initially a trade secret, but in September 1994 a description of
it was anonymously posted to the Cypherpunks mailing list. It was soon posted
on the sci.crypt newsgroup, and from there it made its way to many sites on the
Internet. Security through obscurity might help in certain cases to raise the bar for
an attacker, but it should not be the only defense to prevent an attack. The strength
of an algorithm lies in the secrecy of its key, not in the secrecy of algorithm
detail. Proprietary algorithms are often not well tested and analyzed. Therefore, it
is recommended that published algorithms, which are time-tested against stringent
security attacks and have been subject to cryptanalysis by several cryptographers
and attackers, always be used unless there is a good reason for not doing so.

Cryptographic operations like cryptographic key generation, password genera-
tion and so on require the use of random numbers. The characteristics for random
numbers to be used in crypto functions are stringent; otherwise the functions

110 Distributed Systems Security: Issues, Processes and Solutions

would be subject to multiple weaknesses which could be exploited by attackers.
The important characteristics for crypto random numbers are that there should be
even distribution, the random numbers should be highly unpredictable, and the
random number range should be sufficiently high. Many of the common random
algorithm implementations do not fulfill these requirements and their outcomes
are reasonably predictable. If developers use these insecure algorithms to generate
keys, they are highly predictable and it is easy for attackers to break the system.
It is critical to look at the documentation of the random generator libraries to
see if they support crypto random number generation algorithms. Similarly, it is
always better to check the documentation on the source of randomness for the
algorithms.

Symmetric cryptography is popularly used to encrypt any sensitive data while it
is in transmission or persistent storage. This involves using the same key for both
encryption and decryption, and sharing the key between the sending and receiving
parties. Frequently, developers of an application hardcode the keys in source code,
assuming it is not possible to read them from binary executables. However, there
are plenty of methods and tools by which the hardcoded keys can be readily
extracted from executables. Besides this information leakage, hardcoded keys
make the task of changing the keys at regular intervals very difficult. Similarly,
storing sensitive keys in insecure storage may cause leakage of those keys.

Oftentimes passwords are used to generate keys and if the passwords are not
chosen carefully, the effective password bit length may be much less than that
required, and this can cause the production of predictable keys.

Also, using the right crypto algorithms for the right purpose with the right
key lengths is crucial for the secrecy of the data. For example, use of broken
algorithms like MDS5, DES and so on for cryptographic computations must be
avoided. Similarly, using 512-bit RSA with 512 may be considered weak; at a
minimum, 1024-bit RSA should be used.

More details on the common pitfalls and best practices in the use of cryptog-
raphy are given in [13—15].

6.2.6 Insecure Configuration Issues

Applications are only as secure as their weakest link. Even if security best prac-
tices have been strictly followed while implementing an application, any single
mistake by administrators in configuring and deploying it may completely jeop-
ardize the entire security of the system.

Often application developers bundle their application with a lot of features
set to their default configurations, which may have security implications if they
are not fine-tuned in the production environment. Releasing applications with
default passwords for administrators is a good example of such vulnerability.
These default passwords are generally well known, and the first thing attackers
try to do is to use these default passwords to access administrative accounts.

Application-Level Threats and Vulnerabilities 111

Similarly, requiring the application to run with more privileges than required may
provide an opportunity for attackers to abuse these privileges.

Most of the time the configuration files will store the sensitive data in plain text.
Database connection strings and database user credentials are typical examples of
this. This makes the configuration files a tempting target for attackers. If they are
not adequately access-restricted, they can be exploited by any insider with mali-
cious intent who has access to them. Also, often the user credentials are transmitted
as plain text in the internal network. This makes the application vulnerable to
insider attacks, as anyone who has access to the network can use network sniffers
to learn the plain passwords. It is good practice to use encryption to protect the sen-
sitive data in configuration files. Similarly, it is good practice to use a secure chan-
nel to transmit the sensitive data, even with an organization’s internal networks.

Many applications come with administration interfaces that help administrators
configure them and their security features. If care is not taken to access-restrict
these interfaces for only privileged administrative accounts, they can be abused
by insiders. Similarly, if these interfaces can be administered remotely, a lot
more care has to be taken to use a strong form of authentication for remote
administrators. Interested readers may please to [13, 14] for more discussion on
configuration-related security issues.

6.2.7 Denial of Service

Availability to genuine users when they need access is a key requirement for
any application to be successful. A DoS attack aims at making an application
or service unavailable to users. There are multiple ways in which an applica-
tion and its services can be attacked, which may range from physical attacks on
hardware infrastructure, through attacks exploiting the weaknesses in the underly-
ing network communication protocols and attacks exploiting the vulnerabilities in
application code, to attacks exploiting weaknesses in the business processes sup-
porting the application. An application-layer DoS attack is one that exploits the
software design and implementation vulnerabilities to make a service unavailable
to its users. DoS attacks severely impact the confidence of users in a company,
resulting in brand loss and direct-revenue loss.

Application layer DoS attacks are normally very difficult to detect and prevent
as often the bandwidth consumed by the application layer DoS attacks is small
and indistinguishable from normal traffic. These attacks typically take advantage
of the implementation and design flaws in the application and its business
process layer. Attackers analyze the application for any possible bottlenecks and
try to exploit them.

Attackers can analyze the application to see possible vulnerabilities, like buffer
overflow, SQL injection and so on, and can exploit them to cause DoS. Similarly,
designers have to take extra care when allowing access to certain functionality by
users. For example, assume a report-generation functionality which consumes a lot

112 Distributed Systems Security: Issues, Processes and Solutions

of computing cycles is exposed to users. If users are not forced to authenticate to
the system before accessing this report functionality, it can be abused by attackers to
cause DoS, as the attackers can cause the system to generate lots of reports which are,
obviously, notintended for consumption. Allowing only authenticated users to access
the resource-intensive functionality is often a best practice to lower DoS attacks.

Similarly, attackers can abuse application- and process-layer vulnerabilities.
For example, assume login functionality without an account lockout policy, which
allows users any number of authentication attempts. This can be abused by attack-
ers to launch dictionary-based attacks or brute-force attacks, which try all possible
combinations of usernames and passwords. But if an account lockout policy is
implemented to prevent a certain number of invalid authentication attempts, this
can further be abused by attackers to lock-out the accounts of targeted individual
users. Attackers can obtain valid usernames through different means, including
social engineering attacks, guessing of usernames/passwords based on information
available about particular users and so on.

Fully-automated features, if they are not implemented with security in mind,
can sometimes cause DoS. For example, assume a Web-based e-mail portal that
allows users to register their own profiles and create an account without any
manual intervention. Such a system can very easily be exploited, by automating
attacks through a script to make a large number of false registrations.

For a more comprehensive treatment of application-layer DoS vulnerabilities,
please refer to [16]. As DoS attacks have a severe impact, application designers
and developers should carefully consider their possibility and understand how
they can be mitigated. More information about the best practices for addressing
application-layer DoS attacks is given in Chapter 10.

6.2.8 Canonical Representation Flaws

Canonical representation of data means representing the data in its simplest, most
direct and basic form. Often multiple formats exist in computer systems to repre-
sent the same data. For example, the same data can be represented using different
character-encoding schemes like ASCII, Unicode (UTF-8, UTF-16 and UTF-32),
ISO 8859-1 and so on. A back slash ‘\’ character can be represented in different
forms in UTF-8, as <5C> or <C1 9C> (in its shortest-form representation).
Similarly, in some operating systems the file names and directory names can be
represented in multiple ways. For example, MS DOS represents files with its 8.3
notation, where mysecretdata.txt and mysecr~1.txt may represent the same file.
In a well-designed application, all input will be checked for potential security
implications by some sort of input-validation routine. After the input has been
scrutinized, the application components can trust it to be secure. However, if the
input validation fails to take care of the multiple possible representations of the
same data and takes a decision based on the noncanonical representation of the

Application-Level Threats and Vulnerabilities 113

data, it may lead to severe security flaws, such as spoofing, information disclosure
and broken access control threats.

A comprehensive treatment of canonical representation issues is out of the scope
of this book; interested readers may refer to [13—15, 17].

6.2.9 Overflow Issues

As a general concept, overflow is said to happen when data is written to a buffer
without insufficient-bounds checking and is therefore allowed to overflow into
(and hence, corrupt) one or more locations adjacent to the allocated buffer. This
has been known to be exploited to manipulate a running program into changing
its behavior in a way that benefits the attacker.

The stack overflow attack involves writing more data to a fixed-length buffer
on the running program’s call stack than is actually allocated for that buffer. What
this essentially implies is that the program, which may be running with special
privileges, has its stack buffer injected with ‘data’ of the attacker’s choosing.
Given that the stack also contains the return address of the currently executing
procedure, all the attacker has to do is to inject the executable code on the stack
and simultaneously overwrite the ‘most recent’ return address with the starting
address of this piece of code. As soon as the currently executing function returns,
it will pop the return address from the stack and begin executing instructions
starting from that address (which is essentially the attacker’s code).

Broadly, there are two ways in which such exploitation can be prevented. If we
are able to detect that an overflow has happened, we can ‘stop’ the instruction
pointer from jumping to the (corrupted) return address that is present on the stack.
As an alternative, we can, as a general rule, enforce a memory policy on the stack
memory region to disallow execution from the stack altogether.

The former method essentially entails placing a random integer in the memory
location just before the return address of the currently executing function. The
technicalities of the way stack overflow happens effectively ensure that touching
the return address corrupts this integer as well. A simple check on the contents of
this specific location, just before the executing routine jumps to the return address,
is enough to confirm that an overflow has happened.

The second method, Data Execution Prevention, entails setting the NX (‘No
eXecute’) or the XD (‘eXecute Disabled’) flag — assuming the CPU supports
it — to mark the specific pages in the memory that contain the stack (and the
heap, if need be) as readable but not executable. As a result of this marking, any
attempt to execute the code that the attacker may have managed to inject into the
stack will lead to a kernel exception.

114 Distributed Systems Security: Issues, Processes and Solutions

6.3 Conclusion

There is a large amount of information available in the public domain on com-
mon application security vulnerabilities. At the same time, there are also plenty
of commercial and free open-source tools available that help in exploiting those
weaknesses. Often, application security is an afterthought and not built into the
application as an integral step of the software-development lifecycle. This results
in buggy software from a security perspective. These reasons make the application
and process layers tempting targets for attackers. Designers and developers must
pay close attention to ensure that security is built into the application from the
ground up. This chapter has tried to cover some typical application security vulner-
abilities and the corresponding possible attacks. It is very important for all appli-
cation developers and designers to be aware of these common application security
threats, so that they can build appropriate countermeasures into their applications.

References

[1] National Institute of Standards and Technology, http://www.nist.gov/
[2] The Economic Impacts of Inadequate Infrastructure for Software Testing, http://www.
nist.gov/director/prog-ofc/report02-3.pdf
[3] Open Web Application Security Project (OWASP), www.owasp.org
[4] Web Application Security Consortium Threat Classification, http://www.webappsec.org/
projects/threat/classes/cross-site_scripting.shtml
[5] Spett, K. SQOL Injection: Are your web applications vulnerable?, Technical report, SPI
Dynamics, Inc., 2005.
[6] SPI Labs, Blind SQL Injection. SPI Dynamics. 2005, accessible spidynamics.com/
whitepapers/Blind_SQLInjection.pdf.
[7]1 Anley, C. Advanced SQL Injection in SQL Server Applications, Next Generation Security
Software Limited, 2002.
[8] OWASP SQL Injection, http://www.owasp.org/index.php/SQL_injection
[9] Faust, S. LDAP Injection — Are Your Web Applications Vulnerable? a white paper from SPI
Dynamics, 2003.
[10] Xpath Injection, http://www.webappsec.org/projects/threat/classes/xpath_injection.shtml,
http://www.owasp.org/index.php/XPATH_Injection
[11] Spett, K. Cross Site Scripting — Are Your Web Applications Vulnerable? a white
paper from SPI Dynamics, 2005, accessible http://spidynamics.com/whitepapers/SPIcross-
sitescripting.pdf.
[12] Session Fixation Vulnerability, http://www.acros.si/papers/session_fixation.pdf
[13] OWASP, A Guide to Building Secure Web Applications and Web Services, 2.0, Black Hat, 2005.
[14] Improving Web Application Security - Threats and Countermeasures. Microsoft Press,
September 2003.
[15] Howard, M. and LeBlanc, D. Writing Secure Code, 2nd edn, Published December 2002.
[16] de Vries, S. Application Denial of Service (DOS) Attacks. A Corsaire White Paper, April 2004.
[17] Security Considerations for the Implementation of Unicode and Related Technology,
http://unicode.org/reports/tr36/tr36-1.html

Further Reading
Howard, M. and LeBlanc, D. Writing Secure Code, 2nd edn.

7

Service-Level Threats
and Vulnerabilities

7.1 Introduction

The notion of service-oriented architecture (SOA) is predicated upon the
concept of well-encapsulated bundles of software accessible over networks via
well-defined open implementation independent standards-based interfaces. The
openness and implementation independence are a source of additional complexity
in terms of security requirements. The adoption of Web services enables business
organizations to improve business process efficiency by reducing cost and time,
and to gain expansive business opportunities. Enterprises have been able to
create service wrappers over their huge existing legacy code base. This has
enabled them to bring the old legacy systems to the forefront of dynamic
process integration using technologies like BPEL and real-time information
dissemination. The application of integrated communication makes it possible for
business organizations to gain a wider group of collaborative business partners,
customers and services, which eventually brings them into new competitive
service markets.

While Web services have really opened up the possibilities of intra- and
inter-enterprise integration and collaboration, they have also opened up additional
threats and vulnerabilities. To add to the complexity, Web services are built at
the edge of the enterprise ecosystem, and this, coupled with the fact that they
are composed of human-readable message interactions, leaves them extremely
vulnerable to attacks.

This chapter focuses on some of the most commonly identified threats and
vulnerabilities that exist for service implementations. While many of these vul-
nerabilities are omnipresent across the various layers, like applications and infras-
tructure, they represent themselves in the service layer as mutant manifestations.

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan
and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

116 Distributed Systems Security: Issues, Processes and Solutions

This list is not comprehensive, but addresses most typical security vulnerabilities
that should be in the knowledge base of service designers.

7.2 SOA and Role of Standards

SOA is primarily predicated upon standards-based communication between ser-
vices, hence security needs to be addressed with standards in mind.

7.2.1 Standards Stack for SOA

Web services represent the most popular form of SOA, and are based on the
idea of a stack of standards for various facets of distributed computing, right
from message layer to higher business process layers, with nonfunctional layers
running right through. While there exist several WS-* standards constituting this
stack, we show a simplified version in Figure 7.1 to facilitate further elaboration
of relevant security issues for Web services and SOA. In particular, in Chapter
11, we shall elaborate on the security standards for SOA.

In Figure 7.1, the core Web services standards are illustrated. At the bottom-
most layer, XML represents the lingua franca of all communications in SOA. All
Web services standards are defined in XML, and mandate usage of XML-based
documents in communications. Above the XML layer, the XML schema provides
for a universal grammar for data types, independent of the implementation lan-
guage and platform. The Simple Object Access Protocol (SOAP) leverages XML
schema to provide for standards-based packaging of messages sent between ser-
vice providers and consumers, irrespective of the underlying transport protocol
(e.g. HTTP, SMTP, HTTPS, etc.). While SOAP is able to provide standards for
messaging, the Web Services Description Language (WSDL) provides a standard
for describing the communication and location details of a service, to be adver-
tized to all service consumers to help them get access to all the details necessary to

Business Process Layer — WS-BPEL

Service Registry Layer — UDDI

Service Description Layer — WSDL

Message Layer — SOAP

<Hd4=—TCOMmM®

Data Format Layer — XML Schema

Language — XML

Figure 7.1 Standards stack for SOA.

Service-Level Threats and Vulnerabilities 117

carry on a service invocation. Universal Description Discovery Integration (UDDI)
provides an XML-based standard for service registries, with standards for service
publishing and searching services. WS-BPEL is an emerging standard for busi-
ness process descriptions leveraging orchestrations of Web services. The standards
for nonfunctional requirements, including security, which are cross-cutting across
all layers, again leverage XML. There are multiple security standards for SOA,
addressing the diverse SOA security requirements. We shall study these standards
in Chapter 11, as standards are a crucial element of the solutions addressing SOA
security issues.

7.3 Service-Level Security Requirements

Traditional security technologies are by and large inadequate to secure Web ser-
vices. Boundary-based network security technologies (e.g. firewalls, IDS) are
inadequate because Web services operate using the underlying HTTP protocol.
Firewalls are usually configured with very little restrictions for HTTP. They gen-
erally also allow HTTP tunneling for RMI/EJB objects. While certain types of
firewall support filtering of HTTP content and some can support filtering of SOAP,
filtering all XML messages with traditional firewalls can prove to be expensive
and a performance drag, and reduce their throughput. Web service specifica-
tions allow for messages to be passed via intermediaries rather than simply by
point-to-point communication. SSL/TLS is inadequate for a number of possible
SOAP transactions because SSL/TLS is designed to secure transactions between
individual Web services — and will not protect against an intermediary performing
a man-in-the-middle (MITM) attack. The openness and interoperability features
also open up new avenues of attacks.

SOA necessitates a rethink of some of the core security requirements, while
creating additional requirements owing to the open network-based application
invocations via XML-based standards. Further, today’s Web service application
topologies include a broad and diverse combination of mobile devices, gateways,
proxies, load balancers, demilitarized zones (DMZs), outsourced data centres
and globally-distributed dynamically-configured systems.The primary concerns in
SOA implementation include the following [1]:

7.3.1 Authentication

In SOA, like in any Web-based application, an invoker must be authenticated to
establish genuineness of credentials. Diverse authentication mechanisms (includ-
ing authentication via username/password, Kerberos, NTLM, Certificates from
Trusted CAs, etc.) need to be provided for in Web services. Additionally, multiple
applications with heterogeneous authentication systems will need to interoperate
with one another. Further, with Web services it might be necessary to accept
credentials from outside an enterprise; for example, from a business partner.

118 Distributed Systems Security: Issues, Processes and Solutions

Standardization of formats for sharing authentication information hence becomes
an absolute necessity.

7.3.2 Authorization and Access Control

In SOA implementations, since requestors invoke operations, beyond the basic
access control models for accessing IT resources, there is a need to specify oper-
ation (method)-level access privileges (like permission to execute, privileged user
to the service, etc.). Also, it might be necessary for authorization and access con-
trol information to be updated dynamically, during a multihop service invocation.
Further, since SOA is applied in a business context, there is a need to allow for
specification and validation against complex policies for access (business policies,
security policies, etc.). Standards for interoperation of multiple policy formats
become crucial. This also calls for standardization of universal policy languages
capable of handling complex formats of requests.

7.3.3 Auditing and Nonrepudiation

In any Web service invocation, the need to be able to know the users, their
locations and their access details, is crucial in case of attack by unintended users.
This may include capturing of failed invocations of a service, faulty credentials,
bad authentications, bad signature occurrences and so on. An administrator should
be able to analyze the audit records, in order to predict and nail down attackers.

In addition to being able to capture the fact that a certain piece of information
was created or transmitted, auditing in SOA is necessary for nonrepudiation, which
requires every service invocation detail to be captured so that at a later time the
requestor cannot deny the invocation.

7.3.4 Availability

In any distributed SOA implementation, the service provider should provide a
reasonable guarantee that the service will be available to a genuine requestor
when needed. This is typically defined and implemented via standard SLA for-
mats which service provider platforms can vouch for and service consumers can
agree upon.

A crucial aspect of ensuring availability is detecting and preventing
denial-of-service (DoS) attacks, which may be carried out with input of malicious
data that appears harmless to conventional solutions like firewalls. This can lead
to serious harm to the service provider. The malicious data may be in form of
spurious code, sent as part of a Web service request.

In SOA, in addition to malicious data-based attacks, owing to the ease of invo-
cation of services with exposed interfaces, a repeated set of attacks can occur,
leading to DoS (and DDoS) and loss of availability. This requires a specialized

Service-Level Threats and Vulnerabilities 119

kind of firewall, with the capacity to diagnose the content of a request and exam-
ine methods of invocation in isolation. Code Inspection of service requests can
provide a clue about repeated requests and appropriate mechanisms can be used
to avoid such attacks

7.3.5 Confidentiality

In SOA, it may be required that a particular portion of an XML document is not
understandable by anyone other than the person for whom it is intended, while the
remainder of the document is left untouched. This necessitates partial encryption
of the document. This is because quite often message invocations in SOA traverse
across several intermediaries, with the routing information present in the headers
of the messages.

7.3.6 Data Integrity

In SOA, it may be required that a portion of an XML document should not be
altered in storage or transit between sender and intended receiver without the
alteration being detected, while other portions should be alterable, or in certain
cases might even be deliberately altered. For example, in a value-added interme-
diary extra information might be added to the header of a message, while the
body remains untouched.

7.3.7 Privacy

In SOA, well-defined formalisms are needed to use and disclose personal informa-
tion provided by the service-requesting clients. The legal landscape surrounding
data privacy is fluid and is subject to new legislation and interpretation by govern-
ment agencies and the courts. Organizations creating, managing and using Web
services will often need to state their privacy policies and require that incoming
requests make claims about senders’ adherence to these policies.

7.3.8 Trust

In SOA, applications can come from diverse trust domains, and hence there is a
need for flexible message-based trust mechanisms, which can allow for dynamic
establishment of trust via message-level information (proof of trust). Hence, trust
intermediaries are important in the context of SOA.

7.3.9 Federation and Delegation

Delegation refers to the capability of one service or organization to transfer secu-
rity rights and policies to another trusted service or organization. Federation is a

120 Distributed Systems Security: Issues, Processes and Solutions

special case where the transferee service is a peer, not a child. The failure of a
service should not let the whole federation collapse; instead a delegation is made
to another service.

Single sign-on is a mechanism which allows a user to access different sys-
tems and resources without the need to enter multiple usernames and passwords
multiple times. Identity is a set of definitely distinguishable attributes or bits of
information about a person or business which can be used in authentication and
authorization. Federated identity architecture delivers the benefit of single sign-on,
but it does not require a user’s identity to be stored centrally.

7.4 Service-Level Threats and Vulnerabilities

While Web services have really opened up the possibilities of intra- and
inter-enterprise integration and collaboration, they have also opened up additional
threats and vulnerabilities. To add to the complexity, Web services are built at
the edge of the enterprise ecosystem, and this, coupled with the fact that they
are composed of human-readable message interactions, leaves them extremely
vulnerable to attacks.

This section focuses on some of the most commonly identified threats and vul-
nerabilities existing for service implementations. While many of these vulnerabili-
ties are omnipresent across the various layers, like applications and infrastructure,
they represent themselves in the service layer as mutant manifestations. This list
is not comprehensive, but it addresses most typical security vulnerabilities that are
included in the knowledge base of service designers as mandatory. Service-layer
vulnerabilities are either weaknesses in the design of a service or deficient coding
practices in the service’s inherent implementation. They make the service and
the underlying application and infrastructure vulnerable in a manner that allows
unauthorized users access. These vulnerabilities are introduced into the design and
code in the first place by of a variety of factors, such as lack of security awareness
among the designers and developers, lack of security check points (reviews) at
different stages of the development lifecycle, invalid assumptions made about the
service deployment environment and service consumers, and so on.

7.4.1 Anatomy of a Web Service

Figure 7.2 is a representation of all the components and actors involved in a Web
service call. Table 7.1 is the mapping of the components to the actors involved
in a Web service conversation.

7.4.1.1 Web Services Description Language (WSDL)

WSDL is the XML representation of a service contract. It is an extension of the
XML schema to define all the operations that a service provides: the parameters

Service-Level Threats and Vulnerabilities

121

* WSDL scanning
* WSDL phishing

Attacks

* Xpath and Xquery

¢ Parameter tampering

7 ‘\S
Service Broker 8
é FIND
SOA \

BIND & INVOKE
Service Provider
r * SOAP virus Attacks
* XML Attacks * Stealth and Hijacking
¢ Denial-of-Service Attacks
Attacks * Man-in-the-Middle
* Injection Attacks Attacks
¢ Dictionary Attacks * Data Integrity Attacks
* Brute Force Attacks

Figure 7.2 High-level services threat profile.

Table 7.1 Mapping of components to the actors involved in
a Web service conversation.

Service Requestor

Actors Technology components
Service provider WSDL, SOAP response message
Service broker UDDI (WSDL list)

Service consumer SOAP request message

for the operations. A complete WSDL definition contains all of the information

necessary to invoke a Web service.

Hence it also becomes a soft target for attackers, as it offers up a wealth of
information. Exposing too much information about a Web service through its
WSDL descriptor may provide details about its design and security requirements,

and potentially the underlying framework and the host systems.

7.4.1.2 Universal Description Discovery Integration (UDDI)

UDDI is an industry initiative to create a platform-independent, open framework
for describing services, discovering businesses and integrating business services.

122 Distributed Systems Security: Issues, Processes and Solutions

It is designed as the Yellow Pages, which allows businesses to publish their
services. These services can be queried and searched by consumers. UDDI is
used to describe your own business services, to discover other businesses that
offer desired services, and to integrate with these other businesses.

To develop componentized Web-based services, UDDI provides:

(1) A standardized, transparent mechanism for describing the service.
(2) A simple mechanism for invoking the service.
(3) An accessible central registry of services.

UDDI registries provide details about the purpose of a Web service, as well as
detailed information on how to access it. Use of tModels (the technical API) in
UDDI allows for description of detailed technical signature including underlying
technical structures and interface details describing the behavior. This can be
extremely valuable information, which could potentially be misused my attackers.
UDDI registries do not provide a robust mechanism for verifying the authenticity
of entries. This could allow malicious Web services to be added to the registry
and used by other Web services.

7.4.1.3 Simple Object Access Protocol (SOAP)

SOAP is an XML-based stateless, one-way message exchange paradigm. SOAP
makes use of an Internet application-layer protocol as a transport protocol. SOAP
is silent on the semantics of any application-specific data it conveys, as it is
on issues such as the routing of SOAP messages, reliable data transfer, fire-
wall traversal and so on. SOAP however provides the framework by which
application-specific information may be conveyed in an extensible manner. Also,
SOAP provides a full description of the required actions taken by a SOAP node on
receiving a SOAP message. The intention of SOAP was purely to act as a message
exchange standard between service provider and service requestor. Hence SOAP
specifications do not provide any ‘out of the box’ mechanisms to perform authen-
tication between intermediaries. There are no techniques to ensure data integrity
or confidentiality, either at endpoints or during transit.

7.5 Service-Level Attacks
7.5.1 Known Bug Attacks

There are a lot of known Web service implementations that use popular
open-source components and frameworks. The Apache Web server [2] and the
Axis Web services engine [3] are probably the most prominent. They also have
publicly-available known bugs and issues lists. Even with proprietary products,
security consortiums issue warnings against known bugs and security weaknesses.
These bugs are generally fixed by the framework or product owners with new

Service-Level Threats and Vulnerabilities 123

releases or bug fix patches. However, there are a lot of known instances where
organizations have been slow to react and take precautions against security flaws.
It is common for attackers to use recently-discovered vulnerabilities to attack an
underlying system. If fixes are not quickly applied it allows attackers to exploit
known loopholes and gain access to underlying systems and possibly even hosts.

7.5.2 SQL Injection Attacks

According to the Web Application Security Consortium (WASC), 9% of the
total hacking incidents reported in the media before 27th July 2006 were due
to SQL injection. More recent data from our own research shows that about 50%
of the Web sites we have scanned this year are susceptible to SQL injection
vulnerabilities.

Injection vulnerabilities are typically considered application-level threats and
are quite often not considered during service design. Today many applications
are being built as collections of services, or offered in the ‘software as a service’
model. However, in most cases these services are just designed as an additional
layer on the existing application design. Hence the fallacies of application design
simply permeate a level above to the services layer. In fact, as services are tra-
ditionally exposed through endpoints in human-readable formats, this just makes
it easier for hackers to inject spurious requests to obtain unauthorized data. If a
server does not validate data correctly, a SOAP message can easily be used to
create XML data which inserts a parameter into an SQL query and has the server
execute it with the rights of the Web service.

Let us explain this concept with a practical scenario that we came across during
one of our security consulting engagements.

A global company had built its order management system and exposed a set of
services to its business partners in order to route orders and locate inventory in
real time. It also had a set of reporting Web services that allowed each business
partner to view its own data. Let us consider a simple example of a Web service
that allowed a dealer to view all its orders for a particular month. The following
is a part of the sample Web service request, minus the requisite semantics for
representation of the special characters:

<orderList>
<dealer code> X&apoa; OR 1=1 --</dealer_code>
<order_type>P</order_type>

</orderList>

In today’s world of automated design and development, the following are the
general next steps for execution of this Web service request:

(1) Parsing of the SOAP request.

124 Distributed Systems Security: Issues, Processes and Solutions

(2) Binding the SOAP request to auto-generated objects, so an object Order
Request with an attribute dealerCode.

(3) Selection of the orders for the dealer from the underlying table or tables as
per the schema definition.

So it was represented as:

String sqgl =

"Select order_id, order_amt, ord_gty, order_status, part_number
From Order

Where dealer_code = "'4OrderRequest.getDealerCode()+'"

And dealer_status='C'

If it were replaced with the data from the service request above with direct
binding, it would result in the SQL being represented to the database as:

Select order_id, order_amt, ord _gty, order_status, part_number
From Order

Where dealer_code = 'X' OR 1=1

--' And dealer_status='C'

The “--” is treated as comment by most of the database servers. This would
lead to a particular dealer being able to view all the orders of his competitors.

It is also interesting to note that with WSDLs’ and Web services’ message
parts, it has become even easier for hackers to make injection attacks. An inter-
esting comment was made by a set of hackers who noted that most messages were
direct representations of the underlying schema structures. For example, attributes
like dealerCode were often represented in the underlying database schema as
dealer code. It has also been noted that most enterprises follow standards in
schema definition, where database tables are named as ‘tbl_Order’ or ‘t_Order’.
These standard representations are generally spread around among the hacker
community and available to hackers in their own handbooks.

Hence it has been our experience that there is a higher risk of Web services
being subjected to injection attacks, as compared to Web applications. The risk
is heightened by the readily-available human-readable interface formats, which
increase the probability of allowing hackers to the underlying data.

7.5.3 XPath and XQuery Injection Attacks

Most applications today use XML in different forms of interaction. With the
increased adoption of new Web 2.0 platforms such as Ajax and RIA platforms
such as FLEX there is even more XML moving over different transport protocols.
There is also a strong federation of XML services from organizations such as

Service-Level Threats and Vulnerabilities 125

Google and Amazon, which rely heavily on the use of XML for everything from
communication with backend services to persistence or even hosting your data
with Web services.

A security designer needs to be aware of the threats and risks created by these
approaches. One of the biggest threats is the possibility of XPath injection attacks.
While the SQL injection attacks have been well publicized, the XPath injection
attacks are still frequently not considered during security design.

However, XPath is a standard language, unlike the different versions of SQL
used in various databases. Additionally, XPath gives complete access to the entire
XML document, whereas access control can be restricted to users in an SQL
database. Another, even more likely and possibly more troubling attack in XPath
is the ability of attackers to exploit XPath to manipulate XML documents in an
application on the fly.

The following is a sample of an XPath injection attack:

<?xml version="1.0" encoding="UTF-8"?>
<customers>

<customer>
<customerID>custl</customerID>
<firstname>fnamel</firstname>
<lastname>lnamel</lastname>
<SSN>1234567891</SSN>
<status>A</status>
</customer>

<customer>
<customerID>cust2</customerID>
<firstname>fname2</firstname>
<lastname>lname2</lastname>
<SSN>1234567892</SSN>
<status>C</status>
</customer>

<customer>
<customerID>cust3</customerID>
<firstname>fname3</firstname>
<lastname>lname3</lastname>
<SSN>1234567893</SSN>
<status>A</status>
</customer>

</customers>

The following XPath statement can be used to get all the customer information,
with the customer ID as custl and status as Active:

// customers / customer [customerID /text()='custl' and
status /text()='A"']

126 Distributed Systems Security: Issues, Processes and Solutions

However, a hacker can easily modify the XPath query structure to represent
it as:

//customers/customer [customerID/text ()=" or 1=1 or "=" and
status/text ()=" or 1=1 or "="

This will logically result in a query that always returns true and will always
allow the attacker to gain access to the whole list of sensitive customer data. An
attacker, upon spotting XPath-injection vulnerability in an XPath-based applica-
tion, does not need to fully understand or guess the XPath query. Usually, within
a few attempts, the attacker can generate a ‘template’ query data that can be used
for a Blind XPath injection.

7.5.4 Blind XPath Injection

A more clinical approach to Blind XPath injection has been given in [4]. A couple
of mechanisms are described below.

7.54.1 XPath Crawling

This method shows a technique to crawl an XPath document using scalar queries.
The technique assumes no prior knowledge of the XML structure and works from
an existing given XPath. The implementation very clearly demonstrates the ease
with which the entire XML document can be reconstructed.

7.5.4.2 Query Booleanization

The uniqueness in this approach to XPath injection lies in the fact that it does
not require data from the XML document embedded in the response, and that
the whole XML document is eventually extracted, regardless of the format of the
XPath query used by the application. This technique shows how a scalar XPath
query (a query which returns String, Numeric or Boolean) can be transformed into
a set of Boolean queries. This procedure has been described as ‘Booleanization’
of the query. Each Boolean query can be resolved by a single ‘Blind’ injection.
It demonstrates the creation of an injection string including the Boolean query.
When injected into an XPath query, it causes the application to behave in one
way if the Boolean query resolves into ‘true’ and in another if the query resolves
into ‘false’.

7.5.5 Cross-Site Scripting Attacks

Cross-site scripting (XSS) attacks are extremely common with Web applications.
The advent of Web 2.0 Rich Internet Applications has given a new lease of life

Service-Level Threats and Vulnerabilities 127

to these attacks. The Web applications use XML over HTTP to retrieve con-
tent dynamically without submitting the entire content. This can be exploited by
attackers to send malicious code, generally in the form of a browser side script,
to a different end user. This generally happens when a Web application does not
validate an input from a user and formulates the output which includes this input.
This has increased because of the dynamic nature of Web 2.0 applications. UDDI
references may be compromised through XSS, resulting in a reference to a mali-
cious program instead of a valid Web service. Cross scripting attacks can also be
orchestrated as a second step to WSDL phishing and session hijacking attacks.
Attackers use XSS attacks to send malicious scripts and code to their victims,
which gives them access to sensitive information. Possible results of XSS attacks
are stated below:

(1) Encrypted SSL connections can become vulnerable.

(2) Persistent attacks can be launched, and even keystrokes can be monitored
through malicious scripting.

(3) Domain-based security policies can be violated.

XSS attacks are generally sub-categorized into two forms, namely persistent
code attacks and reflected code attacks.

7.5.5.1 Persistent Code Attacks

These attacks are mounted when malicious code is injected and persisted on the
server. The victim gets infected with such an attack when he requests something
from the server. These malicious code snippets are generally embedded in innocu-
ous places like ‘search the Website’ or message forums. In the following example,
one client embeds malicious HTML tags in a message intended for another.

This is the end of my message.
Hello message board. This is a message.
<SCRIPT>malicious code</SCRIPT>

7.5.5.2 Reflected Code Attacks

These attacks are orchestrated following a WSDL phishing attack. The victim
is tricked into clicking on a malicious link. The attacker then injects malicious
code, which comes back to the browser as if it is from a trusted source. Attackers
frequently use a variety of methods to encode the malicious portion of the tag,
such as Unicode, so the request is less suspicious-looking to the user. There are
hundreds of variants of these attacks, including versions that do not even require
any <> symbols. XSS attacks usually come in the form of embedded JavaScript.
However, any embedded active content is a potential source of danger, including:
ActiveX (OLE), VBscript, Shockwave and so on.

128 Distributed Systems Security: Issues, Processes and Solutions

Sample XSS attacks '
We include typical XSS attacks below.

Simple check attack
The following string is a great way to check that there is no vulnerable JavaScript
on a page.

";!--"<char:program code><XSS></char:program code>=&{ () }

After injection, check for <XSS versus <XSS to see if it is vulnerable.

XSS locator

Injecting the string below results in the word ‘XSS’ popping up wherever a script
is vulnerable, with no special XSS vector requirements. Another quick check is
to inject the depreciated ‘<PLAINTEXT>" tag. If it is vulnerable it messes up
the output.

';alert (String.fromCharCode (88,83,83))//\';alert
(String.fromCharCode (88,83,83))//";alert (String.fromCharCode
(88,83,83))//{";alert (String.fromCharCode (88,83,83))//-->
</SCRIPT>">'><SCRIPT>alert (String.fromCharCode (88,83,83))
</SCRIPT>

7.5.6 WSDL Probing

In Web services, the service interface is described in WSDL, to be exposed inter-
nally within the enterprise and externally to customers and business partners.
WSDL contains meta-data information with advertising details including parame-
ter details and API information. A WSDL file is a major source of information for
an attacker. A WSDL description provides critical information like methods and
input/output parameters. WSDL probing is one of the first things that a hacker
does before going on to other attacks like parameter tampering and so on. It gives
the hacker a lot of information, including the tools used to generate the WSDL
files, underlying technologies and so on. In traditional attacks, this search for
information would be followed by attempts to obtain entire IP address ranges.
This attack is also called WSDL scanning or WSDL enumeration.

7.5.7 Enumerating Service from WSDL

The next step is to scrutinize the entire WSDL file and prepare a complete Web
service profile.

The <service> element provides the name of the service and the entire access
location for the same. This information gives the exact binding location for the

Service-Level Threats and Vulnerabilities 129

client and the service to use with ‘invoke’. It can be obtained from the following
regex patterns: <service.*?> and <.*location.*[">]>.

The WSDL <portType> element is a named set of abstract operations and
messages. It indicates all the methods that can be invoked remotely. This is
highly significant as these are the methods that can be targeted for initial sniffing.

WSDL refers to these port-type primitives as <operation>. The port-type name
attribute provides a unique name along all port types defined within the enclosing
WSDL document. These are the method names that are used with the ‘invoke’
operation.

Operations and messages are defined by a particular <portType> element. The
message format and the protocol details of these operations and messages are
defined by the WSDL <binding> element. There may be any number of bindings
for a given <portType>. This allows a hacker to see the underlying transport
protocols that can be used.

The WSDL <message> element consists of one or more logical parts, and each
of these logical parts is associated with a type. These are used in conjunction
with the <types> element. These represent the actual input and output messages
and data types for a particular method. The <types> element uses XSD as the
canonical type system for maximum interoperability and platform neutrality. This
allows a hacker to check for methods and messages for known deficiencies like
<any> elements being used.

This allows a complete Web service assessment profile to be created. On the
basis of this WSDL assessment, the next step of detailing vulnerabilities and
attacking them is carried out. In addition, the information provided in a WSDL
file may allow an attacker to guess at other methods. For example, a service
that offers stock quoting and trading services may advertise query methods like
requestStockQuote, but also include an unpublished transactional method such as
tradeStockQuote. It is simple for a persistent hacker to cycle through method string
combinations (similar to cryptographic cipher unlocking) in order to discover
unintentionally related or unpublished application programming interfaces.

7.5.8 Parameter-Based Attacks

Parameter tampering is a popular and simple attack targeting the application busi-
ness logic. It is a popular attack for hacking into Web applications. Web servers
are used to deliver the content. During a Web session, parameters are passed
through the use of URL query strings, form fields and cookies.

A classic example of parameter tampering is changing parameters in form fields.
The values presented in an HTML page can be manipulated by an attacker. In most
cases this is as simple as saving the page, editing the HTML and reloading the
page in the Web browser. Hidden fields are parameters invisible to the end user,
normally used to provide status information to the Web application. Modifying a

130 Distributed Systems Security: Issues, Processes and Solutions

hidden field value will cause the Web application to change according to the new
amount.

While the same problems do not exist for Web services directly, they manifest
themselves in different forms. The proliferation of Web 2.0 technologies has
led to Ajax-based interactions with Web services. Web services were designed
for internal or B2B consumption, and therefore designers and developers often
did not expect interaction with actual users. This lack of foresight led to some
bad security assumptions during design. For example, the initial designers may
have assumed that authentication, authorization and input validation would be
performed by other middle-tier systems. Web services are now being invoked
through asynchronous JavaScript calls. This leaves the Web service vulnerable
to malicious JavaScript invocations. A real-life example of such usage is the
consistent pitch from Microsoft to use Atlas hand-in-hand with Web services.
Developers can now write JavaScript to create XML input and call the Web
service right from within the client’s browser. The XMLHttpRequest object is
primarily used to invoke the Web services and can be done dynamically. Such an
invocation can pass on the data displayed on the Web page. Anyone with basic
knowledge of JavaScript can easily inject scripts on to the page and change the
request object to send other data. If the method is GET, all form parameters and
their values will appear in the query string of the next URL the user sees. An
attacker may tamper with this query string.

Web services have traditionally been used for a singular request response
communication paradigm. However, developers have designed their own session
management mechanisms for managing transactions and client sessions. This has
led to tokens or pseudo-cookies being passed across various Web service requests
and is stored in hidden fields in Web pages.

Let us consider the following example.

The Amazon product catalogue Web service displays a set of products and their
underlying prices. Once a user has placed the products they want in their shopping
cart, it has to be linked to an external payment service. Let us assume the total
amount is stored in a hidden field and sent to the payment service.

<input type="hidden" i1d="1976" name="cost" value="700.00">

If the application has not been designed properly, a hacker can save this page,
and change the total amount field.

<input type="hidden" i1id="1976" name="cost" value="70.00">

The payment Web service can be invoked using XMLHttpRequest or by a
traditional SOAP request call over XMLHttpRequest.

Service-Level Threats and Vulnerabilities 131

7.5.9 Authentication Attacks

Authentication attacks can take place at both request and response level.

7.5.9.1 Request Authentication Attacks

When an attacker gets possession of a legitimate client identity by theft or some
other means it is called a request authentication attack. The attacker gets hold of
legitimate credentials like passwords, digital certificates and so on. They can then
make legitimate entries into a system, and the consequences can often be disas-
trous. The following is an interesting analogous real-life incident that happened
in an enterprise.

When a user ID got locked or you forgot your password, you would have to call
the help desk and let them know your employee number, and they would reset
the password. In most enterprises there is no second-level check that is carried
out. However, in this particular one a second-level verification existed and it was
the user’s birthday. A contractor who knew an employee’s employee number and
birthday called up the internal help desk and asked for the password to be reset.
The security desk, having obtained the verification, gave the contractor ‘fronting’
as the employee the password. The employee in question was on an overseas trip
for a week. The contractor now had legitimate credentials and was able to access
and transfer large amounts of confidential data.

Forced-entry attacks

The primary reason most systems become vulnerable is that users tend to nomi-
nate weak passwords for their logins. Web services are just another interface layer
over existing applications and are not treated any differently. However, unlike
Web applications, XML Web service interfaces are heterogeneous in nature, with
each underlying system having its own mechanisms for performing authentica-
tions. The most effective and simple technique is for the attacker to guess the
password. This technique can be carried out either manually or via automated
procedures.

Dictionary attacks

Dictionary attacks are where a hacker either manually or programmatically tries
common passwords to gain entry into a system or multiple systems. Automated
techniques allow hackers to programmatically try combinations of user names
and passwords. Specialized custom tools like WebCracker and Brutus are readily
available on the Internet. These tools attempt to gain access to a system by using
predefined lists of usernames and passwords, taken from precomputed wordlists
such as dictionaries.

132 Distributed Systems Security: Issues, Processes and Solutions

Brute-force attacks

A brute-force attack is similar to the dictionary attack, except that it tries to break
down cryptographic schemes. These could be digital certificates, tokens or even
just the underlying private keys. The brute-force attack tries a large number of
possibilities; for example, exhaustively working through all possible keys in order
to decrypt a message.

Computed authentication attacks

These attacks are generally carried out when a specific algorithm generating a set
of keys has been used. Previously, passwords and session IDs used to be generated
in a nonrandom manner using mathematical algorithms. Once an attacker gets hold
of a series of these randomly-generated numbers it is highly possible for him to
judge the underlying technique used in generating the numbers. Most attackers
also have a set of highly-advanced tools that have a built-in repository of the most
often-used algorithms for ID generation. These tools take a series of generated
IDs, evaluate them and respond with the algorithms that could have been used to
generate them.

7.5.9.2 Stealth and Hijacking Attacks

These techniques involve stealing credentials or hijacking a user’s session, which
allows the attacker to get into an authenticated session. There are various tech-
niques used to orchestrate a session hijack, such as:

Session fixation
A commonly accepted design technique when sending large data via Web services
is to send a link that gives access to the data, instead of the data itself. In such
scenarios, it is possible for an attacker to send a link to a user with a session ID
they know, and then to impersonate the user once they log in. They are then free
to cause damage.

Session hijacking

HTTP is a stateless protocol, and hence advanced session management techniques
like cookies have been evolved for managing sessions in Web applications. How-
ever, session management for Web services needs to be designed and managed
by the service providers. Session management techniques generally include some
kind of session key to identify service consumers. An attacker can use sniffing
techniques like packet sniffing to monitor and read network traffic between the
parties, and steal a session key or cookie. This means that attackers can steal a ses-
sion once the service consumer has been authenticated. Most Web services do not
use encryption for the rest of the SSL operations once authenticated. This allows

Service-Level Threats and Vulnerabilities 133

the attacker to impersonate the victim by continuing with the stolen sessions, even
if the password itself is not compromised.

7.5.9.3 Response Authentication Attacks

A response authentication attack occurs when a malicious party poses as the
service itself, fooling a client into making requests to it directly. Phishing and IP
spoofing are known and commonly-propagated response authentication attacks.

WSDL phishing

Phishing is the term coined by hackers who imitate legitimate companies
in e-mails to entice people to share passwords or credit-card numbers.
Recently-reported cases have been with Best Buy and eBay, where people were
directed to Web pages that looked nearly identical to the companies’ sites. A
Scandinavian bank was recently forced to shut down part of its Web banking
service for 12 hours following a phishing attack that specifically targeted its
paper-based onetime-password security system [5]. This has been extended to
the world of Web services. WSDLs are exposed for public consumption. Attacks
have been carried out by hosting manipulated WSDLs on fake URLs. The
manipulated WSDL has all the same operations and bindings as the original
WSDL. Generally one of the first operations the service consumer performs
is to login, and when this happens the consumer inadvertently passes on their
credentials to the attacker.

7.5.10 Man-in-the-Middle Attacks

Man-in-the-middle (MITM) is a form of eavesdropping in which the attacker
makes independent connections with the victims and relays messages between
them, making them believe that they are talking directly to each other over a pri-
vate connection when in fact the entire conversation is controlled by the attacker.
A phone wiretap is a prime example of eavesdropping, where a phone connection
between two callers is tapped without the knowledge of either party.

The attacker can intercept all messages going between the two victims and
inject new ones, which is straightforward in many circumstances. A MITM can
only be successful if the attacker can hide themself from all involved parties for
the length of the conversation.

By listening to the conversation between two systems, an attacker can collect
useful data. XML being human-readable, it becomes even more easy to read and
understand the data. Eavesdropping could be done simply to get access to data like
credit-card account information, or it could be used to hijack identity credentials
and start an authentication attack as described above. Eavesdropping also enables
data integrity attacks, replay attacks and routing attacks.

134 Distributed Systems Security: Issues, Processes and Solutions

7.5.10.1 Sniffing Attacks

Sniffing, or eavesdropping, is the act of monitoring traffic exchanged between
two points in a network. This is one of the oldest forms of veiled attack carried
out to capture sensitive information without the knowledge of the sender and the
receiver. Web services can be used to capture sensitive plaintext data such as unen-
crypted passwords and security configuration information transmitted in SOAP,
UDDI, WSDL and other such messages. With a simple packet sniffer, an attacker
can easily read all plaintext traffic. Also, attackers can crack packets encrypted
by lightweight algorithms and decipher payloads that the Web service developer
considers to be secure. The sniffing of packets requires the attacker to insert a
packet sniffer into the path between the service requestor and service provider.

7.5.10.2 Replay Attacks

A replay attack is a man-in-the-middle type of attack where a message is inter-
cepted and replayed by an attacker to impersonate the original sender. A sniffer
such as Ethereal [6] can capture traffic posted to a Web service. Testing tools like
WebScarab [7] allow testers to resend packets to the target server. This allows
attackers to intercept and resend the original message or change the message in
order to compromise the host server. Digital signatures by themselves cannot
prevent a replay attack because a signed message can be captured and resent.
Replay attacks can be used by an attacker to create DoS attacks. These are the
most difficult DoS attacks to control, as the attacker can flood a service with valid
requests. Replay attacks are also known as spoofing attacks. Additionally, a check-
sum spoofing attack can be carried out by the attacker in between a requestor and
provider. The message is signed with a hash to prove its integrity. The attacker
intercepts the message and creates a new message with a recomputed hash using
the original algorithm.

Data integrity attacks

The other and more deadly form of eavesdropping attack is known as a data
integrity attack. The attacker eavesdrops into the traffic and modifies the data in
the messages. Consider the example of a payment gateway Web service where
users can transfer money between accounts or make an online payment. The
attacker can change the target account number or hijack the financial details of
the online payment.

7.5.11 SOAP Routing Attacks

SOAP messages travel from the service provider to the service consumer, poten-
tially through a set of intermediaries. Intermediaries can process parts of a SOAP
message as it travels from the origin to the destination. They are primarily used for:

Service-Level Threats and Vulnerabilities 135

(1) crossing trust domains
(2) scalability and high availability
(3) providing additional value-added services.

As shown in Figure 7.3, SOAP specifies a mechanism for targeting SOAP mes-
sages, but does not specify a mechanism for routing them. According to OASIS
[8], various types of threat can target a SOAP message; for example, modification
of SOAP message. The SOAP header that can be included in the SOAP message
might be vulnerable. If an attacker obtains a SOAP message (for example, an
implementation error) the data can be altered to modify or insert header instruc-
tions. According to a CERT Vulnerability Note (VU # 736923) [9], the Oracle
Application Server 91AS installed with SOAP allowed anonymous users to deploy
and remove SOAP services. Consider that the attackers could create and deploy
their own SQL statements. This could open the database behind the SOAP ser-
vice for penetration and allow the attackers to insert a back door into the system
[10]. WS-routing extends the SOAP model and provides a mechanism for rout-
ing SOAP messages between Web services. When messages are routed between
Web services through intermediaries, they move across multiple SOAP servers,
transforming content into multiple formats and so on. It is possible in between
handovers from one intermediary to another for one intermediary to reveal infor-
mation, deliberately or otherwise. The intermediaries can perform encryption and
decryption. A compromised or malicious intermediary may participate in a MITM
by adding false routing instructions and route the message to a malicious loca-
tion. It may also be possible to forward on the document, after stripping out
the malicious instructions and adding additional false instructions, to its original
destination. The attacker can also redirect the messages to a nonexistent destina-
tion. This could lead to DoS attacks, as the messages will never reach their final
destination and the underlying process can never be executed.

Spurious Destionation
Detour

L Compromized
[lviessage message
Message Compromized Spurious
Origin Intermediary Destionation

Figure 7.3 Compromised intermediaries via SOAP headers.

136 Distributed Systems Security: Issues, Processes and Solutions

The WS-addressing specification provides a way to route XML traffic across
different nodes in a service ecosystem. It operates by allowing an interim node in
an XML path to assign routing instructions to an XML document. If one of these
Web services way stations is compromised, it may participate in a man-in-the mid-
dle attack by inserting bogus routing instructions to point a confidential document
to a malicious location.

7.5.12 SOAP Attachments Virus

The Web service applications have business scenarios where they will have to
deal with more than just XML data. There are instances when it is necessary to
send binary data-like images and documents across the network. This has been
addressed in SOAP with attachments. This is very similar to the evolution of
emails, which now allow you to add attachments to your messages. However, just
like the evolution of email attachments, where virus-based attachments could be
sent to email addresses, there is another form of attack that can be orchestrated
using SOAP with attachments. An attacker can send attachments which, when
processed by the service, cause the service to malfunction and even compromise
the underlying host.

7.5.13 XML Signature Redirection Attacks

XML signatures contain a Reference element that points to the signed data. The
validation of the XML signature requires the target application to parse and include
the content pointed to at the reference URI. Let us consider this example where
the reference URI is:

<xdsig:Reference URI =
http://abc.com/download/Install/jdkl.6.exe>

The XML signature specification mandates the application to parse the URI
to dereference it. So the XML processor must now download the large Java 6
executable and then compute the digital signature. This clogs up the network
bandwidth and locks I/O threads till the file has been downloaded. Thus an XML
signature dereference attack takes advantage of naive Web service implementa-
tions and can cause extensive network clogging and bring down a service.

7.5.14 XML Attacks

XML has now become the de facto lingua franca for message interaction between
applications. It is estimated that XML traffic on corporate networks has grown
from 2% a few years back to around 50% today. It’s used in security sys-
tems, enterprise applications, business process tooling and document management
systems, and even modeling languages like UML use an underlying XML-based

Service-Level Threats and Vulnerabilities 137

XMI construct. However, XML documents, by their intrinsic nature, contribute to
the lack of security in XML. The human-readable nature of XML makes it easy
for attackers to decipher information and pick up the sensitive components like
credit-card details or social-security numbers.

7.5.14.1 Coercive Parsing Attacks

Document-type definitions are still in use by some applications and services. These
are still used for backward compatibility. The XML definitions allow for an ele-
ment CDATA. The CDATA field allows the use of illegal characters. Attackers use
the CDATA element feature to send possible system commands to the underlying
systems. When querying a standard commercial XML parser, the CDATA compo-
nent will be stripped, and the resulting string contains the nonescaped dangerous
characters. The following example illustrates the attack:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="http://www.abc.com" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0org/TR/WDxsl">
<xsl:script>

<! [CDATA[

x=new ActiveXObject ("WScript.Shell");

X.Run ("

*.d11l");

11>

</xsl:script>

</xsl:stylesheet>

It is evident that an attacker could sneak in system commands that could poten-
tially be disastrous, as they could allow him to manipulate the host with a series
of commands. They could also be used for injection attacks like XPath injection
or XSS attacks.

7.5.14.2 XML External Entity (XXE) Attacks

These attacks are based on the ability of XML documents to reference data from
outside the primary file. XML external entity attacks can be mounted on a system
that parses XML from nontrusted sources. The XML processor may inadver-
tently open up HTTP connections or files. In the DTD, one declares the external
reference with the following syntax:

<!ENTITY name SYSTEM "URI">

XML processor behavior is mandated by the specification as the following [11]:

‘When an XML processor recognizes a reference to a parsed entity, in order to validate the
document, the processor must include its replacement text. If the entity is external, and the

138 Distributed Systems Security: Issues, Processes and Solutions

processor is not attempting to validate the XML document, the processor may, but need not,
include the entity’s replacement text.’

However, if this external entity has been compromised by an attacker, the XML
processor may implicitly parse data from this source. This could mean the proces-
sor is not ‘“VALIDATING’ all the time and leaves itself open to vulnerabilities. A
known such vulnerability was in the Peoplesoft application server, where people
could mount XXE attacks and read any file under the Web server process. This
meant that sensitive information could be exposed to attackers, and also opened
TCP connections to the vulnerable servlet [12].

7.5.14.3 XML Bombs

XML bombs are message attacks that are created with the purpose of overwhelm-
ing the parser that processes these messages. This could result in the parser
consuming too much memory, crash or DoS attack.

7.5.14.4 XML Denial-of-Service (XDoS) Attacks

XDoS attacks are orchestrated by attackers to make the response of services
extremely slow or completely unavailable to legitimate users. This is generally
accomplished by flooding the service with a large number of requests. These
requests look like legitimate ones and force the service to process them. This
leads to inordinate consumption of resources and in effect means that a legitimate
request by a user cannot be serviced as its resources have been consumed by fake
requests. The XDOS attacks can also be orchestrated by making complex XML
requests like recursive payloads or jumbo payloads. These are described in more
detail below.

Complex payloads

XML uses nesting to allow the creation of complex representation among ele-
ments. When an element is enclosed within another element it is termed as
nesting. Nesting elements over three or four levels is a generally accepted practice
for modeling relationships between entities. The parser generally consumes more
resources as the nesting levels increase. An attacker might use the vulnerabilities
presented in the schema to create complex payloads that require a large amount of
resources to parse the underlying XML. The typical way is to create a recursive
XML. While it depends upon the parser implementations, recursion does lead to
a higher consumption of resources. The attacker typically composes a complex
recursion of elements that crashes the parser. The other common techniques for
causing such attacks are:

(1) Creating complex recursive nesting of elements.
(2) Using the <any> attribute and flooding the XML with a lot of elements.

Service-Level Threats and Vulnerabilities 139

(3) Creating a lot of attributes for an element.

(4) Opening and closing a tag too many times to create internal push and pop
operations for the stack, as they are indicative of the start and end of elements.

(5) Creating an overflow attack by sending parameter data larger than the pro-
gram can handle, causing stack and buffer overflow with the parser and the
applications.

Oversized payloads

Attackers also use another tactic to create DoS attacks. Instead of sending a stream
of messages or complex payloads, they just overwhelm the parser by sending a
large message payload. The most common technique is to automate the creation
of an <any> element that is defined as unbounded. This allows the attacker to
create an unlimited number of elements under the unbounded tag. This creates a
payload size which is extremely large (even in Gigabytes).

7.5.15 Schema-Based Attacks

Every XML is associated with its own schema. The schema is a template of
the underlying XML document and can have a set of rules enforcing the valid-
ity of the XML document. This ensures that all XML schemas conform to a
particular structure and allows the consumer of the XML document to parse
the XML effectively. A schema file is what an XML parser uses to understand
the XML’s grammar and structure, and contains essential preprocessor instruc-
tions. There are various attacks that can be orchestrated using XML schemas, or
against them.
Manipulating the schema can:

(1) Cause schema poisoning.
(2) Execute denial-of-service attack.
(3) Cause format changes (e.g. date and currency formats).

7.5.16 UDDI Registry Attacks

UDDI is an industry initiative to create a platform-independent, open framework
for describing services, discovering businesses and integrating business services.
It is designed as Yellow Pages, which allows businesses to publish their services.
These services can be queried and searched by consumers. The registries typically
allow service consumers to do the following:

(1) Search for enterprises by name.

(2) Search for services by specific categories.
(3) Search for support for specific protocols.
(4) Make location-based searches.

140 Distributed Systems Security: Issues, Processes and Solutions

The result of a registry search is often technical information like the URL
of a WSDL file, or business contact records. This allows the consumer to use
the WSDL and interact with the service. The UDDI registries are themselves
Web services, having full SOAP APIs and WSDL files. Thus the UDDI which
contains a list of all services, with descriptions and WSDLs, is potentially the
single largest source of information available to attackers. Attackers can typically
use the registry as an information mine. This allows them to write automated
scripts to query and search the UDDI and obtain the WSDLs. Once the WSDLs
are obtained, attacks like WSDL scanning and probing can be orchestrated. The
attacker can also hack the registry itself to modify the WSDLs or the underlying
URLSs. This will cause the service consumers to be redirected to fake service
URLSs when they search the registry.

7.5.16.1 Registry Disclosure Attacks

Attackers can use erroneously-configured registries (LDAP, X.500, etc.) to obtain
critical information about the Web service being attacked. In particular, these
registries can contain authentication information that an attacker may be able to
use. Attackers can also use UDDI and ebXML registries to obtain information
about the Web service being attacked. WSDL descriptions and audit logs are
generally the most sought-after information.

Important points of information disclosure are the WSDL descriptions in the
UDDI or ebXML registry, and the registry’s audit logs. Further, these registries
can be compromised or corrupted, which may allow an attacker to gain informa-
tion about the Web service’s host or even gain access to that host.

7.6 Services Threat Profile

Table 7.2 provides a view of the identified attacks and vulnerability groups,
together with their mapping to services attack classification. The profile in
Table 7.2 is a mapping of all the attacks to the various aspects of service
interaction between a service provider and a service consumer. The mapping
also includes the orchestration point for the attacks, which provides for a better
ability to understand the attacks themselves. There is also an additional threat
profile mapped to the National Institute of Standards and Technology (NIST)
recommendations in their special edition ‘Guide to Secure Web Services’ [13].

Table 7.3 is another threat profile mapping of the attacks, categorized across
various levels of security requirement as documented by NIST.

7.7 Conclusion

In this chapter, we have illustrated the core issues in service-level security. In
particular, the higher level of loose coupling required for SOA mandates more

Service-Level Threats and Vulnerabilities

141

Table 7.2 Threat profile of service-level attacks.

Categories

Attacks

Attack
orchestration point

Service attacks>

Service
communication
attacks

Service endpoint
attacks

Service session attacks

Service authentication
attacks

Service protocol
attacks

Service message
attacks

Service message
template attacks

Service broker attacks

Known bug attacks

SQL injection

XPath and XQuery attacks
Cross-site scripting attacks
Parameter tampering
Denial-of-service attacks

Replay attacks
Data integrity attacks
XML signature redirection

WSDL scanning
WSDL phishing

Session hijacking
Session fixation

Forced-entry attacks
Brute-force attacks
Dictionary attacks

Computed authentication attacks

SOAP routing attacks

SOAP attachment virus attacks

External entity attacks
Complex payload attacks
Oversized payload attacks

Schema poisoning attacks
Coercive schema attacks

WSDL scanning

WSDL phishing
Parameter tampering
Registry disclosure attacks

Service provider

Service communication
layer (network and
transport layers)

WSDL interfaces

Service session
management

Service provider/UDDI
registry attacks

Service communication
protocol

XML messages
communicated between
provider and consumer

Message templates (XML
schemas)

UDDI registry

flexible ways of handling security for SOA. Additionally, standards will be a
key role as there is a need to interoperate across heterogeneous implementations
of underlying systems. Finally, the openness and plaintext nature of XML-based
distributed invocations are a cause of further complexity and higher vulnerability.
We have explored in depth the various kinds of threat at service level, classifying

them appropriately.

142 Distributed Systems Security: Issues, Processes and Solutions

Table 7.3 NIST standard of service-level attacks.

NIST classification Attacks

Reconnaissance attacks WSDL scanning
WSDL phishing
Directory traversal attack

Confidentiality attacks Sniffing
XML signature redirection
Integrity attacks Parameter tampering

Schema poisoning
External entity attack
SOAP routing attacks
Spoofing
Data integrity attacks
Replay attacks
Denial-of-service attacks Complex payload attacks
Oversized payload attacks
Schema poisoning
Command injection attacks SQL injection
Xpath injection
Cross-site scripting

Malicious code attacks Command injection
SOAP attachment virus attacks
XML bombs

Privilege escalation attacks Schema format attacks

Buffer overflow attacks

References

[1] Padmanabhuni, S. and Adarkar, H. (2005) Security in service oriented architecture: issues,
standards and implementations, Service oriented Software System Engineering, Challenges

and Practices, 1GI Global.

[2] UDDI version 3.0.2 is available at http://www.oasis-open.org/committees/uddi-spec/doc/

spec/v3/uddi-v3.0.2-20041019.htm.
[3] NIST Special Publication (SP) NIST 800-95, Guide to Secure Web Services.

[4] Klein, A. Blind XPath Injection Attack, http://www.packetstormsecurity.org/papers/bypass/

Blind_XPath_Injection_20040518.pdf.
[5] http://www .finextra.com/fullstory.asp?id = 14384
[6] http://www.ethereal.com
[7] http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
[8] OASIS (2004). Web Services Security: SOAP Message Security 1.0. White paper, 2004.
[9] http://www.docs.oasis-open.org/wss/2004/01/0asis-200401-wsssoap-message-security-1.0
[10] Vulnerability Note VU#736923 http://www.kb.cert.org/vuls/id/736923

[11] Clewlow C, SOAP and Security, accessible http://www.qinetiq.com/home/security/digital_

security/white_paper_index.Par.0013.File.pdf

Service-Level Threats and Vulnerabilities 143

[12] Clewlow, C. (2004). SOAP and Security. White paper, 2002. Date: December 2004.
[13] Moore et al. (2001). USENIX Security.

Further Reading

Apache Axis, http://ws.apache.org/axis/.

Apache Web server, http://httpd.apache.org/.

Boubez, T. (2004) The Challenges of Web Services Security. ‘Beyond XML Firewalls’ Security
Coordination for Web Services. August 3, 2004.

Demchenko, Y. (2004) ‘White Collar’ Attacks on Web Services and Grids. Grid Security Threats
Analysis and Grid Security Incident Data Model Definition. August 2004.

Demchenko, Y., Gommans, L., de Laat, C. and Oudenaarde, B. (2005) Web Services and Grid Secu-
rity Vulnerabilities and Threats Analysis and Model. The 6th IEEE/ACM International Workshop
on Grid Computing, pp. 13-14.

Derry, J. Advanced Web Services Security & Hacking. http://www.owasp.org/images/3/3a/OWASP
AppSec2006Seattle_ Web_Services_Security.ppt

Extensible Markup Language (XML) 1.0W3C Recommendation, http://www.w3.org/TR/REC-xml#
include-if-valid. August 16, 2004.

http://www.sarvega.com/xml-security-products.php

http://www xforce.iss.net/xforce/alerts/id/advise139

http://www.ibm.com/developerworks/xml/library/x-xpathinjection.html

http://www.acunetix.com/websitesecurity/authentication.htm
http://www.xwss.org/Malicious_Attack_Protection_for_ XML_Web_Services.html
http://www.actional.com/resources/whitepapers/Web-Service-Risks/Web-Services-Hacking.html
http://www.reactivity.com/products/

Moradian, E. and Hékansson, A. (2006) Possible attacks on XML web services. International
Journal of Computer Science and Network Security, 6 (1B), http://www.paper.ijcsns.org/07_book/
200601/200601B48.pdf

O’Neill, M. XML and Web Services: Are We Secure Yet.

Shah, S. Web Services: Enumeration and Profiling. http://www.net-square.com/whitepapers/
WebServices_Profiling.pdf

Stamos, A. (2005) Attacking Web Services, OWASP AppSec DC http://www.owasp.org/images/d/d1/
AppSec2005DC-Alex_Stamos-Attacking_ Web_Services.ppt

Web Services Security: Non-Repudiation. Proposal Draft 05, April 11, 2003.

XSS Attack examples http://www.ha.ckers.org/xss.html

XSS Cert advisory http://www.cert.org/advisories/CA-2000-02.html

3

Host-Level Solutions

8.1 Background

In Chapter 4 we covered various vulnerabilities and threats that might affect a
host. The issue with transient code that runs on hosts is that it cannot be trusted
and can be malicious. Running it directly on a host could cause severe damage to
the system. Similarly, genuine transient code is at the mercy of executing hosts
and is very vulnerable to attacks from malicious host applications and users.
Resident code, though trusted, historically has contained bugs that have made
systems vulnerable. A simple yet effective solution to both of these issues lies in
creating ‘isolated’ environments for each, in such a way that the ill-effects they
cause are contained within their own environments and cannot affect the system
as a whole. Sandboxing and virtualization [1] are two key isolation techniques
that we will study in this chapter. They are useful in addressing the privacy and
security issues discussed in Chapter 4.

The other way to guarantee host security in distributed environments is to
execute ‘trusted’ code and disallow everything else. To make this possible, every
piece of mobile code must carry along with it a tamper-resistant proof that it is
trustworthy. Proof-carrying code (PCC) is one technique to certify a mobile code
as trustworthy.

In relation to resource starvation issues, we will look at techniques such as
reservation, priority and resource management. These approaches are useful in
ensuring a fair share of resources among competing applications/jobs.

We will also look at solutions, such as program shepherding, to protect hosts
against code-injection attacks.

8.2 Sandboxing

Sandboxing is a very popular technique for achieving isolation. The key oper-
ating principle behind this technique is that an application can cause very little

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan
and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

146 Distributed Systems Security: Issues, Processes and Solutions

harm if access to resources (through the operating system (OS)) is controlled or
restricted. System calls are the only means in modern systems for users to gain
access to resources. By restricting system call access, it is possible to contain the
ill-effects of any malicious code executing on the host. There are four ways to
create an isolated sandbox in which to execute untrusted code, namely kernel-level
sandboxing, user-level sandboxing, delegation-based sandboxing and file-system
isolation. We will look at each of these approaches, with examples.

8.2.1 Kernel-Level Sandboxing

The simplest way to create a sandbox is to hook on the ‘system call entry table’
and redirect the calls to a kernel-loadable module [2]. The kernel module then
has the ability to inspect every single system call made by the user processes.
The decision to allow or deny access to a system call is made by a policy engine
operating in either the kernel space or the user space. The policy engine can be
configured to allow or disallow operations based on accessed resources, users and
processes. Figure 8.1 depicts a typical kernel-module-based sandbox.

Kernel modes Janus, Systrace and Remus all fall under this category. System
calls that require special handling to provide the sandboxing facility are intercepted
and handled by the hooked kernel module in consultation with the policy engine,
which typically runs at the user space. Any innocuous function calls such as close,
exit and so on are directly executed by the kernel and need not be intercepted.
The policy engine is involved in all cases where system calls are intercepted.
Depending upon which user/process is invoking the system call and the argument

1
! ! &
—»| User Application : Policy Engine i
a i S
i i 8
L i A 4 o
1 3

o Y
Hooked Kernel 2
System Call Table loadable Module %
o
8
A y :

Kernel

Figure 8.1 A kernel-module-based sandbox.

Host-Level Solutions 147

associated with the call, the policy engine either returns an allow or a deny. If a
system call is allowed, the kernel sandbox module directly makes the actual system
call, whose entry pointers have been preserved during the initialization phase.
This doesn’t require any change to the application binary or the way a process
is invoked. Once the system call hooks are placed, all processes in the system
will have to go through this, with no exception. This can introduce significant
performance overhead, particularly for systems which rely heavily on system calls.

8.2.2 User-Level Sandboxing

User-level sandboxing is different from the kernel-loadable module technique in
that it intercepts the system calls not through a hook on the system call table, but
by tracing a process using standard debugging/trace features provided/supported
by the OS. For example, in UNIX and similar systems, the ptrace function allows
a parent process to trace any of its child processes. This tracing ability can be used
to identify the system calls invoked by a user application, along with the arguments
used during invocation. The use of a policy engine to determine whether a partic-
ular system call is to be allowed or denied is similar to the kernel-loadable module
technique. Figure 8.2 shows how this user-level sandboxing is implemented.
The user-level sandboxing version of Janus [3] adopts a similar approach to
that depicted above. The application which requires sandboxing is run under a
parent process, which enables tracing of its permissions. Through the tracing, all
system calls that the application makes can be trapped. This information, along

c
[
ol
User Application @
QO
Q
@
Policy Engine
X
(0]
£
>
' g
(92}
8
Kernel Q
@

Figure 8.2 User-level sandboxing.

148 Distributed Systems Security: Issues, Processes and Solutions

with the system call arguments, is sent to the policy engine. The policy engine can
then deny or allow the operation. Unlike the kernel-mode system-call interception
technique discussed earlier, all the system calls in this technique will be trapped
by the tracing parent process. This approach typically has higher overhead than
a kernel-based solution. Also, the application which requires isolation will need
to run under a parent sandboxing process.

8.2.3 Delegation-Based Sandboxing

Kernel-level and user-level sandboxing techniques suffer from race conditions
[4] due to nonatomicity of policy evaluation and system-call access. Delegated
sandboxing architecture (Figure 8.3) can alleviate the race condition issues. In this
approach, when a user process invokes a system call the system makes a callback
to an emulation library in the user space, which provides isolation service. The
callback function in the emulation library calls a user-space delegation agent,
which actually executes the system call on behalf of the user application.

Ostia [5], developed at Stanford, is a good example of such a sandbox solution.
The key aspect to note here is that the delegation agent acts on behalf of the user
process to invoke the system call, and there is a separate delegation agent process
for each user process created through this system. The key advantage, besides
solving the race condition [6] (not all race conditions are addressed), is that the
kernel module is very minimal and can be ported easily, as dependency on the
kernel structures is minimal.

8.2.4 File-System Isolation

This approach attempts to completely isolate file-system changes from the main or
primary file system. To start with, the solution [7] uses system-call interception to
hook into all system calls that can alter the file system. The hook implemented with

c

User Process @
Emulation Library %) Delegation Agent %

A @

Y 2

[0]

M IR d S () g
inimal Restricted System =
Call Interface Kemel 1

8

0]

Figure 8.3 Delegated sandboxing.

Host-Level Solutions 149

the system creates an isolated shadow file system, which records all file-system
changes while leaving the primary file system untouched. In other words, when a
file is updated, the solution uses copy-on-write to duplicate the file and maintain
a separate copy, leaving the original as it was. All child processes will use the
newer, isolated version of the file and not the original copy. This technique can
be used to completely isolate changes to a file system by untrusted code. Upon
program completion, the shadow file system becomes available to an administrator
or other system user for review. Once they are convinced that the application is
trustworthy, it can be run outside the sandbox.

8.3 Virtualization

System virtualization [§—10] is not a recent innovation, but has been around
for over three decades, particularly in mainframe environments. Virtualization
on commodity hardware was not traditionally attractive. However, significant
increase in computing capability on commodity hardware (based on x86 archi-
tecture) has renewed interest in this area. In this second wave of adoption, use
of virtualization goes beyond system partitioning. The properties of virtualiza-
tion, namely resource control and isolation, make it appealing to use in solving
host-level security issues [11]. Before we look at how virtualization can provide
solutions to the various host security threats discussed in Chapter 4, let us look
at different types of virtualization and how they are implemented. The formal
requirements [12] for virtualizable system architecture are:

(1) Efficiency: ability to execute innocuous instructions directly on the hardware.

(2) Resource control: all system-resource access should be routed through a vir-
tual machine monitor (VMM).

(3) Equivalence: application behavior should be the same as for a nonvirtualized
platform.

Based on how the platform is virtualized, system virtualization can be broadly
grouped into four categories, namely full-system virtualization, para virtualization,
shared-kernel virtualization and hosted virtualization.

8.3.1 Full-System Virtualization

In this type of virtualization, the VMM sits directly on top of the hardware,
abstracts it, and allows creation of a virtual machine with properties identical to
it. The VMM handles all resource access on the host, and none of the virtual
machines (VM) has direct access to any physical resources. Instructions, other
than the ones used for resource access, execute directly on the physical hardware,
thus reducing any CPU virtualization overheads. Z/OS is a good example of

150 Distributed Systems Security: Issues, Processes and Solutions

full-system virtualization. On the x86 environment, VMWare ESX 2.5 can be
classified as a full-system virtualization VMM.

VMWare ESX 2.5 [13] virtualizes the x86 platform using a combination of
direct execution and instruction virtualization to support unmodified guest OSs.
VMWare ESX virtualizes all the system resources such as CPU, memory, disk and
network. CPU virtualization is achieved by directly executing instructions when
they are mostly unprivileged code (such as those contained inside user-mode
applications/processes) and virtualizing privileged ones (such as those relating
to the OS). The VMM emulates standard devices, while the hardware interface
layer in VMWare has custom drivers for specific devices. The device drivers in the
hardware interface layer are involved in actually accessing the physical resources.
The emulated devices simply create a communication channel between the guest
OS device drivers and the drivers in the hardware interface layer. The VMWare
kernel is responsible for mapping the physical pages of the virtual machine to
the actual machine pages on the physical host, thus virtualizing memory access.
Figure 8.4 describes the architecture of this solution.

8.3.2 Para Virtualization

Para virtualization [14] is a technique through which an instruction set of the
hardware which does not support virtualization is modified to a fully-virtualizable
instruction set, such that the system can be fully virtualized. Modifying the instruc-
tion set of the hardware means that the OS (read kernel) will require porting to the
newer instruction set. In most cases applications do not require porting, because
they do not use instructions that operate with the hardware’s internal registers or
machine state.

By creating a parallel virtualizable instruction set through para virtualization, a
hypervisor can be built which can host the kernels of the guest OS. No run-time
translation will be required in this case as the kernel porting is done at com-
pile time, and the performance in most cases is similar to that experienced in
full-system virtualization.

0OS1 082 0S3

| VMM |

| Hardware |

Figure 8.4 Full-system virtualization.

Host-Level Solutions 151

The biggest negative with this technique has to do with the fact that the kernel
needs porting for the hypervisor. This may not be possible with a proprietary
OS/kernel such as Windows.

Native device drivers are installed in one of the guest OS instances and typically
the other guest OSs accesses them through device channels, as in mainframes.
In other cases the hypervisor may include device drivers for a limited num-
ber of devices and the guest Oss access the devices through the hypervisor. In
both cases the number of context switches between the guest OS and VMM are
limited, resulting in a near-native I/O bandwidth. Xen is the most popular para
virtualization solution on the x86 platform.

Xen [15, 16] is an open-source para virtualization solution conceived by
researchers from the University of Cambridge. The heart of Xen constitutes the
VMM, which is also termed the hypervisor. This hypervisor exposes itself as a
platform for multiple VM on which guest OSs run. It also abstracts the hardware
access. The guest OSs need to understand the hypervisor’s hardware abstraction
layer in order to access the underlying hardware, hence their kernels are modified
accordingly. As in the case with VMWare, Xen directly executes the guest OS
application instructions on the hardware and the precompiled guest OS code
makes calls to the Xen hypervisor to negotiate resource access. Xen maintains
software page tables to manage guest OS physical and virtual memory. Emulated
standard devices in the administrator domain, where requests and responses
by/for each guest OS are placed in a simple ring structure, manage 1/O access.
Shared memory is used to exchange this information. See Figure 8.5.

8.3.3 Shared-Kernel Virtualization

Shared-kernel kirtualization [17], as the name suggests, is not based on system
virtualization, but rather on OS virtualization. It is a way to partition a single large
machine into several virtual private machines. Each virtual private machine shares

Ported Ported Ported
0OS1 0Ss2 0S3

Virtualizable Hardware I/F

Hypervisor

Hardware

Figure 8.5 Para virtualization.

152 Distributed Systems Security: Issues, Processes and Solutions

the same kernel, is isolated from the others and has fine resource commitment
guarantees. The approach is to share a single kernel among multiple containers
(partitions) by creating a context within which processes run and the file system
is maintained.

Each container belongs to a context that is assigned to it when it is created,
and all access to system resources is validated against the context. If a container
requests access to a particular resource not owned by its own context, the container
will be refused access to it by the kernel. Using the context, the kernel will
also be able to share the resource equitably, based on some policy between the
various containers. As is apparent from Figure 8.6, there are no additional levels
of indirection (as in the case of a hypervisor) and the performance is very close
to the native performance. All features available on the bare metal machine are
also available to each virtual partition.

Since the kernel is shared, the isolation is not as robust as the other virtualization
architectures. In addition, the host kernel needs to be modified to be made aware
of the context, which is otherwise not implemented in the kernel. Solaris Zones
[18], Virtuozzo [19], OpenVZ and Linux V Server [20] are some well-known
implementations of shared-kernel virtualization.

Solaris Zones [21] is widely used for consolidation and other isolation purposes
on Solaris 10 or higher platforms. It has a notion of a global zone (which is the
administrator zone) and several nonglobal zones. The zone-aware Solaris kernel
creates a separate namespace for each of the nonglobal zones and ensures that
resources created in a nonglobal zone are not available outside it. The global zone
is an exception. The ‘root’ user within the global zone has certain privileges to
monitor and manage resources that belong to other, nonglobal zones. Solaris uses
a technique similar to BSD jail to create restricted file-system access, including
the /proc file system. Solaris creates logical network interfaces in the global zone,
as in any multihomed server, and maps these logical interfaces to each nonglobal
zone as independent network interfaces. This gives distinct network identity to
each of the nonglobal zones.

K | K I K
Container [i| Container || Container
1 ! 2 | 3
| I
| I
| I
| |
File System |![File System : File System
Devices, : Devices, | Devices,
Process Space|,[Process Space| |Process Space

| OS/Kernel |

| Hardware ‘

Figure 8.6 Shared-kernel virtualization.

Host-Level Solutions 153

8.3.4 Hosted Virtualization

This is a technique [22, 23] used very specifically on x86 environments to address
their nonvirtualizable instruction set. In this model, the VMM is actually an add-on
to an existing OS, which exists as a host, with all the VMs as guests. The guest
OSs, unlike in the other models, run at the same privilege level on the hardware
as the application. The major difference between this and the others is that the
hosted virtualization uses the device drivers in the host OS for I/O virtualization.
CPU and memory are similar to how they were in the case of VMWare ESX
mentioned earlier. On-the-fly translators translate privileged guest OS code, while
application code executes directly on the CPU. Figure 8.7 shows a schematic
representation of how a hosted model works. The I/O VMM actually runs on top
of the host OS. All I/O resource access by the guest OS requires intervention
of the host OS. VMWare Server, VMWare Workstation, MS Virtual PC and MS
Virtual Server [24] are all examples of the hosted virtualization model.

VMWare Server has two main components, namely the VMDriver, which acts
a VMM, and the VMApp, which provides I/O virtualization through the host
OS. Instructions inside guest OS applications are executed directly by the hard-
ware, while guest OS instructions are virtualized using binary translators. Any
device-access request by the guest OS is sent to the VMApp running inside the
host OS. The VMApp leverages the native device drivers already set up on the
host OS to handle the device-access requests.

8.3.5 Hardware Assists

In a typical IA32 architecture processor (Figure 8.8) such as an Intel Xeon pro-
cessor, there are four privilege rings. The lowest ring level, 0, is where the OS
runs, and ring level 3 is where the user applications run. Ring levels 1 and 2 are
reserved or not used.

In virtualized platforms, VMM needs to be in absolute control of the system
resources. This requires VMM to run at ring level 0 and the guest OS to run at
a ring level higher than 0. This is termed ring deprivileging (Figure 8.9).

082 0S3
App

VMM
Host OS
Native VMM
Drivers

| Hardware

Figure 8.7 Hosted virtualization.

154 Distributed Systems Security: Issues, Processes and Solutions

0: 0S
1: Reserved
2: Reserved

3: Apps

Rings 1 and 2 are unused

Figure 8.8 1A32 architecture.

0: VMM
1: Reserved
2: Reserved

3: OS + Apps

VMM: Ring 0
OS + App: Ring 3

Figure 8.9 Ring deprivileging.

Ring deprivileging introduces a number of virtualization issues.:

(1) Ring aliasing: this is a problem when software is run at a ring level different
to the one at which it was expected to run.

(2) Address-space compression: VMM requires a certain address area reserved
for itself, which will impact the linear address space available to any process
inside a guest OS.

(3) Nonfaulting access to privileged state: instructions that are expected to be
used only in ring level O do not result in a fault when executed at a higher ring.

(4) Ring compression: running both guest OSs and the applications on these guest
OSs on the same ring level means that the guest OSs are not protected from
the guest applications.

Host-Level Solutions 155

0: VMM

0: OS

1: Reserved
2: Reserved

3: Apps

VMM is on Ring 0-Privilege
OS is on Ring 0-Deprivilege

Figure 8.10 Additional VMM level.

In all there are around 17 instructions in the IA32 architecture that are not vir-
tualizable. This issue has been solved with the introduction of VT (virtualization
technology) in the latest generation of the Intel processor [25, 26]. The new pro-
cessor introduces an additional VMM ring level to address the ring deprivileging
issue (see Figure 8.10). VMM now runs as VMX root operation, while the guest
OSs run as VMX nonroot operations. A transition from VMX root to nonroot and
back is achieved through new instructions, namely VM entry and VM exit respec-
tively. In VMX nonroot operation, instructions that requires VMM intervention
cause unconditional VM exits. This makes it possible for unmodified guest OSs
to run directly on the hardware with minimal performance overheads. VMMs that
run on VT do not require any binary translation support for virtualizing guest OS
privileged code.

8.3.6 Security Using Virtualization

Isolation is a fundamental property of virtualization. A virtualized environment
ensures that each partition is completely isolated from other partitions. Apart
from fault isolation, virtualization can provide resource isolation by managing
resource allocation among various partitions. Virtualized execution environments
can address issues [27] relating to eavesdropping, job faults and resource star-
vation. Figure 8.11 gives a simple depiction of how virtualization can help in
addressing privacy and security concerns. Each partition/compartment has an inde-
pendent, secure view of its data, processes, devices and memory, which is not
accessible by the other partitions. A resource manager running alongside the VMM
can also ensure that no single partition runs away with all the system resources,
and the resource apportioning is strictly based on policies established for this
purpose.

156 Distributed Systems Security: Issues, Processes and Solutions

User apps Transient Transient
(Resident code code
code) (Internet (Mobile
apps) code, Grid
apps)

| VMM + Resource Manager ‘

Figure 8.11 Resource manager and isolation.

User apps Transient Transient Closed-box VM
(Resident code code
code) (Internet (Mobile
apps) code, Grid
apps) Open-box VM
| Terra TVMM |

Figure 8.12 Terra architecture.

Terra [28], proposed by Garfinkel ef al., illustrates how a trusted computing
platform can be built over a virtualized environment. Terra system architecture is
depicted in Figure 8.12.

Terra has a tamper-resistant trusted VMM that can host commodity or spe-
cialized thin VM. The VM can be in either a closed-box mode or an open-box
mode. The open-box VM can run commodity OSs and regular software stacks,
while the closed-box VM is a specific-purpose appliance. The TVMM can prove
that the closed-box VMs have not been tampered with to remote clients which
require services from them, and the attestation process allows remote VM owners
to verify whether or not a closed-box VM has been tampered with. A certificate
chain for each of the components in a closed-box VM, from the boot loader right
up to the software stack, is used for attestation purposes.

Besides virtualizing hardware, a VMM can play a vital role in resource man-
agement. System resources such as CPU, memory and other devices can be shared
based on policies or using the resource manager that is normally bundled with a
VMM. For instance, it is possible to allocate the CPU to various VMs based on
shares allocated to each VM, or on virtual CPUs assigned to them. A VM with

Host-Level Solutions 157

two virtual CPUs would get scheduled on the physical CPU twice as often as a
VM which has been assigned only one. It is also possible to attach priorities to
VMs, in a similar way to process priorities. Such resource-management capabil-
ities are very handy when it comes to addressing the resource-starvation issues
detailed in Chapter 4.

8.3.7 Future Security Trends Based on Virtualization

Security software stacks, such as intrusion detection systems, intrusion prevention
systems, firewalls and so on, have traditionally run directly on physical hosts.
Smart malwares have looked to disable these software agents before spreading
through a network, in order to avoid being noticed and increase damage manifold.
In future, such security stacks will be run inside a separate security VM [29]. This
will ensure that when an application/VM is compromised, the security VM is out
of reach and can continue to detect and prevent security attacks.

8.3.8 Application Streaming

Application virtualization and streaming products such as Sun Global Secure
Desktop [30] and MS SoftGrid [31], and virtual desktop infrastructure (VDI)
products such as VMWare VDI [32], Sun VDI [33] and so on are gaining rapid
ground. These solutions make it possible for applications to be hosted on a cen-
tral data centre, while streaming just the user interface to users’ desktops/laptops.
This will mean that desktops no longer have data or software installed locally. In
a way, the desktops will be mere devices through which users interact with their
applications, while the applications themselves are running elsewhere.

By moving the application execution and confidential data away from the desk-
top/host, this technology significantly limits the damage transient code can cause
to them. While application virtualization and VDI by themselves cannot solve the
security issues related to transient code, when used alongside other technologies
they can prove very useful in thwarting host security threats.

8.4 Resource Management

In a shared computing facility such as a grid or cluster, managing resources for dif-
ferent job/application execution requests is crucial in order to avoid issues relating
to resource starvation. Techniques such as advance reservation, priority reduction
and so on could be used to some extent to address this, and resource allocations
can be precisely managed through use of workload management solutions such as
Solaris Resource Manager (SRM), Windows System Resource Manager (WSRM),
Citrix ARMTech and Entitlement-based scheduling (EBS).

158 Distributed Systems Security: Issues, Processes and Solutions

8.4.1 Advance Reservation

In this technique [34], a cluster/grid host explicitly reserves resources (CPU,
memory, etc.) for executing a job. For instance, a dual CPU host can set aside
a processor for grid jobs, while keeping a processor for the native host jobs.
Similarly, memory can be set aside through system calls which limit the physical
memory (resident set size) available for a grid job. CPU time can also be limited
by using appropriate system calls. These controls, when used in tandem, can
reduce issues relating to resource starvation on the host.

8.4.2 Priority Reduction

To ensure that native jobs do not starve, the host must process priorities effectively.
Priorities for grid jobs can be lowered [35] such that native jobs continue to
perform without any impact. However, this is very conservative and can result in
the creation of a cycle-stealing environment. Other priority-management schemes
such as RRDP, used in the Sun Grid Engine, can be more effective in handling
resource-starvation issues. RRDP uses a more holistic priority-reduction technique
based on process-wait time and deadlines, besides other factors.

8.4.3 Solaris Resource Manager

In general, process priorities decide when and for how long a particular process
is scheduled to run on the processor. They do not provide adequate control to
manage the resources allocated to a process precisely. SRM [36] provides a way
to manage the resources (CPU, memory, file, thread and process limits) available
to a workload. Workload can be defined as a group of related processes tackling
a common problem. SRM has notions of projects and tasks, which are logical
groupings of processes owned by a user or a group, to which relative or discrete
resources can be assigned.

An SRM project can be allocated a certain number of CPU shares. The rel-
ative share allocation among various projects determines how large a percent-
age of the CPU is apportioned to each. For instance, if two groups, namely
‘default’ and ‘user.root’, are allocated 80 and 20 shares respectively, the pro-
cesses running under ‘default’ tend to consume 80% of CPU time and pro-
cesses under ‘user.root’ consume roughly 20%. Individual processes within these
projects are scheduled based on their relative priorities. The fair-shares scheduler
within the Solaris kernel has to be enabled for SRM to enforce these resource
controls.

The resource cap daemon in SRM can similarly manage the resident set size
(RSS) (physical memory) available to a project group. The memory cap for each
project can be set, and SRM will ensure that the physical memory consumption
by the project does not exceed the cap.

Host-Level Solutions 159

Similarly, other resources such as threads, file handles and so on can be capped
for each project. These resource controls can be used to manage grid and native
host jobs without causing any resource starvation. SRM currently does not have
capabilities to handle network bandwidths or disk storages. It does, however, have
extended accounting support to precisely measure resources consumed by various
tasks and projects.

8.4.4 Windows System Resource Manager

WSRM [37] is a recent introduction by Microsoft, designed to manage resources
on the Windows 2003 server family. Through WSRM, it is possible to cre-
ate resource-allocation policies either by user or by process. CPU and memory
resources can be controlled granularly using WSRM.

Soft CPU caps on processes or users are set through policies based on percentage
CPU allocation. WSRM manages the individual process priorities and processor
affinities to meet the soft caps set up in the system. It is also possible to limit the
physical memory (working set size) and the paging limit for an individual process
or for all processes running under a user.

WSRM can be used in conjunction with the grid/cluster scheduler to ensure that
native applications are not starved for resources. However, WSRM use is limited
to the Windows Server 2003 family.

8.4.5 Citrix ARMTech

Aurema’s ARMTech [38] provides active resource-management capabilities for
the Windows server family. It shares lot of similarities with SRM. CPU or memory
resource allocation can be done based on users, applications or application groups.

ARMTech allows administrators to group specific processes running on the
host, to form application groups. CPU percentages or shares are associated with
each of the resource consumer groups (users, applications or application groups).
The amount of resources allocated to a consumer resource group is relative to the
number of shares assigned to it.

ARMTech allows administrators to extend the resource control to a hierarchy of
resource consumer groups using a tiered policy path. Resource-allocation policies
can be specified at more than one tier or layer. ARMTech publishes accounting
information on resource usage through the standard WMI interface available on
Windows server platforms.

8.4.6 Entitlement-Based Scheduling

EBS [39] is a scheduler for Linux OS that can be used to provide similar resource
management capabilities to SRM or ARMTech. Conceptually, EBS is very sim-
ilar to other resource managers and uses the same notion of shares or relative

160 Distributed Systems Security: Issues, Processes and Solutions

entitlements for processes. Once created, a process’s entitlement can be set, and
the Linux scheduler will use this to ensure that the process gets its relative share.
In Linux, the RSS of a process can be directly managed through system calls.
These system calls, together with EBS, can provide the necessary resource-control
capability to address any resource-starvation issue on the Linux platform. EBS
is a separate add-on to the Linux kernel and is not merged into the main kernel
source.

8.5 Proof-Carrying Code

The reason security and privacy are very serious issues in distributed systems
is that the mobile/transient code that is downloaded and executed on physical
hosts is not trustworthy. All the techniques discussed so far relating to sandbox-
ing and virtualization are aimed at providing the necessary isolation at the host
level to protect the data and system from malicious users or faulty mobile code.
While these techniques are widely used today to provide the necessary security
cover, there are perhaps other ways to address host-level security and privacy.
One method is to leave the responsibility of proving the trustworthiness to the
mobile/transient code. In other words, it is the responsibility of the transient code
author to show that the code is safe. The execution host simply verifies that the
claim by the author is true and confirms that the code has not been tampered
with. Once satisfied on both counts, the execution host can safely execute the
mobile code.

Necula and Lee originally proposed the idea of mobile code carrying proof of
its safety, calling it PCC [40]. There are two parties in this system, namely a code
producer and a code consumer. The code consumer defines a safety policy and the
code producer demonstrates conformance to this safety policy. The safety policy
consists of safety rules and interfaces. The safety rules are a list of permissible
operations and preconditions which are to be satisfied before the operations are
performed, while the interfaces are contracts that the code should conform to.
The safety policy is published by the code consumer and is readily accessible to
all code producers. Once established, the safety policy can be used by the code
producers to write code that conforms to the consumer’s wishes, and to provide
proof of its conformance.

The three life stages of a PCC are certification, validation and execution (see
Figure 8.13). In the certification stage, the PCC system computes the safety pred-
icate of the program and generates a proof of that predicate. The responsibility of
validation lies with the code consumer. The proof of the safety predicate is in a
binary format embedded within the executable; the consumer checks whether the
safety predicate and proof match with the actual code. It is adequate to perform
this validation once before executing the code repeatedly on the host.

Once validated, there are no run-time overheads with this solution, unlike in
isolation techniques such as sandboxing or virtualization. However, in a distributed

Host-Level Solutions 161

Generates &y | Safety Rules +
I Publishes Interface : Code Producer
1
| T
Auth !
Code Consumer ¢ ! . orsv
I
!
__________ - ! Compilation +
: Validation i Certification «€— Source Code
! !
| i ¢
\ 4 |
I
|
Execution ' | |Compiled Code +
; Proof
i
i
|
Consumer : Producer

Figure 8.13 Proof-carrying code lifecycle.

computing environment there may be many consumers (potentially in the millions
if the code is Internet-based) and it is not possible to include the safety policies
of every single consumer.

8.6 Memory Firewall

The techniques we have discussed thus far address security threats and vulnerabil-
ities relating mainly to transient or mobile code. The effect of transient or mobile
code vulnerability is mostly confined to desktops or workstations. However, most
host security issues on business-critical servers arise from vulnerabilities that
exist in the resident or trusted code in the form of buffer overflows. Buffer over-
flow problems, as discussed in Chapter 4, predominantly occur due to use of
unprotected buffer/string-handling functions.

Kiriansky et al. from MIT have proposed a technique known as program shep-
herding [41] (also widely known as memory firewall; see Figure 8.14) to protect
systems against code injection and similar attacks. This technique relies on code
interpretation to identify the code section relating to control transfer. Subsequent
policing ensures that actual control transfers happening during execution are not
in violation of the security policy established earlier. To provide security, pro-
gram shepherding relies on restricting code origins, restricting control transfers
and uncircumventable sandboxing.

Dynamic code-optimization techniques are used to interpret the target
binary code. The key underlying principle in this approach is that the code

162 Distributed Systems Security: Issues, Processes and Solutions

1
Blocks ! Control transfers
' ---W are done through
RIO. Basic blocks
execute as native
code directly

Original code
block (binary)

verified against security
policy before running it
on the host

:

i
E Code block’s origin is
i
i
i
i
i
i
i
i

have control transfers only at the end

Figure 8.14 Memory firewall.

is separated into blocks (containing a sequence of instructions ending with a
single control-transfer instruction). These blocks can be run natively on the host
processor. This system prevents injection attacks by controlling all the control
transfers in the code (having already identified and partitioned them). Security
policies can be defined based on parameters such as code origin, function return,
intrasegment jump, intersegment jump, indirect calls, execve, open and so on.

Commercial memory firewall solutions such as SecureCode from Determina are
implemented based on the program-shepherding principle.

8.7 Antimalware

Anitmalware, or more popularly antivirus software is pretty much part of the
default software stack running on a host. Its main function is to identify and
remove any malware that may have compromised a host. Antivirus software today
is very versatile and can thwart threats from worms, Trojan horses, spyware and
other similar malwares. eTrust, McAfee and TrendMicro are some examples of
antivirus solutions.

Antivirus solutions adopt two different approaches, namely signature-based
scanning and real-time scanning.

8.7.1 Signature-Based Protection

In this approach, various virus/malware signatures/fingerprints are made available
through a dictionary to virus scanners set up at each host [42]. When the antivirus

Host-Level Solutions 163

software is able to match a part of a file with the contents of the signature in the
dictionary, it tags this file as being infected. An infected file can be cleaned, quar-
antined or deleted in order to contain the effects of the malware. The effectiveness
of this approach largely relies upon the signature dictionary. An up-to-date dictio-
nary can identify more malwares/attacks. But however up-to-date, this approach
is inadequate in addressing zero-day attacks (when the virus has not been iden-
tified/reported and a signature is not available). Further, there are some viruses
which encrypt their own code or use different representations to evade scans by
the antivirus scanner.

8.7.2 Real-Time Protection

Recent reports [43] have shown that the traditional signature-based protection
is very ineffective when it comes to protecting hosts against unknown viruses.
To address these concerns, antivirus systems have included real-time protection,
based on system-call interception, to identify attacks from unknown viruses (see
Figure 8.15).

User processes don’t have the privilege to access system resources directly, and
any resource access is mediated by the kernel using system call. By intercepting
these system calls, all I/O and resource access can be monitored. Real-time pro-
tection [44] uses system-call interception to route the system call through its own
filters, which check against policies for any anomalous behavior. The administra-
tor has control over the policies that are used for protection. Real-time protection
policies have to be fine-tuned, as they can cause serious performance impact to
the host.

C
(2]
@
User process @
e
Q0
Q
(]
A 4
System call intercepted

System call table | ----------- !

‘ |

|

A 4

Real-time > Kernel =
protection @
3
v 0
el
Q
(@]
(0]

File system and other system resources

Figure 8.15 Real-time protection.

164 Distributed Systems Security: Issues, Processes and Solutions

8.7.3 Heuristics-Based Worm Containment

One approach to providing security against zero-day attack using heuristics. These
look at regular patterns of network or file I/O and detect any anomalies [45, 46].
Though this may result in some false positives, as heuristics get better there is a
likelihood of better results. Intel vPro uses a similar approach to provide security
against worm attacks. In the case of Intel vPro, the solution is tamper-resistant,
as the implementation has been done entirely at the hardware level. Figure 8.16
depicts how Intel has implemented this in its platform.

The inline processing unit processes outgoing packets from the host as they pass
through the network device driver and network interface. Given the processing
time allowed, packets are briefly analyzed and key information packet is put into
a cache to be picked up by the sideband processing unit. The sideband processing
unit, which is implemented as a hardware component, inspects this packet data
in cache and runs it through a heuristics engine to identify any access anomalies.
If the heuristic engine identifies any suspicious behavior, it will trigger necessary
actions to isolate the node from the network. The administrator can later look at
the node and identify whether the host has been compromised. This technique
can be used to quickly contain the effects of any malicious code.

8.7.4 Agent Defense

While anitvirus software provides vital security protection to the host either
through signature matching or real-time protection, the virus scanners themselves
may be disabled when a host is compromised. Unless protection for antivirus
is guaranteed, the system may remain vulnerable. One mechanism to guarantee
antivirus agent safety is through hardware assists. A firmware-based solution such
as Intel’s ‘system integrity service (SIS)’ [47] is OS-independent and can verify

Host

Operating system
Ll

))) Sideband processing unit Worm
Inline processing unit [:> + |[|:> identification and
Heuristics engine containment

Network interface

Figure 8.16 Intel’s approach to heuristics-based worm containment.

Host-Level Solutions

165

Table 8.1 A summary of host-level solutions.

Attack Solution Remarks
Transient code
Malware Sandboxing Sandboxing and virtualization can play vital
Virtualization roles in containing the effect of malwares
Antimalware at a host level. Antimalware based on
Memory signatures is useful in handling known
firewall worms and viruses, while systems such as
memory firewalls, heuristic-based
worm-containment and real-time protection
are useful against zero-day attacks.
Advances in virtualization, hardware
assists for virus protection agents and so
on hold lots of promise in providing a
more tamper-resistant protection system.
Eavesdropping Sandboxing The effects of eavesdropping can be
Virtualization contained to a significant extent by using
isolation techniques such as sandboxing
and virtualization. These techniques are
useful for both Web-based software and
grid/remote applications.
Job faults Sandboxing Faults can be effectively contained in isolated
Virtualization environments. These are very useful in
grid-like environments.
Resource starvation Virtualization This threat is focused mostly on shared
Resource computing facilities such as grid.
management Virtualization and resource-management
solutions can provide effective protection
against this threat.
Resident code
Overflow Virtualization Resident-code vulnerabilities are largely due
Privilege escalation Memory to poor engineering. Viruses, worms and
Injection firewall other untrusted/mobile applications running
Antimalware on the host exploit these vulnerabilities.

Virtualization, memory firewalls and
antimalware can provide reasonable
security against these threats. However, all
these are inadequate to address them
entirely.

the integrity and presence of registered software agents on the host. SIS can
detect attacks that tamper with or disable these host-resident software agents. SIS
is based on three main concepts, namely agent locality, agent integrity and agent

execution state.

166 Distributed Systems Security: Issues, Processes and Solutions

Agent locality refers to the memory location where the agent code and data are
loaded. Once registered, SIS denies access to any external code which tries to
access these confidential bytes. The integrity services module is responsible for
ensuring agent locality. SIS verifies agent code for tamper. Any attempt to tamper
with the code can be identified by the agent integrity services through integrity
manifests. The host agent execution state is communicated to a central integrity
measurement manager (IMM) through tamper-proof heartbeats.

8.8 Conclusion

We have looked at some of the host-level security solutions relating to isola-
tion, resource management and host protection. These broadly address the host
threats and vulnerabilities we covered in Chapter 4. Table 8.1 summarizes how
the solutions described in this chapter address host security and privacy threats.

References

[1] Figueiredo, R., Dinda, P. and Fortes, J. (2003) A Case for Grid Computing on Virtual
Machines, Proceedings of ICDCS.

[2] Provos, N. (2003) Improving Host Security with System Call Policies. Proceedings of the
12th USENIX Security Symposium, pp. 257—-72, August 2003.

[3] Goldberg, 1., Wagner, D., Thomas, R. and Brewer, E. (1996) A Secure Environment for
Untrusted Helper Applications. Proceedings of the 6th USENIX Security Symposium, July
1996.

[4] CERT (2002) Vulnerability note VU#176888, Linux Kernel Contains Race Condition via
ptrace/procfs/execve. May 2002.

[5] Garfinkel, T., Pfaff, B. and Rosenblum, M. (2004) Ostia: A delegating architecture for secure
system call interposition, Proceedings of the Network and Distributed Systems Security
Symposium.

[6] Garfinkel, T. (2003) Traps and Pitfalls: Practical Problems in System Call Interposition Based
Security Tools. Proceedings of the Network and Distributed Systems Security Symposium,
February 2003.

[7] Liang, Z., Venkatakrishnan, V.N. and Sekar, R. (2003) Isolated Program Execution: An
Application Transparent Approach for Executing Untrusted Programs, Proceedings of the
19th Annual Computer Security Applications Conference.

[8] Lawton, K. Running Multiple Operating Systems Concurrently on an IA32 PC Using Vir-
tualization Techniques, 2000.

[9] Goldberg, R. (1974) Survey of virtual machine research. IEEE Computer, June, 34—-45.

[10] Smith, J. (2001) An Overview of Virtual Machine Architectures.

[11] Chen, P. and Noble, B. (2001) When Virtual is Better Than Real, HOT-OS.

[12] Popek, G. and Goldberg, R. (1974) Formal requirements for virtualizable third generation
architectures. Communications of the ACM , 17(7), 413-21.

[13] Waldsburger, C. (2002) Memory Resource Management in VMWare ESX Server, OSDIL.

[14] Whitaker, A., Shaw, M. and Gribble, S.D. (2002) Denali: Lightweight Virtual Machines
for Distributed and Networked Applications, University of Washington Technical Report
02-02-01.

[15] Barham, P. et al. (2003) Xen and the Art of Virtualization, SOSP.

Host-Level Solutions 167

[16]
(17]

(18]
[19]
(20]
(21]
(22]
(23]

[24]

[25]
[26]
[27]
(28]

(29]

(30]
(31]
(32]
(33]

[34]

[35]
[36]
(37]

(38]

[39]

Hand, S. et al. (2003) Controlling the XenoServer Open Platform, OpenARCH.
http://www.parallels.com/r/pdf/wp/pvc/Parallels_Virtuozzo_Containers_ WP_an_
introduction_to_os.pdf (Accessed on 12 June 2008).

Tucker, A. and Comay, D. (2004) Solaris Zones, Operating System Support for Server
Consolidation, Work in progress reports, USENIX VM.
http://www.parallels.com/en/products/virtuozzo/os/ (Accessed on 12 June 2008).
http://linux-vserver.org/Paper (Accessed on 12 June 2008).

Price, D. and Tucker, A. Solaris Zones: Operating System Support for Consolidating Com-
mercial Workloads, Proceedings of the 18th Large Installation Systems Administration
Conference (USENIX LISA '04).

Dike, J. (2000) A User-mode Port of the Linux Kernel, Linux Showcase and Conference
2000 (see also http://user-mode-linux.sourceforge.net/).

Hoxer, H. et al, (2002) Implementing a User-mode Linux with Minimal Changes from the
Original Kernel 2002, Linux System Technology Conference. Virtual Devices.

Microsoft Corporation (2004) Microsoft Virtual Server 2005 Technical Overview,
http://download.microsoft.com/download/5/5/3/55321426-cb43-4672-9123-74ca3af6911d
VS2005TechWP.doc. (Accessed on 12-Jun-2008).

Uhlig, R., Neiger, G., Rodgers, D. et al. (2005) Intel virtualization technology. Computer,
38(5), 48-56.

AMD Virtualization (2008) http://www.amd.com/us-en/Processors/ProductInformation/0,
30.118_8796_-14287,00.html (Accessed on 12-Jun-2008).

Garfinkel, T. and Warfield, A. (2007) What Virtualization can do for Security, Vol. 32(6),
login: The USENIX Magazine.

Garfinkel, T. ef al. (2003) Terra: A Virtual Machine-based Platform for Trusted Computing,
SOSP.

Garfinkel, T. and Rosenblum, M. (2003) A Virtual Machine Introspection Based Architec-
ture for Intrusion Detection. Proceedings of the Network and Distributed Systems Security
Symposium, February 2003.

Sun Secure Global Desktop (2008) http://www.sun.com/software/products/sgd/index.jsp
(Accessed on 12-Jun-2008).

Microsoft Softgrid Application Virtualiztion (2008) http://www.microsoft.com/systemcenter/
softgrid/default.mspx (Accessed on 12-Jun-2008).
VMWare — Virtual Desktop Infrastructure (2008) http://www.vmware.com/products/vdi/

(Accessed on 12-Jun-2008).

Sun Virtual Desktop Infrastructure (2008) http://www.sun.com/software/vdi/index.jsp

(Accessed on 12-Jun-2008).

(2007) Performance Impact of Advance Reservations from the Grid on Backfill Algorithms,
Sixth International Conference on Grid and Cooperative Computing, 2007. GCC 2007.
16—18 Aug. 2007 pp. 456-61.

Chakrabarti, A., Damodaran, A. and Sengupta, S. (2008) Grid computing security: a taxon-
omy. IEEE Security and Privacy, 6(1), 44-51.

SystemAdministration Guide: Solaris Containers-Resource Management and Solaris Zones,
http://www.sun.com/bigadmin/content/zones/sys-admin-rm.pdf (Accessed on 12 June 2008).
Windows System Resource Manager (2008) http://www.microsoft.com/windowsserver2003/
technologies/management/wsrm/default.mspx (Accessed on 12 June 2008).

Aurema ARMTech Active Resource Management for Application Performance Con-
trol (2008) http://www.citrix.com/English/ps2/products/documents_onecat.asp?contentid=
594719&cid=White+Papers#top (Accessed on 12 June 2008).

Entitlement Based Scheduler (2008) http://sourceforge.net/projects/ebs-linux/ (Accessed on

12 June 2008).

168

Distributed Systems Security: Issues, Processes and Solutions

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Necula, G. (1997) Proof-carrying code. in 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ACM Press, New York, pp. 106—19.

Kiriansky, V., Bruening, D. and Amarasinghe, S.P. (2002) Secure Execution via Program
Shepherding. Proceedings of the 11th USENIX Security Symposium (August 05-09, 2002),
pp. 191-206.

The Case for Combined Behavioral and Signature Based Protection (2008) http://www.
mcafee.com/us/local_content/white_papers/partners/wp_complete_security_hips.pdf (Acces-
sed on 12 June 2008).

Anti Virus Software Report (2008) http://www.heise.de/ct/08/01/092/ (Accessed on 12 June
2008).

McAfee Entercept (2008) http://www.mcafee.com/us/_tier2/products/_media/mcafee/wp_
systemcallinterception.pdf (Accessed on 12 June 2008).

Durham, D., Nagabhushan, G., Sahita, R. and Savagaonkar, U. (2008) A Tamper-Resistant,
Platform-Based, Bilateral Approach to Worm Containment, Technology @Intel Magazine,
http://www.intel.com/technology/magazine/research/worm-containment-1005.htm (Acces-
sed on 12 June 2008).

Savagaonkar, U., Sahita, R., Nagabhushan, G., Rajagopal, P. and Durham, D. (2008)
An OS Indepdendent Heuristics Based Worm Containment System, http://www.intel.com/
technology/comms/download/worm_containment.pdf (Accessed on 12 June 2008).
Schluessler, T., Khosravi, H., Nagabhushan, G., Sahita, R. and Savagaonkar, U. (2008)
Runtime Integrity and Presence Verification for Software Agents, http://www.intel.com/
technology/magazine/research/runtime-integrity-1205.htm (Accessed on 12 June 2008).

9

Infrastructure-Level Solutions!

9.1 Introduction

In Chapter 5 we discussed the different threats to and vulnerabilities in the enterprise
infrastructure. As we said in that chapter, the IT infrastructure in most enterprises
closely resembles the physical infrastructure — flyovers, buildings, roads, rail and
so on — in the real world. Therefore, it is not surprising that the solutions that have
been proposed to solve infrastructure problems closely resemble those in the real
world as well. For example, similar to passports and visas, certificates, authorization
enforcement systems and firewalls are available in most enterprise I'T infrastructures.
In this chapter, we will discuss the solutions that exist for each infrastructure threat
and vulnerability, as well as the potential solutions and research efforts required for
some as yet unresolved problems. We will also provide a recommendation for the
applicability of the solutions at the end of the chapter.

9.2 Network-Level Solutions

If we look at the research in the area of security, that in network security is prob-
ably the oldest and most well-established. Solutions such as Secure Socket Layer
(SSL)/Transport Layer Security (TLS), Virtual Private Networks (VPNs), IP Secu-
rity (IPSec) and so on are well-established and widely deployed. We will briefly
touch upon these in this section. However, several threats like denial-of-service
(DoS), routing attacks and so on are new, and research efforts are still ongoing.
Solutions in the area of wireless networks are evolving, and adoption is taking place.

! Contents in this chapter reproduced with permission from Grid Computing Security, Chakrabarti, Anirban, 2007,
XIV, 332 p. 87 illus., Hardcover, ISBN: 978-3-540-44492-3

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan
and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

170 Distributed Systems Security: Issues, Processes and Solutions

9.2.1 Network Information Security Solutions

Information security covers confidentiality, integrity and authentication, which
are generally solved through the combination of encryption and authentication
mechanisms. In this subsection, we will briefly cover technologies like SSL/TLS,
IPSec and VPN.

9.2.1.1 Secure Socket Layer (SSL)

One of the most popular protocols for securing the transport layer is SSL, whose
newer versions are called TLS [1]. SSL/TLS works on top of the Transport Layer
Protocol (TCP) and provides security in managing sessions over the transport
channel.

SSL Version 2 was deployed with Netscape Navigator 1.1 by Netscape in 1995.
Netscape came out with Version 3 a few years later. The Internet Engineering Task
Force (IETF) [2] extended the concept to develop TLS.

The protocol works as follows:

(1) The client contacts the server to initiate an SSL/TLS session. In this step the
client does not identify itself, but it does mention the set of cryptographic
algorithms it can support. In addition, it sends a random-number RC, which
will be used to create the session key.

(2) The server replies by sending its certificate to the client. It also sends a
random-number RS, which will contribute toward the creation of the session
key.

(3) The client then verifies the certificate, extracts the public key of the server and
selects a random number S. In addition, the client also computes K, which is
the master secret computed as a function of RC, RS and S.

(4) The client sends S and the hash of K encrypted with the server’s public key.

(5) Subsequently, all the data sent over the SSL/TLS channel is encrypted with
the session key K.

It is to be noted that the SSL/TLS protocol defined above helps the client to
authenticate the server. However, the server cannot authenticate the client. As a
protocol, SSL/TLS allows the option for mutual authentication, where the server
can authenticate the client if the client possesses the required certificate. However,
in most cases, if such an authentication is required the client sends its user name
and password encrypted with the server’s public key.

9.2.1.2 IP Security (IPSec)

IPSec [3, 4] is a method proposed to solve attacks through interaction with the
network layer. The principal feature of IPSec, which enables it to support a variety
of application scenarios, is that it can encrypt or authenticate all traffic at the

Infrastructure-Level Solutions 171

Internet protocol (IP) level. Thus, all distributed applications, including remote
login, client/server, e-mail, file transfer, Web access and so on, can be secured.
An organization maintains local area networks (LANs) at dispersed locations.
Traffic on each LAN does not need any special protection, but the devices on a
LAN can be protected from an untrusted network with firewalls. Since we live
in a distributed and mobile world, the people who need to access the services
on each of the LANs may be at sites across the Internet. These people can use
[PSec protocols to protect their access. [PSec protocols can operate in networking
devices, such as a router or firewall that connects each LAN to the outside world,
or else directly on the workstation or server. The user workstation can establish
an IPSec tunnel with the network devices to protect all subsequent sessions. After
this tunnel is established, the workstation may have many different sessions with
the devices behind the IPSec gateways. The packets going across the Internet will
be protected by [PSec but will be delivered on to each LAN as a normal IP packet.
IPSec has the following main components:

(1) Two security mechanisms: an authentication-only function, referred to
as Authentication Header (AH) [4], and a combined authentication and
encryption function called Encapsulating Security Payload (ESP) [5]. These
provide the basic security mechanisms within the IP.

(2) Security Associations (SAs): these represent an agreement between two peers
on a set of security services to be applied to the IP traffic stream between them.

(3) Key management infrastructure: sets up SA between two communicating
peers.

Both AH and ESP security mechanisms involve adding a new header to the IP
packet, and the header is added between the original IP header and the layer 4
(network layer) header. In this way, only the two IPSec peers will have to deal
with the additional headers, thus letting legacy routers handle IPSec packets just
like normal IP packets. This feature lets far fewer IPSec-compliant devices on the
Internet, making its deployment easier. [P AH and IP ESP may be applied alone
or in combination. Each function can operate in one of two modes: transport mode
or tunnel mode. With transport mode, AH or ESP is applied only to the packet
payload, while the original IP packet header remains untouched. The AH or ESP
header is inserted between the IP header and the layer 4 header, if there is any.
In tunnel mode, AH or ESP is applied to the entire original IP packet, which is
then encapsulated into a new IP packet with a different header.

For VPN, both authentication and encryption are generally desired, because it
is important both to (i) assure that unauthorized users do not penetrate the VPN
and (ii) assure that eavesdroppers on the Internet cannot read messages sent over
the VPN. Because both features are generally desirable, most implementations are
likely to use ESP rather than AH. However, by providing both AH and ESP, IPSec
provides implementers with flexibility in terms of performance and security. This

172 Distributed Systems Security: Issues, Processes and Solutions

flexibility is also extended to the key-exchange function, where both manual and
automated key-exchange schemes are supported.

9.2.1.3 Virtual Private Networks

To carry out business-related activities, it has become absolutely essential for
employees, contractors and business managers to be able to access confidential
resources and communicate them across geography. It is quite common for busi-
ness executives to log on and access resources using laptops while traveling, or
when they are in client or business locations. Since the communications generally
take place over a public network, confidentiality, authentication and integrity are
very important. One prominent communication service which provides these and
allows access to resources anywhere and anytime is VPN. Before the advent and
popularity of VPN technologies, private networks were created using permanent
links between corporate sites. VPN technologies extend this concept by provid-
ing virtual networks that are dynamic and setting up connections according to
organizational needs. Unlike traditional corporate networks, VPNs do not main-
tain permanent links between end-points. Rather, the connection is torn down
as soon as it is not required, resulting in bandwidth savings. VPN technologies
are cost-effective alternatives to completely private networks, allowing different
parties to come together and share resources in a secure manner.

There are mainly two different types of VPN technology. These are Layer 2
VPN Service (L2VPN) and Layer 3 VPN Service (L3VPN).

Layer 2 VPN service (L2VPN)

In L2VPNs, the provider extends layer 2 services to the customer sites. A key
property of L2VPNs is that the provider is unaware of layer 3-specific (network
layer) VPN information. The customer and the provider do not exchange any
routing information with each other. Forwarding decisions in the provider
network are based solely on layer 2 (data-link layer) information such as message
authentication code (MAC) address, ATM VC identifier, multiprotocol label
switching (MPLS) label and port number. Currently, two different approaches
to L2VPNs are described in the literature; Virtual Private Wire Service (VPWS)
and Virtual Private LAN Service (VPLS) [6]. The major difference between the
two is that the VPWS provides VPN service between two sites, while VPLS
provides a service across multiple sites. The VPWS approach can be regarded
as a generalized version of the traditional leased-line service, in which the sites
are connected in a partial or full mesh. The VPLS approach emulates a LAN
environment, where a site automatically gains connectivity to all the other sites
attached to the same emulated LAN.

Layer 3 VPN service (L3VPN)
In L3VPNs, the provider offers layer 3 (network layer) connectivity, typically IP,
between the different customer sites. At present, there are two dominating L3VPN

Infrastructure-Level Solutions 173

approaches, (Border Gateway Protocol) BGP/MPLS VPN [7] and Virtual Router
(VR) [8]. Both approaches concentrate the VPN functionality at the edge of the
provider network (Provider Edge (PE) nodes) and hide VPN-specific information
from the provider core nodes, to improve scalability. In the BGP/MPLS VPN
approach, a routing context is represented as a separate routing and forwarding
table in the PE. Each PE node runs a single instance of a BGP variant called Mul-
tiprotocol BGP (MPBGP) [9] for VPN route distribution across the core network.
PE nodes use MPLS labels to keep VPN traffic isolated and transmit packets
across the core network in tunnels. The tunnels are not necessarily MPLS tun-
nels; they can be of any type, such as [PSec. If a tunnel type other than MPLS
is used, the only nodes that need to know about MPLS are the PEs. Any routing
protocol can run between the Customer Edge (CE) nodes and the PEs, but in
practice the customer must use the routing protocol chosen by the provider. In
the VR approach, PE nodes have one VR instance running for each VPN context.
A VR emulates a physical router and functions exactly like one. VRs belonging
to the same VPN are connected to each other via tunnels across the core network.

9.2.2 Denial-of-Service Solutions

Solutions proposed in the literature for DoS attacks can be broadly categorized as
(i) preventive and (ii) reactive. Preventive DoS solutions take precautionary steps
in preventing DoS attacks. A wide range of solutions have been proposed, but
this problem remains an open one. The reactive solutions aim at identifying the
source of attacks. This is very important because attackers spoof their addresses,
thus techniques are needed to trace them.

9.2.2.1 Preventive DoS Countermeasures

The preventive DoS techniques are used to detect and reduce the effectiveness of
attacks. In this section we will talk about some of the methods that have been
proposed to detect and prevent DoS attacks, namely filtering, location-hiding and
throttling techniques.

Packet filtering

All preventive DoS-detection techniques are based on some prior information,
on the basis of which the filtering is carried out. A few filtering techniques are
described in Cisco White Papers [10]. One of the most common methods for
detecting and preventing potential attacks is to use egress filtering. Egress filtering
refers to the practice of scanning the packet headers of IP packets leaving a
network (egress packets) and checking to see if they meet certain criteria. If the
packets pass the criteria, they are routed outside of the subnetwork from which
they originated. If they do not pass, the packets will not be sent to the intended
target. Since one of the features of distributed denial-of-service (DDoS) attacks is

174 Distributed Systems Security: Issues, Processes and Solutions

spoofed IP addresses, there is a good probability that the spoofed source address
of DDoS attack packets will not represent a valid source address of the specific
subnetwork. If the network administrator places a firewall or packet sniffer in the
subnetwork to filter out any traffic without an originating IP address from this
subnet, many DDoS packets with spoofed IP source addresses will be discarded,
and hence neutralized. This is a common technique and has been deployed as a
defense mechanism in routers [10]. It is to be noted that these types of measure
can minimize attacks to some extent, but can in no way guarantee an absolute
defense against them.

Similar to egress filtering, different ingress filtering mechanisms have also been
proposed and implemented. In these types of mechanism, the filtering is done on
all packets coming into the network. In [11], the authors have presented tech-
niques for preventing DoS attacks through filtering. One such technique is called
distributed packet filtering (DPF), where the decision to drop or accept the packet
is made based on the incoming packet interface. The route information plays a
major role in determining whether a packet should be dropped or not. The route
information stored at each node indicates the source address and the corresponding
interface that the packet is supposed to come from.

Application filtering

Just filtering packets does not provide enough protection from XML denial-of-
service (XDoS) attacks, for which it is necessary to be able to understand Exten-
sible Markup Language (XML) documents. XML-level firewalls examine the
received Simple Object Access Protocol (SOAP) messages or native XML mes-
sages and, once the target Web service is resolved, apply a stored security policy
based on the target address, originating caller identity, message content and, in
some cases, the successful execution of prior policies. Several companies, like
Reactivity, have developed such firewalls. Most of the common XDoS attacks,
such as entity-expansion attacks, can be filtered by adding specific policies at the
XML firewall level. It is to be noted that this type of filtering has a significant
effect on performance as complex policies need to be applied to the incoming
XML messages. Also, newer attacks are constantly being invented in the growing
field of Web services and the filtering technique needs to keep up with these.

Location hiding

In this type of prevention mechanism, the actual location is hidden from the end
users, preventing attack from taking place. An architecture built on this principle
is called Secure Overlay Service (SOS) [12]. The goal of the architecture is to
allow communication between a confirmed user and a target. The target selects
a subset of nodes N that participate in the SOS overlay to act as forwarding
proxies. The filter only allows packets whose source address matches the address
of some overlay node n in N. It is assumed that the set of nodes that participate

Infrastructure-Level Solutions 175

in the overlay is known to the public, and to the attacker as well. Attackers
in the network are interested in preventing traffic from reaching the target. By
hiding the actual target, SOS reduces the effectiveness of DoS attacks. However,
there are some concerns: first, the SOS architecture may cause additional latency
because of the large amount of forwarding and routing that takes place. In some
applications, this may be really critical. Second, the architecture assumes that the
attack is coming from outside and does not concentrate on insider attack.

Throttling

One proposed method to prevent servers from going down is to use max—min
fair server-centric router throttles [13]. This method sets up routers that access
a server with logic to adjust (throttle) incoming traffic to levels that it will be
safe for the server to process. This will prevent flood damage to servers. Addi-
tionally, this method can be extended to throttle DDoS attacking traffic versus
legitimate user traffic for better results. This method is still in the experimental
stage. However, similar techniques to throttling are being implemented by net-
work operators. The difficulty with implementing throttling is that it is still hard
to decipher legitimate traffic from malicious traffic. In the process of throttling,
legitimate traffic may sometimes be dropped or delayed and malicious traffic may
be allowed to pass to the servers. One of the projects which use throttling as a
means of mitigating DoS attacks is the D-WARD project from UCLA. D-WARD
is a DDoS defense system deployed at source-end networks, which autonomously
detects and defeats attacks originating from these networks. It includes obser-
vation and throttling components, which can be part of the source router, or a
separate unit which interacts with the source router to obtain traffic statistics and
install rate-limiting rules. The observation component monitors two-way traffic at
a flow granularity to detect attack. Flow classification, connection classification,
the TCP normal traffic model, the ICMP normal traffic model and the UDP normal
traffic model are used to differentiate the malicious flow and the legitimate flow.
Once the attack flow is found, the misbehavior flow comes under the control of
rate-limiting rules. D-WARD can detect some attacks at the source-edge network,
and it attempts to determine outgoing attack traffic. But since there is no coordi-
nation among instances of agents, the detection may be error-prone. Source-end
defense is a promising scheme that can be applied in the active defense system.
However, it faces lots of challenges, such as detection sensitivity, agent coordi-
nation and liability. When the defense system is deployed in the source end there
are fewer strong signals to indicate the attack than at the victim end, at which
there are usually apparent signals, such as high volume of network traffic. So a
high sensitivity is essential for source-end defending.

176 Distributed Systems Security: Issues, Processes and Solutions

Intrusion detection systems (IDS)

Intrusion Detection System (IDSs) as just a preventive DoS measure. IDSs [14,
15] consist of detectors that detect attacks based on a set of policies and informa-
tion. In principle, they work similarly to alarm systems implemented in buildings
and apartments for protection against burglars. In [14], the authors have grouped
IDSs into two main categories: anomaly detection systems and signature detec-
tion systems. In the former, an intrusion is detected based on abnormalities of
system behavior. The detector forms an opinion based on the normal behavior
of the system, determined by long-term observation and system policies. In the
latter, an intrusion is detected based on a specific signature or a model. It is to
be noted that the signature is based on long-term information about the intrusion
behavior.

Several grid-based IDSs have been conceived, designed and implemented. Most
consist of a set of sensors which are able to monitor the state of the grid systems.
The information supplied by the sensors is collected and analyzed by IDSs like
SNORT [16]. It is then logged through an interface to query it, and suitable
alarms and action mechanisms are provided. Grid-based systems described in the
literature include SANTA-G [17], which uses SNORT as its IDS and R-GMA
for querying the monitored information, and GIDA [18], which uses a similar
structure. IDS on the Oracle 10G database is provided in [19]. Integrated Access
Control and Intrusion Detection (IACID) [20] from USC provides a grid-based
IDS with separate network and host IDSs.

9.2.2.2 Reactive DoS Countermeasures

Reactive techniques aim at identifying the attacker after the attack has been
completed. This is an active area of research because the current identification
techniques are totally manual and may span months. The current solutions can be
broadly categorized as link testing, logging, ICMP traceback and IP traceback.

Link testing

This technique involves iteratively checking the upstream link until the source
is reached. This type of identification technique assumes that the attack remains
active after the completion of the trace. One type of link-testing approach is called
input debugging, where routers develop an attack signature based on some attack
pattern. The victim informs the operator about the signature and the operator
then checks the packets and iteratively carries out this process. This is employed
in some routers now, though the process is time-consuming. Another suggested
link-testing technique is controlled flooding [21], in which the victim floods all
the links, based on the assumption that the packet drop taking place from an
attacked link is much more than from any other link. This technique suffers from
being a mode of DoS attack itself.

Infrastructure-Level Solutions 177

Logging

A simple technique has been suggested in [22], where logging of data packets
is done at key routers. Traceback is carried out by using data-mining techniques.
Another interesting work in this area is reported in [23], where the authors have
presented a hash-based technique for IP traceback that generates audit trails for
traffic within the network. The origin of packets can be traced back to the source
based on these audit trails. In Source Path Isolation Engine (SPIE) architecture
(Refer to the below Figure), each router consists of a data-generation agent (DGA)
which computes the hash of the packets and stores them in a Bloom filter. The
information is flushed after every time interval ¢, where ¢ is a design parameter.
As soon as the attack is detected, the SPIE Traceback Manager (STM) calcu-
lates the attack signature of the packet or packets used for the attack. It then
contacts the centralized SPIE Collection and Reduction Agent (SCAR). SCAR
polls DGAs for the information stored, creates a local attack graph, and sends
the information back to the STM. The STM then assembles the local graphs,
plugs holes in the graphs and finally creates the traceback information. This
technique suffers from scalability problems, as enormous resources are required
to carry out logging-based identification. Another negative, which is associated
with all traceback schemes, is that it can only trace back to a single attacker.
Since most attacks are carried out using reflectors, traceback schemes can rarely
be used.

t[er [Hen[TOS Total length
Identification [‘:|E| Fragment offset

TTL | Pratocal Checksum

28 Source address

bytes Destination address

Options

First 8 bytes of payload

Reminder of payload

nbits
«—>

HP)]~
[P \

AP

-

25 hits

I

- -

ICMP traceback

In the Internet draft [24], the author has proposed a scalable technique where each
router stores packets with a low probability. Whenever a packet is stored, the
router sends an ICMP traceback message toward the destination. When attacked,

178 Distributed Systems Security: Issues, Processes and Solutions

the destination can trace back to the source based on the router ICMP messages.
This scheme has a problem as the ICMP messages can themselves be used to
cause DoS attacks.

IP traceback

One of the earliest efforts to identify the source of a packet through IP traceback
was made in [25] through probabilistic marking of packets at each router. In
this technique, a router marks any packet flowing through it with a very small
probability. With a sufficient number of packets (in the case of DoS attacks), the
destination can retrace the attack path. The scheme introduces a huge amount of
overhead to the packets, but this can be reduced when only one field is reserved
for marking and the information gets overwritten. The attack path, in this case,
is retraced by a number of packets marked at each router. This type of traceback
is called node sampling. The authors of [25] also introduced a concept called
edge sampling, where in addition to the information of the node, the distance to
the node is also maintained. The schemes were further extended in [26], where
the authors showed that using partial network information, the number of packets
required to trace back could be substantially reduced.

9.2.3 DNS Solution — DNSSEC

DNSSEC provides authentication and integrity to the Domain Name System
(DNS) updates. All of the DNS attacks (mentioned in Chapter 5) are mitigated
with the addition of data-origin authentication, and transaction and request authen-
tications. The authentications are provided through the use of digital-signature
technology. The digital signature contains the encrypted hash of the resource
record set (RR set). The recipient can then check the digital signature against the
received data. To make the DNSSEC proposals valid, secure servers and secure
client environments must be created. Moreover, DNSSEC is unable to provide
security against information leakage as it is mainly concerned with authentica-
tion. The primary goal of DNSSEC is to provide authentication and integrity for
data received from the DNS database. This is done via digital-signature schemes
based on public-key cryptography. A possible approach is to sign each DNS mes-
sage. The general idea is that each node in the DNS tree is associated with a
public key of some sort. Each message from DNS servers is signed under the
corresponding private key. It is assumed that one or more authenticated DNS
root public key is publicly known. These keys are used to generate certificates on
behalf of the top-level domains; that is, these keys are used to generate a signature
that binds the identity information of each top-level domain to the corresponding
public key. The top-level domains sign the keys of their subdomains, in a process
where each parent signs the public keys of all its children in the DNS tree.

Infrastructure-Level Solutions 179

9.2.4 Routing Attack Solutions

Another important attack possible against network infrastructure is the routing
attack. As mentioned in Chapter 5, routing attacks are mostly concerned with the
routing packets flowing between the routers. Attacks can be of two types: link
attacks and router attacks. The solutions for the two are described below.

9.2.4.1 Link-Attack Solutions

Most routing protocols employ robust updates between neighbors [27, 28] by
using acknowledgments. Link attacks are detected in those cases. However, if
links interrupt selectively, it is possible to have unsynchronized routing tables
throughout the network. The after-effects of such routing tables are looping and
DoS. Unsynchronized routing tables can also be created if a router drops the
updates but sends an acknowledgment. The problem of routers dropping routing
updates selectively has not been studied in the literature.

Digital signatures [29] are used to provide integrity and authenticity to mes-
sages. With digital signatures, the sender signs packets with its private key, and all
nodes can verify the signature based on the sender’s public key. In this case, the
routing updates increase by the size of the signature (typically between 128 and
1024 bits). This is a viable solution in link-state routing protocols, since the LSAs
are transmitted infrequently. It is also proposed as a solution for distance-vector
protocols. Distance-vector protocols suffer from excessive bandwidth consump-
tion as the distance vectors are exchanged quite frequently. Therefore, the addition
of extra overhead in the form of a digital signature has been looked upon by the
research community with concern. Efforts have been undertaken to reduce the
overhead through the use of efficient digital signatures [29]. Another problem with
this approach is that it relies on the existence a public-key infrastructure (PKI)
for its functioning. In absence of a PKI, the proposed solutions are not viable.

Sequence information is used to prevent this attack [30]. Sequence information
can take the form of sequence numbers or time stamps. An update is accepted
as valid if the sequence number in the packet is greater than or equal to the
sequence number of the previously-received update from the same router. This
solves the problem of replication, but the packets within the same clock period
can be replayed if the time stamp is used as sequence information. No remedy has
been found for this problem. However, this problem has limited effect as it can
be employed only if a router sends multiple updates within the same time period.

9.2.4.2 Router-Attack Solutions

The solutions proposed for router attacks in link-state protocols can be categorized
into two types: intrusion detection and protocol-driven. Use of intrusion-detection
techniques has been suggested as a mechanism to detect router attacks [31]. In
these techniques, a centralized attack-analyzer module detects attacks based on

180 Distributed Systems Security: Issues, Processes and Solutions

possible alarm-events sequences. Using an attack-analyzer module in an Internet
scenario is not a scalable solution. In a protocol-driven solution, the detection
capability is embedded in the link-state protocol itself. In [32], Secure Link State
Protocol (SLIP) is proposed where attack detection capability is incorporated in
the routing protocol itself. A router does not believe an update unless it receives
‘confirmation’ link-state update from the node supporting the questionable link.
However, the solution is not complete as it works only in symmetric networks
where both nodes supporting the link can identify the change in the link state. It
also makes an assumption that no malicious collusion exists in the network.

In [33] the authors have proposed a validation scheme (called consistency-check
CC algorithm) through the addition of predecessor information in the
distance-vector update. Whenever a node receives the distance vector from its
neighbors, it carries out CC by tracing the path from each destination. Any
inconsistency in the update arising out of a router attack can be identified by the
CC alogrithm consistent. However, the CC algorithm is unable to detect router
attacks when a malicious router changes the update intelligently, keeping the
network topology in mind. Though this is an important issue, not much work is
being done to solve the various problems associated with it, and hence it requires
significant research attention.

As mentioned in Chapter 5, wireless technologies are gaining in prominence
among both individuals and enterprises. However, there are security issues and
vulnerabilities which need to be tackled. In this section we provide an overview
of the wireless network security solutions. One of the most popular wireless
standards is 802.11, which was standardized way back in 1997.

9.2.4.3 Wireless Equivalent Privacy (WEP)

One of the earliest and most popular security mechanisms in wireless LANs
was Wireless Equivalent Privacy (WEP). WEP has three goals to achieve for
wireless LAN: confidentiality, availability and integrity [34]. It uses encryption to
provide confidentiality. The encryption process is only between the client and the
Authentication Protocol (AP), meaning that packet transfers after the AP (wired
LAN) are unencrypted. WEP uses RC4 for encryption purposes. Since RC4 is a
stream cipher, it needs a seed value to start its key-stream generator. This seed is
called the initialization vector IV. The IV and the shared WEP key are used to
encrypt/decrypt transferred packets. In the encryption process, the integrity-check
(IC) value is computed and attached to the payload, then the payload is XORed,
with the encryption key consisting of two sections (IV and WEP Key). The packet
is then forwarded, with the IV value sent in plaintext. WEP uses CRC (cyclical
redundancy checking) to verify message integrity. On the other side (receiver—AP)
the decryption process is the same but reversed. The AP uses the IV value sent
in plaintext to decrypt the message, by joining it with the shared WEP key.

Infrastructure-Level Solutions 181

One of the major reasons for WEP weaknesses is its key length. WEP has a
40-bit key, which can be broken in less than five hours using parallel attacks with
the help of normal computer machines. This issue urged vendors to update WEP
from using a 40-bit to a 104-bit key; the new release is called WEP2. This update
helped to resolve some security issues with WEP.

The main disadvantage of WEP, however, is the lack of key management.
Some SOHO (small office/home office) users never change their WEP key, and
once it is known the whole system is in jeopardy. In addition to that, WEP
does not support mutual authentication. It only authenticates the client, making it
open to rogue AP attacks. Another issue is the use of CRC to ensure integrity.
While CRC is a good integrity-provision standard, it lacks a strong cryptography
feature. CRC is known to be linear. By using a form of induction, knowing
enough data (encrypted packets) and acquiring specific plaintext, the WEP key
can be resolved.

802.11x: EAP over LAN

The 802.1x standard was designed for port base authentication for 802 networks.
802.1x is not concerned with the type of encryption technique employed, it is
only used to authenticate users. Extensible Authentication Protocol (EAP) was
designed to support multiple authentication methods over point-to-point connec-
tions without requiring IP (RFC 3748). EAP allows any of the encryption schemes
to be implemented on top of it, adding flexibility to the security-design mod-
ule. EAP over LAN (EAPOL) is EAP’s implementation for LANs. The 802.1x
framework defines three ports or entities: Supplicant (the client that wants to be
authenticated), Authenticator (the AP that connect the supplicant to the wired net-
work) and Authentication Server (AS) (which performs the authentication process
from the supplicant, based on their credentials). The AS in the 802.1x framework
uses Remote Authentication Dial-In User Service (RADIUS) protocol to provide
authentication, authorization and accounting (AAA) service for network clients.
The protocol creates an encrypted tunnel between the AS and the Authentica-
tor (AP). Authentication messages are exchanged inside the tunnel to determine
whether the client has access to the network.

802.11i standard

The 802.11i (released June 2004) security standard is the latest solution to plug
the security holes in wireless networks through authentication, integrity and data
transfer. 802.11i supports two methods of authentication. The first is the one
described before, using 802.1x and EAP to authenticate users. For users who can-
not or do not want to implement this, the second method was proposed, using
per-session key per device. This method is implemented by having a shared key
(like the one in WEP), called the Group Master Key (GMK). The GMK is used
to derive the Pair Transient Key (PTK) and the Pair Session Key (PSK), which

182 Distributed Systems Security: Issues, Processes and Solutions

do the authentication and data encryption. To solve the integrity problem with
WEP, a new algorithm named Michael is used to calculate an 8-byte IC called
message integrity code (MIC). Michael differs from the old CRC method by pro-
tecting both the data and the header. It implements a frame counter, which helps
to protect against replay attacks [35]. To improve data transfer, 802.11i speci-
fies three protocols: Temporal Key Integrity Management (TKIP), Counter with
Cipher Block Chaining Message Authentication Code Protocol CCMP and Wire-
less Robust Authenticated Protocol (WRAP). TKIP was introduced as an ad hoc
solution to WEP problems. One of the major advantages of implementing TKIP is
that one does not need to update the hardware to run it; simple firmware/software
upgrade is enough. Unlike WEP, TKIP provides per-packet key mixing, a mes-
sage IC and a rekeying mechanism. TKIP ensures that every data packet is sent
with its own unique encryption key. TKIP is included in 802.11i mainly for back-
ward compatibility. WRAP is the LAN implementation of the popular Advanced
Encryption Standard (AES) [36]. It was ported to wireless to get the benefits of
AES encryption. WRAP has intellectual property issues, where three parties have
filed for its patent. This problem caused IEEE to replace it with CCMP. CCMP
is considered the optimal solution for secure data transfer under 8§02.11i. CCMP
uses AES for encryption. The use of AES will require a hardware upgrade to
support the new encryption algorithm.

9.2.5 Comments on Network Solutions

The network is one of the most critical components of any enterprise infras-
tructure. As mentioned in Chapter 5, there are four main types of attack: DoS
attack, DNS attack, routing attack and wireless attack. Some generic solutions
like SSL/TLS, VPN and IPSec are used for information security, in conjunction
with many others. DoS attacks still require a lot of research before a holistic
solution will become available. However, preventive solutions like application
and egress filtering are of benefit in most cases. The proposed DNSSEC solu-
tion can prevent most DNS attacks. Routing attacks, especially consistency-based
attacks, are difficult to detect, and not many solutions have been implemented.
Wireless attacks can also be dangerous in enterprise scenarios, as more and more
wireless applications are being deployed. Several solutions, like WEP, 802.11x
and 802.111, have been proposed. In Table 9.1 we provide a snapshot of different
network-level solutions and their effectiveness.

9.3 Grid-Level Solutions

As mentioned in Chapter 5, grid security issues can be categorized into architec-
ture issues, infrastructure issues and management issues. In this section, we will
briefly talk about the different solutions pertaining to each issue. Please refer to
[32] for details about each solution.

Infrastructure-Level Solutions

183

Table 9.1 Overview of network solutions.

Category Solution Problems solved Comments
Information ~ SSL Confidentiality, Very popular for
security authentication application-level
solutions security
VPN Confidentiality, Very popular for remote
authentication access
IPSec Confidentiality Important for network
security
DoS Preventive Preventing DoS attack Filtering and IDS
solutions solutions have been
implemented and have
proved to be a
deterrent in some cases
Reactive Identifying the attacker More research is needed
as the solutions, like
packet marking and so
on, are mostly research
prototypes
DNS DNSSEC Authentication and Most of the important
solution confidentiality of DNS DNS attacks like cache
data poisoning can be
limited
Routing Link attack Confidentiality, Most of the link-level
attack fabrication, attacks are mitigated
solutions modification of routing using standard
message exchange cryptographic
techniques
Router attack Router consistency More research is needed
attacks in this area as the
solutions are mostly
research prototypes
Wireless WEP Confidentiality Popular, but security
attacks vulnerabilities and not
robust enough
802.11x Authentication Multiple authentication
over point-to-point
connections
802.11i Authentication, integrity Robust solution

and confidentiality

184 Distributed Systems Security: Issues, Processes and Solutions

9.3.1 Architecture Security Solutions

When we look at architecture, issues regarding information security, authorization
and service security need to be looked at. In this subsection, we will look at each
in turn. We will talk about Grid Security Infrastructure (GSI), which is a proposed
standard in the area of grid information security. We will also describe two dif-
ferent types of grid authorization system, namely virtual organization (VO)-level
authorization and resource-level authorization.

9.3.1.1 Information Security Solution — Grid Security Infrastructure (GSI)

Grid computing provides a virtualized view of the underlying grid resources. Such
a virtualization encompasses the security requirements. Therefore, there is a need
for virtualization of security semantics to use standardized ways of segmenting
security components like authentication, access control, confidentiality and so
on, and to provide a standardized way of enabling the federation of multiple
security mechanisms. This requires a loosely-coupled platform-independent model
of securing applications within and across organizations. The question arises,
which paradigm should be involved in implementing such an architecture?

Web services has the ability to deliver integrated, interoperable services. Since
Web services is gradually becoming a default and an industry standard, the OGSA
grid computing model uses Web services as a model reference. Confidentiality,
integrity, policy management and trust management are also integral to Web ser-
vices, so GSI integrates the Web services standards like WS-Security, WS-Policy,
WS-Trust and so on in the specification. However, GSI does not exclude TLS like
SSL on top of HTTP or HTTPs. Users are free to use HTTPs, which provides
confidentiality, integrity and authentication. If there is a need to traverse multiple
intermediaries, WS-Security can be used in conjunction with XML encryption,
signatures and so on.

e Authentication: the most prevalent mechanism of authentication in a GSI-based
grid is the certificate-based authentication mechanism, where a public-key
infrastructure (PKI) is assumed which allows the trusted authority to sign
information to be used for authentication purposes. In addition to the
certificate-based mechanism, Kerberos and password-based mechanisms have
also been implemented.

e Delegation in GSI: another very important requirement for a grid-based security
system is delegation, where another entity gets the right to perform some action
on the user’s behalf. This is especially important in grid because of the possi-
bility of multiple resources being involved in grid-based transactions. It may be
unnecessary or very expensive to authenticate each and every time a resource
is accessed. If the user issues a certificate allowing a resource to act on their
behalf then the process will become a lot simpler. Such a certificate is called

Infrastructure-Level Solutions 185

a proxy certificate. A proxy is made up of a new certificate containing two
parts: a new public and a new private key. The proxy certificate has its owner’s
identity, with a slight change to show that it is a proxy. The certificate owner,
not a CA, will sign the proxy certificate. It will have an entry with a timestamp,
which indicates at what time it expires — by default it has a short-term validity
period of, say, a few hours.

9.3.1.2 Grid Authorization Systems

Authorization systems can be divided into two main categories: VO-level systems
and resource-level systems. VO-level systems have a centralized authorization
system which provides credentials for users to access resources. Resource-level
authorization systems, on the other hand, allow access to resources based on the
credentials presented by the users.

VO-level systems

VO-level grid authorization systems provide centralized authorization for an entire
VO. This type of system is necessitated by the presence of a VO which has a set
of users and several resource providers (RPs). Whenever a user wants to access
certain resources owned by an RP, they obtain a credential from the authoriza-
tion system, which allows them certain rights. They present the credentials to
the resource in order to gain access to it. In this type of system, the resources
hold the final right to allow or deny access to a user. The Community Authoriza-
tion Service (CAS) [37], developed as part of the Globus toolkit, is an example
of a VO-level authorization system. CAS (see Figure 9.1) looks at the problem

Credentials

/

— 2
Database
CAS
Server
capability
LB capability
Resource
Server
Response

Figure 9.1 High-level working of CAS.

186 Distributed Systems Security: Issues, Processes and Solutions

of scalable representation and enforcement of access policies within distributed
virtual communities. Such communities may comprise many subcommunities,
each participating as a resource provider and/or resource consumer. The prob-
lem of authorization is handled using a trusted third party called the CAS server,
which is responsible for managing the policies and governing access to the com-
munity’s resources. Other examples are the Virtual Organization Membership
Service (VOMS) [38] and the Enterprise Authorization and Licensing System
(EALS) [39].

Resource-level authorization system

Unlike the VO-level authorization systems, which provide a consolidated autho-
rization service for the VO, the resource-level authorization systems implement
the decision to authorize access to a set of resources. Therefore, VO-level and
resource-level authorization systems look at two different aspects of grid autho-
rization. As will be shown later in this chapter, the two authorization systems
complement each other, and can be implemented together to provide a holis-
tic authorization solution. Examples of resource-level authorization systems are
Akenti [40], Privilege and Role Management Infrastructure Standards Validation
(PERMIS) [41] and the GridMap system.

Akenti was developed by Lawrence Berkeley National Laboratory (LBNL).
Though developed with Web resources in mind, the concept was later extended
to include resources in a grid-computing VO set-up. The Akenti model consists
of resources, including Web resources and distributed-grid resources, that are
accessed via a resource gateway (or a Policy Enforcement Point (PEP)) by a set of
users who are part of the VO. The model also assumes that each resource may have
multiple stakeholders, each with a set of access constraints on the resource set. The
Akenti system allows users to access the resource(s) based on their identity and the
access policy set on the resources by the resource stakeholders. The stakeholders
express their access constraints through a set of self-signed certificates which are
known to be stored in a secure remote server. The certificates express the attributes
a user must have in order to access the resources. At the time of resource access,
the resource gatekeeper or the PEP asks the Akenti server what access the user
has. The Akenti server finds all the relevant certificates, verifies the certificates
and returns the decision to grant access to the user.

9.3.1.3 Grid Service Security

As mentioned in Chapter 5, service security in grid is concerned with DoS attacks
and quality-of-service (QoS) violation attacks. While DoS attack solutions are sim-
ilar to those described in Section 9.2.2, QoS violation solutions detect and mitigate
service-level-agreement (SLA) violations. The solutions can be of two main types:
monitoring and auditing systems, and protocol-specific solutions. As part of the
monitoring and auditing discussions, we will mention the network-monitoring

Infrastructure-Level Solutions 187

mechanisms and grid-auditing systems like GridBank. We will also briefly touch
upon an interesting work in detecting packet dropping called WATCHERS, based
in the University of California (UC) at Davis.

SLA-violation detection in networking infrastructure

In this type of mechanism, SLA violations in networks are detected by moni-
toring packets and measuring the delays and packet losses they suffer [42—45].
Delay-bound guarantees made by a provider network to user traffic flows are for
the delays experienced by the flows between the ingress and egress routers of
the provider domain. Delay measurements use delay of either real user traffic
or injected traffic. The first approach is intrusive because encoding timestamps
into the data packets requires changing the packets at the ingress and rewriting
the original content at the egress, after appropriate measurements. The second
approach is nonintrusive in that one can inject probe packets with the desired
control information, and an egress router can recognize such probes, perform mea-
surements and delete the probes from the traffic stream. Packet-loss guarantees
made by a provider network to a user are for the packet losses experienced by
its conforming traffic inside the provider domain. To compute the loss ratio, the
number of packet drops, as well as the number of packets traversing the domain,
is required. Loss ratio is defined as the ratio of the number of packet drops within
the domain to the total number of packets passing through the domain. Core
routers can detect the number of packets dropped, and edge routers can compute
the number of packets traversing the domain. This loss-measurement mechanism
can be called the core-assisted scheme for loss measurement. An alternative mech-
anism uses stripe-based probing to infer loss characteristics inside a domain. In
the stripe-based mechanism, a series of packets or ‘stripes’ are sent which do not
introduce intermediate delays.

WATCHERS project

WATCHERS [46], from UC Davis, was proposed to detect and react to routers
that maliciously drop or misroute packets. WATCHERS is based on the prin-
ciple of packet-flow conservation; that is, the number of incoming packets for
a router, excluding those destined to it, should be the same as the number of
outgoing packets, excluding those generated by it. In order to validate the con-
servation law, multiple decentralized counters are periodically and synchronously
exchanged among neighbors of the target suspected router. Subsequently, each
neighboring router runs a validation algorithm to diagnose the health condition
of the target router. Furthermore, WATCHERS is robust against Byzantine faults.
While WATCHERS theoretically offers an interesting way to deal with malicious
packet dropping, it cannot handle the packet dropping problems in today’s Internet
effectively. First, the number of messages for counter value exchanges can be very

188 Distributed Systems Security: Issues, Processes and Solutions

large. Second, the principle of packet-flow conservation does not hold ‘determin-
istically’ for today’s Internet environment. For instance, an innocent router might
drop packets for good reasons, such as preventive congestion control or having
insufficient resources to keep all incoming packets. Though WATCHERS may
not be a viable solution in an Internet environment, it could be a useful tool in a
controlled grid system, where the number of packets dropped is not as large as it
is in the Internet.

Grid accounting systems

Researchers in the grid community have started to realize the importance of QoS
in grid computing systems. Several research projects, such as GridBank [47] from
the University of Melbourne and SweGrid [48] from the Royal Institute of Tech-
nology in Sweden, have tried to address this issue through their accounting and
auditing systems. The former is more of an accounting system, with charging and
payment modules. It also includes a service cost negotiation (e.g. $ per hour)
which is carried out by the Grid Resource Broker (GRB). GridBank issues Grid-
Cheques (similar to credentials) for the service consumers, and Grid Resource
Meters gather resource-specific usage information, to be used for charging pur-
poses. The SweGrid system goes beyond being just an accounting system, with
SLA negotiation, monitoring and management. SLAs are negotiated through the
negotiation phase and monitored using agents. Any SLA violation may result in
renegotiation or moving the job to some other grid service provider.

9.3.2 Grid Infrastructure Solutions

There are two main types of grid infrastructure solution — network solutions and
server/host solutions.

9.3.2.1 Grid Network Solutions

There are several solutions which cater to the specific needs of the integration of
grid and network technologies like firewalls and VPN. In this section, we will
discuss a couple of these, namely the adaptive firewall for grid (AGF) [49], which
integrates firewall requirements with the grid computing infrastructure, and hose,
which describes flexible resource management using VPN technologies.

Adaptive firewall for the grid (AGF)

The AGEF is a project being undertaken at the Technical University of Denmark
(DTU). The main motivation behind the work is the observation that to meet the
grid firewall requirements, administrators need to open several well-known ports
and a range of ephemeral ports for incoming connections. This can be dangerous
as attackers may be able to sneak into the system through the open ports. The
AGF system develops a mechanism so that the firewall can adaptively open and

Infrastructure-Level Solutions 189

close ports based on service requests. The firewall will open the ports when it
receives authenticated requests. Moreover, it will close them again when there is
no service activity on them.

Hose

The hose service model [50] is an effort to provide flexible resource management
in a VPN environment. Proposed by researchers from AT&T Research, the hose
service model is characterized by aggregate traffic from one set of end-points to
another within a VPN. The hose service model is a flexible alternative to the
customer-pipe service model, where a customer buys a set of fixed allocations
(customer pipes) from the service provider. In this model, the customer specifies
the incoming and outgoing traffic aggregated over the different sites in the VPN
system. The hose model allows the flexibility of clubbing together traffic with
similar QoS requirements. Overall, it provides more flexibility in terms of resource
allocation and utilization. This type of model fits nicely with the grid vision as
resources can be adjusted on demand. In spite of the flexibility provided by this
model, one of its main disadvantages is the lack of QoS guarantees it can provide.
Since the resources can be shared, absolute guarantees are hard to provide, which
could prevent such a system being accepted widely.

9.3.2.2 Grid Host Solutions

Grid host solutions mostly try to protect the hosts within a grid system through
isolation. Solutions like virtualization create multiple virtual machines (VMs)
within a single physical machine, resulting in a better isolation environment.
Flexible kernels and sandboxing solutions create isolation either through a more
protected kernel or trapping system calls. The only type of solution that tries
to protect hosts without isolation is the application-level sandboxing solution,
which checks the safeness of a code. Proof-carrying code (PCC) is an example
of application-level sandboxing.

Application-level sandboxing

Application-level sandboxing is a technique where the isolation and security capa-
bilities are embedded in the application. Security features are hardwired into the
application and can be verified before it is executed on a remote system. Cryp-
tographic mechanisms can be used to determine whether a piece of code was
produced by a trusted person or compiler. These concepts were used in the
development of SPIN kernel [51]. Another seminal work done in the area of
application-level sandboxing was PCC [52], developed by George Necula and
team from CMU. PCC introduces the concepts of code producer and code con-
sumer. In the former system, the code is produced, and in the latter, the code
is executed. PCC is a mechanism by which a code consumer is convinced that

190 Distributed Systems Security: Issues, Processes and Solutions

the code produced by the code producer is not malicious is nature. To achieve
that, the code producer is required to provide a safety proof which guarantees that
the code conforms to a formally-defined safety policy. The code consumer then
validates the safety proof using a validator to ascertain the safeness of the code.

Virtualization

A typical data center today hosts different applications in different servers, result-
ing in overprovisioning of resources and low utilization. Therefore, for some time
there has been a move toward consolidation of servers to increase the overall
utilization of data centers. Research and development in the area of server con-
solidation has resulted in virtualization solutions in the server-consolidation space.
These solutions typically allow applications to run on self-contained environments
called virtual machines. It is possible to create different instances of VMs on indi-
vidual servers, resulting in a better provisioning environment and higher overall
utilization. Not only can different instances of VMs run, these instances can also
host completely different operating systems (OSs). Therefore, virtualization tech-
niques allow legacy systems to run on new systems seamlessly. In addition to
these advantages, virtualization techniques allow the creation of secure environ-
ments and can be used as an isolation solution. It is to be noted that the main
goal of virtualization solutions is to provide higher resource utilization and server
consolidation, and the ability to provide secure and isolated environments is just a
by-product of this. Therefore, there is a need to create flexible policies on the vir-
tualized environment. Research is currently being carried out in this regard [53].
To provide virtualization, a layer of software which provides the illusion of a real
machine to multiple instances of VMs is necessary. This layer has traditionally
been called the virtual machine monitor (VMM). There are also concepts called
the host OS and guest OS. The former is the OS which hosts the VMM, and the
latter is the OS which is hosted on top of the VMM. It is also possible for the
VMM to run directly on the hardware. In that case, host OS is not required, and
VMM will play the role of a minimal host OS that runs directly on the hard-
ware. There are three popular virtualization technologies: hosted virtualization,
paravirtualization and shared kernel-based virtualization. The hosted virtualiza-
tion model is one where the VMM and the guest OS run on the user space of
the host OS. The applications running on the host OS and the guest OS share
the same user space. Generally, this model does not require any modification to
the host OS. However, since there are multiple redirections, the performance of
such a model suffers significantly. The VMWare GSX server is an example of a
hosted virtualization system. The paravirtualization model is one where the OSs
are modified and recompiled so that the multiple redirections of the hosted model
can be avoided. The performance of the paravirtualization-based systems is bet-
ter than that of the hosted virtualization-based systems. Xen [54] and Virtuozzo
[55] are examples of paravirtualization systems. Shared kernel systems are those

Infrastructure-Level Solutions 191

systems where the kernel is shared and the user space is partitioned to be used by
different sets of applications. An example of a shared kernel-based virtualization
system is the Linux VServer [56].

Flexible kernels

Some OS researchers argue that the performance, flexibility and extensibility of
OSs are greatly limited by their design, where the interfaces and the implementa-
tions of OS abstractions such as interprocess communication and virtual memory
are fixed. Flexibility and extensibility were recognized as OS requirements by
researchers even in the 1970s [57, 58]. In [57], the authors advocated the design
of open OSs, where the system provides a variety of facilities, and the user can use,
accept, reject and modify those facilities based on permissions and requirements.
In many cases, one facility may become a component on which other facilities
are built or developed, like files and disk pages. In that case, there is a need
to identify smaller components and make them accessible to the users and other
larger components. The development of flexible kernel design provides a whole
lot of interesting concepts and designs. We will try to cover the three decades of
conceptualization, design and development effort by identifying two representa-
tive solutions in this research area. The first, called Hydra [59], was developed
in the 1970s, where the researchers separated the policies and mechanisms of the
kernel and used them as guiding principles in kernel design. The second, called
exokernels [60], developed in MIT, looks at handling resource management at the
application layer, thus providing faster transactions and secure operations.

Sandboxing

One of the most popular techniques for achieving isolation is called sandboxing.
It is to be noted that many of the solutions mentioned above, such as virtualiza-
tion, have similar features. However, while the main motivations of virtualization
solutions are server consolidation and improving resource utilization, sandboxing
solutions were primarily designed with isolation in mind. Sandboxing solutions
developed over the years can be broadly divided into three main types: user-level
monitoring or system-call trapping, loadable kernel modules and user-level VMs.

9.3.3 Grid Management Solutions

After describing the architecture and infrastructure solutions, let us describe
the grid management solutions. There are two types of management solutions:
credential-management solutions and trust-management solutions.

192 Distributed Systems Security: Issues, Processes and Solutions

9.3.3.1 Grid Credential-Management Solutions

The credential-management systems can be broadly categorized into credential
repositories and credential-federation systems. As the name suggests, the creden-
tial repositories or credential storage systems are concerned with securely storing
credentials, generating new credentials on demand and sometimes generating
proxy credentials on a user’s behalf for delegation purposes. Credential-federation
systems or credential-share systems are responsible for sharing the credentials
across different domains or realms.

Credential repositories

The credential storage systems are designed so that the responsibility of storing
the credentials securely is outsourced from the user to these systems, and the user
can get the credentials any time on demand. Examples of such repositories are
smart cards [61], virtual smart cards [62] and MyProxy Online Credential Repos-
itory [63]. The smart card, an intelligent token, is a credit-card-sized plastic card
embedded with an integrated circuit chip. It provides not only memory capacity,
but computational capability as well. A software form of the smart card was intro-
duced by Sandhu et al. [62], where they also distinguished between virtual smart
cards and virtual smart tokens. With virtual soft tokens, the user can retrieve the
private key in any system of their choice, which is not possible with the virtual
smart cards. The MyProxy system was developed in the University of Illinois,
Urbana Champagne (UIUC), designed to meet the credential-management require-
ments of the grid community. The MyProxy toolkit is the grid middleware and
is quite popular. It has been used in major grids including NEESgrid, TeraGrid,
EU DataGrid and the NASA information power grid. The MyProxy system is the
implementation of the virtual soft-token system proposed in [62], where the X.509
proxy certificates are used to store and retrieve user credentials without having
to expose the private key. During the enrollment phase, the long-lived user cre-
dentials are stored in the MyProxy repository, whose typical lifetime ranges from
weeks to years. Users fetch the short-term credentials or proxies (with lifetime
set to a week or less) from the MyProxy server so that the long-term credentials
are safe. To achieve the above, the client establishes a TCP connection to the
server and initiates the TLS handshake protocol, as shown in Figure 9.2. The
server must authenticate with the client using its own certificate. The client may
also authenticate with the server, but this step is optional for clients who do not
possess X.509 credentials. According to Sandhu et al. [62], systems similar to the
MyProxy system are stronger than physical soft-token systems, but are vulnerable
to dictionary attacks. The reason is that the private key is exposed to the server
and can be compromised.

Infrastructure-Level Solutions 193

Get Private Key

MyProxy
Decrypt t_--.s@
) Encrypted with
y
Certificate wr
Signed by
;

Figure 9.2 MyProxy credential-management system.

Credential-federation systems

These can be broadly categorized into two main types: specific and generic.
The specific solutions aim at creating a federated solution for a specific platform
or protocol. Examples of such systems are Virtualized Credential Manager
(VCMan) [64] and KX.509. The former tries to solve the interoperability
issue of CAS by extending CAS to provide interoperability, while KX.509
is a protocol of interoperability between X.509 and Kerberos credentials.
Though these solutions solve a niche problem, the generic problem needs to
be tackled as well. The Liberty framework [65] from the Liberty Alliance is
an attempt in that direction. It is a framework for sharing attribute information
in a distributed manner across entities in a trusted domain called the Circle
of Trust (COT). Another solution is Shibboleth [66]. Shibboleth is a federated
identity-management system based on open-source software developed by
the Internet2 consortium members, with assistance from the National Science
Foundation. Internet2 is a consortium of United States universities working
in partnership with industry and government to develop and deploy advanced
network applications and technologies. Shibboleth is essentially a transport
mechanism built on top of an institution’s existing architecture that allows
organizations to exchange information about their users in a secure and
privacy-preserving manner.

9.3.3.2 Trust-Management Solutions

Trust-management solutions (TMS) can be divided into two main types:
policy-based TMS and reputation-based TMS.

194 Distributed Systems Security: Issues, Processes and Solutions

Policy-based TMS

In policy-based systems, the different entities or components constituting the sys-
tem exchange and manage credentials to establish the trust relationships, based
on certain policies. The primary goal of such systems is to enable access con-
trol by verifying credentials and restricting access to credentials-based predefined
policies. All authorization systems fall under this category. A specific example of
policy-based TMS is TrustBuilder [67], which is a trust-negotiation project cre-
ated through collaboration by researchers in the University of Chicago, Urbana
Champagne and Brigham Young University. TrustBuilder develops an infrastruc-
ture for trust negotiation on open systems. The TrustBuilder system deploys trust
negotiation on TLS, SMTP, POP, ssh and HTTPs. TrustBuilder basically allows
strangers to access sensitive data and services over the Internet. In TrustBuilder
protocol and architecture, the negotiating parties establish trust between them-
selves by negotiating trust in a need-to-know manner. In this way, all credentials
are not disclosed to either party.

Reputation-based TMS

Reputation-based TMSs provide a mechanism by which a system requesting a
resource can evaluate the trust of the system providing the resource. The trust
values are a function of the global and local reputations of the systems, along
with the different policies. Perhaps the most widely-known TMS is the PeerTrust
[68]. This was developed in Georgia Tech with peer-to-peer-based electronic
applications in mind. PeerTrust does not use a centralized database for storing
trust information. Rather, the trust information is stored in a distributed manner
over the network. Each peer or node in the network has a trust manager that is
responsible for feedback submission and trust evaluation, a small database that
stores a portion of the global trust data and a data locator for placement and
location of trust data over the network. Another interesting project that develops
a distributed trust and reputation-management architecture is called XenoTrust
[69], which is built on the XenoServer Open Platform [70]. The platform was
developed at the University of Cambridge. The platform consists of three main
components: XenoServer, XenoCorp and XenoServer Information Services (XIS).
XenoServers provide services to the client, like hosting client tasks in exchange
for money. XenoCorp provides authentication, auditing, charging and payment
services. Each XenoServer periodically reports its status and the XIS is used for
storing the XenoServer status updates. NICE framework [71], developed at the
University of Maryland, is a platform for implementing cooperative applications
over the Internet. Cooperative applications can be defined as a set of applications
that allocate a subset of resources, typically processing, bandwidth and storage,
for use by other nodes or peers in the application. Therefore, grid computing is
naturally an application for the NICE trust management framework.

Infrastructure-Level Solutions

195

9.3.4 Comments on Grid Solutions

Among the different grid solutions, solutions to the architectural issues are most
advanced, and have been deployed in several large grid installations. In enterprises,
the issue would be integration, where different enterprise standards, products and
protocols need to be integrated with the proposed solutions. The infrastructure
solutions and the management solutions are still in the nascent stage and require
further research. Table 9.2 provides an overview of the grid solutions.

Table 9.2 Overview of grid solutions.

Category Solutions Problems solved Comments
Grid- GSI Confidentiality, Most of the common
architecture- integrity and information-security
level security authentication problems can be
issues solved using GSI
Authorization Authentication, Common authorization
systems authorization problems are solved.

Grid-
infrastructure
solutions

Grid-
management
solutions

Grid-services
security solutions

Grid-network
solutions

Grid-host solutions

Credential-
management
solutions

Trust-
management
solutions

QoS violation

Firewall and VPN
integration

Host protection
solutions

Protecting
credentials

Trust management

between grid
nodes

However, integration
with enterprise
solutions like Kerberos
is needed

These solutions are still
research prototypes

These are research
prototypes; more
research is needed

Virtualization-based
solutions have great
potential

Credential-management
solutions have been
deployed in the
e-sciences grid.
Integration is needed
for credential
repositories and
credential federation
systems

These are research
prototypes and have
limited deployment

196 Distributed Systems Security: Issues, Processes and Solutions

9.4 Storage-Level Solutions

In Chapter 5, we grouped storage threats and vulnerabilities into two main
categories: storage area network (SAN) security and distributed file system
(DFS) security.

9.4.1 Fiber-Channel Security Protocol (FC-SP) — Solution for SAN Security

One of the standards that have been proposed for fiber-channel security is the
Fiber-Channel Security Protocol (FC-SP) [72]. This standard defines mechanisms
that may be used to protect against several classes of threat. These mecha-
nisms include protocols to authenticate fiber-channel entities, protocols to set
up session keys, protocols to negotiate parameters to ensure frame-by-frame
integrity and confidentiality, and protocols to define and distribute policies across
a fiber-channel fabric.

94.1.1 Authentication Infrastructure

The fabric-security architecture is defined for several authentication infras-
tructures. Secret-based, certificate-based and password-based authentication
infrastructures are accommodated. Specific APs that directly leverage these three
authentication infrastructures are defined. With a secret-based infrastructure,
entities within the fabric environment that establish a security relationship
share a common secret or centralize the secret administration in a RADIUS
server. Entities may mutually authenticate with other entities by using the
DH-CHAP protocol. SA may be set up using the session key computed at
the end of the DH-CHAP transaction. Frame integrity or confidentiality may
be provided by using the ESP_Header. With a certificate-based infrastructure,
entities within the fabric environment are certified by a trusted certificate
authority. The resulting certificates bind each entity to a public—private key pair,
which can be used to mutually authenticate with other certified entities via the
Fiber-Channel Authentication Protocol (FCAP). SAs may be set up by using
these entity certificates’ and associated keys’ session keys, computed at the end
of the FCAP transaction. Frame integrity or confidentiality may be provided
by using the ESP_Header. With a password-based infrastructure, entities within
the fabric environment that establish a security relationship have knowledge
of the password-based credential material of other entities. Entities may use
this credential material to mutually authenticate with other entities using the
Fiber-Channel Password Authentication Protocol (FCPAP). SAs may be set up
using the session key computed at the end of the FCPAP transaction. Frame
integrity or confidentiality may be provided by using the ESP_Header.

Infrastructure-Level Solutions 197

9.4.1.2 Integrity and Confidentiality

Integrity and confidentiality are critical components of FC-SP architecture.
Frame-by-frame cryptographic integrity and confidentiality, replay protection
and traffic-origin authentication are achieved by using the ESP_Header optional
header. The ESP_Header processing is performed over selected frames according
to a set of traffic selectors maintained in the Security Association Data
Base (SADB). Traffic selectors are negotiated when SAs are established.
CT_Authentication may be leveraged to provide cryptographic integrity, again
through traffic selectors present in SADB.

9.4.1.3 Authorization

Authorization in FC-SP is provided through policies. Two basic types of policy
are defined: fabric-wide policies and switch-wide data. Fabric policies may be
used to control which switches are allowed in a fabric and which nodes are
allowed to connect to a fabric. Policies may be further used to specify topology
restrictions within the fabric environment (e.g. which switches may connect to
which other switches, or which nodes may connect to which switches). Fabric
policies also provide the mechanism for controlling management access to the
fabric and the ability to control authentication choices, and to specify security
attributes for fabric entities (e.g. nodes and switches). Management access to the
fabric may be controlled for common transport or IP access. Switch policies that
contain per Switch data, sent to an individual Switch. Zoning policies are defined
to encode node-to-node restrictions in a form consistent with the policy model.
Policy enforcement occurs whenever a connection is attempted, a management
application attempts to access the fabric, or a new policy configuration is activated.
The appropriate policy objects are checked to determine whether the requested
connection or access is to be allowed or denied. The policy enforcement is carried
out locally by the entities involved in the connection or access attempt.

9.4.2 Distributed File System (DFS) Security

The DFS is another critical component of the storage infrastructure. In this section,
we will briefly discuss the security features of network file systems (NFSs). We
will also discuss network-attached secure disks (NASDs) and OceanStore.

9.4.2.1 NFS Security

Security in NFSs is provided at four levels: identification, authentication, autho-
rization and access control. Identification is the process of communicating or
determining the user ID associated with an operation. Authentication is the pro-
cess of verifying a user. Authorization is the process of determining whether that
user is allowed to perform an operation. Access control indicates the methods used

198 Distributed Systems Security: Issues, Processes and Solutions

to restrict access to an operation. One of the most important elements of provid-
ing security in an NFS environment is the storage of user information. There
are three different ways of storing this information: local files, Network Informa-
tion Services (NIS) and Lightweight Directory Access Protocol (LDAP). Client
authentication in NFS systems is performed through validation of IP address and
through IPSec. Kerberos can also be used.

9.4.2.2 Network-Attached Secure Disks (NASD)

In traditional DFSs, a client wanting to access data must make a request to the file
server. The server must then verify the client’s authorization and will distribute
the file if the appropriate criteria are met. Since the server must interact with every
file-access request for every client, this can quickly become a bottleneck. NASD’s
primary goal is to relieve the server bottleneck by only interacting with each user
one time, and providing a ‘capability key’. With the capability key, the user can
access the appropriate disk(s) directly, without any further server interaction. The
disks themselves must be ‘intelligent’, such that they possess enough internal abil-
ity to process capability keys and handle file-access requests directly. There are
two servers in the NASD design, one to provide authentication and then the actual
file server. NASD does not specify the authentication scheme and recommends
using any existing method similar to Kerberos. Upon receipt of authentication,
a user sends a request to the file server. The server verifies the authenticity of
the request and then provides the user with a capability key that corresponds to
the user’s rights for file access. After obtaining the capability key, the user can
communicate directly with the data disk for all future access requests during a
given session. The capability object is the critical aspect pertaining to both the
confidentiality and integrity of the system. A file manager agreeing to a client’s
access request privately sends a capability token and a capability key to the client;
together these form a capability object. The token contains the access rights being
granted for the request and the key is a MAC consisting of the capabilities and
a secret key shared between the file server and the actual disk drive. Clients can
then make a direct request to an NASD drive by providing the capability object.
The drive uses the secret key, which it shares with the file server, to interpret the
capability token, verify the user’s access rights and service the request. Since the
MAC can only be interpreted using the drive/server-shared secret key, any mod-
ifications to the arguments or false arguments will result in a denied request. The
novel concept associated with NASD is the placing of part of the data-integrity
requirement on the disks themselves. The ‘intelligent’ disks interpret the capabil-
ities objects, encrypt data and transmit results to clients. To ensure integrity on
the client end, the disk uses the same hash MAC combination that allowed it to
authorize client access to encrypt and send the data to the client. The client can
then verify the integrity of the transmission during the decryption process.

Infrastructure-Level Solutions

199

Table 9.3 Overview of storage solutions.

Category Solutions

Problems solved

Comments

SAN security FC-SP

confidentiality, specification. Solves
authorization most of the common
problems
DFS security NFS security Authentication, Good solution for NFS.
confidentiality Most of the common

Authentication, integrity,

A very comprehensive

problems are solved

NASD Confidentiality, integrity =~ Good solution for
network-attached devices
OceanStore Confidentiality Still more research is
security needed to handle the

scale

9.4.2.3 Security in OceanStore

OceanStore [73] uses a large number of untrusted storage devices to store redun-
dant copies of encrypted files and directories in persistent objects. Objects are
identified by globally-unique identifiers (GUID), which are generated in a similar
fashion to the unique identifiers in the SAN file system (SFS). Each identifier is
a hash of the owner’s public key and a name. Objects can point to other objects
to enable directories. All objects are encrypted by the clients. By replicating the
objects among servers, clients can avoid malicious servers deleting their data. The
extensive use of replication and public keys makes revocation of access and dele-
tion of data difficult to achieve, but it does provide a nice model for a completely
decentralized DFS.

9.4.3 Comments on Storage Solutions

As we have described in this section, FC-SP security specification is very com-
prehensive and solves most of the common security problems associated with
fiber channel. The main problem with SAN is that it has minimal security in the
infrastructure, which will result in several of the attacks mentioned in Chapter
5. In DFS, NFS security is quite comprehensive. NASD is a good solution for
network-attached storage. More research is required in OceanStore to manage its
scale and performance. See Table 9.3.

9.5 Conclusion

Security in infrastructure is critical as it covers the gamut of infrastructure ele-
ments. In this chapter, we have looked at three components of IT infrastructure,
namely network, middleware and storage. At the network level, we looked at the

200

Distributed Systems Security: Issues, Processes and Solutions

different solutions pertaining to DoS attacks, DNS attacks and routing attacks, and
at information solutions and wireless-network solutions. At the middleware level
we focused on solutions pertaining to grid computing. These can be divided into
architecture solutions, infrastructure solutions and management solutions. Finally,
at the storage level we looked at the FC-SP standard and NASD.

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]

[11]

[12]

[13]

[14]
[15]
[16]
[17]
(18]
[19]
[20]

(21]

Dierks, T. and Allen, C. (1999) The TLS Protocol Version 1.0, RFC 2246, January 1999.
Internet Engineering Task Force (2008) http://www.ietf.org, accessed on Junel3th, 2008
Stallings, W. (2000) IP security. Internet Protocol Journal, 7(1), 11-26.

Kent, S. and Atkinson, R. (1998) IP Authentication Header, RFC 2402, November
1998.

Kent, S. and Atkinson, R. (1998) IP Encapsulated Security Payload (ESP), RFC 2406, Novem-
ber 1998.

Augustyn, W. and Serbest, Y. (2003) Service Requirements for Layer 2 Provider Provisioned
Virtual Private Networks, Internet Draft, draft-augustyn-ppvpn-12vpn-requirements-02.txt,
February 2003.

Rosen, E. and Rekhter, Y. (1999) BGP/MPLS VPNs, RFC 2547, March 1999.
Ould-Brahim, H., Wright, G., Gleeson, B. et al. (2002) Network Based IP VPN Architecture
Using Virtual Routers, Internet Draft, draft-ietf-ppvpn-vpn-vr-03.txt, July 2002.

Bates, T., Rehkter, Y., Chandra, R. and Katz, D. (2000) Multiprotocol Extensions for BGP-4,
RFC 2858, June 2000.

Cisco White Papers (2000) Strategies to Protect against Distributed Denial of Service Attacks
(DDoS), February 2000.

Park, K. and Lee, H. (2001) On the Effectiveness of Route-Based Packet Filtering for Dis-
tributed DoS Attack Prevention in Power-Law Internet. Proceedings of the SIGCOMM,
August 2001, pp. 15-26.

Keromytis, A.D., Misra, V. and Rubenstien, D. (2002) SOS: Secure Overlay Services. Pro-
ceedings of the ACM SIGCOMM, August 2002.

Yau, D.K., Lui, J.C.S. and Liang, F. (2002) Defending Against Distributed Denial of Service
Attacks with Max-Min Fair Server-Centric Router Throttles. Quality of Service, 2002 Tenth
IEEE International Workshop, pp. 35-44.

Allen, J. et al. (2000) State of The Practice: Intrusion Detection Technologies. Technical
Report CMU/SEI-99-TR-028, ESC-99-028, Carnegie Mellon, SEI, January 2000.

Axelsson, S. (2000) Intrusion Detection Systems: A Survey and Taxonomy. Technical Report
99-15, Department of Computer Engineering, Chalmers University of Technology,Goteborg,
March 2000.

SNORT (2008) http://www.snort.org, accessed on June 13t 2008.

Kenny, S. and Coghlan, B. (2005) Towards a Grid wide Intrusion Detection System. European
Grid Conference, February 2005.

Tolba, M.F., Abdel-Wahab, M.S., Taha, .A. and Al-Shishtawy, A.M. (2005) GIDA: Toward
Enabling Grid Intrusion Detection System, CCGrid, May 2005.
http://www.oracle.com/technology/products/bi/odm/pdf/odm_based_intrusion_detection_
paper_1205.pdf, accessed on June, 13% 2008.

Ryutov, T., Neumann, C. and Zhou, L. (2005) Integrated Access Control and Intrusion Detec-
tion (IACID) Framework for Secure Grid Computing. Technical Report, USC, May 2005.
Burch, H. and Cheswick, B. (2000) Tracing Anonymous Packets to their Approximate Sources.
Proceedings of the 2000 USENIX LISA Conference, December, pp. 319-27.

Infrastructure-Level Solutions 201

(22]
(23]

[24]
[25]

[26]

(27]
(28]

[29]
(30]
(31]
(32]
(33]

[34]
(35]

(36]

(37]

(38]
[39]

[40]

[41]
[42]

[43]

[44]
[45]

[46]

Sager, G. (1998) Security Fun with OCxmon and Eflowd. Internet2 Working Group Meeting,
November 1998.

Snoeren, A.C., Partridge, C., Sanchez, L.A. et al. (2001) Hash-Based IP Traceback. Proceed-
ings of the SIGCOMM, August 2001, pp. 3—-14.

Bellovin, S.M. (2000) ICMP Traceback Messages, Internet Draft, March 2000.

Savage, S., Wetherall, D., Karlin, A. and Anderson, T. (2001) Network\support for IP trace-
back. IEEE Transaction on Networking, 1(3), 226-37.

Xiaodong Song, D. and Perrig, A. (2001) Advanced and Authenticated Marking Schemes for
IP Traceback. Proceedings of the INFOCOM, April 2001, pp. 878-86.

Malkin, G. (1998) RIP Version 2, RFC 2453 November, RFC 1058 June, 1988.

(a) Moy, J. (1994) OSPF Version 2, RFC 1583, March 1994. [BGP] (b) Rekhter, Y. and Li,
T. (1995) A Border Gateway Protocol 4, RFC 1771, March 1995.

Kent, S., Lynn, C. and Seo, K. (2000i) Secure Border Gateway Protocol (S-BGP). IEEE
JSAC, 18(4), 582-92.

Zhang, K. (1998) Efficient Protocols for Signing Routing Messages. Proceedings of SNDSS.
Wang, F., Gong, F., Wu, F.S. and Narayan, R. (1999) Intrusion Detection for Link State
Routing Protocol Through Integrated Network Management. Proceedings of the ICCCN, pp.
694-99.

Chakrabarti, A. and Manimaran, G. (2002) Secure Link State Routing Protocol. Technical
Report, Department of ECPE, lowa State University.

Smith, B.R., Murthy, S. and Garcia-Luna-Aceves, J.J. (1997) Securing Distance-Vector Rout-
ing Protocols. Proceedings of the SNDSS, February 1997, pp. 85-92.

Earle, E.A. (2005) Wireless Security Handbook, Auerbach Publications.

Microsoft White Paper, Overview of the WPA Wireless Security Update in Windows XP,
2008.

NIST FIPS 197: Advanced Encryption Standard, http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf

Pearlman, L., Welch, V., Foster, L. et al. (2002) A Community Authorization Service for
Group Collaboration. Proceedings of the IEEE 3rd International Workshop on Policies for
Distributed Systems and Networks, Monterey, CA, pp. 50-59.

Alfieri, R., Cecchini, R., Ciaschini, V. ef al. (2003) VOMS: An Authorization System for
Virtual Organizations. 1st European Across Grids Conference, Santiago e Compostella.
Chakrabarti, A. and Damodaran, A. (2006) Enterprise Authorization and Licensing Service.
Infosys Technol Report.

Thompson, M., Essiari, A. and Mudumbai, S. (2003) Certificate-based authorization policy
in a PKI environment ACM Transactions on Information and System Security (TISSEC), 6(4),
566-88.

Chadwick, D. and Otenko, O. (2002) The PERMIS X.509 Role Based Privilege Management
Infrastructure. ACM SACMAT, Lake Tahoe, CA, pp. 135-40.

Breitbart, Y. et al. (2001) Efficiently Monitoring Bandwidth and Latency in IP Net-
works.Proceedings of the IEEE INFOCOM, Alaska, pp. 933-42.

Chan, M.C., Lin, Y.-J. and Wang, X. (2000) A Scalable Monitoring Approach for Service
Level Agreements Validation. Proceedings of the International Conference on Network Pro-
tocols (ICNP), Osaka, pp. 37-48.

Dilman, M. and Raz, D. (2001) Efficient Reactive Monitoring. Proceedings of the IEEE
INFOCOM, Alaska.

Duffield, N.G., Presti, F.L., Paxson, V. and Towsley, D. (2001) Inferring Link Loss Using
Striped Unicast Probes. Proceedings of the IEEE INFOCOM, Alaska, pp. 915-23.

Bradley, K.A., Cheung, S., Puketza, N. er al. (1998) Detecting Disruptive Routers: A Dis-
tributed Network Monitoring Approach. Symposium on Security and Privacy, Oakland, CA,
pp. 115-24.

202

Distributed Systems Security: Issues, Processes and Solutions

[47]

(48]
[49]

[50]

[51]

(52]
[53]
[54]
[55]

[56]
[57]

(58]

[59]
[60]
[61]
[62]
[63]
[64]

[65]

[66]
[67]

[68]

[69]

Barmouta, A. and Buyya, R. (2003) GridBank: A Grid Accounting Services Architecture
(GASA) for Distributed Systems Sharing and Integration. International Parallel and Dis-
tributed Processing Symposium (IPDPS’03), Nice.

Sandholm, T. (2005) Service Level Agreement Requirements of an Accounting- Driven Com-
putational Grid. Technical Report TRITA-NA-05332005, Royal Institute of Technology.
Yao, T.D. (2005) Adaptive Firewalls for the Grid. Master’s Thesis, Technical University of
Denmark.

Duffield, N.G., Greenberg, P.G., Mishra, P. er al. (1999) A flexible model for resource
management in virtual private networks, Proceedings of the Conference on Applications, Tech-
nologies, Architectures, and Protocols, Computer Communication, ACM Press, pp. 95—-108.
Bershad, B., Savage, S., Pardyak, P. et al. (1995) Extensibility, Safety, and Performance, in
the SPIN Operating System. ACM Symposium On Operating Systems Principles (SOSP),
Copper Mountain, CO, pp. 267-83.

Necula, G. (1997) Proof Carrying Code. Principles of Programming Languages, Paris.
VMWare® (2006) http://www.vmware.com, accessed on July 13th, 2006.

Barham, P., Dragovic, B., Fraser, K. et al. (2003) Xen and the Art of Virtualization. ACM Pro-
ceedings of Symposium On Operating Systems Principles (SOSP), New York, pp. 164—177.
Virtuozzo Team (2005) A Complete Server Virtualization and Automation Solution. Virtuozzo
White Paper and Data Sheet.

VServer (2006) http://www.linux-vserver.org/Documentation, accessed on 13th July, 2006.
Lampson, B.W. (1971) On Reliable and Extendable Operating Systems. State of the Art
Report, Infotech, 1.

Lampson, B.W. and Sproull, R.F. (1979) An Open Operating System for a Single-User
Machine. Proceedings of the Seventh ACM Symposium on Operating Systems Principles,
Pacific Grove, CA, pp. 98—105.

Wulf, W., Cohen, E., Corwin, W. et al. (1974) HYDRA: the kernel of a multiprocessor
operating system. Communications of the ACM , 17(6), 337-44.

Engler, D.R., Kaashoek, M.F. and O’Toole J., Jr. (1995) Exokernel: An Operating System
Architecture for Application-Level Resource Management. ACM Symposium On Operating
Systems Principles (SOSP), Copper Mountain, CO, pp. 251-66.

Petri, S. (1999) An introduction to smart cards. Messaging Magazine, September, Issue, 1—12.
Sandhu, R., Bellare, M. and Ganesan, R. (2002) Password-Enabled PKI: Virtual Smartcards
Versus Virtual Soft Tokens. 1st Annual PKI Workshop, pp. 89-96.

Basney, J., Humphrey, M. and Welch, V. (2005) The MyProxy online credential repository.
IEEE Software Practice and Experience, 35(9), 801-16.

Mosebach, K., Alves, L.D. and Chakrabarti, A. (2004) Virtualized Credential Management in
Inter-domain Grid System. Trusted Internet Workshop (TIW).

Liberty Alliance (2008) Introduction to Liberty Alliance Identity Architecture. Lib-
erty Alliance White Paper and Documentation, available at Liberty Web site,
http://www.projectliberty.org/resources/whitepapers/LAP%20ldentity %20A rchitec-
ture%20Whitepaper%20Final.pdf, accessed on June 13th, 2008.

Shibboleth Internet2 project (2008) http://www.shibboleth.internet2.edu, accessed on June
13%, 2008.

Winslett, M., Yu, T., Seamons, K.E. et al. (2002) Negotiating trust on the web. IEEE Internet
Computing, 7(6), 45-52.

Nejdl, W., Olmedilla, D. and Winslett, M. (2004) PeerTrust: automated trust negotiation for
peers on the semantic web, Proceedings of the Workshop on Secure Data Management in a
Connected World (SDM’04), Springer,Toronto.

Dragovic, B. and Kotsovinos, E. (2003) XenoTrust: Event-Based Distributed Trust Manage-
ment. Second International Workshop on Trust and Privacy in Digital Business, Prague (Czech
Republic).

Infrastructure-Level Solutions 203

[70] Dragovic, B. and Hand, S. (2003) Managing Trust and Reputation in the XenoServer Open
Platform. First International Conference on Trust Management, Crete.

[71] Lee, S., Sherwood, R. and Bhattacharjee, B. (2003) Cooperative Peer Groups in NICE. IEEE
INFOCOM, San Francisco, CA.

[72] INCITS Working Draft (2006) Fibre Channel Security Protocols (FC-SP), February 2006.

[73] Kubiatowicz, J., Bindel, D., Chen, Y. eral. (1999) Oceanstore: An Architecture for
Global-Scale Persistent Storage. ASPLOS, December 1999.

10

Application-Level Solutions

10.1 Introduction

Over the last few years there has been a drastic shift in the targets of attacks
from networks/hosts to the applications themselves. Today attackers are increas-
ingly concentrating on exploiting the design and coding weaknesses inherent to
applications, facilitated by a number of factors such as: the lack of security focus
and awareness among software developers, who end up producing defective soft-
ware; the wide availability of public information about security vulnerabilities
and exploits [1, 2]; and the availability of sophisticated free and commercial tools
[3, 4] which help in exploiting weaknesses without requiring in-depth security
knowledge.

These application security vulnerabilities can be addressed thoroughly only if
all the stakeholders in the application development (developers, testers, architects
and managers) are aware of the solutions (best design and development prac-
tices) available to counter them. Secure application development is possible only
through considering security at every stage of the application development life-
cycle, right from requirements gathering, through architecture and design, testing
and deployment, to maintenance.

This chapter focuses on some of the well-researched and industry-proven secu-
rity solutions (best practices) which can be incorporated into application design
and development by architects and developers. Often there are multiple best
practices to counter a given vulnerability, and which one to use depends on
several factors such as application architecture, deployment infrastructure and so
on. Sometimes it may be desirable to use more than one countermeasure as a
defense-in-depth strategy.

Please note that these security best practices are countermeasures to prevent
the application security attacks covered in Chapter 6, and do not cover security

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan
and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

206 Distributed Systems Security: Issues, Processes and Solutions

features like firewalls and so on. (Some of the more common security function-
ality is covered in Chapter 3.) These countermeasures are categorized as per the
application vulnerabilities described in Chapter 6. A comprehensive coverage of
all possible best practices is outside the scope of this book. The interested reader
can refer to [5—7] for more detailed coverage of this subject.

10.2 Application-Level Security Solutions
10.2.1 Input Validation Techniques

Insufficient or no input validation is the key reason for several application secu-
rity vulnerabilities, such as SQL/LDAP/XPATH injection [§—10], XSS [11] and
buffer-overflow attacks.

Injection vulnerabilities represent a class of vulnerabilities which primarily
result from improper input validation or placing excessive trust on the input
entered by the user. Specifically, the injection vulnerability is one where
user-supplied input is used when executing a command or query. If the
user-supplied data is not properly sanitized and validated, a malicious user can
inject carefully-crafted data to change the semantics of the query or command,
leading to an undesirable consequence. Injection vulnerabilities can have a
severe impact and result in loss of confidentiality/integrity, broken authentication,
arbitrary command execution and, in the worst case, complete compromise of
the underlying application or system.

Any user input that is sent back to the user without proper validation results in
XSS attacks. Similarly, user input used without proper range validation leads to
buffer overflow and integer underflow kinds of attack.

Though input validation appears to be a trivial problem, it is in fact a very
involved task to design a proper input validation that takes care of all possible
variations. This is primarily because there is no single definition of what forms
‘good’ or ‘bad’ input across applications.

This section describes some of the industry-proven best practices for properly
validating input and preventing injection attacks and similar vulnerabilities.

10.2.1.1 Don’t Excessively Trust User Input

Applications receive input from different sources, such as data submitted by users
through browsers using HTTP [12] (this includes both form data and header data
like cookies etc.), databases, files and so on, as well as remote service calls, Web
service invocations and so on. Oftentimes application designers and developers
place excessive trust in the data received from these sources and use it without
sufficient validation. This puts the application in trouble if an attacker has supplied
invalid data. It is critical for applications not to trust data that is coming from a
less trusted source, for example:

Application-Level Solutions 207

(1) Data that is submitted by users through browsers. This never reliable and can
be tampered with in many different ways. Developers often consider only the
text-entry form fields and don’t validate data received from hidden variables,
drop-down menus, headers (such as cookie information) and so on.

(2) Data submitted from files. This can contain viruses or other malcrafted data
and, if processed directly without proper validation, may cause damage.

(3) Data retrieved from a database which is updated by other applications.

(4) Data submitted over a Web service call in an application-integration scenario.
For example, consider a scenario where a tour management company inte-
grates its business application with a car rental company’s application. It is
critical in such a scenario to authenticate and validate the data that is traveling
in both directions between these applications.

It is good practice to consider all input as bad and subject it to strict validation.
However, if it is necessary for any other reason to do validation selectively, it
is critical to understand the trust boundaries of the application and decide which
data to trust.

10.2.1.2 Use Centralized Validation Routines

Developing a well-tested, functionally-rich validation library that meets all your
input-validation requirements is very difficult. Oftentimes developers develop val-
idation routines to address specific validation requirements. The disadvantage with
this approach is that these validation routines are not well tested and are not flexi-
ble when dealing with other, similar data. Validation routines have to stand against
several different types of attack vector and it is good practice to centralize the
use of all input-validation routines. That way, not only will development and
maintenance be easy, input-validation rules will be uniform and consistent across
applications. Further, validation routines can be updated at a single place when
new vulnerabilities are discovered.

10.2.1.3 Don’t Use Client-Side Validations for Security

It is a very common misconception that data subjected to client validations is
secure and free from vulnerabilities. Designers and developers often think that data
is validated on the client, and that attackers cannot bypass this. The reality is that
any client-side validation can be bypassed very easily. It is critical to remember
that the server is unaware of the client software used for communication and
what it best understands is the specific protocol it supports. It is trivial to bypass
client validations like JavaScript in browsers, or to write a standalone client which
talks to the server using the same protocol but without any validations. Similarly,
there are plenty of proxies and other automated tools that help capture the data
communicated over TCP/IP and provide the ability to modify it dynamically

208 Distributed Systems Security: Issues, Processes and Solutions

online. Client validations exist for better user experience and performance, but
never for enhanced security. It is good practice to always subject client input data
to validation on the server, even when client validations are performed.

10.2.1.4 Accept Known Good Input and Reject All Known Bad Input

There are several strategies that one can take in validating data. However, from a
security standpoint it is a proven best practice to ‘allow only known good input’
and reject all other input. Considering the numerous ways in which data can be
represented, and plenty of ways in which it can be constructed, it is impractical
to know what forms a bad input from a security standpoint. Also, techniques keep
changing over time, which means that the ‘bad data set’ has to be continuously
updated. The data that is valid in your application context is known to you at the
application design time, and hence it is relatively easy to implement ‘allow only
known good input’ effectively. It is good practice to determine what constitutes the
right data for your application and validate input against the accepted data rules for
type, length, format and range. In some cases, the data that constitutes bad input (e.g.
SQL key words as part of login input) is known up front, and for defense-in-depth
a strategy to ‘reject all known bad input’ can be adopted after ‘allow only known
good input’. Similarly, sanitize the input using an appropriate encoding technique
to make it ‘safe’, especially if you are displaying it back to the user.

10.2.2 Secure Session Management

HTTP is a stateless protocol, which means it is by definition not possible for a Web
server to relate requests coming from the same user. To address this issue, the con-
cept of a session is introduced into Web applications, which allows the server to
identify the series of requests made by a client as related. Session management is
typically carried out by tying the client and server together through some set of
identifiers, commonly referred to as session identifiers. Often the session data is
stored on the server side and is accessed through a session identifier reference. The
client and server exchange the session identifier between them as long as the ses-
sion is valid. A variety of attacks are possible on applications depending on how
the session identifiers are generated, communicated between client and server, and
further managed. These include session-hijacking (obtaining a valid session identi-
fier through interception, prediction and brute force) and session-fixation (fixing the
session identifier of a genuine user to an attacker-chosen session identifier) attacks.
This section discusses some of the best practices for secure session management.

10.2.2.1 Session-Identifier Generation

Session identifiers form a critical link by which the server can relate the requests
made by a particular client. Session identifiers are typically stored in cookies set by

Application-Level Solutions 209

the server on the client machine (also called session cookies), appended to URLs
(as in the HTTP GET method) or assigned to hidden form fields (as in HTTP
POST). These session identifiers play a crucial role in session-hijacking attacks,
in which the attacker’s main objective is to get hold of an active and valid session
identifier. The important factor with session-identifier or session-token generation
is that they should be very large in size (a huge number set compared to the
number of active users at any given point of time, to avoid possible collisions),
highly random (uniform distribution without repetition) and unpredictable. Normal
pseudorandom-number generators are not suitable for session-identifier genera-
tion as they are highly predictable and broken. Use of cryptorandom-number
generators is recommended. Cryptorandom-number generators use highly-random
sources and cryptographic techniques to come up with good random numbers for
session-management purposes. In-house developed session-identifier generation
algorithms are often weak as they are only analyzed by a limited number of
people and often lack vigorous testing, and their use in applications must be
discouraged heavily. Rather, it is good practice to use the session management
features provided by the underlying framework, such as J2EE and .NET. Also,
it is always a good idea to analyze when possible the way in which the session
identifiers are generated, as all session-identifier generation algorithms are not
equally secure. Invalidate any session identifiers that existed before a user was
authenticated, and create unique session identifiers after authentication.

10.2.2.2 Session-Identifier Communication

It is trivial to sniff a communication over plain HTTP using the abundance of free
tools available over the Web. This HTTP traffic includes the session identifiers
and once these are known the attacker can launch session-hijacking attacks. To
prevent this session-identifier sniffing, it is critical to exchange session identifiers
only over encrypted communication channels such as Secure-Sockets Layer (SSL)
and Transport-Layer Security (TLS) However, SSL/TLS do not offer enough
protection from theft of the session cookie contents if the application is vulnerable
to cross-site scripting attacks. So it is generally good practice to encrypt the session
cookie contents using cryptography. Use strong crypto-algorithms with sufficient
key lengths (e.g. 128 bit). Similarly, for cookie-based sessions, setting the ‘SSL
only’ attribute to true allows the browser to send cookies only on SSL connections,
which will improve security.

10.2.2.3 Session-Data Protection

Secure the data stored in-session. Store all session data only on the server side
and avoid storing any sensitive data in session cookies on the client side. Also,
separate the session authentication information from other data to be stored on the
client and place them in separate cookies. Employ appropriate access privileges on

210 Distributed Systems Security: Issues, Processes and Solutions

the server-side session storage. Carefully consider how the session data is stored
on the server; that is, in files or in some sort of a cache database. Care has to be
taken when a Web farm is used, as the session data has to be stored separately
so that it is available to all servers in the farm. In such cases it is critical to
authenticate requests before allowing access to the session data.

10.2.2.4 Session Lifetime

Invalidate sessions without fail after a certain inactive period. The session
time-out is often a compromise between user-friendliness and security. However,
the session time-out period should be as small as possible. If the session time-out
period is considerable, it provides adequate time for an attacker to exploit
session-hijacking or session-replay attacks.

10.2.3 Cryptography Use

A general misconception is that security is all about cryptography. While cryp-
tography plays a key role in fulfilling a limited set of security requirements, such
as authentication, confidentiality, integrity and nonrepudiation, it does not offer
any solution to several other security issues (e.g. denial-of-service attacks).

Though cryptography is a well-researched topic in information security and
has several applications, for example secure communications, getting its use right
requires experience. Any small error in coding, configuration, algorithm selection
or key-length selection, and any wrong assumption, may completely jeopardize
the security of the system and the purpose of the cryptography. This section
describes some of the best practices for the use of cryptography.

10.2.3.1 Never Develop Custom Algorithms or Rely
on Proprietary Algorithms

Developing crypto-algorithms which can withstand varied attacks requires experi-
ence, knowledge of security attacks and a high degree of mathematics background.
However, developers often implement their own crypto-systems, assuming their
implementations are secret and hence secure. ‘Security not by obscurity’ is the
proven principle in the security field and it is not a good idea to rely on the secrecy
of an algorithm. Rather, the strength of a crypto-system depends on the security
of the keys. The other disadvantage with proprietary algorithms is that they are
often not analyzed by many people and are subjected to minimal testing. There
are several incidents in the history of information security when proprietary algo-
rithms which were obscured from public scrutiny have been broken and published
by cryptanalysts. It is always good practice to use crypto-algorithms that are pub-
lished and time tested. Never, ever rely on developing custom crypto-algorithms
for your purpose.

Application-Level Solutions 211

10.2.3.2 Choose the Right Algorithms and Key Sizes

Mere use of cryptographic algorithms is not going to offer any security to an
application. There are symmetric ciphers, asymmetric ciphers, message authen-
tication codes, password-based encryption schemes, key-exchange algorithms,
message-digest algorithms and so on, each of which is best suited to address
a specific security issue under specific conditions. Also, there are a multitude of
algorithms available under each category. All crypto-algorithms are not equally
secure. To further complicate the equation, there are different varieties in these
categories with specific characteristics. For example, there are stream ciphers and
block ciphers under symmetric crypto-algorithms. Stream ciphers are fast and
more suitable for protecting information with a short lifetime (e.g. session data),
while block ciphers are more suitable for protecting data that has to be secured
for a very long duration. Similarly, stream ciphers are more suitable for encrypt-
ing data of unknown length (e.g. data coming from some stream) as they allow
encryption of the plain data bit by bit, whereas block ciphers are more suitable
for encrypting data of a known length, as they require padding at the end if the
length of the input data is not an integral multiple of the block size.

10.2.3.3 All Cryptographic Algorithms are Not Equally Secure by Design

There are several crypto-algorithms which have been broken and had their weak-
nesses publicly exposed. This could be due to an inherent weakness in their
design or because of advancement in technology and computing power. For
example, Data Encryption Standard (DES) [13], which was a Federal standard
for data encryption, is considered broken with current computing power, and is
no longer recommended for any serious data-protection purpose. Similarly, MD5
[14], which was once considered a good message-digest algorithm, is no longer
a recommended standard as it too has been broken. The SHA-1 message-digest
algorithm is considered weakened now, and the recommendation is to go for the
SHA 256 or SHA 512 [15] algorithm. For symmetric crypto-algorithms, Advanced
Encryption Standard (AES) [16] is the new Federal recommendation.

Each of these crypto-algorithms supports different ranges of key size. The
strength of encryption is also a function of key, where a higher key length in gen-
eral means a higher key space and hence more security against brute-force attacks.
For example, 40-bit key lengths for symmetric crypto-algorithms like RC4 [17]
are considered weak and broken. Key lengths of the order of 128 bits are a min-
imum recommendation for symmetric crypto-systems. Similarly, for asymmetric
(RSA/DSA) [18] crypto-systems a minimum of 1024 bits is a recommendation,
and 512-bit keys are considered broken.

Designers also have to take the regulations and laws of different coun-
tries into consideration when choosing encryption algorithms as the use of
crypto-algorithms is generally subject to import and export restrictions.

212 Distributed Systems Security: Issues, Processes and Solutions

So, it is critical to choose the right algorithms with the right key sizes for the
right purpose to ensure the desired security.

10.2.3.4 Choose Secure Random Algorithms

Random numbers are a key requirement for many important cryptographic
functions, such as key generation, one-time passwords and so on. However, the
normal pseudorandom-number generators are no good for crypto-algorithms,
which require secure random-number generators. A secure random-number
generator is one which produces highly-random numbers that are difficult
to guess and has a large number space with uniform distribution (i.e. the
probability of generating any random number in the space is equal). Typically
developers use the random-number generators [19] that come as default with
their languages (such as Java) for cryptography purposes. However, these
are not secure and do not meet the above properties, and developers should
choose their random-number-generation algorithms carefully. Also, a real source
of randomness is difficult to obtain in computer programs; there are several
techniques to improvise this (e.g. mouse movement, process memory pattern
etc.). Select the source of randomness carefully. There are several attacks which
exploit the weakness in random-number generators to break the algorithms, even
though the algorithms are secure and flawless by design. So it is very critical
that you carefully choose the correct random-number algorithms and use them in
the published way to remain secure.

10.2.3.5 Ensure Secure Key Management

The ‘security not by obscurity’ principle recommends the use of crypto-algorithms
that are publicized and available for public scrutiny, which implies the strength of
the algorithm is in the secrecy of the encryption keys used but not in the secrecy
of the algorithm itself. This tells you the importance of storing keys securely.
Key management dictates the lifecycle of keys, including key generation, key
exchange, key storage, key archival and key destruction. Care has to be taken to
ensure security in every stage of the key lifecycle. Storing the keys on secure
hardware is a recommended best practice, but often developers write keys into
file storage on the operating system because of cost considerations. In such cases,
it is critical to protect the key files through appropriate access controls so that
they are not stolen, or inadvertently accessed or deleted. Similarly, it is a common
practice to hardcode the keys into executables, thinking they are safe. This is a
very dangerous practice as it is trivial to read the hardcoded keys from binaries
and executables using several tools available for free over Internet. It is critical
to store the keys in tamper-resistant secure storage and provide secure access to
them. It is also a recommended practice to change the keys at regular intervals.
There are cryptographic attacks which can exploit the fact that the same keys are

Application-Level Solutions 213

used to encrypt different data to determine what those keys are. Similarly, the key
archival is a hot target for attackers as it provides a repository of keys at a single
place, and hence it is very important for developers to ensure its security.

10.2.3.6 Choose Certified Crypto-Libraries

Mere support for standard crypto-algorithms in libraries is not sufficient to ensure
the security of an application, but it is critical that the libraries are from trusted
sources without any backdoors and are implemented in a secure manner. Any
weakness in the implementation of a crypto-algorithm may completely remove the
protection it offers. For example, a perfect implementation of an algorithm with a
predictable random-number generator is no good and does not offer any security.
It is good practice to use only those crypto-libraries that are certified by reputed
security-assurance accreditations like Common Criteria (CC) [20], Federal Infor-
mation Processing Standards (FIPS) [21] and so on. These standards define strict
evaluation criteria from a security point of view for products and crypto-libraries,
and provide a high level of assurance about the security of their implementation.

10.2.4 Preventing Cross-Site Scripting

Dynamic HTML pages that write back the user input to the browsers without val-
idating the input can cause cross-site scripting. This vulnerability can be exploited
by attackers to inject malicious scripting code instead of valid input, which when
written back to the browser is executed with the privileges of the trusted domain,
as it is served from the trusted Web site. The user input can come from anywhere
that includes query strings, form variables, cookies, headers and so on. Some
example applications that are potentially at risk if they construct output from user
input that is not validated include:

(1) Search applications that fetch search results based on user inputs.
(2) Bulletin boards and blogs where users enter their input and the same is read
by other users.

Best practices or solutions to address cross-site scripting in applications include:

(1) Filtering all user input and removing all special characters from input that
includes query strings, cookies, form variables and so on. Special characters
are those which might enable a script to be generated, for example < > ;
% & () + — and so on. While filtering is an effective technique if you
are trying to validate the input at entry, it may not be the best solution in
all cases. For example, if your application context demands some of those
special characters to be input, filtering them might not be suitable. Though
filtering can be done at JavaScript in a client script, it is always best practice

214 Distributed Systems Security: Issues, Processes and Solutions

to do it on the server side, as the client scripting can easily be bypassed. One
of the disadvantages of the filtering approach is the data loss associated with
the filtered characters.

(2) Similarly, filtering the output involves removing any special characters before
writing to the client. Care has to be taken while filtering output, otherwise
some of the HTML elements may be lost. For example, if the output is to
write an HTML tag like <table>, the special characters < > will be filtered.
It is good practice to filter the data that is written out, rather the complete
HTML.

(3) A safer approach is to encode the data that is received when the application
writes it to the browser. Encoding prevents any embedded scripts from exe-
cuting on the client browser by removing the meaning associated with the
special characters. The advantage of the encoding approach is that there is no
data loss associated with it. Suggested best practice is to HTML encode or
URL encode the data as appropriate while writing to the output.

10.2.5 Error-Handling Best Practices

Applications without appropriate error-handling design often leak valuable sen-
sitive information to attackers, in the form of stack traces that are written to
the client and insecure error messages. These may reveal a lot about the spe-
cific technologies used, along with version details, database schema details, SQL
query strings, login credentials, directory structure and so on, giving the attack-
ers a deeper understanding of the application and enabling them to launch more
targeted attacks.

Error messages displayed at failure events should be consistent. It is common
for a login page to show different error messages for invalid user ID entry and
invalid password entry. This will give big hints to the attacker about whether the
user ID or the password is wrong, allowing them to launch more specific attacks.
Besides leaking sensitive data, applications that are not designed for proper error
handling may remain open in an inconsistent state following a failure event.
An application that is failed open into an inconsistent state may be exploited
by attackers, granting them unauthorized access to it. So it is very critical that
applications should follow the best practices for a secure error-handling design.

Robust error handling also depends on the technologies being used. Some lan-
guage platforms like Java and .NET support a more structured exception-handling
technique, but others, such as C and PHP, do not provide support for exceptions
and it is very difficult to cover all possible error conditions in these.

A centralized exception-handling architecture is a good design approach. Best
practices for a secure exception-handling mechanism include:

(1) Fail safe: applications should fail into a safe state always. Check all fail
conditions carefully to see that they fail into a safe and determinant state.

Application-Level Solutions 215

2)

3)

Also review how fatal errors are handled to see that the application will not
fail into an indeterminate state.

Display safe error messages: evaluate the code to see that all errors are cap-
tured and that generic error messages are displayed, rather than stack traces.
Also see that error messages are consistent and do not leak any informa-
tion of help to attackers, such as specific reasons why the error occurred,
login credentials, file paths, names and so on. Log detailed error messages
with stack traces into appropriate error/event logs and provide alerts to the
administrators.

Use appropriate exception handling where available: if a structured language
with exception-handling support is used, see that a proper exception-handling
architecture is in place to catch all exceptions. Catch all exceptions, write the
detailed exceptions into event logs and write generic error messages to the
consumer. A structured exception-handling mechanism prevents information
disclosure. Similarly, if proper exception-handling support is not there in the
language and error handling is done through function return values, check for
all error return values and handle them appropriately.

10.3 Conclusion

The main causes of application security vulnerabilities are insecure architec-
ture/design decisions and implementation flaws using insecure coding practices.
Knowing the root causes for different application security vulnerabilities will help
you to build appropriate countermeasures into your application. Chapter 6 cov-
ered several known application security vulnerabilities and this chapter discussed
some of the industry best practices to avoid them.

References

(1]

(2]
(3]

(4]
(3]
(6]
(7]
(8]
(91

Web Application Security Consortium Threat Classification, http://www.webappsec.org/
projects/threat/classes/cross-site_scripting.shtml.

Open Web Application Security Project (OWASP), http://www.owasp.org.

Source Code Static Analyzers List, http://www.samate.nist.gov/index.php/Source_Code_
Security_Analyzers.

Web Application Vulnerability Scanners List, http://www.samate.nist.gov/index.php/Web_
Application_Vulnerability_Scanners.

Howard, M. and LeBlanc, D., Writing Secure Code, 2nd edition, Microsoft Press, Paperback,
Published December 2002.

OWASP, A Guide to Building Secure Web Applications and Web Services 2.0, Black Hat
edition, 2005.

Curphey, M. et al., Improving Web Application Security — Threats and Countermeasures.,
Microsoft Press, Published August 2003.

Xpath Injection, http://www.webappsec.org/projects/threat/classes/xpath_injection.shtml,
http://www.owasp.org/index.php/XPATH_Injection.

Faust, S. LDAP Injection, — Are Uour Web Applications Vulnerable? SPI Dynamics, 2003.

216

Distributed Systems Security: Issues, Processes and Solutions

[10]
(1]

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

OWASP, SQL Injection, http://www.owasp.org/index.php/SQL _injection.

Spett, K. Cross Site Scripting, — Are Your Web Applications Vulnerable? SPI Dynamics,
http://spidynamics.com/whitepapers/SPIcross-sitescripting.pdf, 2005.

Hypertext Transfer Protocol (HTTP), RFC2616, http://www.w3.org/Protocols/rfc2616/
rfc2616.html.

Data Encryption Standard (DES), http://www.itl.nist.gov/fipspubs/fip46-2.htm.

RFC 1321: The MD5 Message Digest Algorithm, http://www.fags.org/rfcs/rfc1321.html.
Secure Hash Algorithms, http://www.csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf.
Advanced Encryption Standard, http://www.csrc.nist.gov/publications/fips/fips197/fips-
197.pdf.

RC4 Cipher, http://www.rsa.com/rsalabs/node.asp?id = 2250.

Digital Signature Algorithm, http://www.rsa.com/rsalabs/node.asp?id = 2238.
Cryptographically Secure Random Number Generator, http://www.en.wikipedia.org/wiki/
Cryptographically_secure_pseudorandom_number_generator.

Common Criteria for Information Technology Security Evaluation (CC), www.
commoncriteriaportal.org/.

Federal Information Processing Standards (FIPS), http://www.itl.nist.gov/fipspubs/.

11

Service-Level Solutions

11.1 Introduction

It is said that if you know both the enemy and yourself, you will fight a hundred battles
without danger of defeat; if you are ignorant of the enemy but only know yourself, your
chances of winning and losing are equal; if you know neither the enemy nor yourself, you
will certainly be defeated in every battle.

Sun Tzu, The Art of War

In Chapter 7 we showed how the openness and text-oriented, XML-based nature
of service-oriented IT systems have given birth to complex requirements, threats
and vulnerabilities. In this chapter we shall concentrate on different solutions to the
diverse service-level issues, and mechanisms to handle the threats and vulnerabil-
ities. First, we explore why secure-sockets layer (SSL), the predominant solution
for Web-based systems, is not enough for Web services-based systems. Further,
we highlight the role of standards in promoting interoperability, a key require-
ment for service-oriented IT systems. Finally, the emergence of a new breed of
firewalls, XML firewalls, is explained, along with their critical role in addressing
various service-level threats. We also explore the role of policy-centered security
architectures in satisfying key service-oriented security requirements.

11.2 Services Security Policy

The main goal of a corporate security policy is to protect data by defining pro-
cedures, guidelines and practices for configuring and managing security in the
corporate environment. It is imperative that the policy defines the organization’s
philosophy and requirements for securing information assets. The information
security policy now needs additional considerations, for securing assets that are
exposed as services. The security policy should define the minimum security cri-
teria that are required around a service. The policies around services security will

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan
and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

218 Distributed Systems Security: Issues, Processes and Solutions

typically be an extension to the existing information security policy. The security
policy is not limited to just network requirements but might additionally define
rules and guidelines for design and development of secure Web services.

11.2.1 Threat Classification

The initial step to creating an effective information security policy is evaluat-
ing information assets and identifying threats to those assets. Classification of
information assets needs to happen based on quantitative (monetary value) and
qualitative factors. Determining both the monetary value and the intrinsic value
of an asset is essential to accurately gauging its worth. To calculate an asset’s
monetary value, an organization should consider the impact if that asset’s data,
networks or systems are compromised in any way. To calculate intrinsic value, the
organization should consider a security incident’s impact on credibility, reputation
and relationships with key stakeholders. When assessing potential threats, both
external and internal threats must be considered. Threat classification addition-
ally defines guidelines that classify a service depending upon various parameters,
such as:

(1) Classification of information managed by that service.
(2) Internet or intranet deployments.

(3) Underlying host-system classification to the business.
(4) Qualitative and quantitative risk assessment.

(5) Risk probability and assessment matrix.

Examples of the data required for defining a policy around services security are
listed below:

(1) Transport-level security requirements around SSL or secure virtual private
networks.

(2) Allowed service-communication protocols between the consumer and
provider; that is, HTTP, SMTP, SOAP, JMS and so on.

(3) Service proxy or virtualization requirements.

(4) Port numbers to be exposed for the firewall; JIMS/MQ could have additional
requirements.

(5) Network-address translation or IP hiding requirements.

(6) Authentication requirements like public-key infrastructure (PKI), Kereberos
tokens and usernames/passwords.

(7) Single sign-on (SSO) and identity-management requirements.

(8) Authorization requirements like security assertions markup language
(SAML) or custom authorization schemes.

(9) Access control requirements to the underlying systems.

(10) Message-level security and validation requirements.

Service-Level Solutions 219

(11) Trusted domains and trusted issuing and requesting authorities.
(12) Other nonfunctional requirements around scalability, availability and so on.

Security is often considered a dead investment and hence is often shortchanged.
However, we have also come across scenarios where enterprises have become
paranoid and invested a lot of money in security for information which is available
in the public domain. Hence the next step is to perform an assessment by weighing
security against exposure and the underlying risk. This assessment allows an
organization to decide the level of security required for the information. The goal
for this risk assessment is to find the optimal line between security costs and risk.
This assessment will help in determining the proper allocation of resources once
the security policy is effectively in place.

11.3 SOA Security Standards Stack

The standards for security in Web services extend standard mechanisms like
encryption, digital signature and public-key infrastructure to handle XML and,
in particular, Web services-specific nuances and problems. Some of the protocols
are works in progress and some have been standardized already. While some
of the standards are quite generic and applicable in generic distributed systems
involving XML payloads, specialized standards are only suited for Web services
applications. Hence the adoption of some of these protocols is not complete, and
in fact there are proprietary protocols implemented by some vendors already. A
top-level hierarchy of key SOA standards is presented in Figure 11.1. We shall
briefly explore why SSL, the key Web-enabling security standard, is not enough
for Web services.

11.3.1 Inadequacy of SSL for Web Services

One of the key factors in the success of the Web as a platform for e-business and
e-commerce has been the availability of scalable security algorithms like SSL.
SSL has been a key driver in adoption of the Web by enterprises for exposing
their functionality. SSL refers to a session-layer protocol in computer networking,
whereby a series of exchanges of digital keys happens between a client and
a server, ending in a secure channel of communication between the two ends,
where messages are sent in encrypted form. SSL-based communication can be of
two types:

Server-side SSL requires that the client obtains a copy of the Web server’s
certificate so that they can authenticate the server. An encrypted channel for data
communication is then established between the client and the server. Hence this
provides a one-way authentication.

On the other hand, client-side SSL requires both the client and the server to
be authenticated, thereby enabling two-way authentication. Hence both service

220

Distributed Systems Security: Issues, Processes and Solutions

Federated Identity

WS-Federation Liberty (SAML 2.0)

SOA Security Standards
WS-SecurityPolicy s
@
S
WS- 5

Secure- WS-Trust < XACML
Coveration
WS-Security SAML
XML Security Standards
XML Signature XML Encryption

Basic Network Standards (HTTPS, TLS,
SMTP, IPSec)

Figure 11.1 SOA standards.

providers and service requesters can be authenticated by using client-side SSL.
It might be argued that this is a possible solution for Web services too. But we
would say this is not so, for the following reasons:

ey

2

3)

)

Web services depend upon the ability of message-processing intermediaries
to forward messages, because of the involvement of multihop data transfers,
while SSL provides for point-to-point security between two points. On account
of this, if we use SSL, the intermediaries will be the weak points where the
security breaks down.

Client-side SSL, as discussed above, requires the client digital certificates
to be as available as the server digital certificates. The task of distributing
client-side SSL certificates to all possible requesters of a Web service is next
to impossible.

In a Web application it is usually not necessary to record a transaction as a
nonrepudiation proof, but it is important to do so in critical Web services. In
this context an SSL session has no memory of an earlier SSL session, and
hence fails in providing nonrepudiation. Imagine a Web service which requires
only one-time execution of a Web service from a client, denying possibility
of a replay attack. This requirement could not be detected with SSL.

Secure sessions between more than two parties is not addressed by SSL.

Service-Level Solutions 221

11.4 Standards in Depth

Standards are crucial to understanding SOA security. We shall therefore explore
here the key security standards.

11.4.1 XML Signature

In Web services it is necessary to partially encrypt the body or parts of a Sim-
ple Object Access Protocol (SOAP) request, in order to enable transmission with
authenticity and integrity assured. Because of the involvement of such multihop
data transfers in Web services, the original concept of digital signatures will not
extend to XML-based content, as this is based on the idea of getting signatures
from the message digests of the entire document. Hence intermediaries need mech-
anisms for the development of complete trust in the handling of the content of
messages keeping partial content intact. Such mechanisms have been provided in
the XML Signature [1] specification. XML Signature defines an XML-compliant
syntax for representing signatures over Web resources and portions of protocol
messages, and procedures for computing and verifying such signatures. These
will be able to provide data integrity, authentication and/or nonrepudiation. In
real-life scenarios it is necessary that in the transmission route of an XML mes-
sage, different parties sign different parts. XML Signature specification allows for
this kind of signing. XML Signature validation requires that the data object that
was signed be accessible. The XML Signature itself will generally indicate the
location of the original signed object. This can be referenced by a URI within
the XML Signature; it can reside within the same resource as the XML Signature
(the signature is a sibling), be embedded within the signature (the signature is
the parent — enveloping form) or have the signature embedded within itself (the
signature is the child — enveloped form).

Typical computation of the XML Signature of an XML document involves com-
puting the message digest of the document. However, it is necessary to understand
that there are many cases where seemingly dissimilar XML documents and nodes
actually refer to the same document/node. The idea in canonical XML is to obtain
the core of an XML structure, so that any two structurally-equivalent XML docu-
ments are identical byte for byte in their core form. This core form is termed the
canonical form of an XML document. Canonicalization refers essentially to the pro-
cess of conversion of any XML document to its canonical form, and is necessary
for XML Signature computation. An example of an enveloped XML Signature is
shown in Figure 11.2. This example uses the DSAwithSHA1 algorithm to compute
the signature; the XML Signature provides the key values used to compute it.

11.4.2 XML Encryption

XML Encryption provides end-to-end security for applications that require
secure exchange of data. XML-based encryption is the natural way to handle

222 Distributed Systems Security: Issues, Processes and Solutions

<Signature Id="SriSignature"
xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo >
<CanonicalizationMethod Algorithm="http://www.w3.o0rg/TR/2001/
REC-xml-c14n-20010315"/>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#dsa-shal" />
<Reference URI="http://www.w3.0rg/TR/2000/REC-xhtmll-
20000126/">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-
c14n-20010315"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.o0rg/2000/09/
xmldsig#shal" />
<DigestValue>j71d2Tr3rvEPOOVKtMup4NbeVu8nk=</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>dl2hdlsd7dssf2@4</SignaturevValue>
<KeyInfo>
<KeyValue>
<DSAKeyValue>
<p>33</p><Q>3434</Q><G>3434</G><Y¥>2323</Y>
< /DSAKeyValue>
</KeyValue>
</KeyInfo>
</Signature>

Figure 11.2 Sample XML Signature.

complex requirements for security in data-interchange applications. SSL, as
we have already shown, cannot handle encryption of partial messages being
exchanged, or secure sessions between more than two parties. XML Encryption
is built on top of mature cryptographic technology — in this case, shared
key-encryption technology. Core requirements for XML Encryption are that it
must be able to encrypt an arbitrarily-sized XML message and it must do so
efficiently. Those two factors led its creators to choose shared-key (symmetric)
encryption as the foundation for XML Encryption. Encryption provides for
message confidentiality (the message will be secret from all but the intended
recipient). The reason XML Encryption is needed over and above transport-level
encryption such as SSL is that you need to maintain confidentiality of a
message in the face of the message taking multiple hops on its way to its
destination. This will be common when shared services are utilized. You also
need confidentiality when the XML message is stored, even after it reaches its
final destination. This requirement is called persistent confidentiality. With XML

Service-Level Solutions 223

Encryption, each party can maintain secure and insecure states with any of the
communicating parties. Use of XML Encryption can be broadly divided into
three parts:

(1) Encrypting the complete XML document.
(2) Encrypting the XML element.
(3) Encrypting the content of the XML element.

XML Encryption can handle both XML and nonXML (e.g. binary) data. That
means we can also send a JPEG file using XML Encryption. Some real-life
scenarios where XML Encryption can be applied are:

e Information exchange between two enterprises. One is an online bookseller and
the other is a publisher. When the bookseller wants to purchase books, it submits
a purchase order to the publisher. At the publisher’s end, the sales department
receives this order, processes it and forwards it to the accounts department. The
two enterprises exchange information in the form of XML documents. Since
some portions of the documents need to be secure and the rest can be sent
insecurely, XML Encryption is the natural approach for applying security in
this case.

e Say we have a secure chat application which has multiple chat rooms with sev-
eral people each one. XML-encrypted files can be exchanged between chatting
parties in such a way that data intended for one particular room will not be
easily available to the others.

e Say we need to send an XML file to a publishing company. The file contains
details of a book that we need to purchase. It should also contain details
about the credit card for the payment. Obviously, we would like to secure
this this sensitive data. One option is to use SSL, which secures the whole
communication. The alternative is to use XML Encryption. If the application
requires that the whole communication be secure, we will use SSL. On the
other hand, XML Encryption is the best choice if the application requires
a combination of secure and insecure communication (which means that
some of the data will be securely exchanged and the rest will be exchanged
as 1is).

11.4.3 Web-Services Security (WS-Security)

WS-Security is the basic standard for message-level security, based on the notion
of transmitting relevant tokens as part of SOAP message headers. By adoption
of message-level security, the key requirements of SOA security are addressed,
primary among them being loose coupling and interoperability. Loose coupling is
enabled by separating the information about security from the actual body content.
In this context, the typical SOA scenarios involving multiple participants as in a

224 Distributed Systems Security: Issues, Processes and Solutions

multihop service invocation are addressed by WS-Security headers. The salient
features of WS-Security are:

(1) It protects the integrity and confidentiality of a Web-services message.

(2) It provides a mechanism for associating security-related claims with the mes-
sage.

(3) It improves interoperability, as it resolves some of the ambiguities found in
SAML, XML Encryption and XML Signature by standardizing practices.

(4) It provides support for multiple security tokens, multiple trust domains, mul-
tiple signature formats and multiple encryption technologies.

(5) WSS 2004 can support both SOAP 1.1 and SOAP 1.2 — it is defined for a
generic SOAP specification and is not tied up with any SOAP versions.

(6) It involves concepts of security tokens.

(7) It can leverage existing security mechanisms like username/password, Ker-
beros, X.509 certificates and so on.

(8) It uses the header in SOAP to store the information.

The Web-services security model is described as follows:

(1) A Web service can require that an incoming message proves a set of claims
(e.g. name, key, permission, capability, etc.). If a message arrives without the
required claims, the service may ignore or reject it. We refer to the set of
required claims and related information as ‘policy’.

(2) A requester can send messages with proof of the required claims by associ-
ating security tokens with them. Thus, the messages both demand a specific
action and prove that their sender has the claim to demand the action.

(3) When a requester does not have the required claims, they or someone on
their behalf can try to obtain the necessary claims by contacting other Web
services. These other Web services, which we refer to as security token ser-
vices (STSs), may in turn require their own set of claims. STSs broker trust
between different trust domains by issuing security tokens.

This model is illustrated in the Figure 11.3, showing that any requester may
also be a service, and any security token service may also be a full Web service,
including expressing policy and requiring security tokens.

This general messaging model — claims, policies and security tokens — subsumes
and supports several more specific models, such as identity-based security,
access-control lists and capabilities-based security. It allows use of existing
technologies, such as X.509 public-key certificates, Kerberos shared-secret
tickets and even password digests. It also provides an integrating abstraction,
allowing systems to build a bridge between different security technologies. The
general model is sufficient to construct higher-level key exchange, authentication,
authorization, auditing and trust mechanisms.

Service-Level Solutions 225

. Policy
Security
Token
Service | Security Claims
/ 1 Token
Policy
Requester
Claims Security
T Token \
)
Policy
Web
Service ,
Security |...... Claims
Token -

Figure 11.3 Web Services Security model (WS-Security Standard).

11.4.3.1 Tokens in WS-Security

UsernameToken element

A UsernameToken is used when a password is already shared between client
and server. Typically at the client, the digest of the password is attached to the
SOAP message. This digest contains a hash that is a combination of the pass-
word, a nonce (functionally a unique string that identifies a request) and the
creation time. At the server, the password hash is created again and compared.
Use of timestamp and saving of nonce can avoid replay attacks. An example of
a UsernameToken in the WS-Security header of a SOAP message is given in
Figure 11.4

BinarySecurityToken element

A BinarySecurityToken provides a means of including X.509 certificates and
Kerberos tickets in SOAP security headers. In a typical interaction, authentication
is achieved by attaching the public version of a client’s certificate to the SOAP
message. The message is signed to prove that it has not been tampered with. The
signature is generated using the private key.

A SOAP message with a sample BinarySecurityToken is shown in Figure 11.5.
At server, the signature is verified by getting the decrypted hash back using the
client’s public key and comparing it with the hash of data sent with the message.
Encryption can be used for privacy of data. The public key of the receiver is used
for encryption and the private key of the receiver for decryption.

SecurityTokenReference element

SecurityTokenReference refers to a means of providing a set of claims that
reside at a specific location. Security claims indicate a specific right, privilege

226 Distributed Systems Security: Issues, Processes and Solutions

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi=
"http://www.w3.0org/2001/XMLSchema-instance" >
<soapenv:Header> <wsse:Security soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.ocasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-
secext-1.0.xsd">
<wsse:Username xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-
secext-1.0.xsd">sri</wsse:Username>
<wsse:Password Type="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-username-
token-profile-1.0#PasswordText" xmlns:wsse=
"http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
wssecurity-secext-1.0.xsd">senthil</wsse:Password>
</wsse:UsernameToken></wsse: Security> </soapenv:Header>
<soapenv:Body/></soapenv:Envelope>

Figure 11.4 WS-Security header of a SOAP message.

or attribute, for example identity information, keys and so on. Security tokens
assert claims that can be attached or referenced.

One of the main drawbacks associated with WS-Security is its use of asymmet-
ric cryptographic algorithms for encryption, which are computationally intensive.
To remedy this situation, the WS-Secure Conversation specification was devel-
oped, allowing Web services to create a symmetric session key (similar to how
SSL/TLS functions) to allow faster symmetric cryptographic algorithms to be
used for message-level security. WS-Secure Conversation is well-suited for Web
services that receive or send large volumes of messages to a small number of
services.

11.4.4 Security Assertions Mark-Up Language (SAML)

SAML is an XML-based framework proposed for exchanging authentication and
authorization information among disparate Web-access management and security
products. Using SAML, security information can be expressed as an XML doc-
ument and securely transmitted from one application to another. SAML enables
an application to communicate with security systems provided by disparate ven-
dors. Consequently, software from Vendor A can generate information about a
user or an access-control decision using SAML, which can be consumed by soft-
ware from Vendor B without any disclosure of proprietary algorithms or data

Service-Level Solutions 227

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi=
"http://www.w3.0org/2001/XMLSchema-instance" >
<soapenv:Header> <wsse:Security soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.ocasis-open.org/wss/2004/01/ocasis-
200401-wss-wssecurity-secext-.0.xsd">
<wsse:BinarySecurityToken
EncodingType="http://docs.oasis-open.org/wss/2004/01/o0asis-
200401-wss-soap-message-security-1.0#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-
wss-x509-token-profile-1.0#X509v3"
xmlns:wsse="http://docs.ocasis-open.org/wss/2004/01/0asis-
200401-wss-wssecurity-secext-1.0.xsd">MIIDAJjCCASACBD/n86swC
wYHKOZIz3jgEAWUAMGCxXCzAJBgNVBAYTA1VTMOswCQYDVQQIEwIDQOTESMBAG
A1UEBXMJQ3VwZXJ0aW5vMQwwCgYDVQQKEWNBQKMXEZARBgNVBASTC1B1lcmN
OYXNpbmcxFDASBgNVBAMTCIN1c2FulEpvbmVzMB4XDTAZMTIyMzA3INTAWML
OXDTAOMDMyMjA3NTAWMI1 owZzELMAKGA1UEBhMCVVMxXCzAJBgNVBAgTAKNBM
RIWEAYDVQQHEwW1DAXB1cnRpbm8xDDAKBgNVBAOTAOFCQzZETMBEGA1UECXMK
UHVYY2hhc21uZzEUMBIGA1UEAXMLU3VZYW4gSm9uZXMwggG3MI IBLAYHKOZ
IzjgEATCCARSCgYEA/X9TgR11E11S30gcLuzk5/YRt1I870Q0Awx4 /gLZRJIm
1FXUAIiUftZPY1Y+r/F9bow9subViWzXgTuAHTRv8mMZgt2uZUKWkn5 /oBHsQT
sJPubnX/rfGG/g7vV+£fGgKYVDwT7g/bTxR7DAJVUELoWkTL2dfOuK2HXKuU/
vIgMZndFIAcCcCFQCXYFCPFSMLzLKSuUYKi64QL8Fgc9QKBgQD34aCF1ps93
su8glw2uFe5eZSvu/0660L5VOWLPQeCZ1FZV4661F1P5nEHEIGAtEKWCcSPO
TCgWE7 £fPCTKMyKbhPBZ611R8jSjgo64eK70mdZFuo38L+1E1YVH7YnoBJDv
MpPG+qFGQiaiD3+Fa5Z8GkotmXoB7VSVKkAUw7 /s9JKgOBhAACgYBva6btLG/
JnzYY8YOXWF29IFwS9ZXxaMFWROUVPNggEf3 /EOyIeDn9RGEXPOfVWIn/sq
N6eB11DY95+wF4ABrODImrRRNfOFwFcTkMEt98TSKIyfcILY] /MXnYfUHgjKw
KucPx4gbIWAy3p34iPI3t5buleaR4ANCgivFKW+Sn53j9j+DALBgcghkjO0OAQ
DBQADLWAWLATIUfBsSDEE3xXmQRHboe2 jVG0SppaIlsCFFOdDIhbfulIZPRhbQ
FFz6nMpH6h</wsse:BinarySecurityToken></wsse:Security>
< /soapenv:Header> <sgoapenv:Body/></soapenv:Envelope>

Figure 11.5 Sample SOAP message with BinarySecurityToken.

formats. The primary goal of SAML is to provide standardized interoperability
between security systems that provide authentication and authorization services.
The SAML specification does not define any new technology or approaches for
authentication or authorization. Rather, it simply defines a common language for
describing the information generated by these systems in XML.

SAML consists of four primary elements:

(1) Security assertions.
(2) Request/response protocol for generating and returning assertions.

228 Distributed Systems Security: Issues, Processes and Solutions

(3) Bindings to particular transport protocols (such as SOAP over HTTP).
(4) Profiles for how SAML assertions can be embedded or transported between
communicating systems.

An assertion is a declaration of one or more facts (statements) about a subject,
for example a user. There are three types of SAML assertion statement, all related
to security:

(1) Authentication statement: generated in response to an authentication request.

(2) Attribute statement: asserts some information about a particular identity.

(3) Authorization decision statement: generated in response to an authorization
request on a particular resource.

All three statement types have corresponding assertion-request message proto-
cols. For example:

(1) Authentication-query request and response.
(2) Attribute-query request and response.
(3) Authorization-decision query request and response.

All assertions have some common information, such as issuer timestamp, asser-
tion ID and subject. You can extend SAML to make your own kinds of assertion,
and assertions can be digitally signed. An example of an assertion with multiple
statements is shown in the listing in Figure 11.6.

11.4.5 WS Policy

WS Policy was proposed as a standard to capture generic policy requirements for
Web services, to work in conjunction with WS-Security. It:

(1) Provides a flexible and extensible grammar for expressing the capabilities,
requirements and general characteristics of entities in an XML Web
services-based system.

(2) Defines a framework and a model for the expression of these properties as
policies.

(3) Defines a policy to be a collection of policy alternatives, where each policy
alternative is a collection of policy assertions. Some policy assertions specify
traditional requirements and capabilities that will ultimately manifest on the
wire (e.g. authentication scheme, transport protocol selection). Other policy
assertions have no wire manifestation, yet are critical to proper service selec-
tion and usage (e.g. privacy policy, quality of service (QoS) characteristics).

(4) Provides a single policy grammar to allow both kinds of assertion to be
reasoned about in a consistent manner.

(5) Does not specify how policies are discovered or attached to a Web service.

Service-Level Solutions

229

<Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion"
AssertionID="2a23f66c-77fb-4e5c-b276-88c8cee06486"

IssueInstant="2003-05-21T711:25:09Z" Issuer="John Doe"
MajorVersion="1" MinorVersion="0">

<Conditions NotBefore="2003-05-21T11:25:03Z" NotOnOrAfter=
"2003-05-21T11:28:03Z"></Conditions>

<AuthenticationStatement AuthenticationInstant=
"2003-05-21T11:25:032"

AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:
unspecified">

<Subject><NameIdentifier>johndoeRaol.com</NameIdentifier>

<SubjectConfirmation>

<ConfirmationMethod>urn:ocasis:names:tc:SAML:1.0:cm:bearer
</ConfirmationMethod>

</SubjectConfirmation>

</Subject>

</AuthenticationStatement>

<AttributeStatement xmlns:xsd="http://www.w3.o0rg/2001/
XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" >

<Subject><NameIdentifier>johndoeRaol.com</Nameldentifier>
</Subject>

<Attribute AttributeName="name" AttributeNamespace=
"namespace" >

<AttributeValue>Red</AttributeValue>

</Attribute>

</AttributeStatement>

</Assertion>

Figure 11.6 Sample SAML assertion.

11.4.6 WS-Trust

Web Services Trust Standard (version 1.3) was proposed in March 2007 (http://
docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html). WS-Trust uses
the WS-Security base mechanisms and defines additional primitives and
extensions for security token exchange to enable the issuance and dissemination
of credentials within different trust domains. In order to secure a communication
between two parties, the parties must exchange security credentials (either
directly or indirectly). However, each party needs to determine whether they can
‘trust’ the asserted credentials of the other. Some salient features of WS-Trust as

an extension to WS-Security are:

(1) A definition of a means of brokering security credentials among partners

within different trust domains.
(2) Methods for issuing, renewing and validating security tokens.

230 Distributed Systems Security: Issues, Processes and Solutions

(3) Ways to establish, assess the presence of and broker trust relationships.
(4) A flexible set of mechanisms that can be used to support a range of security
protocols.

The goal of WS-Trust is to enable applications to construct trusted message
exchanges. This trust is represented through the exchange and brokering of secu-
rity tokens. It provides a protocol-agnostic way to issue, renew and validate these
security tokens. WS-Trust is intended to provide a flexible set of mechanisms that
can be used to support a range of security protocols; this specification intention-
ally does not describe explicit fixed security protocols. As with every security
protocol, significant efforts must be applied to ensure that specific profiles and
message exchanges constructed using WS-Trust are not vulnerable to attacks (or
at least that the attacks are understood).

At the center of it all is the STS, as shown in Figure 11.3. This is the interme-
diate broker that issues the security tokens for all incoming requests. WS-Trust
doesn’t impose any restrictions on the interactions between the STS and the Web
service with which the requester wants to communicate securely. The STS could
have implicit knowledge of which Web service the requester needs a token for,
or the STS and the Web service might actually be colocated. There could also be
specific instances where there is a dedicated STS which only issues tokens for
communicating with a single Web service.

In most cases a single STS will broker trust for multiple Web services. In these
cases, the request needs to contain some information about the Web service the
requester needs a token for. One way of providing this information is to give the
end-point reference (EPR) of the specific Web service in the request. Requests for
security tokens are made by sending a request security token (RST) message to
the security token service. The current specification defines three possible actions
that can be performed: issuing of a new token, token renewal and token validation.

The following is a sample of a request structure. The request includes an
X509 certificate, which is used as the basis for the request, referred to from
the ws:Base element in the body. The values of the ws:Action header element
and the ws:RequestType element in the body tell the Security Token Service that
the request is for a security token to be issued. The wst:TokenType element in
the body specifies the type of token to be issued, in this case some XML-based
security token. The STS will verify that it recognizes the X509 certificate and
that the holder of the certificate is authorized to be issued with the custom token.

<ws :RequestSecurityToken>
<ws:TokenType> mysecuritytoken </ws:TokenType>
<ws:RequestType>
http://schemas.xmlsoap.org/ws/2004/04/security/trust/Issue
</ws:RequestType>
<ws :Base>
<ws:SecurityTokenReference>

Service-Level Solutions 231

<ws:Reference URI='#Sec' ValueType='http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-x509-token-
profile-1.0#X509v3' /> </ws:SecurityTokenReference>
</ws:Base>
<ws:AppliesTo>
<ws :EndpointReference>
<ws:Address>http://security.org/Webservice/ </ws:Address>
</ws:EndpointReference>
</ws:AppliesTo>
<wsl:Lifetime>
<wsu:Created>2008-05-06T22:04:34</wsu:Created>
<wsu:Expires>2008-05-08T10:04:34</wsu:Expires>
</wsl:Lifetime>
</ws:RequestSecurityToken>

The following is a sample of a response structure. The wsr:RequestSecurity
TokenResponse element (RSTR) is used to return a security token or response to
a security token request.

<wsr:RequestSecurityTokenResponse>

<wsr:TokenType>

http://schemas.xmlsoap.org/ws/2004/04/security/sc/sct
</wsr :TokenType>

<wsr:RequestedSecurityToken>

<p:MySecurityToken xmlns:p='http://example.org/mytoken' >

Table 11.1 Key fields of a request token.

Element Description

RequestSecurityToken Request header

TokenType Defines the type of security token being requested

RequestType Indicates to the security-token service the type of action
required.

Base Reference tokens that are to validate the authenticity of the
request. For example, could be an existing Kerberos token

Supporting References the supporting tokens that are needed to
authorize the request

AppliesTo This indicates to the security-token service all the end-point
references that the token applies to

EndpointReference The list of WSDL end-points that are referred to by the
requesting service

Lifetime The validity period or lifetime of a token can be specified,

as can information concerning key length, key type and
the token issuer

Created Indicates the time at which a token was created

Expires Indicates the time at which a token will expire

232 Distributed Systems Security: Issues, Processes and Solutions

<!-- Token data -->

</p:MySecurityToken>
</wsr:RequestedSecurityToken>

<ws:AppliesTo>

<ws: EndpointReference>

<ws:Address>http://security.org/Webservice/ </ws:Address>

</ws:EndpointReference>

</ws:AppliesTo>
<wsr:Entropy>
<wsr:BinarySecret>XYZ</wsr:BinarySecret>
</wsr:Entropy>

<wsl:Lifetime>
<wsu:Created>2008-05-06T22:04:34</wsu:Created>
<wsu:Expires>2008-05-08T10:04:34</wsu:Expires>
</wsl:Lifetime>

</wsr:RequestSecurityTokenResponse>

The requester can send a request to the STS to renew the token. A
previously-issued token with expiration is presented (and possibly proven) and
the same token is returned with new expiration semantics. The STS might also
possibly return a new token with completely new expiration semantics.

For this binding, the token to be renewed is identified in the <RenewTarget) ele-
ment, and the optional <Lifetime) element MAY be specified to request a specified
renewal duration. The key semantics around size, type, algorithms, scope and so
on cannot be altered during renewal. Token services may use renewal as an oppor-
tunity to rekey, so the renewal responses can include a new proof-of-possession
token, as well as entropy and key-exchange elements.

The request should have authorized use of the token being renewed, unless
there exists a direct trust model between the recipient and the requester to make
third-party renewal requests. If intermediary trust models are being used, the
third-party requester must prove its identity to the issuer so that appropriate autho-
rization can occur. The renewal binding allows the use of exchanges during the
renewal process.

The requester can send a request to the STS to cancel the issued token. When
a previously-issued token is no longer needed, the Cancel binding can be used
to cancel the token, terminating its use. The request MUST prove authorized use
of the token being canceled, unless the recipient trusts the requester to make
third-party cancel requests. In such cases, the third-party requester MUST prove
its identity to the issuer so that appropriate authorization occurs.

In a cancel request, all key-bearing tokens specified MUST have an associated
signature. All nonkey-bearing tokens MUST be signed. Signature confirmation
is RECOMMENDED on the closure response. A canceled token is no longer

Service-Level Solutions 233

Table 11.2 Key fields of a response token.

Element Description
RequestSecurityTokenResponse Response header to a security-token request
TokenType Defines the type of security token being requested
RequestedSecurityToken It is mandatory that at least one

wst:RequestedSecurityToken be returned unless
there is a negotiation and challenge framework

RequestedAttachedReference Tokens are considered to be obscure to the
requester, and this optional element is specified
to indicate how to reference a returned token
when it doesn’t support references using URI
fragments

RequestedProofToken This optional element is used to return the
proof-of-possession token associated with the
requested security token. Normally the
proof-of-possession token is the contents of this
element, but a security-token reference MAY be
used instead. The token (or reference) is
specified as the contents of this element

AppliesTo If a wsp:AppliesTo was specified in the request,
the same scope needs to be returned in the
response by the issuer

Entropy This element allows an issuer to specify the
entropy that is to be used in creating the key
Lifetime The validity period or lifetime of a token can be

specified, as can information concerning key
length, key type and the token issuer

Created Indicates the time at which a token was created

Expires Indicates the time at which a token will expire

BinarySecret This optional element specifies a base64 encoded
sequence of octets representing the responder’s
entropy

valid for authentication and authorization usages. On success, a cancel response
is returned. This is an RSTR message with the wst:RequestedTokenCanceled
element in the body. On failure, a fault is raised. It should be noted that the
cancel RSTR is informational. That is, the security token is canceled once the
cancel request is processed.

The requester can send a request to the STS to validate the issued token. The
validity of the specified security token is evaluated and a result is returned. The
result may be a status, a new token or both. For some use cases, a status token

234 Distributed Systems Security: Issues, Processes and Solutions

is returned indicating the success or failure of the validation. For this binding an
applicability scope (e.g. wsp:AppliesTo) need not be specified. It is assumed that
the applicability of the validation response relates to the provided information
(e.g. security token) as understood by the issuing service.

11.4.7 WS-Security Policy

WS-Security Policy defines a set of assertions for use with the WS Policy frame-
work with respect to security features provided in WSS:SOAP message security,
WS-Trust and WS-Secure Conversation. It takes the approach of defining a base
set of assertions that describe how messages are to be secured. Flexibility with
respect to token types, cryptographic algorithms and mechanisms used, including
using transport-level security, is part of the design and allows for evolution over
time. The intent is to provide enough information for compatibility and interoper-
ability to be determined by Web-service participants, along with the information
necessary to actually enable a participant to engage in a secure exchange of mes-
sages. WS Policy defines a framework for allowing Web services to express their
constraints and requirements. Such constraints and requirements are expressed as
policy assertions.

11.4.8 WS Secure Conversation

Web Services Secure Conversation was proposed in February 2005
(http://specs.xmlsoap.org/ws/2005/02/sc/WS-SecureConversation.pdf).
WS-Secure Conversation defines extensions to WS-Security and builds on
WS-Trust to govern secure communication across multiple message exchanges.
It defines a mechanism for sharing security contexts and deriving session keys
to tie messages together as a part of a ‘conversation’.

The security context is defined as a new WS-Security token type that is obtained
using a binding of WS-Trust. The mechanisms defined in WS-Security provide
the basic mechanisms on top of which secure messaging semantics can be defined
for multiple message exchanges. WS-Secure Conversation defines extensions to
allow security-context establishment and sharing, and session-key derivation. This
allows contexts to be established, and potentially more efficient keys or new key
material to be exchanged, thereby increasing the overall performance and security
of the subsequent exchanges.

11.4.9 XKMS (XML Key Management Specification)

XKMS stands for XML key management specification and consists of two parts:
XML key information service specification (XKISS) and XML key registration
service specification (XKRSS). XKISS defines a protocol for resolving or val-
idating public keys contained in signed and encrypted XML documents, while

Service-Level Solutions 235

XKRSS defines a protocol for public-key registration, revocation and recovery.
The key aspect of XKMS is that it serves as a protocol specification between an
XKMS client and an XKMS server, in which the XKMS server provides trust
services to its clients (in the form of Web services) by performing various PKI
operations, such as public-key validation, registration, recovery and revocation
on their behalf. Now let’s talk about why we need XKMS. One of the obsta-
cles to PKI's wide adoption is that PKI operations such as public-key validation,
registration, recovery and revocation are complex and require large amounts of
computing resources, which prevents some applications and small devices such as
cell phones from participating in PKI-based e-commerce or Web-services transac-
tions. XKMS enables an XKMS server to perform these PKI operations. In other
words, applications and small devices, by sending XKMS messages over SOAP,
can ask the XKMS server to perform the PKI operations. In this regard, the XKMS
server provides trust services to its clients in the form of Web services. XKMS
defines a Web-services interface to PKI. This makes it easy for applications to
interface with key-related services, like registration and revocation, and location
and validation. Most developers will only ever need to worry about implementing
XKMS clients. XKMS server components are mostly implemented by providers
of PKI providers, such as Entrust, Baltimore and VeriSign. VeriSign, for example,
provides an XKMS responder that can be used to register and query VeriSign’s
certificate store. Even SSL server IDs can be validated in real time using the
XKMS interface.

XKMS is a foundational specification for secure Web services, enabling Web
services to register and manage cryptographic keys used for digital signatures
and encryption. When combined with WS-Security, XKMS makes it easier than
ever for developers to deploy enterprise applications in the form of secure Web
services available to business partners beyond the firewall. XKMS can be used by
developers to integrate authentication, digital signature and encryption services,
such as certificate processing and revocation status checking, into applications
in a matter of hours — without the constraints and complications associated with
proprietary PKI software toolkits.

11.4.10 WS Privacy and P3P

WS Privacy is a specification that describes the model for how a privacy language
can be embedded into policies. WS-Security is used to associate privacy claims
with a particular message. WS-Trust can be used to evaluate these claims for user
preferences or organizational policies. WS Privacy is currently being addressed
under the P3P (platform for privacy preferences) project. P3P currently addresses
Web sites to extend their ability to express privacy preferences in a standard
format that can be retrieved implicitly and implemented by user agents. P3P
user agents will allow users to be informed of site practices (in both machine-
and human-readable formats) and to automate decision-making based on these

236 Distributed Systems Security: Issues, Processes and Solutions

practices when appropriate. This allows a user to make an informed decision
about the Web sites they visit, and also removes the impediment of having to read
the privacy policy of each Web site. One of the guiding principles of P3P is to
maximize privacy, user confidence and trust on the Web. The P3P [2] specification
defines:

(1) A standard schema for data a Web site might wish to collect, known as the
P3P base data schema.

(2) A standard set of uses, recipients, data categories and other privacy disclo-
sures.

(3) An XML format for expressing a privacy policy.

(4) A means of associating privacy policies with Web pages or sites, and cookies.

(5) A mechanism for transporting P3P policies over HTTP.

The same philosophy can be extended to Web services, where service-consumer
agents can dynamically use these policies to determine if the privacy policies meet
their standards and make a decision at runtime regarding the consumption of the
service.

P3P policies use XML constructs with namespaces to provide contact infor-
mation for the legal entity making the representation of privacy practices in a
policy. They also explain the date elements that could possibly be captured and
how the data could potentially be used. In addition, policies identify the data
recipients and make a variety of other disclosures, including information about
dispute resolution and the address of a site’s human-readable privacy policy. P3P
policies must cover all relevant data elements and practices. The elements of the
P3P policy vocabulary are given in Table 11.3.

Figures 11.7 and 11.8 indicate the various possible forms of communication
between a Web-service consumer and a Web-service provider.

Figure 11.7 represents the scenario where a service consumer requests the
privacy policies of the Web-service provider. The request might contain the accept-
able privacy policies for the service requester in the SOAP request headers. Upon

Get Stated
Privacy Policies

SendStated
Privacy Policies

SOAP__

% 2

Service Provider Service Requestor
BIND & INVOKE

3

Figure 11.7 Implementing privacy among Web services.

Service-Level Solutions

237

Table 11.3 P3P vocabulary.

Element

Description

ENTITY
ACCESS

DISPUTES

REMEDIES
STATEMENT

CONSEQUENCE

PURPOSE

RECIPIENT

RETENTION

CATEGORIES

Gives a precise description of the legal entity making the
representation of the privacy practices

Indicates whether the site provides access to various kinds of
information

Describes dispute resolution procedures that may be followed
for disputes about the services’ privacy practices, or in cases
of protocol violation

Specifies the possible remedies when a policy breach occurs

May state that there is no data collected under this
<STATEMENT>, or that all of the data referenced by that
<STATEMENT>will be kept anonymous upon collection

Explains why the suggested practice may be valuable in a
particular instance

Must contain one or more purposes for data collection. Must
explicitly state the possible purposes of data collection, such
as telemarketing, administration and so on.

Indicates the legal entity beyond the stated service provider to
whom the data could possibly be distributed, for example
business partners and so on.

States the type of retention policy. This policy indicates
whether the data will be retained for a specific time frame or
indefinitely

Provide a small insight into the potential uses of data. Could
indicate demographics, surveys and so on.

PUBLISH
with
Defined
Privacy

40 S
‘;@ R
Policies SOAR . /'

FIND with Stated
Privacy Policies

N

SOAB___
L

Service Provider

BIND & INVOKE

Service Ruéstor

Figure 11.8 Implementing privacy among Web services with brokers.

238 Distributed Systems Security: Issues, Processes and Solutions

receiving this request, the Web-service provider sends across the published privacy
policies to the service requester. The service requester then analyzes the privacy
policies to check if they are secure enough to satisfy their privacy needs. If they
are satisfied with the provider’s privacy policies then they send across the normal
SOAP request.

Figure 11.8 is an alternative approach, where a Web-service broker performs
the negotiations between the service provider and service requester. The service
provider publishes all their services with their privacy policies for each Web
service or even each method published in the Web service. The service requester
sends a request, which contains the parameters of privacy that are acceptable to
them. The service broker then analyzes this request and matches it against the
services published in the registry. The service broker additionally matches the
privacy parameters of the service requester against the published privacy policies
of the services. After this matching, the service broker returns a set of service
end-points that satisfy the request parameters and match the acceptable privacy
parameters set by the service requester.

11.4.11 Federated Identity Standards — Liberty Alliance Project
and WS Federation

The two crucial standards enabling federated identity in the context of SOA are
the Liberty Project (now merged with SAML 2.0) and WS Federation (as part of
WS-Security stack). See Table 11.4.

11.4.12 WS-I Basic Security Profile

The Basic Security Profile (version 1.0) (BSP 1.0) was published in March 2007
by the Web Services Interoperability Organization (WS-I). The WS-I Profiles
are guidelines that establish tests to ensure secure interoperability between Web
services from multiple vendors. The Basic Security Profile is a superset of the
WS-I Basic Profile, and defines how to implement Web Service Security in a
way that will be interoperable with other Web services that implement the same
profile.

The WS-I Basic Security Profile is an interoperability profile that addresses
transport security, SOAP messaging security and other security considerations
for the WS-I Basic Profile. It defines the interoperability requirements for imple-
menting HTTP over TLS (a point-to-point technology), and the requirements
for implementing SOAP Message Security, which provides security protection
for SOAP messages even across multiple intermediaries. The WS-I Basic Pro-
file and Basic Security Profile are guides on how to implement the Web-service
specifications to improve interoperability.

Service-Level Solutions

239

Table 11.4 Comparison of WS Federation and Liberty Specs.

Feature/functionality

Liberty alliance project

WS Federation

Similarities Client profiles

SSO control flows

Account
federation

Differences

Privacy

Security tokens

Business and
policy issues

Underlying
technology

General
Differ-
ences

Approach

Scope

Specifies client profiles
for both browser and
smart clients

SSO control flows
specify both front-
and back-channel
mechanisms

Opaque identifiers used
in identity mapping

Recommends access
control policies, usage
directives and
pseudonymity

Uses SAML and WS-
Security

Has business guidelines
and authentication
context

Builds on SAML and
relies on SSL and WS-
Security for transport
and message security

Developed by an open
standards community,
which includes
vendors, end-users and
nonprofit organizations

Holistic focus on techno-
logy, business and
policy issues
associated with
federated identity
services

Specifies client
profiles for both
browser and smart
clients

Recommends the
front-channel
mechanism and
discourages use of
‘pointer-based’
back-channel
mechanisms

Pseudonym service
used in identity
mapping

Optional privacy
support

Uses WS-Security

Business trust issues
not addressed

Builds on WS-Trust,
WS Policy and WS
Metadata
foundation and
relies on SSL and
WS-Security for
transport and
message security

Developed by
Microsoft, IBM,
VeriSign, BEA and
RSA Security;
submitted to
OASIS

Focus on technology
specifications for
federated identity
services

240

Distributed Systems Security: Issues, Processes and Solutions

11.4.13 Status of Standards

Table 11.5 Web-services security standards.

Security Governing organi- Comments

standard zation/status

XML W3C Recommen- Widely accepted. Provides for digital signing of
Signature dation XML documents

XML W3C Recommen- Widely accepted. Provides for encrypting all or
Encryption dation part of an XML document

XML Key W3C and IETF Newer. Used in conjunction with XML Signature
Management Recommenda- and XML Encryption. Provides a standard for
Specification tion distributing and registering public keys

WS-Security

WS-Trust

WS-Secure
Conversation

WS Federation

Liberty

WS-Security
Policy

WS Policy

WS-I Basic
Security
Profile

SAML

WS Privacy
XACML

OASIS Standard

OASIS Draft

OASIS Draft

OASIS Draft

Project Liberty
OASIS Draft

W3C Recommen-
dation

WS-1

Organization

OASIS Standard

P3P project
OASIS Standard

Widely accepted. Significant tool and vendor
support. Standardizes how security is added to
SOAP messages

Not yet adopted by OASIS, yet significant
vendor support. Extends WS-Security to
address interoperability between security
tokens

Builds on WS-Security and WS-Trust. Support
from newer tools. Defines how to exchange
multiple secure messages as part of a secure
conversation

Widely accepted even though it is not yet a
standard. Recent significant tool and vendor
support. Provides for secure access of
resources by federated identities

Widely adopted. Now merged into SAML 2.0

Part of WS-Security Stack for incorporating
security policies

Fast-tracked at W3C. Fills gap in SOA, allowing
services to specify their capabilities and
security-policy requirements

Newly published by the WS-I to address
interoperability of WS-Security standards. Will
be widely adopted because it defines how to
implement a security model that will
interoperate with other security
implementations

Widely adopted. Large vendor support. Provides
a way to specify authentication information
about a user

Wide adoption in Web sites

Newer, yet already widely accepted. Provides a
syntax for authorization information

Service-Level Solutions 241

11.5 Deployment Architectures for SOA Security

Key to enforcing standards to increase their effectiveness in achieving SOA secu-
rity is the right architectural prescription. In terms of SOA security requirements,
there are broadly two main architectural components:

(1) Message-level security and policy infrastructure.
(2) XML firewall.

11.5.1 Message-Level Security and Policy Infrastructure

As mentioned in Chapter 7, it is imperative that deployment architectures
for SOA should enable loosely-coupled mechanisms for addressing diverse
identities, service providers and directories, while ensuring the right security
imperatives. In view of such requirements, an equally important imperative
has emerged from our discussion of SOA security standards in the previous
section, namely that message-level security infrastructure is vital for correct
deployment of SOA standards. Likewise, given the diverse policy formats and
requirements that need to be accommodated in managing SOA security, it is
important that a loosely-coupled, scalable SOA security architecture is put in
place, wherein the key drivers of interoperability, plugability and flexibility are
easily achievable.

A scalable architecture involving policy infrastructure and capable of handling
Web-service authorization and authentication requirements can be illustrated as in
Figure 11.9.

This architecture essentially decouples any policy or security constraints from
the coding of the business logic of the system. Any changes in policy are handled
at the PDP stores and PEPs. At the same time, the architecture is able to man-
age multiple existing mechanisms, be they existing LDAP/ID stores or existing
authentication mechanisms.

The key here is to note that SAML and WS-Security standards are being used
interchangeably. While this represents the most generic of the security architec-
tures for SOA, minor variations get induced depending upon the complexity of
the underlying security requirements.

11.5.2 XML Firewalls

As mentioned earlier, XML firewalls are the new breed of firewalls, which operate
at or above the application layer in the conventional TCP/IP stack. Traditional
packet-filtering firewalls are incapable of handling denial-of-service (DOS) attacks
at the XML and Web services layer. The XML and Web services-layer attacks
are based on text fragments of XML, which cannot be diagnosed or detected by
packet-filtering mechanisms.

242 Distributed Systems Security: Issues, Processes and Solutions

\ 3.Communicate with
v lidentity store

1. Request

End
Consumer

entity store

4
7y 7 (LDAP, Radius, Active
' Vg Directory etc.)
l'
]
)

5. Forward
request with
SAML

PEP
(Proxy/
agent
mode)

9. Send service
request with
Last Mile
security

Service

Application
server

Y

7. Encrypted and Provider

signed, WSS compliant,
Web service request
with SAML and

application credential g Apply service policies
(digital cert., username/ (gecrypt, authenticate Service container

password etc.) gAML, authorize etc.) based
on definition in the central
PDP

Figure 11.9 Reference security architecture for WS-Security.

In view of these restrictions, the XML firewalls, based on the idea of XML
content inspection, are emerging. XML firewalls are available as software prox-
ies or appliances. The software firewalls are generally high-performance proxies
that provide additional defense to secure Web service deployments. These XML
firewalls can be configured to perform authentication, authorization and auditing,
and prevent the various Web-service attacks. They are typically deployed behind
the IP firewall, and control the message flow before it reaches the Web services.
XML firewall appliances rank higher in terms of performance and scalability,
however.

XML firewalls inspect incoming and outgoing messages for vulnerabilities
before the messages pass on to an application or client. They are designed to
address familiar Web-based attacks that can be transported via XML. Unlike a
traditional firewall, an XML firewall works on a higher level and decides whether
or not an XML message may access a specific operation of a specific Web service.
The access is typically defined in terms of service-requester role and role-based
access control (RBAC) rules. Correct authentication allows access to the specific
operation and/or data item.

Software XML firewalls are cheaper and have a lower total cost of ownership,
but consequently provide less features. XML firewall appliances, on the other

Service-Level Solutions 243

hand, can provide better performance and scalability. The general recommendation
is always inclined toward the hardware-based XML firewall appliances due to the
evolving nature of Web-service standards and the fact that the overall cost is not
that prohibitive for an enterprise landscape. A research prototype of an XML
firewall, to help prevent XDOS attacks, is available at [3].

11.5.2.1 XML Firewall Request Processing Design

XML firewalls are generally deployed at the edge of the enterprise-application
ecosystems. All XML requests are routed through the XML firewall. Hence the
XML firewall acts as a gatekeeper and security policies can be defined that deter-
mine the different actions taken during the processing of a request. The following
is a general list of the steps taken during such processing:

(1) Parse the message headers for the following:
(a) check source IP address
(b) check requested resource (physical address/virtual address).

(2) Log the request or send the request to a real-time intrusion-detection system
if that has been configured on the firewall.

(3) Check the underlying SSL certificate for its validity if the transport used is
HTTPS.

(4) Classify the request based on URL, IP address and the SOAP headers.

(5) If a SOAP action header exists then associate the request with the action
handler.

(6) Parse the SOAP envelope for credential checks.

(7) Apply the appropriate security-realm handler for the following credentials:

(a) username/password handler

(b) WS username token handler

(c) Kerberos token handler

(d) SAML token handler

(e) Any other custom SSO token-management handler.

(8) If the credential check is successful then associate a message handler with
the message, depending on the message classification. There may be a chain
of handlers that can be associated in a configured order.

(9) Check message for well-formedness and schema conformance.

(10) Evaluate the SOAP body of the message and make any additional credential
checks that may be required.

(11) Message-level encryption could potentially exist, so possibly configure the
firewall to check for the checksum validity to discover any message tamper-
ing.

(12) Decrypt the XML content and validate the XML Signature if associated with
the message.

244 Distributed Systems Security: Issues, Processes and Solutions

(13) Possibly configure the firewall to check for message complexity and size, to
manage DOS attacks.

(14) Possibly apply XSLT validations to the message body to validate against the
schema.

(15) Possibly apply constraint-based filters to the messages, to check the validity
of the message values.

(16) Possibly apply pattern-matching filters to check for injection attacks.

(17) Check for any SOAP attachments associated with the message. Additional
parameters can be configured to check for the attachment size and viruses,
to prevent any hidden attacks.

(18) Process any additional SOAP headers if required.

(19) Determine the routing, depending upon whether the access requested is to:

(a) a single physical service
(b) a single virtual service
(c) multiple virtual services.
(20) Apply any postprocessing XSLT to the message.

(21) Recheck message validity, and generate a timestamp and audit the message.
(22) Route the message to the destination.

11.5.2.2 XML Firewall Deployment Architectures

The two most common deployment scenarios for the XML Gateway are detailed
below.

Demilitarized zone scenario

The demilitarized zone (DMZ) scenario (Figure 11.10) is a common deployment
design for the perimeter security of applications. In a DMZ scenario two IP
firewalls are used to create a demilitarized zone. The XML security gateway
resides in this DMZ and sniffs and analyzes all incoming XML and SOAP traffic.
The Web service end-point lies at the other end in a protected network. The
whole design is based on a ‘defense of depth’ mechanism. The exterior IP firewall
controls, restricts and enforces policies regarding access to the public network.
The XML security gateway is used to perform authentication and authorization
on the XML traffic. The interior firewall is responsible for monitoring traffic to
the protected network. There is also an additional XML security gateway that
monitors and controls XML traffic originating from the protected network or the
internal users of an enterprise.

Federated trust (B2B) scenario

The second scenario (Figure 11.11) is a more advanced deployment design used
for integrating business partners with the enterprise. A prime example is manufac-
turers integrating their suppliers into their lifecycle for ‘just in time’ production.

Service-Level Solutions 245

Internal Users

-~ N o XML Securtiy
Internet/Public Demilitarized Zone Gateway

Domain

XML Securtiy |ntrsaen§/ti(\>lé/eb
EEE \ Applications

Figure 11.10 DMZ deployment scenario.

Federated

Extranet Internet
Internal
Users

Demilitarized
Zone

Demilitarized
Zone

Web Service
Applications

Web Service XML Securtiy XML Securtiy
Applications Gateway Gateway

—— =0~ —mT
——0sS0o~—T
——0 S0~ —mT

Figure 11.11 Federated deployment scenario.

246 Distributed Systems Security: Issues, Processes and Solutions

This is the virtual integration of heterogeneous systems across multiple organiza-
tions with federated users. While this allows for greater flexibility, it also gives
attackers the opportunity to break into systems across different enterprises. It also
means that an enterprise is only as secure as the weakest link of the federated
network. The design is literally a double mirror image of the DMZ scenario,
connected by the Internet. The underlying network connections could be secure
private networks as per the security needs and the criticality of the informa-
tion flow. XML gateways are installed on the service requester and the service
provider. The XML gateway on the service requester provides access control and
can enforce policies to control access to services and to the information in the
requests. The gateways between the service provider and service requester need
to be interoperable on user identity and their underlying roles, and probably even
to provide SSO. The service gateways may use SAML as the common framework
for authentication, authorization and even SSO token exchanges.

11.6 Managing Service-Level Threats

An XML gateway or firewall generally provides the ability to create, configure
and enforce a security policy. As all XML traffic is directed through the firewall,
it becomes a central point at which to enforce security policies. We shall now
list the solutions that should be offered by XML firewalls to combat the security
threats listed in Chapter 7. We use a set of logical parameters for the configuration
of an XML firewall, to help us address individual attacks, and these parameters
may exist in different forms in different frameworks or products.

Services threat management is an integral part of the overall design of the
security architecture. The services security design should consider the following:

(1) Data encryption.
(2) XML packet inspection.
(3) Easy and quick definition and implementation of security policies.
(4) Message inspection, validation and integrity checks.
(5) Support for various authentication mechanisms.
(6) Authorization and access control.
(7) Service virtualization.
(8) Real-time check for digital certificate validations.
(9) Support for digital signatures for signing transactions.
(10) Support for federated trust models.
(11) Network-perimeter defense design.
(12) Transport-level security.
(13) Real-time fraud management.
(14) High levels of security logging and auditing.

Service-Level Solutions 247

11.6.1 Combating SQL and XPath Injection Attacks

There are various techniques that can be used to prevent code-injection attacks.
Some of these are listed below.

11.6.1.1 Malicious Input Validation

Input validation is the most important step in avoiding injection attacks. All
input is guilty until proven otherwise. All input should be constrained with
a set of values. It should be validated and sanitized before it is processed
by the service. Validate not only the type of data but also its format, length,
range and contents (for example, a simple regular expression such as if
(/"7 ™" ; & < > ()/) should find most suspect special characters). Validate data
both on the client and on the server, because client validation is extremely easy
to circumvent.

11.6.1.2 XML Firewall Filters

Injection can be prevented using XML firewalls. XML firewalls support the
configuration of pattern-matching filters. The filters allow checking for specific
patterns and can replace single apostrophes with double apostrophes. This will
force the database server to recognize the apostrophe as literal characters rather
than as string delimiters.

11.6.1.3 XSL Validators

Additionally, the incoming XML message inputs can be transformed using XSLs.
The XSLs can perform validations on specific parts of the input messages. This
ensures the validity of the input.

11.6.1.4 Avoid Dynamic Queries

Avoid the use of dynamically-generated queries. For example, using the Prepared-
Statement interface as opposed to the Statement interface in the java.sql package
is advocated. The use of parameterized query statements or stored procedures will
make it extremely difficult to mount injection attacks.

11.6.1.5 Error Information Sanitization

The error or SOAP fault information should be sanitized before sending it across
to the service requester. There have been so many instances where underlying
database errors are passed to the consumer. These can be used by attackers to
gain valuable information about the database.

248 Distributed Systems Security: Issues, Processes and Solutions

11.6.2 Combating Cross-Site Scripting Attacks

Phishing attacks, or attacks where what appears to be a valid URL links to
a fraudulent Web page whose purpose is to collect users’ data, are nothing
new to the Web world. Most of the problems related to cross-site scripting are
caused by existing flaws in the security designs of applications, and simple mis-
takes committed by users. The following techniques can be used to avoid XSS
attacks.

11.6.2.1 Filter Input Parameters

It is important to filter all special characters from input that is stored or processed
on a server because URLs and GET/POST requests can be created manually.
Special characters are characters that enable script to be generated within an
HTML stream.

11.6.2.2 Encode Output Based on Input Parameters for Special Characters

It is important to encode the received input data before it is written down to
the HTML stream. This technique is effective on data that was not validated for
some reason during input. It also encodes URLs, making it difficult for attackers
to inject malicious JavaScript. However, given that eventually the application is
responsible for all of the UI or response streams, it is imperative that systems be
designed to validate all inputs provided by the user.

Users are always advised to look carefully at URLs and the parameters provided
with them. URLs will appear in the status bar of your browser and you should
always look for external script reference.

11.6.3 Combating Phishing and Routing Attacks

Some common techniques to address Schema-based attacks, WSDL phishing,
probing attacks and SOAP routing attacks are included below.

11.6.3.1 Service Virtualization

WSDL is the primary source of information for mounting attacks. Hence it is
imperative to protect the WSDLs. XML firewalls can be used to virtualize the
underlying URLs and services. Virtualization allows the provider to hide URL
and the communication protocols from attackers.

Service virtualization can be implemented as an intermediary or through WSDL
proxies. An additional layer of security could be to implement message-level
filters. These filters can be used to perform content based routing to an internal
name or URL. It is also advisable to enforce authentication even for WSDL
access.

Service-Level Solutions 249

11.6.3.2 Use of WS Addressing

WSDL end-points used to be located through conventional URLs. This allowed
attackers to directly access Web services using a URL such as http://soap.amazon.
com/schemas2/AmazonWebServices.wsdl.

WS Addressing has introduced the concept of an EPR. An EPR allows a ser-
vice requester to request a resource. The service provider can then validate their
credentials even before the WSDL has been requested. This prevents an attacker
from gaining direct access to the WSDL. Additionally, because EPRs allows for
user-defined properties to be sent to the resource, they can actually be bound to
different transport protocols. Multiple EPRs might share the same URI but specify
different resource reference properties and hence represent different services. This
is a behavior akin to polymorphism in objects-oriented languages, where objects
can take up different forms at run-time because of some specific properties. This
means the attacker sees the same URI for all services and requires further knowl-
edge of resource IDs. Resource IDs can be distributed to concerned partners and
consumers separately as passwords. This prevents random WSDL scanning and
port scanning.

11.6.3.3 IP-Based Access Control

XML firewalls can be configured to only allow requests from a list of trusted and
secure IPs. This prevents unauthorized and attacker requests from coming into
the application zone.

11.6.4 Handling Authentication Attacks
11.6.4.1 Handling Dictionary/Forced-Entry Attacks

Dictionary attacks are mounted when an attacker targets a Web service with tools
and automated password generators. Cryptography techniques and transport-level
protocols like SSL/TLS, in conjunction with Web-services security standards
including XML Encryption and WS-Security, can be used to address these.
Secure transport protocols (SSL/TLS) can assure the security of messages only
at socket-layer security, encrypting all communication over a particular TCP
connection. As already discussed, SSL is a good solution for server-to-server
security but it can’t adequately address a scenario where a SOAP request is
routed via more than one server, or only part of a message needs encryption.
Message-level security allows for entire or specific portions of messages to be
encrypted using XML Encryption, and using WS-Security to transport such
payloads in SOAP.

Additionally, security polices can be configured in XML firewalls to counter
these attacks. The XML firewall can monitor the symptoms, and when rejected
requests reach a threshold level it can send notifications or deny access to the

250 Distributed Systems Security: Issues, Processes and Solutions

service. The following set of parameters (these are logical names, and product
agnostic) should be configured on the XML firewall to avoid these attacks.

MAX_REQUEST_RATE_FROM_HOST

This parameter represents the maximum number of requests that the firewall
should receive per second from a particular IP address.

ATTACK_THRESHOLD_COUNT

This parameter represents the threshold number at which the firewall should acti-
vate its exception-management scenarios for a possible dictionary attack.

NOTIFICATION_TYPE

This parameter indicates the type of notification that is required. Different and
multiple levels of notification are generally configurable. There could be system
notifications and/or e-mail notifications. Most firewalls also provide the ability
to integrate with existing operations-management systems like BMC Patrol and
SO on.

AUTO_SERVICE_DENY

This flag indicates whether the XML firewall should automatically shut down the
service if the threshold limit is reached. This flag can be set to true for different
attacks.

SERVICE_RESTART_INTERVAL
This parameter is used for automated restart of the service after the specified time
interval.

In addition, real-time intrusion-detection systems (IDS) can be integrated with
XML firewalls. This allows the audit logs to be fed to the IDS, which have built-in
sophisticated algorithms for detecting such patterns of attacks and frauds.

11.6.4.2 Handling Computed Authentication Attacks

The session ID that is generated should be a long key and should have a
random-number component to it. If a specific algorithm is used to generate these
keys then it should be a nongeneric algorithm. Nongeneric algorithms have a
random element, which makes it extremely difficult to regenerate or guess the
session keys.

11.6.4.3 Handling Session Hijacking and Fixation Attacks

These are impersonation attacks orchestrated to hijack an authenticated session
from a legitimate user. The user may also be given a link with a generated session

Service-Level Solutions 251

ID, and then his session can be used for attacks. Web services are even more
vulnerable to these attacks as there is no sophisticated mechanism for session
management. The following techniques can be used to address this:

(1) Regenerate the session ID after login. This way the session ID passed on by
the attacker is rendered invalid, making difficult to conduct session-fixation
attacks.

(2) Check the originating IP address of the login request and any subsequent
requests. This ensures that the session is bound to the same IP address used
at login. However, this technique fails if the attacker shares the IP address
with the user. It will also fail if the IP address of a legitimate user changes
during the session.

(3) Use WS Addressing to create a virtual session management by using the
MessagelD attribute. It is imperative that the MessagelD is generated using a
sophisticated algorithm. It is also important to create a network-transportable
session ID that is mapped internally to the actual session ID. Passing the
session ID over the network poses a high risk.

(4) Web service providers use username tokens for authentication, and even
SAML tokens are typically used for SSO mechanisms. These tokens should
be linked to specific time-outs, which ensure that the user has to re-enter
credentials and hence that a hijacked session is only valid for a specific time.

(5) Service providers like payment gateways or institutional banks dealing with
corporate payments are going the extra mile by putting in two-factor authen-
tication or smart-card-based authentication.

(6) Bind the session ID to the user’s SSL client certificate — a very important and
often overlooked issue in highly-critical applications: each server-side script
must first check whether the proposed session was actually established using
the supplied certificate.

(7) Encrypt the data passed between the parties, in particular the session key. This
technique is widely relied upon by Web-based banks and other e-commerce
services, because it completely prevents sniffing-style attacks. However, it
could still be possible to perform some other kind of session hijack.

11.6.5 Handling Man-in-the-Middle Attacks

A replay attack is a man-in-the-middle type of attack where a message is inter-
cepted and replayed by an attacker to impersonate the original sender. These are
the most difficult DOS attacks to control, as the attacker can flood the service with
valid requests. They are also known as spoofing attacks. The use of WS-Security
username tokens and WS Addressing for managing routing and message relay also
does not directly deal with replay attacks. The Web Service Security Username
Token Profile [4] specifically states the following techniques to effectively thwart
replay attacks:

252 Distributed Systems Security: Issues, Processes and Solutions

(1) It is RECOMMENDED that Web-service producers reject any UsernameTo-
ken not using both nonce and creation timestamps.

(2) It is RECOMMENDED that Web-service producers provide a timestamp
‘freshness’ limitation, and that any UsernameToken with ‘stale’ timestamps
be rejected. As a guideline, a value of five minutes can be used as a minimum
to detect, and thus reject, replays.

(3) Itis RECOMMENDED that used nonces be cached for a period at least as long
as the timestamp freshness limitation period, above, and that UsernameToken
with nonces that have already been used (and are thus in the cache) be rejected.

As indicated above, it is imperative to use a timestamp-based approach for any
kind of token issue and validation. SAML tokens and WS Addressing Message IDs
should also be linked to a timestamp mechanism. This allows applications and the
token issuers to revalidate or regenerate the tokens upon expiry. There are various
other parameters that can be configured on an XML firewall to prevent replay
flooding and DOS attacks. Implementing cryptographic technologies is another
solution. Using a public-key—private-key combination would mean that even if
an attacker hijacked the messages, they would need the signing key to decrypt
them. Additionally, an XML firewall can be used to addresses these attacks by
adjusting the parameters below (some of them are repeated from earlier solutions).

REPLAY_MONITOR_FLAG

This flag can be configured on the XML firewall. If it is set to true, the firewall
will use a set of elements to check whether the same message is passed through
the firewall more than once in a specific time interval.

REPLAY_MONITOR_INTERVAL
This parameter is used to enable the XML firewall to check for potential replayed
messages. This time interval should be set to less than the token expiry intervals.

MAX_REQUEST_RATE_FROM_HOST

This parameter represents the maximum number of requests that the firewall
should receive per second from a particular IP address. It can be used to limit
replay attacks from any particular IP address.

ATTACK_THRESHOLD_COUNT

This parameter represents the threshold number of requests at which the firewall
should activate its exception-management scenarios.

NOTIFICATION_TYPE

This parameter indicates the type of notification that is required. Different and
multiple levels of notification are generally configurable. There could be system

Service-Level Solutions 253

notifications and/or e-mail notifications. Most firewalls also provide the ability to
integrate with existing operations-management systems like BMC Patrol and so on.

AUTO_SERVICE_DENY

This flag indicates whether the XML firewall should automatically shut down the
service if the threshold limit has been reached. This flag can be set to true for
different attacks.

SERVICE_RESTART_INTERVAL

This parameter is used for automated restart of the service after the specified
time interval.

MAX_REQUEST_RATE

This parameter is used to define the maximum number of requests for a service.
This is done to ensure that any particular service does not absorb a lot of resources,
which would affect the performance of other services.

11.6.6 Handling SOAP Attachment Virus Attacks

The advent of WS Attachments [5] as a standard meant that binary data in various
formats could be transported with the underlying SOAP messages. WS Attachments
allows the SOAP stack to be used in an almost e-mail-like manner. It can also be
used for breaking messages into multiple parts. However, just like e-mail-based
virus attacks, an attacker can send spurious attachments with SOAP messages. This
can be combated by defining security policies that detail the mechanisms by which
attachment processing should happen with Web services. The following parameters
can be configured in the XML firewall to implement the security policy.

ATTACHMENTS_PROCESS_FLAG

This parameter indicates whether the XML firewall should allow messages that
have attachments. If the flag is set to false, all messages with attachments will be
discarded.

ATTACHMENTS_EXCLUSION_FILTER

This parameter lists the types of attachment that need to be barred from entry. It
will define the DIME/MIME types for exclusion. This is very similar to e-mail
policies wherein attachments like .exe are discarded.

ATTACHMENTS_MAX SIZE

This parameter defines the maximum attachment size that can be processed by
the firewall. This parameter needs to set, as potential attackers could send huge
attachments to cause DOS attacks.

254 Distributed Systems Security: Issues, Processes and Solutions

11.6.7 Handling Parameter-Tampering Attacks

Parameter tampering is a more sophisticated attack, where the attacker actually tar-
gets the integrity of the message, changing specific values like amounts and so on.
These attacks can be combated by a variety of techniques, including those below.

11.6.7.1 Signed Messages

The message body or certain parts of the body may be encrypted to preserve the
integrity and confidentiality of the message. This can be accomplished through
traditional PKI infrastructure or X.509 certificates.

11.6.7.2 Schema Validation

All XML messages that come in through the firewall should be checked for
validation and conformance to the underlying schemas. It is recommended that
strict validation be enforced to ensure compliance. Additionally, various rules can
be set within XML firewalls or even the schemas, which can check for data types
and formats, and constrain the data to a defined subset. This validation can be
done for both inbound and outbound messages.

The following parameters can be used to enforce schema validation on the XML
firewall.

INBOUND_MESSAGE_SCHEMA_VALIDATION

This parameter defines whether the incoming messages have to be validated
against the underlying message schema. It is highly recommended that this always
be true.

INBOUND_MESSAGE_SCHEMA_VALIDATION_LEVEL
This parameter defines the level of validation that needs to be enforced for schema
validation. It is recommended that strict validation of the messages be performed.

INBOUND_MESSAGE_ELEMENT_VALIDATION_RULES

This parameter allows definition of additional validation rules that can be per-
formed on the message element or attributes. This is defined for each element or
attribute.

11.6.8 XML Attacks
11.6.8.1 External-Entity Attacks

Successful external-entity attacks could lead to unauthorized access, allow access
to files on the host and open up TCP ports. There are various techniques to prevent
these attacks:

Service-Level Solutions 255

(1) Use SOAP and XMLRPC implementations that are not vulnerable in their
parser configuration to external-entity attacks.

(2) Use SOAP and XMLRPC implementations that do not support external
entities.

(3) Most parsers allow the user to explicitly specify the external-entity handler.
It is generally recommended to suppress external URI references to protect
against malicious data.

(4) Do not expose the user accounts that have access to host commands to external
entities.

(5) Create an explicit and protected chain of trusted domains and only accept
URLs from these domains.

11.6.8.2 XML Denial-of-Service Attacks

XML DOS attacks are orchestrated by attackers to make the response of services
extremely slow or completely unavailable to legitimate users. This is gener-
ally accomplished by using various techniques such as flooding and complex
requests. These requests look like legitimate ones and force the service to pro-
cess them.

AUTO_REQUEST_BLOCK
This parameter indicates that all requests from an IP address which is sending
spurious messages should be blocked.

ATTACK_THRESHOLD_COUNT
This parameter represents the threshold number of requests at which the firewall
should activate its exception management scenarios.

ERROR_THRESHOLD_COUNT

This parameter represents the threshold at which action, which might include
notification, is taken when a service starts returning an unusually high number of
errors or SOAP faults.

AUTHORIZATION_THRESHOLD_COUNT

This parameter represents the threshold at which action can be taken when an
excessive number of HTTP unauthorized/forbidden errors are returned.

CPU_THRESHOLD_LIMIT
This parameter represents the threshold at which action can be taken when mes-
sage processing takes a large number of CPU cycles.

256 Distributed Systems Security: Issues, Processes and Solutions

NOTIFICATION_TYPE

This parameter indicates the type of notification that is required. Different and
multiple levels of notification are generally configurable. There could be system
notifications and/or e-mail notifications. Most firewalls also provide the ability
to integrate with existing operations-management systems like BMC Patrol and
SO on.

AUTO_SERVICE_DENY

This flag indicates whether the XML firewall should automatically shut down the
service if the threshold limit has been reached. It can set to be true for different
attacks.

SERVICE_RESTART_INTERVAL
This parameter is used for automated restart of the service after the specified time
interval.

MAX_REQUEST_RATE

This parameter is used to define the maximum number of requests for a service.
This is done to ensure that any particular service does not absorb a lot of resources,
which would affect the performance of other services.

11.6.8.3 Complex-Payload Attacks

Attackers may use complex XML payloads by creating a recursion or deep nesting
of XML elements to overwhelm the parser. This should generally be configured
by creating a policy around SOAP/XML messages, which should clearly define
the following parameters.

MAX_NESTED_LEVELS

This defines the maximum amount of nesting allowed inside a particular element.
The XML firewall will check whether the message conforms to this configuration.
This parameter can be set as per the schema definitions of the messages in WSDLs.

MAX_ATTRIBUTE_ALLOWED
This defines the maximum number of attributes allowed for a particular element.

MAX_ELEMENT_PER_LEVEL

This defines the maximum number of elements allowed for each level in the tree.
This prevents attacks where the attacker simply creates a large XML message
without any kind of nesting of elements.

Service-Level Solutions 257

RECURSION_ALLOWED

This parameter allows the policy to define whether recursion is allowed within
the XML message. This should be switched on only in specific instances when
the underlying schema of the message is extremely complex. It is recommended
that defining such complex schemas be avoided.

11.6.8.4 Oversized-Payload Attacks

These attacks are intended to overwhelm the parser by sending a large message.
They can be prevented by defining the following parameters in the security policy.

MAX_MESSAGE_THRESHOLD

This parameter sets the maximum size of a message. There can be strict rules
governing the parsing of messages greater than the threshold size. The policy can
allow specific overrides in exception scenarios.

MAX_REQUEST_PROCESS_TIME

This parameter defines the response time for every request that goes through
the firewall. It can be tricky to configure as a lot of this depends on the load
and complexity of the underlying service. However, it can be used effectively to
monitor requests that take a lot of response time and might be possible candidates
for DOS attacks.

11.6.9 Known-Bug Attacks

Enterprises use popular open-source frameworks as part of their solutions. How-
ever, open-source frameworks have well-publicized bug lists, which are often
exploited by hackers to mount attacks. There are various options to combat these
attacks, including:

(1) Continuous monitoring of open-source bug lists, to understand issues and
create mitigation plans for preventing attacks.
(2) Specialized support structures for maintenance of open-source frameworks.

11.7 Service Threat Solution Mapping

Table 11.6 provides an overview of the solutions to the attacks and vulnerabilities
identified in Chapter 7.

11.8 XML Firewall Configuration-Threat Mapping

Table 11.7 provides the reader with an overview of the parameters and mechanisms
that can be used in an XML firewall to counter various threats. These features

258

Distributed Systems Security: Issues, Processes and Solutions

Table 11.6 Solutions to service-level threats.

Categories Attacks

Solutions

Service attacks SQL injection
XPath and

XQuery

Cross-site
scripting

Parameter
tampering

Denial-of-service

Service commu- Replay
nication
attacks
Buffer overflow
Flood
Data integrity
Service WSDL scanning
end-point
attacks

WSDL phishing

Sanitizing user input
Malicious input validation

Pattern-matching filters on XML firewalls

Schema and XSL validation of all XML
messages

Avoiding dynamic query generation

Error information sanitization

Filtering all input parameters

Encoding all output based on input

Validation for all special characters

Signed messages for implementing
message-level security

Schema validation for messages

Firewall rules for constraints on parameters

Denial-of-service attacks can be effectively
countered by configuration rules on XML
firewalls

Controlled IP and port access

CPU monitoring techniques

Traffic request monitoring and control

Using a timestamp mechanism in the
message design that allows identification
of stale messages

Reject any UsernameToken that does not
contain nonce and timestamps

Using XML firewall configurations to
manage replay attacks

Validating message data against the ‘source
data’ wherever possible

Service virtualization allows creation of
proxies and masking the underlying URL

WS Addressing can be used to create
end-point references. These act as a
pointer to the actual resource, without
exposing the actual resource

Creation of a handshake mechanism for
interacting with ad hoc WSDL or Web
service to ensure validity

Service-Level Solutions

259

Table 11.6 (continued)

Categories

Attacks

Solutions

Service session
attacks

Service
authentication
attacks

Service protocol
attacks

Service message
attacks

Service message
template
attacks

Session hijacking

Session fixation

Forced-entry

Brute-force

Dictionary

Computed
authentication
attacks

SOAP routing

SOAP attachment
virus

External-entity

Complex-payload

Oversized-payload

Schema poisoning

Coercive schema

Using random generators and nongeneric
algorithms for creation of session keys

Using WS Addressing for session
management

IP-address checking of requests post-login

Regenerating session IDs after login

Using encryption techniques for session
keys

Binding session IDs to the user’s SSL client
certificate

Cryptographic technologies like digital
certificates, digital signatures, PKI etc.

Using WS Addressing for session
management

Configuring rules and policies on the XML
firewall

Using WS Addressing for routing messages
and designing SOAP intermediaries

Filtering attachments with messages with
virus scans

Defining security policies on the XML
firewall

Suppressing external URI references to
protect against malicious data

Using the correct SOAP and XMLRPC
implementations

Restricting the size of the XML messages

Strict schema-validation of messages

Limiting the number of elements and
attributes per message

Configuring rules and policies on the XML
firewall

Using service virtualization to mask the
underlying URLs and protect the schemas

Strict schema validations
Read-only access protection to schemas

260

Distributed Systems Security: Issues, Processes and Solutions

Table 11.7 XML firewall configuration-threat mapping.

Categories

Attacks

XML firewall configuration parameters

Service attacks

Service attacks

Service commu-
nication
attacks

Service
end-point
attacks

Service
authentication
attacks

SQL injection

XPath and
XQuery

Cross-site
scripting

Parameter-
tampering

Denial-of-service

Replay

Buffer overflow
Flood
Data integrity

WSDL scanning

WSDL phishing
Forced-entry

Regular pattern-matching filters on XML
firewalls. These filters look for specific
patterns and replace the ¢ character with
the ¢ character

XSL validators for all XML messages
validating formats, lengths and special
characters

Creating constraint-based filters that allow
the firewall to validate element values
against a specified and limited list

INBOUND_MESSAGE_SCHEMA _
VALIDATION

INBOUND_MESSAGE_SCHEMA_
VALIDATION_LEVEL

INBOUND_MESSAGE_ELEMENT-
VALIDATION_RULES

MAX_REQUEST_RATE_FROM_HOST

ATTACK_THRESHOLD_COUNT

NOTIFICATION_TYPE

AUTO_SERVICE_DENY

SERVICE_RESTART_INTERVAL

AUTO_REQUEST_BLOCK

ERROR_THRESHOLD_COUNT

AUTHORIZATION_THRESHOLD_COUNT

CPU_THRESHOLD_LIMIT

MAX_REQUEST_RATE

REPLAY_MONITOR_FLAG

REPLAY_MONITOR_INTERVAL

MAX _REQUEST_RATE_.FROM_HOST

ATTACK_THRESHOLD_COUNT

NOTIFICATION_TYPE

Using service virtualization and creating
service proxies to mask the WSDL

ALLOWED_REQUEST_IP_ADDRESS_LIST

Configuring security-realm policies to
support various authentication and
authorization techniques like WS-Security,
SAML and cryptography

Service-Level Solutions

261

Table 11.7 (continued)

Categories

Attacks

XML firewall configuration parameters

Service protocol
attacks

Service message
attacks

Service message
template
attacks

Brute-force

Dictionary

Computed-
authentication

SOAP routing

SOAP
attachment
virus

External-entity
Complex-
payload

Oversized-
payload

Schema
poisoning

Coercive schema

Creating rules around policy enforcement to
ensure complete adherence to defined
policies

Configuring rules and policies on the XML
firewall

MAX_REQUEST_RATE_FROM_HOST

ATTACK_THRESHOLD_COUNT
NOTIFICATION_TYPE
AUTO_SERVICE_DENY
SERVICE_RESTART_INTERVAL
AUTO_REQUEST_BLOCK
ERROR_THRESHOLD_COUNT
ATTACHMENTS_PROCESS FLAG

ATTACHMENTS_EXCLUSION_FILTER

ATTACHMENTS_MAX_SIZE
MAX_NESTED_LEVELS

MAX_ATTRIBUTE_ALLOWED
MAX_ELEMENT_PER_LEVEL

RECURSION_ALLOWED

MAX_MESSAGE_THRESHOLD

MAX REQUEST _PROCESS_TIME

Using service virtualization and creating
service proxies to mask the WSDL

ALLOWED_REQUEST_IP_ADDRESS_LIST
INBOUND_MESSAGE_SCHEMA _
VALIDATION
INBOUND_MESSAGE_SCHEMA_
VALIDATION_LEVEL
INBOUND_MESSAGE_ELEMENT_
VALIDATION_RULES

262 Distributed Systems Security: Issues, Processes and Solutions

are generally available out of the box with XML firewall products. This overview
is meant to be representative and the parameters might possibly have different
names in the various XML firewall products that are available today. However,
the table does provide a guide to the general requirements of the XML firewall
and how it can be effectively used to counter the various service-level threats and
vulnerabilities.

11.9 Conclusion

In this chapter we have explored the role of standards in addressing key SOA
security requirements. Further, we explored in detail the prominent SOA security
standards in practice, with a view to helping practitioners separate the prac-
tical and popular ones from the rest. We have also explored popular emerg-
ing security architectures to address the needs of SOA, including XML- and
SOAP/WSDL-level attacks/vulnerabilities and the loosely-coupled requirements
of message-level security and policy infrastructure. In particular, we explored log-
ical options for configuring XML firewalls to address the specific requirements
for handling each security threat/attack type.

References

[1] Spec of XML Encryption, http://www.w3.org/TR/xmlenc-core/

[2] The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, http://www.w3.org/TR/P3P/

[3] Padmanabhuni, S., Singh, V., Senthil kumar, K.M. and Chatterjee, A. (2006) Preventing Ser-
vice Oriented Denial of Service (PreSODoS): A Proposed Approach. International Conference
on Web Services, ICWS 2006, September, pp. 577—84.

[4] Web Services Security Username Token Profile, http://www.docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-username-token-profile-1.0.pdf

[5] WS-I Attachments Profile Specification, http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-
2004-08-24.html

Further Reading

CISCO ACE Gateway User Guide, http://www.cisco.com/univercd/cc/td/doc/product/Webscale/ace_
xml/xml_5_1/xmlgs.pdf

Erradi, A., Maheshwari, P. and Padmanabhuni, S. (2005) Towards a Policy-Driven Framework for
Adaptive Web Services Composition. International Conference on Next Generation Web Services
Practices, NWeSP, 2005, August 22-26, 2005.

Extensible Access Control Markup Language 3 (XACML) Version 2.0, http://docs.oasis-open.org/
xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

IBM Datapower User Guide, http://www.redbooks.ibm.com/redpieces/pdfs/redp4365.pdf

IBM Web Services Tool Kit, http://www.alphaworks.ibm.com/tech/Webservicestoolkit

Liberty Specifications for Identity Management, http://www.projectliberty.org/resource_center/
specifications

OASIS Web Services Security (WSS), http://www.oasis-open.org/committees/wss/

Service-Level Solutions 263

Project Liberty, http://www.projectliberty.org/

Schmid, A., Padmanabhuni, S. and Schroeder, A. (2007) A Soft Constraints-Based Approach for
Reconciliation of Non-Functional Requirements in Web Services-Based Multi-Agent Systems,
IEEE International Conference on Web Services (ICWS 2007), pp. 711-18.

Spec of XKMS, http://www.w3.org/TR/xkms/

Web Services Federation Language (WS-Federation), http://schemas.xmlsoap.org/ws/2003/07/
secext/

Web Services Policy Framework (WS-Policy), http://specs.xmlsoap.org/ws/2004/09/policy/ws-
policy.pdf

Web Services Secure Conversation Language (WS-Secure Conversation), http://specs.xmlsoap.org/
ws/2005/02/sc/WS-SecureConversation.pdf

Web Services Trust Language (WS-Trust), http://schemas.xmlsoap.org/ws/2005/02/trust/

WS-Authorization, http://www.w3c.or.kt/~hollobit/roadmap/ws-specs/W S-Authorization.html

WS-Privacy, http://www.serviceoriented.org/ws-privacy.html

Xtradyne Firewall Architecture, http://www.xtradyne.com/products/ws-dbc/WSDBCarchitecture
.htm

12

Case Study: Compliance
in Financial Services

12.1 Introduction

‘Compliance is a journey not a destination.” It requires constant monitoring and
vigilance, combined with a balancing of cost, risk and transparency.

In this case study we look at various aspects of the financial industry. Financial
frauds have prevailed historically, and been omnipresent in multiple forms. There
have been many cases, such as the Barings Bank/Nick Leeson fraud [1] of the late
1980s, or the Allied Irish Bank/Allfirst fraud of the beginning of this millennium.
Then there were Enron, Tyco and Worldcom in the 1990s and early 2000. As
recently as this year, the French banking giant Societe Generale [2] had to write
down losses to the tune of billions of US dollars in associated bank fraud.

These cases have led to specific compliance laws like the Sarbanes-Oxley (SOX)
Act [3], Basel II [4] and the Uniting and Strengthening America by Providing
Appropriate Tools Required to Intercept and Outburst Terrorism Act (USA Patriot
Act) [5] being promulgated to enhance accountability and visibility in the banks.
Today, banks have to comply with a multitude of regulatory laws, thereby increas-
ing the effort and time spent in addressing compliance issues, not to mention
the associated cost aggravation. Organizing reports pertaining to these regulatory
compliances requires data from diverse applications, which operate in silos. Fur-
ther, these applications do not interoperate; hence the effort to cater to a specific
compliance need is both time-consuming and costly. Aggravating this is the lack
of possibility of being able to reuse data/information across multiple regulatory
needs. Existing solutions do not provide a complete end-to-end automation of
regulatory compliance in a cost-effective way.

Compliance is about providing the regulators with the expected information
in the prescribed format. Since information presently resides in digital form

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan
and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

266 Distributed Systems Security: Issues, Processes and Solutions

in highly-computerized environments, organizations are forced to provision it
through specific IT frameworks. IT organizations are being tasked with establish-
ing mechanisms for more effective, systematic control of fundamental business
processes, even when compliance issues cut across national and continental bound-
aries. Thus, irrespective of business size or industry, compliance is becoming a
primary concern for CIOs and CTOs at virtually every organization we work with.
An increasing focus on transparency, reporting and risk mitigation indicates that
the growing demand for compliance capabilities will not plateau in the near future.

Laws typically mandate monitoring provisions; for example, Section 404 of the
SOX Act [3] governs the management’s assessment of the internal controls of
the processes, system and services that produce the enterprise’s financial reports.
The people, processes and IT applications responsible for the creation, process-
ing, maintenance and production of financial reports and data come under the
scrutiny of the Act. It essentially requires managing the data with the assurance
of data-quality attributes including integrity, security, traceability and auditability.

During the building of legacy systems, very little attention was paid to the
data-quality issues. These systems were designed and operated as per the needs
of the business in an ad hoc manner. Over time, such systems developed incon-
sistencies, and on many occasions caused replication of the stored data. Adding to
this, many new business applications and processes were developed and defined,
leading to cluttering of the stored data, with no clear distinction of ownership.
In spite of the emerging technologies, the information for reporting principally
depends on the integrity and security of the legacy data. In order to establish data
quality, the applications typically depend on commercially- and custom-built prod-
ucts, which are unpredictable. Needing to comply with reporting regulations in a
limited time, organizations have adopted technologies like data warehouses, data
marts and document management systems that only provide reconciliation of data.

The Societe Generale incident [6] reemphasizes the effects of lack of
fraud-control security. Here the employee was previously a member of the
IT department and hence had an in-depth knowledge of the IT systems and
processes around fraud and security. The employee used fake e-mail messages
for confirmations to justify missing transactions. There was also a process
violation where user credentials were borrowed and shared to perform trading
under the guise of other employees.

Compliance projects face immense integration challenges. Despite the increas-
ing attention paid to compliance as a pervasive business concern, technical efforts
to address the various challenges posed by compliance requirements are being
undermined by a myopic focus on tactical initiatives. The typical IT organization
is addressing compliance reactively.

Apart from reporting during audits, there are laws like Section 215 of the Patriot
Act that require real-time reporting capabilities. The Act mandates the financial

Case Study: Compliance in Financial Services 267

enterprise to know its customers well and identify any suspicious activities, includ-
ing those indicative of money laundering. It directs firms to have robust and exten-
sive systems for customer data monitoring and reporting. In general it attempts
to track and limit the financial resources fueling terrorist activities by imposing
requirements on financial institutions, with severe penalties for noncompliance.

Until recently, to establish IT governance, many organizations engaged in
developing internal control frameworks. But then, due to the increased neces-
sity of assurance in IT systems, confusion prevailed at the existence of multiple
frameworks and multiple evaluation methods. With the passing of the SOX Act
in 2002, the need for an integrated approach toward IT management and con-
trol was realized. After much discussion and interpretation, the Committee of
Sponsoring Organizations of Treadway Commission’s (COSO) internal control
integrated framework was accepted as the de facto control framework [7]. Since
COSO’s framework was too generic in nature, subsequently many other frame-
works have evolved specifically for use with IT-related controls, such as Control
Objectives for Information and Related Technology (COBIT) [8], ISO/IEC 17799
and Information Technology Infrastructure Library (ITIL). Among these, COBIT
has become the most widely-accepted IT governance and control framework. A
typical COBIT-based IT compliance structure [9] is shown in Figure 12.1.

The key requirement for a COBIT-based approach to compliance is reliance
on the right kind of processes under the appropriate domain. From an automation
and real-time information-access perspective, it is vital that the processes be auto-
mated, and that they interact with information from the underlying applications
via standards-based services [9, 10]. It is in this context that we illustrate a key
requirement for SOX, in terms of the appropriate architecture and the constituents,
to enable realization of the information needs for SOX.

12.2 SOX Compliance

Companies that are focused on remaining productive and competitive understand
that customers, partners and employees all need deeper access to their organi-
zation, giving them what they need at the right time. Doing this effectively and
in real time means managing a multitude of user identities and interacting with
a variety of systems in an environment of constant change — all while keeping
quality of service high and the enterprise secure.

SOX is a broad Act that addresses a number of issues. The most relevant
requirements are the following [11]:

(1) CEOs and CFOs must attest to the accuracy of financial statements and dis-
closures in the periodic report (Section 302).

(2) Companies are responsible for having adequate internal control structure and
procedures for financial reporting. Management must assess these internal
controls (Section 404).

268

Distributed Systems Security: Issues, Processes and Solutions

-

+~ Domain

Planning
&
Organizing

Acquisition
&
Implementation

&
Support

Delivery

] L 1 L
! Risk Change Data Process :
: Management Management Management Monitoring |
X ——" | —— T ;
! Quality) Manage thrid System - !
' | Management Accredation party service Security Assurance Auditing rl
L3 4
;[T resources Y
[Applicat |
: pplication systems Data Asset Change i
| - Management Management Management !
| Security ;
i Administration Incident Operations Analvii \
: Management Management nalytics |
' Ll T :
| E !
| |Enterprise services Dispositioning Clp :
| E
. — NS
| otarization ofpl
1 L
1 0 E :
1| Facilities G |
: . . . _ Y '
. . - 1
' " : Data - : Data : 1 |
: AN 4 ERP / IMS / Services/ Bl Warehouse,” "/ !
] 7 H) ,-‘J. ,->'J I.l'f & r"l{ I
- !
1| Data P i ;
: Database Legacy File :
3 System p

Figure 12.1 An IT compliance structure [1].

(3) Companies must provide real-time disclosures of any events that may
affect a firm’s stock price or financial performance within a 48-hour period
(Section 409).

(4) Companies must protect and retain financial audit records (Section 802).

The SOX security solution should help address key challenges faced by com-
mercial organizations working to comply with multiple sections of the SOX Act.
These are illustrated in Table 12.1.

The corresponding issues are dealt with in detail in the following sections.

Case Study: Compliance in Financial Services

269

Table 12.1 Security requirements matrix for SOX compliance.

Section

Requirements

Security implications

Section 302 — corporate
responsibility for
financial reports

Section 404 — internal
assessment of
processes and systems

Section 409 — real-time
issuer disclosures

Section 802 — protection
of financial and audit
records

Executives must certify
and assume
responsibility for the
accuracy in the
financial reporting

Executives must engage
in audits to check for
the effectiveness of
internal controls

Near real-time
dissemination of any
information affecting
the financial state of
the company to the
public

All financial data and
audit trails must be
securely stored

Data-integrity controls

Data encryption
Data audits
Access controls

Enterprise authentication
Audit controls
Audit processes and controls

Fraud detection and control

Anti-money laundering
systems

System resilience against
denial-of-service attacks

Secure storage

Protection against data
tampering
Fraud detection and analysis

12.2.1 Identity Management

The needs are summarized below:

(1) Secure, automated and simple processes to add, suspend and remove users
from enterprise systems.
(2) Processes to view, change, audit and report on all user identities, user roles

and access privileges.

(3) Processes for audit of federated identities, roles and access privileges across

enterprise boundaries.

270 Distributed Systems Security: Issues, Processes and Solutions

(4) Replacement of time-consuming, expensive and error-prone processes with a
secure one-step process to add or remove users to/from systems.

(5) Workflow capabilities which allow mandatory corporate-approval processes
to be enforced and audited.

12.2.2 Policy-Based Access Control

The needs are summarized below:

(1) Access control to systems, information and resources must be strictly managed
through policies.

(2) It should be possible for these policies to be enforced, tracked and audited.

(3) Single sign-on must be permeated from the desktop to the applications, hence
enforcing a single universal identity policy for access to systems.

(4) Internal and external services and service registries should also be governed
by strict access-control rules. This can be accomplished via open standards
like SAML.

(5) Access to applications and information should be centrally managed via pol-
icy, providing a single point of policy enforcement and audit of access for all
users.

12.2.3 Strong Authentication

The needs are summarized below:

(1) A universal, preferably Web-based authentication using various identity mech-
anisms like usernames/passwords, SAML, digital certificates, smart cards and
even biometric devices.

(2) Encryption techniques for all sensitive data, files, folders and e-mail messages.

(3) Only strong authentication mechanisms should be employed, including
real-time challenge—response techniques for access to sensitive information.

(4) Authentication mechanisms should exist across various channels, such as
PDAs BlackBerrys and so on.

12.2.4 Data Protection and Integrity

Internal controls around data access and data integrity can be enforced through
the use of encryption and digital signatures, respectively. Data contained in files,
folders or e-mail messages can be encrypted to prevent unauthorized access due
to security breaches or weak access controls. That same data can be digitally
signed to provide both transaction accountability and data integrity, supplying
organizations not only with information on who signed the data, but also with
verification that it did not change from the time it was signed, regardless of
whether it traveled across the Internet or was stored locally.

Case Study: Compliance in Financial Services 271

12.3 SOX Security Solutions

The compliance solution to the impact of regulations like SOX is generally a
multipronged approach which addresses the following facets:

(1) people
(2) processes
(3) technology.

The Societe Generale incident [2] proves that processes need to be in place to
prevent internal frauds. Also, there need to be strong governance mechanisms to
ensure the execution and enforcement of the processes and policies.

COBIT [8] represents a detailed control framework for IT organizations. The
COBIT control definition contains a detailed IT-oriented framework consisting of
4 major domains, 34 IT processes and 318 control objectives. Full compliance with
this specification is a difficult task for most IT organizations. However, it serves
as a best-of-breed control-environment definition with more detailed guidance and
is probably the best starting point for any enterprise.

An important step in a SOX compliance plan is to evaluate the current state
of readiness. Constructing a global compliance plan is a critical SOX compliance
step. Within a global plan, measured steps are needed to ensure systematic control
processes. A global plan must address the feeder and core financial systems and
the surrounding enterprise and IT processes that are used to plan, execute and
control financial system operation.

The following are recommendations for the people, process and technology
dimensions.

12.3.1 People

(1) governance:
(a) stakeholder commitment and buy-in

(b) creation of a global and regional compliance and security governance
council

(c) identification and creation of accountable roles for compliance managers,
who should be responsible for regional and global compliance

(d) identification of assets (people) which are high-risk in terms of access to
sensitive data

(e) creation of a whistleblower policy with secure and guaranteed anonymity

(f) application and system ownership to ensure proper accountability of sys-
tem and information audits

(2) awareness training:
(a) role of IT security in SOX compliance

272

Distributed Systems Security: Issues, Processes and Solutions

(b) facets of IT security in SOX
(c) awareness of the compliance program and how it will be executed.

12.3.2 Process

The following are some of the processes that need to be addressed for SOX
compliance:

ey
(@)
3)
“)
6))
(6)
@)
®)
)
(10)
D
(12)

global compliance process

communication of the compliance-process management and execution
planning and strategy processes

governance and execution for security management
whistleblower policy

fraud identification and management

extension of the security process to suppliers and partners
physical and infrastructure security management

business processes security and management

project planning

project tracking and management

vendor and subcontractor management.

12.3.3 Technology

ey
2

3)
“)
6))
(6)
(7

®)
®)
(10)

(1)
(12)

13)

definition of a global security policy, including compliance requirements.
identification and classification of IT systems:

(a) core transaction systems

(b) core satellite systems

(c) partner data and feed systems

(d) other enterprise systems

mapping of processes to security policies

definition of centralized authentication mechanisms

secure password policies and password management

defininition of secure access control lists

single user identity across all systems, with appropriate access control mech-
anisms

automated identity provisioning and deprovisioning, allowing easy
on-boarding of new employees, contractors and so on

automated workflow-based mechanisms to removes access of subcontractors
and employees upon termination

timely and detailed system and process audits

records-management policy defining retention policies, recovery and so on
e-mail security and retention policy

information security and data administration policies.

Case Study: Compliance in Financial Services 273

12.4 Multilevel Policy-Driven Solution Architecture

In the context of SOA-enabled reference architecture for handling the aforemen-

tioned technology dimension of the compliance requirements of banks, we have

witnessed the roles of different kinds of policy and a lifecycle approach to these

policies. These need to be brought together in handling diverse compliance needs.
The following are the components of the policy-driven architecture:

(1) password policy manager
(2) identity provisioning and deprovisioning
(3) centralized policy-based access manager:
(a) policy-based access control
(b) role-based access control
(c) rule-based access control
(d) fine-grained access control
(e) entity-based access control

(4) data/information access control

(5) policy-enforcement adaptor

(6) policy repository

(7) policy workbench for defining policies

(8) rules engine

(9) user-identity manager
(10) real-time event and activity monitoring
(11) policy-change audit control and reporting
(12) real-time auditing and reporting
(13) dynamic workflow and process management
(14) support for federated identities
(15) support for business-partner-entity hierarchies to support seamless federation.

There is a gap between the ‘documented’ security policy and the actual ‘exe-
cuted’ run-time policy. Policies can coexist at multiple levels, warranting various
compliance requirements (Figure 12.2). Some of these policies are listed below:

(1) business-level policies

(2) application-level policies

(3) information/data-level policies
(4) resource-level policies.

Business-Level Policies

These policies can generally be extremely generic, but attempt to define the
business rules that control the behavior of a process or system. It is typically
these business rules that require analysis, for operational as well as security

274 Distributed Systems Security: Issues, Processes and Solutions

Organizational

&

User Alias Organizational Unit

Organization

Business
Rules
Engine
(XBRL)

Figure 12.2 Different policies in the context of the bank requirement.

reasons. There are various systems, like fraud monitoring and anti-money
laundering, that feed off this data, to monitor and alert us to any potential risks.

Application-Level Policies

These are specific policies, like access control and information security, that need
to be defined and implemented to ensure that the right person sees or manages the
right data for each application. Hence these policies work with the overall RBAC
or access-control lists and identity-management policies.

Case Study: Compliance in Financial Services 275

Information/Data-Level Policies

These policies define the relationships between the bits of information that can be
viewed or modified by users or roles. They deal with granular data entities as well
as informational entities like reports and so on. They can be defined on top of a
Common Information Model enforcing policies at an entity and an attribute level.

We suggest a policy-based middleware approach that can integrate multiple
types of policy, as stated above.

12.4.1 Logical Architecture and Middleware

Figure 12.3 shows a policy-driven architecture for managing access control. The
solution uses different policies, which are defined at design time, to enforce the

))))
kKRR RRR RAR RRR

Users Users Users Users

Custom Packaged Legacy System
Application Application Application Application
Access Control Access Control Access Control
Check Check Check
Uniform Enterprise Access Control Policy Store
Attribute oriented Access Control
Protocol
Enterprise Application Mapping Store Attribute Access Control Translation Layer

Custom Packaged Legacy System
Application Application Application Application
Database Database Database Database

Figure 12.3 Policy management for compliance architecture.

276 Distributed Systems Security: Issues, Processes and Solutions

appropriate access control at run time. Extensible access-control mark-up language
(XACML) can be used as the policy-definition language. The business policies can
be defined using a combination of business rules mark-up language (BRML) and
land-extensible business reporting language (XBRL). All the policies are main-
tained in the policy repository. By utilizing a central point of authentication and
role- and rule-based access control, the architecture ensures that security policies
can be centrally enforced, resulting in improved security and simplified manage-
ment. It keeps track of intrusions and unauthorized access activity with real-time
audit of any such events. It also creates well-defined, repeatable and auditable
security processes that can be enforced enterprise-wide based on user identities.

The applications use a common enterprise security service to request access to
any resource. The request types can be different depending upon the policy that
needs to be asserted:

e For a coarse-grained resource like access to a specific business service.

e Application of business-rule policy like checking the approval limit for a par-
ticular transaction for a user.

e Information access policy like access to a report or even extremely fine-grained
access control like specific attributes in a report.

When a client makes a resource request upon a server, the security service is
implicitly or explicitly mandated and configured to perform access-control checks.
The security service is the policy enforcement point. In order to identify and
enforce the appropriate policy, as in Figure 11.9, the policy server will formalize
attributes describing the requester and delegate the authorization decision to the
policy decision point. Applicable policies are located in a policy store and eval-
uated at the policy decision point, which then returns the authorization decision.
Using this information, the policy enforcement point can deliver the appropriate
response to the client. Next, the services of the policy decision point entity are
invoked to locate an applicable policy, evaluate it, and return an access decision
to the policy enforcement point.

12.4.1.1 Policy Chaining

There are many scenarios where a policy needs to invoke another policy in turn.
This is known as policy chaining. There might be multiple hierarchy levels with
a tree structure. While each policy is atomic in nature, during chaining the root
is called the parent policy. The decision of the child policies are bubbled up to
the parent.

This can happen when access to an application service implicitly encompasses
business policies and information policies that need to enforced. A classic example
in the financial domain is the transaction authorization. While a user could possibly
have access to the transaction authorization, there might be a policy defined around

Case Study: Compliance in Financial Services 277

the specific approval limits for that user. Hence the business policy is implicitly
chained. In addition, the user might not have access to specific customer attributes,
such as customer address and phone number, as they are a high-value customer. In
such cases the information policy defined is also implicitly chained to the parent.

12.5 Conclusion

In this chapter we have presented a detailed but pointed security case study in
the context of financial services. The security needs, in the people, process and
technology dimensions, for addressing compliance requirements in the context of
the SOX Act have been addressed in detail. To the end, a logical, policy-driven
architecture was presented, with multiple levels of policy to handle these require-
ments. While this case study presents only a small facet of the wide gamut of
security requirements in distributed systems, it addresses a real, practical and
important pain point, from a security point of view, for financial companies and,
most importantly, banks.

References

[1] Barings Debacle, http://www.riskglossary.com/link/barings_debacle.htm

[2] Société Générale Uncovers $3.7bn Fraud by Rogue Trader, news item http://www.guardian.
co.uk/business/2008/jan/24/creditcrunch.banking

[3] Sarbanes-Oxley Act, http://www.sarbanes-oxley.com/

[4] Basel II: International Convergence of Capital Measurement and Capital Standards: A Revised
Framework, http://www.bis.org/publ/bcbs107.htm

[5] PATRIOT Act, http://www.whitehouse.gov/infocus/patriotact/

[6] Poor IT Security to Blame in Société Générale Fraud, http://www.infoworld.com/article/
08/02/20/Poor-IT-security-in-Societe-Generale-fraud_1.html

[7] Committee of Sponsoring Organizations of the Treadway Commission, http://www.coso.org

[8] COBIT Framework, http://www.isaca.org/cobit/

[9] Kulkarni, N., Kumarasamy Mani, S. and Padmanabhuni, S. Reckoning Legislative Compli-
ances with Service Oriented Architecture: A Proposed Approach. Proceedings of the 2005
IEEE International Conference on Services Computing, pp. 16—23.

[10] SOA Meets Compliance: Compliance Oriented Architecture, http://www.redmonk.com/
public/COA_Final.pdf

[11] Sarbanes-Oxley (SOX) — Impact on Security in Software, http://www.developer.com/
security/article.php/320861

Further Reading

Butler, C.W. and Richardson, G.L. Potential Control Processes for Sarbanes-Oxley Compliance,
http://www.isaca.org

SOX — Impact on security in Software, http://www.developer.com/security/article.php/3320861

The Sarbanes-Oxley (SOX) Act and the Impacts of Non-Compliance, http://www.entrust.com/
governance/sox.htm

13

Case Study: Gnid

In this chapter we will discuss a case study in the financial domain. In the
highly-competitive world of financial services, it is imperative that valuations
of financial instruments and risk numbers be computed quickly, efficiently and
in a cost-effective manner. For example, if a portfolio consists of 50 different
financial instruments, a 50 x 50 risk-correlation matrix involving multiple Monte
Carlo simulations will result in a significant investment in processing power. Or
when pricing CDOs or valuing swaptions, the time for processing needs to be
minimized or else the market opportunity could disappear. Hence computing the
need for computing power is absolutely essential.

Different models have been used to achieve the ultimate goal of computing
more financial elements in less time. Using higher-end computing resources is
one; with mainframes and very high-end clusters, calculations can be done faster
and business benefits can be obtained. However, the infrastructure cost is substan-
tial and the benefits obtained from getting better performance are largely offset by
the expense of maintaining the system. So the enterprises in the financial domain
started looking at more and more of the shelf 2—4 CPU hardwares, connecting
them together using a high-speed network like 10 Gb Ethernet or Infiniband to
provide performance. Grid computing middleware plays an important role here.
If we look at such systems, they are like isolated grid environments. These types
of solution are prolific in the financial verticals. However, the environment is
still very closely locked with specific applications, and hence security is lim-
ited. Organizations are seeing the availability of huge numbers of desktops and
low-end computing systems, which are either unutilized or grossly underutilized,
and asking whether those systems can be brought into the purview of the grid
environment. Once desktops and low-end servers used for day-in, day-out jobs
are brought into an enterprise-wide grid system which does work beyond the
high-end computation that the financial grid does, several security issues come
to the fore. In this case study we look at a financial organization which is mov-
ing its high-end computation applications, like the options-pricing application, to

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan
and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

280 Distributed Systems Security: Issues, Processes and Solutions

an enterprise-wide grid. We look at the security issues, and at existing solutions

which can help.

It is to be noted that high computation needs are not confined to the financial
industry. The energy trading and risk management (ETRM) industry is also in
constant need of high computation power, for use in the following areas:

(1) Complex calculations: for example, real-time position updates with MTM cal-
culations every time a deal in entered, cancelled or edited; value-at-risk (VaR)
calculations (by Monte Carlo simulations); scenario analysis; back testing and
risk metrics aggregations; portfolio optimization; and hedge calculations.

(2) Batch applications: many organizations have applications which are function-
ally great for front-office requirements (option calculators, pretrade analytics,
etc.) but are simply not used for trading since they take a very long time to
give out results due to limitations in computing power; these applications end
up being used only in mid-office to get batch results.

(3) Data heterogeneity: there are multiple data sources, data types and geogra-
phies. ETRM data includes market data (prices, trade quotes, news, instrument
data, etc.), static data (some instrument characteristic data), reference data and
the firms” own trade data. All these can be available at different geographical
locations, and some may have to be calculated for further use. For example, a
typical portfolio of an investment bank will have trades executed in different
geographies. Many of the data items from across geographies could clas-
sify as risk factors and are possible candidates for the variance—covariance
(VCV) matrix, also called the covariance matrix calculation. Sometimes,
due to the geographical nature of the instruments and also the fact that
the portfolios are independent, the VCV matrix for a regional portfolio can
be computed at the region itself. So servers can be designated to perform
specific calculations. This can achieve two things: (i) a centralized control
of such risk calculations; (ii) a deemphasis on the need for centralization
of data.

(4) High-volume data: high-frequency data from multiple sources has to be cor-
rectly routed for best execution, for algorithmic trading, for real-time risk
analytics and so on. Since the data is high-frequency, any kind of analysis
will be very computationally intensive.

13.1 Background

In this section we will look at a typical example of an enterprise grid computing
system. The enterprise we are looking at here is a financial services company with
offices in the United States, Europe and India. Before the integration of grid, the
IT infrastructure looked like this:

(1) There were different clusters across the globe. The clusters were provisioned
at their peak usage and hence grossly underutilized.

Case Study: Grid 281

(2) The enterprise had made a considerable effort to consolidate user identities
through Windows Active Directory. However, users in different clusters were
using multiple user accounts.

(3) The workload in the clusters was mainly composed of highly compute-
intensive jobs of the credit analysis and long-running batch types. Since
most of the batch jobs were running at night, resource sharing across
geography was considered a very effective mechanism for increasing
resource utilization. (Hence grid was the obvious choice.)

(4) One of the clusters computed the critical options-pricing application, which is
very important to the organization as a whole. Integration of this application
with other batch applications is critical, as the performance issue is key.

The requirements that the enterprise had in moving toward a grid-based system
were as follows:

(1) There should be a centralized identity-management system that tracks the
users submitting jobs to different clusters. It should be combined with the
centralized monitoring mechanism, which can track usage per department
and per group.

(2) The huge pool of enterprise desktops should mainly be used for the batch
jobs. Since the jobs will be coming from different departments, the desktops
need to have sandboxing mechanisms.

(3) Very elaborate policy mechanisms are needed to bind the users, applications,
resources and different metrics.

(4) Since the enterprise had made a significant effort to integrate service-oriented
architecture (SOA), all solutions should be compatible with SOA standards.

(5) There are multiple grid/cluster interfaces for submission of different applica-
tions. There should be single sign-on (SSO) and an authentication mechanism
for all the different interfaces.

(6) Finally, the performance of the options-pricing application should not suffer.

13.2 The Financial Application

The application that we are considering for integration with the grid system can
be called ‘interest option attributes estimation’. It uses two different methods
to calculate premiums of financial derivative, called swaption. The first is the
Black—Scholes method. The second is the trinomial tree option model, which is
an extension of the binomial option pricing model. All possible swaptions are
considered and some of their attributes are estimated, such that the premium
values calculated by the two methods are as close as possible. While doing this,
we try to estimate the parameters of mean reversion and instant volatilities at all
the points in the time grid. Finally, we recalculate implied volatilities from the

282 Distributed Systems Security: Issues, Processes and Solutions

premiums calculated through the latter method, using the Black—Scholes method
in reverse. The program inputs a standard yield curve, swaption volatility values
and an array of booleans to estimate factors such as mean reversion and instant
volatility, so that the premiums are calculated by the tree-based approach for
option pricing.

The application takes input in the form of the three files. These are processed
to get the two outputs.

e Inputs: a yield curve, base volatilities, Cartesian grid.
e Outputs: discount factors, mean reversions and instant volatilities at various
time points; implied premiums and volatilities of swaptions.

Figure 13.1 shows a high-level overview of the grid architecture. The archi-
tecture consists of a scheduler, which distributes the applications on to the grid
infrastructure, and the distributed cache, which is used to prefetch the data from
the data store and temporarily store it to be used by jobs running on each grid
node. The components are described in detail below:

(1) Parallel applications: individual tasks can be parallelized using parallel pro-
gramming paradigms like message passing interface (MPI) or parallel virtual

machines (PVMs). Another approach is to run each application on divided
data sets, if the applications are data-parallel in nature.

Parallel Applications

oooo
@ Prefetch data

Distributed Cache

Grid Scheduler

Grid Pool

Figure 13.1 Grid architecture.

Case Study: Grid 283

(2) Scheduler: this is responsible for scheduling the job on to a grid node. Dif-
ferent policies based on CPU/memory utilization of machines and resource
availability can be used. For scheduling purposes, open-source schedulers like
CONDOR or proprietary solutions like Platform LSF can be used.

(3) Distributed cache: data can be prefetched from the data sources and placed
in the distributed cache. Different distributed cache products like Gemstone
Gemfire or Gigaspaces can be used for this purpose. It is to be noted that
Gigaspaces is based on Javaspaces specifications and includes workers run-
ning on the grid nodes. The advantages of having the distributed cache are
manifold. First, the data access time is reduced as the data is prefetched. Sec-
ond, the data sources can be updated in an asynchronous manner, resulting in
better performance. Finally, most of the operations can be performed on the
data cache itself, so that significant cost-saving is achieved.

13.3 Security Requirements Analysis

The security requirements that determine the architecture of the security solution
are: confidentiality, authentication, single sign-on and delegation, authorization,
identity management, secure repository, trust management, monitoring and log-
ging, intrustion detection, data protection and isolation, and denial of service.

13.3.1 Confidentiality Requirement Analysis

Confidentiality is one of the most critical requirements in the grid environment,
due to its distributed nature. The problem is even more critical in a financial envi-
ronment, due to the confidential nature of the information that is being acted upon
and transferred. There are many places where confidentiality assumes significant
importance:

(1) Movement of data from permanent data sources to transient data sources like
distributed shared memory.

(2) Secure scheduling of jobs to distributed grid resources.

(3) Movement of result sets or data back to the submitter.

(4) Confidential execution of jobs and handling of data within a subsystem like
the grid nodes.

Solution:

In the case study, two different approaches are possible. The first is using the tra-
ditional SSL/TLS channels for confidentiality between the different components,
and the second is using WS Security. One of the main concerns with using WS
Security in a financial environment is that it is too much of a drain on perfor-
mance. Therefore, we use SSL/TLS for secure movement of information between
different components in a confidential manner. The execution of jobs within a

284 Distributed Systems Security: Issues, Processes and Solutions

subsystem has not been made confidential, due to the overhead it will intro-
duce. Since border protections are in place, access to individual resources will be
restricted, and hence the need for confidentiality during job execution adds to the
overhead.

13.3.2 Authentication Requirement Analysis

Authentication is another crucial component of the security architecture of any grid
system. The authentication system should be able to authenticate users logging in
to the grid system.

Solution:

As mentioned earlier, one of the requirements of the system was the interoperabil-
ity of the security mechanisms with all the existing interfaces of the enterprise.
The design of the system is based on a centralized authentication system, which
validates a user’s credentials and sends an authentication token back to the grid
entry point. The grid entry point can be any interface which redirects the request
to the centralized authentication system. The authentication token is signed by the
authentication system and hence can be verified at any point.

13.3.3 Single Sign-On and Delegation Requirement Analysis

SSO is critical in any distributed environment as there are multiple systems where
one needs to log in to perform certain operations. For example, a user may submit
a job which needs to traverse multiple systems before it finally gets executed.
Similarly, delegation is critically important, as jobs executing in a node may need
the authority to access databases.

Solution:

The solution provides an SSO and delegation capability, thus reducing the number
of times a user must enter their pass phrase when multiple resources are used,
which is common in a grid scenario. This is done by creating a proxy. A proxy
consists of a new certificate (with a new public key in it) and a new private key.
The new certificate contains the owner’s identity, modified slightly to indicate
that it is a proxy. The new certificate is signed by the owner, rather than a
certification authority (CA). The certificate also includes a time notation, after
which the proxy should no longer be accepted by others. MyProxy is used in the
solution for credential management capabilities.

13.3.4 Authorization Requirement Analysis

Like any resource-sharing systems, grid systems require resource-specific and
system-specific authorizations. The authorization systems can be mainly divided

Case Study: Grid 285

into two categories: VO-level systems and resource-level systems. Virtual
organization (VO)-level systems have a centralized authorization system to
provide credentials for users to access resources. Resource-level authorization
systems, on the other hand, allow users to access resources based on the
credentials the users themselves present.

Solution:

In the proposed solution, VO-level authorization is enforced through the use of
authorization tokens based on standards like SAML. A centralized policy repos-
itory is used to create the authorization tokens, which can be present in any
database. Resource level authorization is enforced through mapping authorization
to local resources in various local systems. The policy decision point (PDP) sends
the authentication token to the centralized authorization system. The authoriza-
tion decision is based on the policy information stored in the policy database. The
authorization system verifies the authentication token and then consults the policy
database and creates an SAML token based on the policies. The token contains
information which binds the resources with the roles and applications that run on
them. For example, a policy statement can say that Role R is entitled to run jobs
on machines X, Y and Z. Similarly, policy information might say that Application
A has x number of licenses, or that Application B is only installed on machines
X1, Y1 and Z1. The policy database is updated manually by an administrator as
well as through an update service, which is linked to the system directory where
the identities of the enterprise users are stored.

13.3.5 Identity Management Requirement Analysis

The directory of users is a critical component in any enterprise. In a grid or cluster
environment generally, users may have various different user credentials, which
all need to be mapped to the enterprise-wide directory system.

Solution:

In the case study, LDAP is used as the identity-management system. Mapping
between identities in LDAP and the enterprise-wide grid and cluster systems is
synchronized and updated through regular batch processes.

13.3.6 Secure Repository Requirement Analysis

Credentials are of three main types: identity credentials, authentication credentials
and authorization credentials. Identity credentials are used to uniquely identify a
particular user. Authentication credentials are mainly to authenticate users. Autho-
rization credentials are used to authorize users. They all need to be stored securely,
as attackers could subvert a whole grid system if they gained access to certain
credentials.

286 Distributed Systems Security: Issues, Processes and Solutions

Solution:

The MyProxy system was developed in the University of Illinois, Urbana
Champagne (UIUC) to meet the credential-management requirement of the
grid community. MyProxy Toolkit is the grid middleware and is quite popular.
Though it is a university project, it has been used in major grids, including
NEESgrid, TeraGrid, EU DataGrid and the NASA information power grid. In
the case study, MyProxy is used for secure storage of credentials.

13.3.7 Trust Management Requirement Analysis

Managing trust is crucial in a dynamic grid scenario where grid nodes and users
join and leave the system. Therefore, there must be a mechanism to understand
and manage the trust levels of new systems and nodes joining the grid. The trust
lifecycle is mainly composed of three different phases: the trust creation phase, the
trust negotiation phase and the trust management phase. The trust creation phase
generally occurs before any trusted group is formed, and includes mechanisms to
develop trust functions and trust policies. Trust negotiation, on the other hand,
is activated when a new untrusted system joins the current distributed system
or group. The third phase, or the trust management phase, is responsible for
recalculating the trust values based on the transaction information, distribution or
exchange of trust-related information, updating and storing the trust information
in a centralized or distributed manner.

Solution:

The solution assumes that trust is managed through an enforcer (PEP) which iden-
tifies trusted nodes. If a complex trust management trust framework is required,
PeerTrust can be considered.

13.3.8 Monitoring and Logging Requirement Analysis

In addition to infrastructure-level monitoring, which is carried out at system, clus-
ter and grid levels, host-, network- and application-level monitoring also assume
importance in some cases.

Solution:

Monitoring of resources is essential in grid scenarios, primarily for two reasons.
First, different organizations or departments can be charged based on their usage.
Second, resource-related information can be logged for auditing or compliance
purposes. The different stages of monitoring are: data collection, data processing,
data transmission, data storage and data presentation. The different monitoring
systems available can be broadly categorized as system-based, cluster-based and
grid-based. In Chapter 11, we provided details of different monitoring systems.

Case Study: Grid 287

(1) System-level: the system-level monitoring systems collect and communicate
information about standalone systems or networks. The simple network
management protocol (SNMP) is an example of a system for managing
and monitoring network devices. Examples of open-source and popular
system-monitoring tools include Orca, Mon, Aide, Tripwire and so on. The
case study uses such monitoring tools.

(2) Cluster-level: the cluster-level monitoring systems are generally homoge-
neous in nature and require deployment across a cluster or a set of clusters
for monitoring purposes. Popular examples of cluster-level monitoring sys-
tems include Ganglia from the University of Berkeley and Hawkeye from the
University of Wisconsin—Madison. Ganglia is used as part of the case study.

(3) Grid-level: grid-level monitoring systems are much more flexible than the
others and can be deployed on top of them. Many of the grid-level monitoring
systems provide standards for interfacing with, querying and displaying infor-
mation in standard formats. Examples of such monitoring systems include
R-GMA, Globus Monitoring and Discovery Systems (MDS), Management of
Adaptive Grid Infrastructure (MAGI) and GlueDomains. MAGTI is used as
part of the case study.

All activities being performed by various components (subject to the underlying
component supporting them) within the proposed grid system would be logged
securely through encrypted log files. Alternatively, log entries could be stored
in database tables set aside for this purpose. Access to these log files can be
restricted based on the privilege level of users.

13.3.9 Intrusion Detection Requirement Analysis

Detecting the presence of any intrusion is one of the critical requirements of any
system, especially a distributed system of this scale.

Solution:

Any complex IDS brings with it the disadvantage of overhead. To make the
system less complex, an open-source IDSs like Snort is used. It is supplemented
by custom alarm-triggering routines based on information collected in the
system.

13.3.10 Data Protection and Isolation Requirement Analysis

One of the key components of the grid system described is the presence of confi-
dential data in multiple systems. Protecting this data is an important requirement
of the system. Similarly, the isolation requirement is crucial; we do not want some
other application to affect the working of the jobs submitted to a grid node.

288 Distributed Systems Security: Issues, Processes and Solutions

Solution:

Application sandboxing, kernel extension and general sandboxing are options
available for providing isolation to independent processes in a host. One of the
key components in the design of the grid system is the virtualization at its core;
this makes it unnecessary to use any sandboxing or kernel extension techniques.
The storage released by a virtual machine upon decommissioning needs to purge
any prior state to avoid unauthorized access to private customer/application data.
Isolation is provided on multiple levels. First, at the firewalls unauthorized traffic
is disallowed from the grid network. Second, VO-level authorization prevents
unauthorized users from accessing resources. Third, virtualization can provide
isolation at the host level.

13.3.11 Denial of Service Requirement Analysis

Denial of service (DoS) is one of the most important requirements of any security
system. Since the solution is distributed in nature, the DoS requirements become
more stringent.

Solution:
It is to be noted that DDoS attacks cannot be totally prevented, as this is still
a major research issue. However, they can be restricted by applying certain best
principles:

(1) Filtering of packets to prevent unauthorized users from sending information
which may cause DDoS.

(2) Traffic auditing, so that an abrupt rise in traffic level can be detected. This
will be based on applications and loads that are available.

(3) Finally, mirroring and redundancy, to prevent one server getting loaded.

Please note that there may be a performance impact if we put too many
anti-DDOS techniques in place. A performance/security analysis needs to be car-
ried out to look at the overheads resulting from DDoS implementations.

XML Firewalls: Filtering packets does not provide enough protection against
XDoS attacks. It is necessary to be able to understand the XML documents in order
to prevent such attacks. XML-level firewalls, as examined in detail in Chapter 11,
can understand such documents, and typically look at received SOAP messages or
native XML messages to prevent attack. Several companies, such as Reactivity,
have developed such firewalls. Once the target Web service is resolved, the XML
firewall can apply a stored security policy based on the target address, originat-
ing caller identity, message content and, in some cases, the successful execution
of prior policies. Most of the common XDoS attacks, such as entity-expansion
attacks, can be filtered by adding specific policies at the XML-firewall level. It is
to be noted that this type of filtering has a significant effect on performance, as

Case Study: Grid 289

complex policies need to be applied to the incoming XML messages. Therefore,
before applying these techniques, performance/security analysis is required.

13.4 Final Security Architecture

Figure 13.2 shows the high-level architecture of the grid security solution for the
enterprise. The main components of the architecture include: the authentication
system, the authorization system, the monitoring system and the local access and
sandboxing system.

(1) Authentication system: as mentioned earlier, one of the requirements of the
system was the interoperability of the security mechanisms with all the exist-
ing interfaces of the enterprise. The design of the system is based on a
centralized authentication system, which validates a user’s credentials and
sends an authentication token back to the grid entry point. The grid entry point
can be any interface which redirects the request to the centralized authentica-
tion system. The authentication token is signed by the authentication system
and hence can be verified at any point.

Intrusion S]VM1 ||VM2 HVM3|
. +— Detection onitoring
Raise System Logging | | T
Alarms MDB 3 -
3 l Policy Manager |
— >
«
g
) @ ‘ Access Controlle |
Manager SLA Info SLA r
Manager \ -
T Get License Info
To
| Scheduler
Internal Users Grid
Enrypt [7] PPP [PEP
y 5 s Local Access
L = = Controller
Application 3 g
Firewall S c S5
ey = X
S IR
<k
y Update E
L t Poli Service = System
External Authentication| [Authorization Get Policy Q = D?,rectory
Users System System E
=]
Policy DB N =

Figure 13.2 High-level architecture.

290 Distributed Systems Security: Issues, Processes and Solutions

(2) Authorization system: the policy decision point (PDP) sends the authentica-
tion token to the centralized authorization system. The authorization decision
is based on the policy information stored in the policy database. The autho-
rization system verifies the authentication token and then consults the policy
database and creates an SAML token based on the policies. The token contains
information which binds the resources with the roles and the applications that
run on them. For example, a policy statement can say that Role R is entitled
to run jobs on machines X, Y and Z. Similarly, policy information might
say that Application A has x number of licenses, or that Application B is
only installed on machines X1, Y1 and Z1. The policy database is updated
manually by an administrator as well as through an update service, which is
linked to the system directory where the identities of the enterprise users are
stored.

(3) Monitoring system: another important component of the security architecture
is the monitoring and logging system. Each node in the grid infrastructure has
a monitoring agent which reports any information about it. The monitoring
system is very similar to Ganglia (discussed earlier). The information is logged
and reported to the reporting interface.

(4) Local access and sandboxing system: the centralized policy database stores
long-term policy decisions. However, different clusters in different depart-
ments may have local policies. The local access controller denies suspended
users access to the grid resources. Some other access-control policies can also
be implemented in the local system. The local access controller also interacts
with the virtual machine scheduler, which submits jobs to the virtual machines
within a grid node. Xen is used to create these virtual machines.

13.5 Conclusions

In this chapter, we present a case study of application of grid technology to the
financial Services industry. Several financial scenarios (even scenarios in other
domains like energy trading) involve computationally intensive tasks like vaR
(value at risk) computations, where grid based architectures are the default choice
for enterprises. Specific characteristics for these scenarios include the capability
of running parallel applications, working with different job schedulers, and dis-
tributed caches. In this chapter, we outline the security architecture, by analyzing
the detailed security requirements including confidentiality, single sign-on, autho-
rization, identity management and intrusion prevention and detection. We outline
a service oriented, grid based loosely coupled architecture to handle these security
requirements.

14

Future Directions and Conclusions

14.1 Future Directions

In this chapter we will explore some exciting and promising developments in the
context of the future of distributed computing security. We shall concentrate on:

(1) cloud computing security

(2) security appliances

(3) usercentric identity management
(4) identity-based encryption

(5) virtualization in host security.

14.1.1 Cloud Computing Security

Cloud computing, a loosely-defined term, represents a new trend in distributed
system development, which involves a combination of multiple tenets. Broadly, it
represents a virtualized utility-based model of provisioning computing resources
(hardware, software, storage, computing power), provided by extra enterprise
providers based on commoditized hardware and software, with the key feature of
elasticity (scaling dynamically), and with flexible configuration and vendor choice.
Users in cloud computing will typically use multiple service providers, hardware
from one provider, storage from another and possibly application services from a
third. In a major way, cloud computing realizes the notion of infrastructure as a
service.

Cloud computing is typically realized via providers making available to end
users an abstract standards-based interface, usually a Web service. The set of
services available to subscribing end users could include functionalities right from
requesting a specific amount of a resource (storage, hardware, etc.) to configuring
an image of a resource. Leading vendors, including Amazon, Google, IBM and

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan
and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

292 Distributed Systems Security: Issues, Processes and Solutions

Microsoft, have all released cloud computing capabilities for end users to make
use of their services. The earliest among these was Amazon, which offered storage
services (S3), computing capacity in the elastic compute cloud (EC2) services and
application services for e-commerce (AWS).

A mainstream opportunity for security product vendors is emerging in cloud
computing. Cloud providers can offer a suite of security services, while redirecting
all client traffic through shared servers on a subscription model. This is being
slowly adopted by some key security vendors. The advantage for cloud consumers
is that large security vendors will be able to put large investments into providing
a scalable and reliable security service.

Key security concerns in cloud computing include availability, data privacy,
compliance and SLA management. In the majority of cloud providers, all
the typical SOA issues outlined in Chapter 7 become crucial. However,
security in cloud brings additional complexities for a variety of reasons, as
outlined below:

(1) Since multiple providers are involved in the cloud, SLA management is com-
plex. In normal systems, SLAs are arrived at between a single provider and
the consumer. In a complex cloud transaction with multiple providers, how
would SLAs be managed?

(2) Data privacy is another serious concern. How would privacy concerns be
addressed by enterprises which wished to store data in the cloud? This could
be further complicated by legislative compliance issues.

(3) Since the Web is the platform for delivery of cloud services, they are prone to
viruses and other DOS attacks. The lack of large cloud providers is a further
cause of concern, as it leads to single points of failure.

(4) The need to work with multiple cloud providers will require seamless and
federated approaches to identity management, possibly including usercentric
identity management.

(5) Security provisioning is complex in this context. The ability to dynamically
provision and de-provision security information is crucial for cloud providers,
as enterprise consumers will have a constantly changing user base.

(6) Perimeter security, as it is conventionally applied, loses all meaning. Multiple
providers provide a virtual space for sharing data and resources, wherein the
concept of a virtual perimeter may need to be re-envisaged.

14.1.2 Security Appliances

Key security functions like encryption and key management are typically
computationally expensive. To address the computational complexity of
security operations, some vendors offer the possibility of offloading intensive
operations on to hardware/firmware, or on to the network layer. Offloading
computationally-intensive operations to the hardware layer reduces the overall

Future Directions and Conclusions 293

cycle time in operations involving security. Products which are based on these
mechanisms are typically termed as security appliances.

Such operations are more important in the context of higher layers in dis-
tributed computing, especially at the service layer and application layer. Most
important types of security appliance include secure socket layer (SSL) accel-
erators, unified threat management (UTM) appliances, XML accelerators, XML
networks including application-oriented networks (AON) and XML firewalls (see
Chapter 11).

UTM appliances are application-layer firewalls which combine multiple fea-
tures to handle multiple threats, including e-mail filtering, spam filtering, antivirus
capabilities, content filtering and intrusion detection. Some of the popular UTM
appliances, including Watchguard [1], Cyberoam [2] and so on, are gaining pop-
ularity due to the promise of their addressing multiple Internet threats at the same
time. Given the increasing penetration of threats like spam, spyware and viruses,
this category of appliance is of prime importance for today’s enterprises. Some
UTM vendors offer a unique model for helping small and medium enterprises, in
the form of a managed service offering, wherein a small appliance is located in
the premises but the monitoring and management of threats is done remotely via
a shared service center, hence offering security for multiple clients.

SSL accelerators enhance the performance of encryption and decryption tasks
on a device, via a coprocessor embedded within them. The round-trip SSL interac-
tion time is greatly hastened, owing to decreased key encryption and decryption
time. Typically, the SSL handshake, involving the asymmetric key decryption,
is computationally expensive, and is offloaded to the SSL accelerator. An SSL
accelerators usually works as a card plugged into a slot on the machine with the
Web server, thereby relieving load on the Web-server processors. However, in
certain deployments these appliances can be used at a network level by attaching
to a network switch, which helps offload the load of SSL processing for multiple
Web servers.

XML networks and appliances are typically based on the idea that traditional
network-level devices are restricted to introspecting packet-level data, which is
insufficient for handling the security requirements at application and higher lev-
els. Application-level security involves introspection of the application interaction
payloads, and wire-level data needs to be interpreted at a higher level (application
or service level). In view of this, the operations at these higher levels (e.g. WS
Security standard implementation, SAML assertions verification) are carried out at
a lower network level or on the hardware. These appliances introspect application-
or service-level XML content before forwarding it to the next end-point. Addition-
ally, these appliances are typically capable of working with higher-level standards
like WS Security, SAML and so on. Finally, the typical XML functions, like trans-
formation, routing and XSL validation, are also carried out. Leading vendors like
Cisco’s AON [3], IBM’s Datapower [4], Intel’s Sarvega (now reincarnated as
SOA Expressway [5]) and so on have already established products in this area.

294 Distributed Systems Security: Issues, Processes and Solutions

In the coming future, with the emergence of Web-scale computing, the com-
putational needs will be larger and newer kinds of appliance will slowly emerge
to handle the additional workloads. For example, a specific trend emerging in
the enterprise segment is the need to manage employee Internet accesses, leading
to employee Internet management appliances [6, 7]. Likewise, a newer category
of appliances for handling typical compliance tasks like entitlements control is
emerging, as in Rohati [8].

14.1.3 Usercentric Identity Management

Identity management in today’s distributed systems is plagued with complex
issues like multiple systems of record, multiple authentication systems and
complex identity use cases. Existing mechanisms are typically based on
username/password combinations; however, we are aware of the huge number
of problems associated with password reuse, insecurity of passwords, poor
password-management practices, counterfeit sites and so on that open a world of
attacks, such as man-in-the-middle attacks and password-theft attacks. Federated
identity and single sign-on systems address these concerns partly with better
user experience. However, key problems in such systems are the problem of data
privacy and the potential of identity fraud due to single point of failure.

To address this concern, a new form of identity management solutions is appear-
ing on the horizon, namely usercentric identity management solutions. Usercentric
identity management is predicated upon the notion of the user being in control of
their identity. Users can choose the nature and extent of the identity information
they wish to present in response to authentication or property requests.

Multiple initiatives have been proposed in the direction of usercentric identity
management, including OpenlD [9] and Cardspace [10].

OpenlD [9] is an Internet-scale emerging de facto standard for usercentric iden-
tity. It provides for a decentralized open and free standard for users to control
their identity information and use of that information. OpenID works on the idea
of decentralized OpenlD identity providers (IDPs), and any site registered with
any OpenID IDP can log on to the Web site. The popularity of OpenID stems
from its growing adoption by leading Internet companies, such as Yahoo!, Google
and so on.

Any site relying on OpenlD displays the OpenlD logo. When a user wishes to
log in, it does not present the typical two blanks (for username and password),
but instead prompts for one field, namely the user’s OpenlD identifier. Once
the user enters this identifier, which must have been obtained from an OpenlD
provider, the relying party discovers the identity-provider details from the typed-in
identifier, and communicates with that identity provider. The response may vary
depending upon the situation: in some cases it will allow for direct interaction
without any user intervention; in other cases it will prompt for a further credential
from the user, like a password or an information card, following which a request

Future Directions and Conclusions 295

is made to the user to confirm whether the relying party can be trusted. If yes,
the control returns to the relying party, along with the user credentials. At this
stage the relying site can verify the authenticity of the request or prompt for a
further authentication. Once verified, the user is logged in and may carry out
transactions.

Likewise, the Windows CardSpace [10] software enables people to maintain a
set of personal digital identities, which are shown to them as visual ‘informa-
tion cards’. These cards are representations of their identity that they can use
online. The key idea here is to avoid the problems with usernames/passwords
and log on to multiple Web sites with one information card. The card can be
provided by multiple IDPs, and may be used by multiple relying parties, which
all accept it as identity for the user. The key is that the user is in control of
the identity interactions and can choose which identity to use with which relying

party.

14.1.4 Identity-Based Encryption (IBE)

One of the most interesting advancements in the field of cryptography came from
Dan Boneh and Matthew Franklin, of Stanford. Their work was published in
2001 [11] and is called identity-based encryption (IBE). IBE is the solution to
the problem floated by Shamir in 1984 [12]: based on a set of global system
parameters and a fixed master key, generate a set of private keys corresponding
to any set of public keys. The public keys would be used to encrypt messages,
which can only be decrypted by the corresponding private key. For example, Alice
wants to send a message to Bob using Bob’s email address bob@nobody.com.
Let G be the set of global parameters known to everybody including Alice, M
be the secret master key and P be the private key corresponding to the string
bob@nobody.com. It is to be noted that different private keys can be generated
corresponding to different strings. Once the private key is generated the message
can be encrypted by the string and decrypted using P. This problem was solved by
Boneh and Franklin based on the bilinear maps between groups. They showed that
Weil pairing on elliptic curves is an example of such a map and implemented the
system based on the pairing. The authors proved that the system thus implemented
has very strong security properties. They also floated a company called Voltage
Systems which implements an IBE-based solution.

At this juncture, the readers may question the usefulness of such a scheme.
One of its main advantages is that it frees the sender from having to obtain the
public key of the receiver. With IBE, the sender can encrypt their message with
any string that can be associated with the receiver, for example an e-mail address
or IP address. Hence there is no need to obtain or store the receiver’s public key.
This becomes important in a bandwidth-constrained environment, where getting
public keys through certificates can result in a lot of bandwidth wastage. The
authors presented several situations where such a scheme may be very useful:

296 Distributed Systems Security: Issues, Processes and Solutions

(1) Public key revocation: public key certificates contain a preset expiration date.
In an IBE system, key expiration can be carried out by having Alice encrypt a
message sent to Bob using the public key: “bob@nobody.com||current-year”.
In this way, Bob can use his private key during the current year only. Once
a year, Bob needs to obtain a new private key from the trusted private key
generator.

(2) User-credential management: an IBE system can also be used to gener-
ate user credentials. Alice encrypts the message with the following string:
bob@nobody.com||current-year||clearance. Bob will only be able to decrypt
the message if he has the correct clearance; that is, the private key for that
string.

The IBE system described above can be very useful for a distributed infrastruc-
ture in a constrained environment where security is required. An example of such
a system is a sensor grid. Using an IBE system, managing credentials and public
keys would be possible in a much less expensive manner than would normally be
necessary. However, it is to be noted that such a system is still in research and is
not being deployed yet.

Another critical point about an IBE infrastructure is storage of the master key, as
the security of the whole system hinges on that. If the master key is compromised,
all the private keys need to be regenerated.

14.1.5 Virtualization in Host Security
14.1.5.1 Separation of Management Functions

With a more widespread use of virtualization technology, the management func-
tions can move to a separate domain, which is completely isolated from the
application domain. Segmentation at the network layer through VLANSs can pro-
vide network isolation as well. Together, they can bring about a natural separation
between the management plane and the application plane. Even when one or
more applications are compromised, the management components can continue
to service and manage other application instances in the application plane.

14.1.5.2 Protection for Security Agents

Typically, host-based intrusion detections are strong at identifying any intrusion
and are difficult to evade; however, they can be easy to attack, as the operating sys-
tem is not adequate protection for them. On the other hand, network-based intru-
sion detections are difficult to attack, but are not as effective as host-based systems
at identifying intrusions. Recent research has shown that intrusion detection can
be built into a virtual machine monitor on a fully-virtualized platform to give
the effectiveness of a host-based intrusion detection system, while retaining the
robustness of a network-based one. LiveWire [13] is a reference implementation

Future Directions and Conclusions 297

of such a solution. In future, such capabilities will be bundled and shipped with
VMM software.

14.1.5.3 Desktop Security

Virtualization perhaps has the biggest role to play when it comes to desktop secu-
rity. While the virtualization technology is rapidly advancing through hardware
and software innovation in the commodity space, much of this is focused on
servers. As the technology becomes friendlier for desktops, there is much to be
gained in terms of desktop security. Potentially there could be separate domains
for running trusted and untrusted applications, preventing a lot of the host-security
and privacy issues discussed in Chapter 4. Besides, some of the security policies
(firewalls, isolation levels and device access) can be centrally enforced at the
physical-machine level, leaving the guest virtual machine completely within the
control of the user, without any security implications.

14.2 Conclusions

In this book, we have taken a holistic look at the security concerns and challenges,
processes and solutions, as well as future directions, in distributed systems.

Distributed systems form the backbone of the IT infrastructure in most enter-
prises today, with mainstream penetration of recent technologies like Web ser-
vices, grid computing and service-oriented architectures. Security is a key concern
in distributed systems and must be approached with a judicious blend of theory
and pragmatism in the context of building enterprise-scale IT infrastructures.

We have outlined and described precisely an approach to security engineering,
with an exhaustive coverage of the underpinnings of security technologies and the
existing and upcoming security threats and vulnerabilities across different layers of
modern-day distributed systems architecture. We have detailed this across the four
important layers, from bottom to top: host layer, infrastructure layer, application
layer and services layer. We have specifically avoided the treatment of Web-based
security as a separate section, by treating it as part of application security. We
have looked at how existing security solutions can be leveraged or enhanced to
proactively meet the dynamic and evolving needs of security for next-generation
distributed systems.

In the context of host-level security, we have outlined the key threats in the
form of transient code threats and resident code threats. The transient code threats
can manifest as malware, including worms, spyware, Trojan horses and viruses.
Additionally, eavesdropping with malicious intent, for example in collaborative
computing such as grids or clusters, can be a key threat at the host level. Likewise,
job faults in a grid caused by faultily written programming applications, can bring
down hosts and other applications executing on the grid. Similarly, malafide scripts
may be injected, causing host shutdown or reboot. Even in cases of genuine use

298 Distributed Systems Security: Issues, Processes and Solutions

of host computers by a grid application, it is possible that due to excessive use
of the CPU by the application, other applications on the host will be starved of
compute power.

In addition to the transient code threats at the host level, resident code — code
which has been installed with the knowledge of the user — also has the potential
to cause host-level attacks, due to the vulnerabilities in it. Typical among these
include overflow attacks like the stack-buffer-overflow attacks and heap overflow
attacks. Likewise, privilege-escalation attacks are also carried out by unauthorized
users who are able to elevate their privilege level and carry out tasks for which
they do not have authorization. Sometimes application vulnerabilities leave scope
for malicious users to input improper data, leading to injection attacks.

To address the aforementioned host-level threats and vulnerabilities, we
have discussed sandboxing and virtualization, two key techniques employed
in distributed systems. In sandboxing, access to resources is restricted via
the operating system, so that the resident or transient code is not able to
do any damage to the host. Virtualization, on the other hand, handles these
threats via partitions, each of which is isolated from the others. In today’s
distributed environments, virtualization is fast becoming a popular technology.
It has far-reaching implications for grid and data centers. Existing security
products like intrusion-detection/prevention systems will be able to work at each
virtual-machine level in a virtualized environment. In addition to sandboxing and
virtualization, other techniques like proof-carrying code have been discussed.
Proof-carrying code is based on the notion that code needs to be able to prove
itself trustworthy, relieving hosts of the headache of preventing code-based
attacks. Other techniques for preventing code-injection attacks, such as memory
firewalls, have been discussed. These firewalls look at control sections of code
and validate the controls against predefined security policies. For viruses and
malware, newer categories of product in the form of antivirus and antispyware
have been discussed.

Moving up the ladder, in the context of infrastructure-level threats, the usual
suspects were discussed first, including DoS, routing attacks, high-speed network
threats, wireless network threats and DNS threats. Later, the grid and cluster
specific threats were discussed, with focus on architecture-, infrastructure- and
management-related issues. In the context of architecture, we focused on the
information-security, authorization and service issues. While several network-level
threats apply in the context of grid infrastructure too, additional issues arise here in
the form of grid network issues, such as integration of grid with existing firewalls.
Likewise, in the form of management issues, credential management and trust
management were discussed extensively. Storage-level threats were discussed in
the context of storage area networks (SANs) and distributed file systems.

To address the aforementioned network-level threats, three primary solutions
based on protocols were discussed, including SSL/transport layer security (TLS),
virtual private networks (VPNs) and IP Security (IPSec). For addressing DoS

Future Directions and Conclusions 299

and other attacks, techniques like packet filtering and application filtering were
discussed. Similarly, for routing attacks, special solutions were discussed using
digital signatures. For wireless attacks, solutions like WEP were discussed.

At the grid tier, the security offered by the GSI stack was illustrated. Addi-
tionally, specialized solutions, many of which are at the research stage, were
proposed in the area of grid services security. Grid authorization systems were
discussed at both VO and resource level. For grid infrastructure-level solutions,
virtualization-based approaches are showing promise. Likewise, firewall and VPN
technology integration is an important area in the context of grid networks.
Trust-management systems and credential-management systems were discussed
to address management-related threats and vulnerabilities.

For storage-level security, the Fiber Channel Security Protocol (FC-SP) was dis-
cussed at length. Additionally, for distributed file systems, existing NFS security
models and specialized distributed file systems were discussed.

Moving higher up the tiers, in the context of application- and Web-layer
security, primary threats in the form of injection attacks, cross-site-scripting
attacks, session-management-related attacks, improper error handling, improper
handling of cryptography and insecure configuration issues were discussed.
Further, application-layer DoS attacks, overflow attacks and canonical data
representation-related issues were discussed.

To address application-level security issues, solutions were proposed in the form
of input-validation techniques, centralized validation routines, secure session man-
agement, right usage of cryptography, user inputs filtering for cross-site scripting
and robust error-handling practices.

At the service level, we outlined key security issues as applicable. In the context
of threats, we discussed various categories, including those caused by use of
XML as the lingua franca, such as XDOS-, XPath- and XQuery-based attacks.
Additionally, the attacks caused by adoption of service-level standards such as
SOAP for messaging and WSDL for interfaces were discussed. At the SOAP
level, man-in-the-middle and SOAP-virus attacks were discussed. At WSDL level,
WSDL scanning and phishing attacks were discussed. Some UDDI-level attacks
were also discussed.

To address the abovementioned attacks and to handle service-level security
issues, since standards are key and central to SOA, a detailed analysis of the
diverse SOA security standards was carried out. Further, a detailed analysis of the
adoption levels of different standards was provided. A key emerging infrastructure
in the form of XML firewalls was dissected in depth, with a view to exploring how
it can address the majority of service-level threats and attacks. We explored some
typical deployment architectures of service-level security solutions. In particular,
we explored how each of the categories of service-level attack can be addressed
by effective use of XML firewalls or similar techniques.

We finished with two case studies exploring the application of the technologies
and solutions discussed in the book in real distributed systems that the authors

300 Distributed Systems Security: Issues, Processes and Solutions

were involved in architecting, developing and running to meet very stringent secu-
rity requirements. The case studies brought out the practical aspects of designing
and architecting security solutions and mapped the described solutions to the
distributed systems we typically encounter in workplace.

The first case study dealt with a typical issue in any global banking company,
namely compliance. The related issues were explored in detail. We outlined a prac-
tical approach to handling the different security requirements for such a scenario,
and prescribed a service-based, policy-centered security architecture.

In the second case study, we explored a high-performance grid-based financial
services company, which needs to carry out complex calculations in a global
grid. The diverse security requirements and issues related to such needs were
elucidated in depth. In the end, a working logical architecture addressing the
security requirements was explained.

Finally, at the end of the book, we explored some key upcoming trends which
will have a significant impact on distributed system security.

References

[1] Watchguard UTM Appliance, http://www.watchguard.com/products/utm.asp.
[2] Cyberoam UTM Appliance, http://www.cyberoam.com/.
[3] CISCO Application Networking Services, http://www.cisco.com/en/US/products/hw/
contnetw/index.html.
[4] Websphere Datapower SOA Appliances, http://www-306.ibm.com/software/integration/
datapower/.
[5] Intel SOA Expressway, http://www.intel.com/cd/software/products/asmo-na/eng/373233.htm.
[6] Websense — Employee Internet management, http://www.cisilion.com/websense.htm.
[7] Facetime to Offer Granular Control for MySpace, http://www.facetime.com/pr/pr080618.
aspx.
[8] Rohati, a high performance entitlement control solution, http://www.rohati.com.
[9]1 OpenlD, http://www.openid.net.
[10] CardSpace, http://www.microsoft.com/net/WindowsCardSpace.aspx.
[11] Boneh, D. and Franklin, M. (2003) Identity-based encryption from the weil pairing. SIAM
Journal on Computing, 32 (3), 586—615.
[12] Shamir, A. (1984) Identity-based cryptosystems and signature schemes, Advances in Cryptol-
ogy, Crypto '84, Lecture Notes in Computer Science, Vol. 196, Springer-Verlag, pp. 47-53.
[13] LiveWire, details at http://virtualmachine.searchvmware.com/document;100808/vm-research.
htm.

Further Reading

Amazon S3 Service, http://www.aws.amazon.com/s3.

Amazon EC2 Elastic Compute Service, http://www.aws.amazon.com/ec2.

Garfinkel, T. and Rosenblum, M. (2003) A Virtual Machine Introspection Based Architecture for
Intrusion Detection. Proceedings of the Network and Distributed Systems Security Symposium,
February.

Future Directions and Conclusions 301

Garfinkel, T. and Warfield, A. (2007) What virtualization can do for Security? The USENIX Mag-
azine, 32 (6).

Google Cloud, as exemplified by Google Docs, http://www.documents.google.com.

IBM cloud computing based on Deep Blue technology.

Microsoft Cloud Live, http://www.home.live.com/.

Trend Micro to offer online Internet security service based on cloud computing, http://www.us.
trendmicro.com/us/products/enterprise/web-protection-add-on/.

Index

802.11i standard 181

Access Control Lists 44,266

ActiveX controls 59

Adaptive Firewall for Grid (AGF) 188
Address Spoofing 94

AES 207

AJAX 122

Akenti 186

Antimalware 160

Apache Web Server 120

Applets 59

Application Level firewalls 53
Application oriented networks (AON) 289
Asymmetric Encryption 48

Atheos File System 5

Authentication 43

Authentication Header 169
Authorization 43

Automated teller machines (ATMs) 1
Availability 45

Basel II 261

Binary Token 221

Biometrics based authentication 50

Blind Injection attacks 102

Border gateway protocol (BGP) 78

Border gateway Protocol 170

BPEL/WS-BPEL 113,114,115

Brute force attack 110

Buffer Overflow 63

Build Security in (BSI) 23

Business Rules Markup Language
(BRML) 272

Canonical Representation 110

Capability maturity model (CMM) 22

Cardspace 290

CDATA 135

CERT 37

Certificate based authentication 50

Certificate Repositories 51

Certificate Revocation Lists 51

Certification Authority (CA) 51

Circle of Trust 46,193

Citrix ArmTech 157

Clock synchronization 8

Cloud computing 287

Cluster computing 4,55

Code Red 63

Committee of Sponsoring Organizations
of Treadway Commission (COSO)
263

Common Criteria 32,209

Community Authorization System (CAS)
185

Component off the shelf (COTS) 12

Comprehensive lightweight application
security process (CLASP) 22,27

Computer incident advisory capability
(CIAC) 74

Control Objectives for Information and
Related Technology (COBIT) 263

Cookie 60,128

CORBA 5,6

Cross-site scripting attack 15

Cross-site scripting attacks (XSS)
103,125,126

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan

and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

304

Index

Cryptography 107

Data Execution Prevention 111
DCOM 5

Delegation based sandboxing 146
Demilitarized zones (DMZs) 115,240
Denial of Service DOS 15,45,72
DES 108,207

DHS Software Assurance program 29
Dictionary attacks 110

Digital Signature 49

Discretionary Access Control 43
Distance vector 78

Distributed DOS (DDos) 72,116
Distributed File System (DES) 5
DNSSEC 77

Domain name system (DNS) 74
DTD 135

Eavesdropping 55,80

ebXML Registry 138

Encapsulating Security Payload 169

Endpoint Reference (EPR) 245

Energy trading and risk management
(ETRM) 276

Enterprise Authorization and Licensing
System (EALS) 186

Entitlement based scheduling 157

Explicit Trust 52

Extensible Authentication Protocol 181

Fabric Login (FLOGI) 94

Facebook 1

Fault tolerance 10

Federal Information Processing Standards
(FIPS) 36,209

Federated Identity 118

Federated Trust 240

Fibre Channel 92

Fibre Channel Security Protocol 196

Firewalls 53

Flex 122

Full-system virtualization 147

GET 128
Gigabit Ethernet 4

Globally unique identifiers (GUID) 95

Globus GRAM 88

Globus GridFTP 88

Globus GSI 87

Globus MDS 88,283

Globus MyProxy 88,281

Globus Toolkit 17,87

Gluedomains 283

Gramm-Leach-Bliley Act of 1999
(GLBA) 47

Grid 82

Grid Credential management 88

Grid Infrastructure 86

Grid Management 88

Grid Network 87

Grid schedulers 61

Gridmap 186

Hashcode 49

Health Insurance Portability and
Accountability Act (HIPAA) 47

Heap based Buffer overflow 65

Hose 189

Host Bus Adapter 94

Hosted virtualization 147

HTTP 6,60,115

Hypervisor 149

IACID 176

Identity Based Encryption (IBE) 291

Identity Management 48,265

IEEE P1074 23

Implicit Trust 52

Infiniband 4

Information Technology Infrastructure
Library (ITIL) 263

Injection attacks 66

Intermediary Trust 53

Internet2 193

Intrusion Detection Systems 176

IPSec 167

ISO-8859—- 1 110

Java RMI 5,6
Javascript 128
Job Faults 62

Index

305

Job Queue 63
Job starvation 63

Kerberos 5,115

LDAP Injection attacks 102

Liberty 216

Lightweight Directory Access Protocol
(LDAP) 51,102

Livewire 292

Logical Unit Number (LUN) 95

Malware 56

Management of Adaptive Grid
Infrastructure (MAGI) 283

Mandatory Access Control 44

Man-in-the middle attack 81,131

Memory firewall 159

Message authentication code (MAC) 49

Message Digest 49

Micosoft Virtual Server 151

Moore’s Law 4

Multinode systems 7

Network attached secure disks (NASDs)
95

Network File System 5

Node Login (NLOGI) 94

N-tier system 55

NTLM 115

Oceanstore 5,95

Open Shortest Path Forwarding (OSPF)
78

Open Web Application Security Project
(OWASP) 99

Openld 290

Oracle 9i Application Server 133

Orkut 1

P3P 231,232

Packet Filtering Firewalls 53
Para virtualization 147,148
Parallel computing 55

Parameter Tampering 119,127
Password based authentication 49

Peer-to-Peer (P2P) 5,7

PERMIS 186

Personal Digital Assistants PDA 15
Personal identification number (PIN) 16
Phishing 47

Policy based trust 193

Policy Chaining 272

Policy Decision Point (PDP) 281,283
Port Login (PLOGI) 94

Principle of least privilege 37

Privacy 46

Privilege Escalation 65

Proof-carrying code (PCC) 143,158
Proxy firewalls 53

Public Key Infrastructure (PKI) 50,231
PUSH+ACK attack 75

QoS 86

RADIUS 196

Rc4 106

Reflectors 75

Registration Authority 51

Reputation based trust 194

Request Security Token Response (RSTR)
227

Resident Code 56

Resource level authorization 186

Resource Starvation 62

R-GMA 283

RIA 122

Role based Access Control 44

Routing Information Protocol 78

Routing Protocols 78

Routing Table Attacks 77

Routing table poisoning 77

RRDP 156

RSA 108

Sandboxing 143

SANTA-G 176

Sarbanes-Oxley (SOX) Act 261

Secure Link State Protocol (SLIP) 180

Secure overlay service 174

Secure Sockets Layer (SSL) 105,215

Security Assertions markup language
(SAML) 17,220,222,266

306

Index

Security Development Lifecycle (SDL)
22,24,2527

Security Token Service (STS) 221,226,227

Service Level Security 85

Service Oriented Architecture (SOA)
5,14,113

Service virtualization 244

Session Fixation Attack 105

Session Hijacking 93

SETI@Home 61

SHA 207

Shared-kernel virtualization 147,149

Shell Injection attacks 66

Shibboleth 193

Simple Check attack 126

Simple network management protocol
(SNMP) 283

Single sign on 48,117

SLA 9,86

Smart card based authentication 50

SMTP 114

Smurf Attack 75

Sniffing Attacks 132

SNORT 176,283

SOAP 6,114

SOAP attachments 134

SOAP Routing attacks 132

Societe generale incident 262

Software Development Life Cycle
(SDLC) 21,22

Solaris resource manager 156

Spoofing 80,178

Spyware 55,57

SQL Injection attacks 66,100,121

SSL Accelerators 289

Stack based Buffer overflow 64

Storage Area Network (SAN) 5,92

Storage threats 92

Symmetric Encryption 48

Syn Flood Attack 74

System Integrity Service 162

Systems security engineering capability
maturity model (SSE-CMM) 22,23

Terra 154
tModels 120

Tokens 221

Top Level Domain (TLD) 76

Torrent 14

Transfer Control Protocol (TCP) 74

Transient code 55

Transport layer security (TLS) 16,104,167

Trojan Horse 55,57

Trust 45

Trust Creation 90

Trust Management 89

Trust Modeling 46

Trust Negotiation 90

Trust Preferences 47

Trust systems 192

Trusted capability maturity model/trusted
software methodology
(T-CMM/TSM) 23

Trustworthy Development 22

UDDI 7,115

Unicode 110

Unified Threat Management (UTM) 289
UNIX Servers 63

USA Patriot Act 261,262

User Datagram Protocol (UDP) 74
User-level sandboxing 145

Username Token 221

UTF-16 110

UTE-8 110

Value at Risk (vaR) 276

Variance—covariance (VCV) 276

VCMan 193

Virtual Desktop Infrastructure 155

Virtual Machine Monitor 143

Virtual Organization 182

Virtual Organization Membership Service
(VOMS) 186

Virtual Private LAN Service (VPLS) 170

Virtual Private Networks (VPN) 167

Virtual Private Wire Service (VPWS) 170

Virtual Router 170

Virtualization 143

VMWare 148

WATCHERS 187

Index

Web 2.0 122,125

Web Application Security Consortium
99

Web Services 5,6,113

Windows System Resource Manager
(WSRM) 157

Wireless Equivalent Privacy (WEP)
80

World Wide Names 94

Worms 57

WS-Addressing 134

WSDL 6,114,115

WSDL phishing 125,131

WS-Federation 216

WS-I Basic Security Profile 234

WS-Policy 184,216,224

WS-SecureConversation 216,230

WS-Security 15,17,184,220

WS-SecurityPolicy 216,230

WS-Trust 184,216,225

X.500 51
X86 Servers 63

XACML 216,236

XML 6,114

XML DoS (XDoS) 136

XML Encryption 184,216,218

XML External Entity Attacks
135

XML Firewall 174,242,289

XML key information service
specification (XKISS)
230

XML Key Management Specification
(XKMS) 230

XML key registration service
specification (XKRSS)
230

XML Schema 6,114

XML signature 134,217

XmlHttpRequest 128

XPath crawling 124

XPath Injection 100,124

Zombies 75
Zone hopping 94

	Distributed Systems Security
	Contents
	List of Figures
	List of Tables
	Foreword
	Preface
	Chapter 1 Introduction
	1.1 Background
	1.2 Distributed Systems
	1.2.1 Characteristics of Distributed Systems
	1.2.2 Types of Distributed System
	1.2.3 Different Distributed Architectures
	1.2.4 Challenges in Designing Distributed Systems

	1.3 Distributed Systems Security
	1.3.1 Enterprise IT – A Layered View
	1.3.2 Trends in IT Security

	1.4 About the Book
	1.4.1 Target Audience

	References

	Chapter 2 Security Engineering
	2.1 Introduction
	2.2 Secure Development Lifecycle Processes – An Overview
	2.2.1 Systems Security Engineering Capability Maturity Model (SSE-CMM)
	2.2.2 Microsoft’s Security Development Lifecycle (SDL)
	2.2.3 Comprehensive Lightweight Application Security Process (CLASP)
	2.2.4 Build Security In

	2.3 A Typical Security Engineering Process
	2.3.1 Requirements Phase
	2.3.2 Architecture and Design Phase
	2.3.3 Development (Coding) Phase
	2.3.4 Testing Phase

	2.4 Important Security Engineering Guidelines and Resources
	2.4.1 Security Requirements
	2.4.2 Architecture and Design
	2.4.3 Secure Coding
	2.4.4 Security Testing

	2.5 Conclusion
	References

	Chapter 3 Common Security Issues and Technologies
	3.1 Security Issues
	3.1.1 Authentication
	3.1.2 Authorization
	3.1.3 Data Integrity
	3.1.4 Confidentiality
	3.1.5 Availability
	3.1.6 Trust
	3.1.7 Privacy
	3.1.8 Identity Management

	3.2 Common Security Techniques
	3.2.1 Encryption
	3.2.2 Digital Signatures and Message Authentication Codes
	3.2.3 Authentication Mechanisms
	3.2.4 Public Key Infrastructure (PKI)
	3.2.5 Models of Trust
	3.2.6 Firewalls

	3.3 Conclusion
	References

	Chapter 4 Host-Level Threats and Vulnerabilities
	4.1 Background
	4.1.1 Transient Code Vulnerabilities
	4.1.2 Resident Code Vulnerabilities

	4.2 Malware
	4.2.1 Trojan Horse
	4.2.2 Spyware
	4.2.3 Worms/Viruses

	4.3 Eavesdropping
	4.3.1 Unauthorized Access to Confidential Data – by Users
	4.3.2 Unauthorized Access to Protected or Privileged Binaries – by Users
	4.3.3 Unauthorized Tampering with Computational Results
	4.3.4 Unauthorized Access to Private Data – by Jobs

	4.4 Job Faults
	4.5 Resource Starvation
	4.6 Overflow
	4.6.1 Stack-Based Buffer Overflow
	4.6.2 Heap-Based Buffer Overflow

	4.7 Privilege Escalation
	4.8 Injection Attacks
	4.8.1 Shell/PHP Injection
	4.8.2 SQL Injection

	4.9 Conclusion
	References

	Chapter 5 Infrastructure-Level Threats and Vulnerabilities
	5.1 Introduction
	5.2 Network-Level Threats and Vulnerabilities
	5.2.1 Denial-of-Service Attacks
	5.2.2 DNS Attacks
	5.2.3 Routing Attacks
	5.2.4 Wireless Security Vulnerabilities

	5.3 Grid Computing Threats and Vulnerabilities
	5.3.1 Architecture-Related Issues
	5.3.2 Infrastructure-Related Issues
	5.3.3 Management-Related Issues

	5.4 Storage Threats and Vulnerabilities
	5.4.1 Security in Storage Area Networks
	5.4.2 Security in Distributed File Systems

	5.5 Overview of Infrastructure Threats and Vulnerabilities
	References

	Chapter 6 Application-Level Threats and Vulnerabilities
	6.1 Introduction
	6.2 Application-Layer Vulnerabilities
	6.2.1 Injection Vulnerabilities
	6.2.2 Cross-Site Scripting (XSS)
	6.2.3 Improper Session Management
	6.2.4 Improper Error Handling
	6.2.5 Improper Use of Cryptography
	6.2.6 Insecure Configuration Issues
	6.2.7 Denial of Service
	6.2.8 Canonical Representation Flaws
	6.2.9 Overflow Issues

	6.3 Conclusion
	References
	Further Reading

	Chapter 7 Service-Level Threats and Vulnerabilities
	7.1 Introduction
	7.2 SOA and Role of Standards
	7.2.1 Standards Stack for SOA

	7.3 Service-Level Security Requirements
	7.3.1 Authentication
	7.3.2 Authorization and Access Control
	7.3.3 Auditing and Nonrepudiation
	7.3.4 Availability
	7.3.5 Confidentiality
	7.3.6 Data Integrity
	7.3.7 Privacy
	7.3.8 Trust
	7.3.9 Federation and Delegation

	7.4 Service-Level Threats and Vulnerabilities
	7.4.1 Anatomy of a Web Service

	7.5 Service-Level Attacks
	7.5.1 Known Bug Attacks
	7.5.2 SQL Injection Attacks
	7.5.3 XPath and XQuery Injection Attacks
	7.5.4 Blind XPath Injection
	7.5.5 Cross-Site Scripting Attacks
	7.5.6 WSDL Probing
	7.5.7 Enumerating Service from WSDL
	7.5.8 Parameter-Based Attacks
	7.5.9 Authentication Attacks
	7.5.10 Man-in-the-Middle Attacks
	7.5.11 SOAP Routing Attacks
	7.5.12 SOAP Attachments Virus
	7.5.13 XML Signature Redirection Attacks
	7.5.14 XML Attacks
	7.5.15 Schema-Based Attacks
	7.5.16 UDDI Registry Attacks

	7.6 Services Threat Pro.le
	7.7 Conclusion
	References
	Further Reading

	Chapter 8 Host-Level Solutions
	8.1 Background
	8.2 Sandboxing
	8.2.1 Kernel-Level Sandboxing
	8.2.2 User-Level Sandboxing
	8.2.3 Delegation-Based Sandboxing
	8.2.4 File-System Isolation

	8.3 Virtualization
	8.3.1 Full-System Virtualization
	8.3.2 Para Virtualization
	8.3.3 Shared-Kernel Virtualization
	8.3.4 Hosted Virtualization
	8.3.5 Hardware Assists
	8.3.6 Security Using Virtualization
	8.3.7 Future Security Trends Based on Virtualization
	8.3.8 Application Streaming

	8.4 Resource Management
	8.4.1 Advance Reservation
	8.4.2 Priority Reduction
	8.4.3 Solaris Resource Manager
	8.4.4 Windows System Resource Manager
	8.4.5 Citrix ARMTech
	8.4.6 Entitlement-Based Scheduling

	8.5 Proof-Carrying Code
	8.6 Memory Firewall
	8.7 Antimalware
	8.7.1 Signature-Based Protection
	8.7.2 Real-Time Protection
	8.7.3 Heuristics-Based Worm Containment
	8.7.4 Agent Defense

	8.8 Conclusion
	References

	Chapter 9 Infrastructure-Level Solutions
	9.1 Introduction
	9.2 Network-Level Solutions
	9.2.1 Network Information Security Solutions
	9.2.2 Denial-of-Service Solutions
	9.2.3 DNS Solution – DNSSEC
	9.2.4 Routing Attack Solutions
	9.2.5 Comments on Network Solutions

	9.3 Grid-Level Solutions
	9.3.1 Architecture Security Solutions
	9.3.2 Grid Infrastructure Solutions
	9.3.3 Grid Management Solutions
	9.3.4 Comments on Grid Solutions

	9.4 Storage-Level Solutions
	9.4.1 Fiber-Channel Security Protocol (FC-SP) – Solution for SAN Security
	9.4.2 Distributed File System (DFS) Security
	9.4.3 Comments on Storage Solutions

	9.5 Conclusion
	References

	Chapter 10 Application-Level Solutions
	10.1 Introduction
	10.2 Application-Level Security Solutions
	10.2.1 Input Validation Techniques
	10.2.2 Secure Session Management
	10.2.3 Cryptography Use
	10.2.4 Preventing Cross-Site Scripting
	10.2.5 Error-Handling Best Practices

	10.3 Conclusion
	References

	Chapter 11 Service-Level Solutions
	11.1 Introduction
	11.2 Services Security Policy
	11.2.1 Threat Classification

	11.3 SOA Security Standards Stack
	11.3.1 Inadequacy of SSL for Web Services

	11.4 Standards in Depth
	11.4.1 XML Signature
	11.4.2 XML Encryption
	11.4.3 Web-Services Security (WS Security)
	11.4.4 Security Assertions Mark-Up Language (SAML)
	11.4.5 WS Policy
	11.4.6 WS Trust
	11.4.7 WS Security Policy
	11.4.8 WS Secure Conversation
	11.4.9 XKMS (XML Key Management Speci.cation)
	11.4.10 WS Privacy and P3P
	11.4.11 Federated Identity Standards – Liberty Alliance Project and WS Federation
	11.4.12 WS-I Basic Security Profile
	11.4.13 Status of Standards

	11.5 Deployment Architectures for SOA Security
	11.5.1 Message-Level Security and Policy Infrastructure
	11.5.2 XML Firewalls

	11.6 Managing Service-Level Threats
	11.6.1 Combating SQL and XPath Injection Attacks
	11.6.2 Combating Cross-Site Scripting Attacks
	11.6.3 Combating Phishing and Routing Attacks
	11.6.4 Handling Authentication Attacks
	11.6.5 Handling Man-in-the-Middle Attacks
	11.6.6 Handling SOAP Attachment Virus Attacks
	11.6.7 Handling Parameter-Tampering Attacks
	11.6.8 XML Attacks
	11.6.9 Known-Bug Attacks

	11.7 Service Threat Solution Mapping
	11.8 XML Firewall Configuration-Threat Mapping
	11.9 Conclusion
	References
	Further Reading

	Chapter 12 Case Study: Compliance in Financial Services
	12.1 Introduction
	12.2 SOX Compliance
	12.2.1 Identity Management
	12.2.2 Policy-Based Access Control
	12.2.3 Strong Authentication
	12.2.4 Data Protection and Integrity

	12.3 SOX Security Solutions
	12.3.1 People
	12.3.2 Process
	12.3.3 Technology

	12.4 Multilevel Policy-Driven Solution Architecture
	12.4.1 Logical Architecture and Middleware

	12.5 Conclusion
	References
	Further Reading

	Chapter 13 Case Study: Grid
	13.1 Background
	13.2 The Financial Application
	13.3 Security Requirements Analysis
	13.3.1 Confidentiality Requirement Analysis
	13.3.2 Authentication Requirement Analysis
	13.3.3 Single Sign-On and Delegation Requirement Analysis
	13.3.4 Authorization Requirement Analysis
	13.3.5 Identity Management Requirement Analysis
	13.3.6 Secure Repository Requirement Analysis
	13.3.7 Trust Management Requirement Analysis
	13.3.8 Monitoring and Logging Requirement Analysis
	13.3.9 Intrusion Detection Requirement Analysis
	13.3.10 Data Protection and Isolation Requirement Analysis
	13.3.11 Denial of Service Requirement Analysis

	13.4 Final Security Architecture

	Chapter 14 Future Directions and Conclusions
	14.1 Future Directions
	14.1.1 Cloud Computing Security
	14.1.2 Security Appliances
	14.1.3 Usercentric Identity Management
	14.1.4 Identity-Based Encryption (IBE)
	14.1.5 Virtualization in Host Security

	14.2 Conclusions
	References
	Further Reading

	Index

