
Software Engineering & Systems Development

... an engaging book that will empower readers in both large and small software
development and engineering organizations to build security into their products.
This book clarifies to executives the decisions to be made on software security and
then provides guidance to managers and developers on process and procedure.
Readers are armed with firm solutions for the fight against cyber threats.

—Dr. Dena Haritos Tsamitis, Director, Information Networking Institute
and Director of Education, CyLab, Carnegie Mellon University

Finally, the definitive how-to guide for software security professionals. Dr.
Ransome, Anmol Misra, and Brook Schoenfield deftly outline the procedures
and policies needed to integrate real security into the software development
process and why security needs to be software and developer-centric if it is
to be relevant ... a must-have for anyone on the front lines of the Cyber War—
especially software developers and those who work with them.

—Colonel Cedric Leighton, USAF (Ret); Founder & President,
Cedric Leighton Associates

In the wake of cloud computing and mobile apps, the issue of software security
has never been more important than today. This book is a must-read for
security specialists, software developers, and software engineers. The authors
do a brilliant job providing common sense approaches to achieving a strong
software security posture.

—Dr. Larry Ponemon, Chairman & Founder, Ponemon Institute

The root of software security lies within the source code developed by software
developers. Therefore, security should be developer-centric, focused on the
secure development of the source code. Dr. Ransome, Anmol Misra, and Brook
Schoenfield give you a magic formula in this book—the methodology and
process to build security into the entire software development lifecycle so that
the software is secured at the source!

—Eric S. Yuan, Founder and CEO, Zoom Video Communications, Inc.

ISBN: 978-1-4665-6095-6

9 781466 560956

90000

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

CORE
SOFTWARE
SECURITY
SECURITY AT THE SOURCE

JAMES RANSOME
ANMOL MISRA

FOREWORD BY
HOWARD SCHMIDT

C
O

R
E

 SO
FTW

A
R

E
 SEC

U
R

ITY
R

A
N

SO
M

E
M

ISR
A

K15922

www.auerbach-publications.com

K15922 cvr mech.indd 1 10/31/13 10:29 AM

K15922_FM.indd 2 11/5/13 11:22 AM

CORE
SOFTWARE
SECURITY

SECURITY AT THE SOURCE

K15922_FM.indd 1 11/5/13 11:22 AM

K15922_FM.indd 2 11/5/13 11:22 AM

CORE
SOFTWARE
SECURITY

SECURITY AT THE SOURCE

JAMES RANSOME
ANMOL MISRA

FOREWORD BY
HOWARD SCHMIDT

CONTRIBUTING AUTHOR (CHAPTER 9): BROOK SCHOENFIELD

K15922_FM.indd 3 11/5/13 11:22 AM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131112

International Standard Book Number-13: 978-1-4665-6096-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Dedication

To Dr. Tony (Vern) Dubendorf, who passed away earlier this year. He was
a true friend, co-worker, collaborator, confidant, co-researcher, co-author,
and co-architect of the Getronics Wireless Integrated Security, Design,
Operations & Management (WISDOM) solution .

—James Ransome

To Dad, Mom, Esu, Anu, Mausi, and Prince.

—Anmol Misra

vii

Contents

Dedication v

Foreword by Hon. Howard A. Schmidt xiii

Preface xix

Acknowledgments xxiii

About the Authors xxv

Chapter 1 Introduction 1

1.1 The Importance and Relevance of Software Security 3
1.2 Software Security and the Software Development

Lifecycle 6
1.3 Quality Versus Secure Code 10
1.4 The Three Most Important SDL Security Goals 11
1.5 Threat Modeling and Attack Surface Validation 13
1.6 Chapter Summary—What to Expect from This Book 15
References 16

Chapter 2 The Secure Development Lifecycle 19

2.1 Overcoming Challenges in Making Software Secure 20
2.2 Software Security Maturity Models 21
2.3 ISO/IEC 27034—Information Technology—Security

Techniques—Application Security 23
2.4 Other Resources for SDL Best Practices 25

viii Core Software Security

2.4.1 SAFECode 25
2.4.2 U.S. Department of Homeland Security

Software Assurance Program 26
2.4.3 National Institute of Standards and

Technology 27
2.4.4 MITRE Corporation Common Computer

Vulnerabilities and Exposures 28
2.4.5 SANS Institute Top Cyber Security Risks 30
2.4.6 U.S. Department of Defense Cyber Security

and Information Systems Information
Analysis Center (CSIAC) 30

2.4.7 CERT, Bugtraq, and SecurityFocus 31
2.5 Critical Tools and Talent 31

2.5.1 The Tools 32
2.5.2 The Talent 34

2.6 Principles of Least Privilege 40
2.7 Privacy 41
2.8 The Importance of Metrics 42
2.9 Mapping the Security Development Lifecycle to

the Software Development Lifecycle 45
2.10 Software Development Methodologies 50

2.10.1 Waterfall Development 51
2.10.2 Agile Development 53

2.3 Chapter Summary 56
References 57

Chapter 3 Security Assessment (A1): SDL Activities and
Best Practices 61

3.1 Software Security Team Is Looped in Early 63
3.2 Software Security Hosts a Discovery Meeting 64
3.3 Software Security Team Creates an SDL Project Plan 66
3.4 Privacy Impact Assessment (PIA) Plan Initiated 66
3.5 Security Assessment (A1) Key Success Factors

and Metrics 73
3.5.1 Key Success Factors 73
3.5.2 Deliverables 76
3.5.3 Metrics 78

3.6 Chapter Summary 79
References 79

Contents ix

Chapter 4 Architecture (A2): SDL Activities and
Best Practices 81

4.1 A2 Policy Compliance Analysis 83
4.2 SDL Policy Assessment and Scoping 84
4.3 Threat Modeling/Architecture Security Analysis 84

4.3.1 Threat Modeling 84
4.3.2 Data Flow Diagrams 88
4.3.3 Architectural Threat Analysis and Ranking

of Threats 95
4.3.4 Risk Mitigation 117

4.4 Open-Source Selection 124
4.5 Privacy Information Gathering and Analysis 124
4.6 Key Success Factors and Metrics 125

4.6.1 Key Success Factors 125
4.6.2 Deliverables 126
4.6.3 Metrics 127

4.7 Chapter Summary 128
References 129

Chapter 5 Design and Development (A3): SDL Activities
and Best Practices 133

5.1 A3 Policy Compliance Analysis 135
5.2 Security Test Plan Composition 135
5.3 Threat Model Updating 146
5.4 Design Security Analysis and Review 146
5.5 Privacy Implementation Assessment 150
5.6 Key Success Factors and Metrics 154

5.6.1 Key Success Factors 154
5.6.2 Deliverables 156
5.6.3 Metrics 157

5.7 Chapter Summary 158
References 158

Chapter 6 Design and Development (A4): SDL Activities
and Best Practices 161

6.1 A4 Policy Compliance Analysis 163
6.2 Security Test Case Execution 164
6.3 Code Review in the SDLC/SDL Process 168

x Core Software Security

6.4 Security Analysis Tools 174
6.4.1 Static Analysis 177
6.4.2 Dynamic Analysis 182
6.4.3 Fuzz Testing 185
6.4.4 Manual Code Review 188

6.5 Key Success Factors 192
6.6 Deliverables 193
6.7 Metrics 194
6.8 Chapter Summary 195
References 195

Chapter 7 Ship (A5): SDL Activities and Best Practices 199

7.1 A5 Policy Compliance Analysis 201
7.2 Vulnerability Scan 202
7.3 Penetration Testing 205
7.4 Open-Source Licensing Review 208
7.5 Final Security Review 212
7.6 Final Privacy Review 216
7.7 Key Success Factors 217
7.8 Deliverables 219
7.9 Metrics 221
7.10 Chapter Summary 221
References 223

Chapter 8 Post-Release Support (PRSA1–5) 225

8.1 Right-Sizing Your Software Security Group 227
8.1.1 The Right Organizational Location 227
8.1.2 The Right People 229
8.1.3 The Right Process 229

8.2 PRSA1: External Vulnerability Disclosure
Response 232
8.2.1 Post-Release PSIRT Response 233
8.2.2 Post-Release Privacy Response 238
8.2.3 Optimizing Post-Release Third-Party

Response 239
8.3 PRSA2: Third-Party Reviews 240
8.4 PRSA3: Post-Release Certifications 242
8.5 PRSA4: Internal Review for New Product

Combinations or Cloud Deployments 243

Contents xi

8.6 PRSA5: Security Architectural Reviews and
Tool-Based Assessments of Current, Legacy,
and M&A Products and Solutions 243
8.6.1 Legacy Code 243
8.6.2 Mergers and Acquisitions (M&As) 247

8.7 Key Success Factors 248
8.8 Deliverables 251
8.9 Metrics 252
8.10 Chapter Summary 252
References 253

Chapter 9 Applying the SDL Framework to the
Real World 255

9.0 Introduction 256
9.1 Build Software Securely 261

9.1.1 Produce Secure Code 264
9.1.2 Manual Code Review 269
9.1.3 Static Analysis 271

9.2 Determining the Right Activities for Each Project 275
9.2.1 The Seven Determining Questions 275

9.3 Architecture and Design 292
9.4 Testing 302

9.4.1 Functional Testing 303
9.4.2 Dynamic Testing 304
9.4.3 Attack and Penetration Testing 309
9.4.4 Independent Testing 311

9.5 Agile: Sprints 312
9.6 Key Success Factors and Metrics 317

9.6.1 Secure Coding Training Program 317
9.6.2 Secure Coding Frameworks (APIs) 318
9.6.3 Manual Code Review 318
9.6.4 Independent Code Review and Testing

(by Experts or Third Parties) 318
9.6.5 Static Analysis 319
9.6.6 Risk Assessment Methodology 319
9.6.7 Integration of SDL with SDLC 319
9.6.8 Development of Architecture Talent 319

9.7 Metrics 320
9.8 Chapter Summary 321
References 323

xii Core Software Security

Chapter 10 Pulling It All Together: Using the SDL to
Prevent Real-World Threats 325

10.1 Strategic, Tactical, and User-Specific
Software Attacks 326
10.1.1 Strategic Attacks 328
10.1.2 Tactical Attacks 338
10.1.3 User-Specific Attacks 339

10.2 Overcoming Organizational and Business
Challenges with a Properly Designed,
Managed, and Focused SDL 339

10.3 Software Security Organizational Realities
and Leverage 340

10.4 Overcoming SDL Audit and Regulatory
Challenges with Proper Governance
Management 342

10.5 Future Predications for Software Security 343
10.5.1 The Bad News 343
10.5.2 The Good News 345

10.6 Conclusion 345
References 347

Appendix 351

Index 359

xiii

The global cyber security threat is increasing on a regular basis, if not
daily. The recurring question is how we address the current threat of global
cyber security. The authors have aptly named their book in response to
this question, in that the answer is to create software that has as mini-
mal vulnerabilities as possible. In other words, focus on securing at the
source first, instead of taking shortcuts by only trying to secure network
infrastructure. Perimeter security and defense-in-depth have their place
in security, but software security is the first line of defense and should
come first. If you have fewer vulnerabilities at the source, it also takes out
the financial benefit of nation states or organized crime stockpiling cyber
weapons based on current vulnerabilities. Not only must we get better
at it, we must make the solutions cost-effective, operationally relevant,
and feasible, based on real-world experience, and worth the investment.
Securing at the source requires securing the software, which is at the
heart of cyber infrastructure. One of the things we have been constantly
facing over the last 20 years is that software has become a critical com-
ponent of every part of our critical infrastructure and everyday lives. We
are already seeing software embedded within a vast variety of things we
use in our daily lives—from smart meters in our home to cars we drive.
Unfortunately, software security has not evolved at the same pace, and
many software products are still developed in an environment with the
intent that they fix the problem after release rather than doing it right the
first time around. There are two major issues with this:

 1. There are no shortages of threats out there today; therefore, people
who are looking to exploit software vulnerabilities have a pretty

Foreword

 fertile field in which to work. As a consequence, we have to make
sure we are doing better vulnerability management. We also have to
look toward the future and ask ourselves, “How can we avoid having
these types of vulnerabilities in future generations of software that
we are increasingly dependent on?” The answer to this question is
particularly important because it is very beneficial to companies to
reduce these vulnerabilities and to stop them during the software
development process. It is significantly less expensive to build security
in through the use of a SDL than to come back and fix it post-release.

 2. The second issue is that we need to start looking at a whole genera-
tion of what is referred to as “zero-day vulnerabilities.” If we can
eliminate the likelihood of finding a zero day by not allowing the
vulnerabilities to take place from the very beginning by adhering
to the best practices of a solid SDL, it will save companies money,
make the software and its users more secure, the critical infrastruc-
ture more resilient, and overall, more beneficial to us all.

As the Executive Director of the Software Assurance Forum for
Excellence in Code (SAFECode), a nonprofit organization dedicated
exclusively to increasing trust in information and communications
technology products and services through the advancement of effective
software assurance methods, I currently have a major focus on security
training for developers. The lack of security awareness and education
among the software engineering workforce can be a significant obsta-
cle to organizations working to implement software security programs.
However, better training for software developers so they have the skills
needed to write secure code is just one of the variables in the software
security equation. Software projects are under the constraints of costs
and tight timelines. In those situations, it is inevitable that security is sac-
rificed somewhere because of shortcuts taken. Cost, time, and resources
are typically the triad of software development supporting security, and
if you sacrifice one of the three, security and quality suffer. A software
development environment is built around a programmer who is pressured
on every side to work faster, to cut corners, and to produce more code at
the expense of security and quality.

It is impossible to have 100 percent security, but the developers and
their management should always strive to maximize the mitigation of
risk. It is about making it so difficult to access in an unauthorized man-
ner that adversaries:

xiv Core Software Security

Foreword xv

• Have to utilize traceable and obvious means to gain access, so they
are noticed right away

• Spend so much time trying to gain access that they eventually are
noticed

• Give up and move on to easier targets

Ensuring that everyone touching the product development lifecycle
has the knowledge they need to support an organization’s software secu-
rity process is a fundamental challenge for any organization committed
to software security success. The goal is to remove the pain that organi-
zations face in developing a custom program of their own resource con-
straints and knowledge vacuums.

Developers are often under intense pressure to deliver more features
on time and under budget. Few developers get the time to review their
code for potential security vulnerabilities. When they do get the time,
they often don’t have secure-code training and lack the automated tools,
embedded processes and procedures, and resources to prevent hackers
from using hundreds of common exploit techniques to trigger malicious
attacks. Like it or not, the hard work of developers often takes the brunt
of malicious hacker attacks. So what can software vendors do? A big part
of the answer is relatively old-fashioned: The developers need to be pro-
vided with incentives, better tools, and proper training.

Unfortunately, it currently makes more business sense not to produce
secure software products than it does to produce secure software prod-
ucts. Any solution needs to address this as a fundamental market failure
instead of simply wishing it were not true. If security is to be a business
goal, then it needs to make business sense. In the end, security require-
ments are in fact the same as any business goals and should be addressed as
equally important. Employers should expect their employees to take pride
in and own a certain level of responsibility for their work. And employees
should expect their employers to provide the tools and training they need
to get the job done. With these expectations established and goals agreed
on, perhaps the software industry can do a better job of strengthening the
security of its products by reducing software vulnerabilities.

This book discusses a process and methodology to develop software in
such a way that security considerations play a key role in its development.
It speaks to executives, to managers at all levels, and to technical leaders,
and in that way it is unique. It also speaks to students and developers so
they can understand the process of developing software with security in

mind and find resources to help them do so. The information in this
book provides a foundation for executives, project managers, and techni-
cal leaders to improve the software they create and to improve the secu-
rity, quality, and privacy of the software we all use.

Software developers know how to write software in a way that provides
a high level of security and robustness. So why don’t software developers
practice these techniques? This book looks to answer this question in
two parts:

 1. Software is determined to be secure as a result of an analysis of how
the program is to be used, under what conditions, and the secu-
rity requirements it must meet in the environment in which it is
to be deployed. The SDL must also extend beyond the release of
the product in that if the assumptions underlying the software in
an unplanned operational environment and their previously implied
requirements do not hold, the software may no longer be secure and
the SDL process may start over in part or as a whole if a complete
product redesign is required. In this sense, the authors establish the
need for accurate and meaningful security requirements and the
metrics to govern them as well as examples of how to develop them.
It also assumes that the security requirements are not all known
prior to the development process and describes the process by which
they are derived, analyzed, and validated.

 2. Software executives, leaders, and managers must support the robust
coding practices and required security enhancements as required by
a business-relevant SDL as well supporting the staffing requirements,
scheduling, budgeting, and resource allocations required for this
type of work. The authors do an excellent job of describing the pro-
cess, requirements, and management of metrics for people in these
roles so they can accurately assess the impact and resources required
for a SDL that is relevant to and work best in their organization and
environment. Given that this is an approached designed from real-
life, on-the-ground challenges and experiences, the authors describe
how to think about issues in order to develop effective approaches
and manage them as a business process.

I particularly like the addition of Brook Schoenfield to the book as
the author of Chapter 9, bringing a seasoned principal enterprise and

xvi Core Software Security

Foreword xvii

software security architect with “in the trenches” experience to explain
how security architecture fits into the SDL process in the “real world.” In
particular, he provides a unique and valuable approach to addressing the
aspects of SDL and security architecture that has been field-tested and
really works in the agile software development process.

I have known Dr. James Ransome for many years, and I am very
pleased that he has chosen this topic for his 10th book on information
security. Having recently served as the Special Assistant to the President
and the Cyber Security Coordinator for the federal government, in addi-
tion to many senior leadership roles in the cyber security government
and enterprise space, I can confidently say that this is currently the most
critical area of information and global cyber security to fix. This has been
and continues to be more of a business and process issue than it is techni-
cal. Core Software Security: Security at the Source adds great value to the
typical training resources currently available in that it takes the elements
of the best publically known SDLs and provides operational, business-
relevant, cost-effective metrics. I believe that what James Ransome and
Anmol Misra have written has hit the mark on this topic and will serve
the community for many years to come as both a practical guide for pro-
fessionals and as an academic textbook.

Hon. Howard A. Schmidt
Partner, Ridge Schmidt Cyber

Executive Director, The Software Assurance Forum for Excellence in
Code (SAFECode)

About Hon. Howard A. Schmidt

Hon. Howard Schmidt serves as a partner in the strategic advisory firm
Ridge Schmidt Cyber, an executive services firm that helps leaders in
business and government navigate the increasing demands of cyber secu-
rity. He serves in this position with Tom Ridge, the first Secretary of
the U.S. Department of Homeland Security. Prof. Schmidt also serves
as executive director of The Software Assurance Forum for Excellence in
Code (SAFECode).

Prof. Schmidt brings together talents in business, defense, intelligence,
law enforcement, privacy, academia, and international relations, gained
from a distinguished career spanning 40 years. He recently served as
Special Assistant to the President and the Cyber Security Coordinator
for the federal government. In this role, Mr. Schmidt was responsible for
coordinating interagency cyber security policy development and imple-
mentation, and for coordinating engagement with federal, state, local,
international, and private-sector cyber security partners.

Previously, Prof. Schmidt was the President and CEO of the
Information Security Forum (ISF). Before serving on the ISF, he was
Vice President and Chief Information Security Officer and Chief
Security Strategist for eBay Inc., and formerly served as the Chief Security
Officer for Microsoft Corp. He also served as Chief Security Strategist
for the US-CERT Partners Program for the Department of Homeland
Security. Mr. Schmidt also brings to bear over 26 years of military service.
Beginning active duty with the Air Force, he later joined the Arizona
Air National Guard. With the Air Force he served in a number of mili-
tary and civilian roles, culminating as Supervisory Special Agent with
the Office of Special Investigations (AFOSI). He finished his last 12
years as an Army Reserve Special Agent with the Criminal Investigation
Division’s Computer Crime Unit, all while serving for over a decade as a
police officer with the Chandler, Arizona, Police Department.

Prof. Schmidt holds a bachelor’s degree in business administration
(BSBA) and a master’s degree in organizational management (MAOM)
from the University of Phoenix. He also holds an Honorary Doctorate
degree in Humane Letters. Howard is a Professor of Research at Idaho
State University, Adjunct Distinguished Fellow with Carnegie Mellon’s
CyLab, and a Distinguished Fellow of the Ponemon Privacy Institute.

Howard is also a ham radio operator (W7HAS), private pilot, out-
doorsman, and avid Harley-Davidson rider. He is married to Raemarie J.
Schmidt, a retired forensic scientist and researcher, and instructor in the
field of computer forensics. Together, they are proud parents, and happy
grandparents.

xviii Core Software Security

xix

Preface

The age of the software-driven machine has taken significant leaps over
the last few years. Human tasks such as those of fighter pilots, stock-
exchange floor traders, surgeons, industrial production and power-plant
operators that are critical to the operation of weapons systems, medical
systems, and key elements of our national infrastructure, have been, or
are rapidly being taken over by software. This is a revolutionary step
in the machine whose brain and nervous system is now controlled by
software-driven programs taking the place of complex nonrepetitive tasks
that formerly required the use of the human mind. This has resulted in
a paradigm shift in the way the state, military, criminals, activists, and
other adversaries can attempt to destroy, modify, or influence countries,
infrastructures, societies, and cultures. This is true even for corpora-
tions, as we have seen increasing cases of cyber corporate espionage over
the years. The previous use of large armies, expensive and devastating
weapons systems and platforms, armed robberies, the physical stealing of
information, violent protests, and armed insurrection are quickly being
replaced by what is called cyber warfare, crime, and activism.

In the end, the cyber approach may have just as profound affects as the
techniques used before in that the potential exploit of software vulner-
abilities could result in:

• Entire or partial infrastructures taken down, including power
grids, nuclear power plants, communication media, and emergency
response systems

• Chemical plants modified to create large-yield explosions and/or
highly toxic clouds

xx Core Software Security

• Remote control, modification, or disablement of critical weapon sys-
tems or platforms

• Disablement or modification of surveillance systems
• Criminal financial exploitation and blackmail
• Manipulation of financial markets and investments
• Murder or harm to humans through the modification of medical

support systems or devices, surgery schedules, or pharmaceutical
prescriptions

• Political insurrection and special-interest influence through the
modification of voting software, blackmail, or brand degradation
though website defacement or underlying Web application take-
down or destruction

A side effect of the cyber approach is that it has given us the abil-
ity to do the above at a scale, distance, and degree of anonymity pre-
viously unthought of from jurisdictionally protected locations through
remote exploitation and attacks. This gives government, criminal groups,
and activists abilities to proxy prime perpetuators to avoid responsibility,
detection, and political fallout.

Although there is much publicity regarding network security, the real
Achilles heel is the (insecure) software which provides the potential ability
for total control and/or modification of a target as described above. The
criticality of software security as we move quickly toward this new age of
tasks previously relegated to the human mind being replaced by software-
driven machines cannot be underestimated. It is for this reason that we
have written this book. In contrast, and for the foreseeable future, soft-
ware programs are and will be written by humans. This also means that
new software will keep building on legacy code or software that was writ-
ten prior to security being taken seriously, or before sophisticated attacks
became prevalent. As long as humans write the programs, the key to suc-
cessful security for these programs is in making the software development
program process more efficient and effective. Although the approach of
this book includes people, process, and technology approaches to soft-
ware security, we believe the people element of software security is still
the most important part to manage as long as software is developed, man-
aged, and exploited by humans. What follows is a step-by-step process for
software security that is relevant to today’s technical, operational, busi-
ness, and development environments, with a focus on what humans can

Preface xxi

do to control and manage the process in the form of best practices and
metrics. We will always have security issues, but this book should help in
minimizing them when software is finally released or deployed. We hope
you enjoy our book as much as we have enjoyed writing it.

About the Book
This book outlines a step-by-step process for software security that is rele-
vant to today’s technical, operational, business, and development environ-
ments. The authors focus on what humans can do to control and manage
a secure software development process in the form of best practices and
metrics. Although security issues will always exist, this book will teach
you how to maximize your organization’s ability to minimize vulnerabili-
ties in your software products before they are released or deployed, by
building security into the development process. The authors have worked
with Fortune 500 companies and have often seen examples of the break-
down of security development lifecycle (SDL) practices. In this book, we
take an experience-based approach to applying components of the best
available SDL models in dealing with the problems described above, in
the form of a SDL software security best practices model and framework.
Core Software Security: Security at the Source starts with an overview of
the SDL and then outlines a model for mapping SDL best practices to the
software development lifecycle, explaining how you can use this model
to build and manage a mature SDL program.   Although security is not
a natural component of the way industry has been building software in
recent years, the authors believe that security improvements to develop-
ment processes are possible, practical, and essential. They trust that the
software security best practices and model presented in this book will
make this clear to all who read the book, including executives, managers,
and practitioners. 

Audience
This book is targeted toward anyone who is interested in learning about
software security in an enterprise environment, including product security
and quality executives, software security architects, security consultants,
software development engineers, enterprise SDLC program managers,

xxii Core Software Security

chief information security officers, chief technology officers, and chief
privacy officers whose companies develop software. If you want to learn
about how software security should be implemented in developing enter-
prise software, this is a book you don’t want to skip.

Support
Errata and support for this book are available on the CRC Press book
website.

Structure
This book is divided into three different sections and 10 chapters. Chapter
1 provides an introduction to the topic of software security and why it is
important that we get it right the first time. Chapter 2 introduces chal-
lenges of making software secure and the SDL framework. Chapters 3
through 8 provide mapping of our SDL with its associated best practices
to a generic SDLC framework. Chapter 9 provides a seasoned software
security architect’s view on the successful application of the solutions
proposed in Chapters 3 through 8. Chapter 9 also explains real-world
approaches to the typical challenges that are presented when making
secure software. We conclude, in Chapter 10, by describing real-world
security threats that a properly architected, implemented, and managed
SDL program will mitigate against.

Assumptions
This book assumes that a reader is familiar with basics of software devel-
opment (and methodologies) and basic security concepts. Knowledge of
the SDL, different types of security testing, and security architecture is
recommended but not required. For most topics, we gently introduce
readers to the topic before diving deep into that particular topic.

xxiii

Acknowledgments

Writing a book is a journey, and without support from mentors, friends,
colleagues, and family, it can be a difficult one. Many people have been
instrumental in helping us write this book. First, we would like to thank
our editor, John Wyzalek, at CRC Press, for his patience, support, and
commitment to the project. We would also like to thank the production
team at DerryField Publishing: Theron Shreve, Lynne Lackenbach, and
Marje Pollack.

Both authors would like to thank the Hon. Howard A. Schmidt
[Partner, Ridge Schmidt Cyber; Executive Director, The Software
Assurance Forum for Excellence in Code (SAFECode); and former Special
Assistant to the President and the Cyber Security Coordinator for the
federal government], and Dena Haritos Tsamitis (Director, Information
Networking Institute; Director of Education, Training, and Outreach,
CyLab Carnegie Mellon University) for their support with this project.
We would also like to thank Brook Schoenfield, who has joined us in
this journey to prove there is another way to architect, implement, and
manage software security than what is the current status quo, and for his
contribution in writing a chapter of this book as a contributing author.
We would like to thank the security community to which we both belong
and are proud of. Finally, we would like to thank the people with whom
we have worked and interacted over the years.

—James Ransome and Anmol Misra

xxiv Core Software Security

I would like to take this opportunity to give thanks to my wife, Gail, for
her patience and understanding and for serving as my preliminary proof-
reader. A special thanks to my co-author, Anmol Misra, who has joined
me as a partner in developing this critical message over the last three years
that has resulted in the book you are about to read. A special thanks to
Howard Schmidt for writing the foreword for this book on a subject and
message for which we both share a passion, and that we both want to get
out to practitioners and decision makers alike. And finally, I leave you
with the following quote by Walter Bagehot: “The greatest pleasure in life
is doing that which people say we cannot do.”

—James Ransome

Over the years, many people have mentored and helped me. I would like
to thank them all, but space is limited. You know who you are, and I
would like to thank you for your patience, encouragement, and support. I
would like to thank my co-author, James Ransome. He has been a mentor
and a partner over the years and has helped me in more ways than I can
mention. Finally, I would like to take this opportunity to thank my fam-
ily—Mom, Dad, Sekhar, Anupam, and Mausi. Nothing would be pos-
sible without their unquestioning support and love. You have been asking
me if I am going to take a break from my writing and if I will finally have
a “normal” schedule. Yes, I will now—hopefully.

—Anmol Misra

xxv

About the Authors

James Ransome, Ph.D., CISSP, CISM

Dr. James Ransome is the Senior Director of Product Security and respon-
sible for all aspects of McAfee’s Product Security Program, a corporate-wide
initiative that supports McAfee’s business units in delivering best-in-class,
secure software products to customers. In this role, James sets program
strategy, manages security engagements with McAfee business units,
maintains key relationships with McAfee product engineers, and works
with other leaders to help define and build product security capabilities.

His career has been marked by leadership positions in private and pub-
lic industries, including three chief information security officer (CISO)
and four chief security officer (CSO) roles. Prior to entering the corporate
world, James had 23 years of government service in various roles support-
ing the U.S. intelligence community, federal law enforcement, and the
Department of Defense.

James holds a Ph.D. in Information Systems. He developed/tested a
security model, architecture, and provided leading practices for converged
wired/wireless network security for his doctoral dissertation as part of
a NSA/DHS Center of Academic Excellence in Information Assurance
Education program. He is the author of several books on information secu-
rity, and Core Software Security: Security at the Source is his 10th. James is
a member of Upsilon Pi Epsilon, the International Honor Society for the
Computing and Information Disciplines, and he is a Certified Information
Security Manager (CISM), a Certified Information Systems Security
Professional (CISSP), and a Ponemon Institute Distinguished Fellow.

xxvi Core Software Security

Anmol Misra

Anmol Misra is an author and a security professional with a wide range
of experience in the field of information security. His expertise includes
mobile and application security, vulnerability management, application
and infrastructure security assessments, and security code reviews. He
is a Program Manager in Cisco’s Information Security group. In this
role, he is responsible for developing and implementing security strategy
and programs to drive security best practices into all aspects of Cisco’s
hosted products. Prior to joining Cisco, Anmol was a Senior Consultant
with Ernst & Young LLP. In this role, he advised Fortune 500 clients
on defining and improving information security programs and practices.
He helped corporations to reduce IT security risk and achieve regulatory
compliance by improving their security posture.

Anmol is co-author of Android Security: Attacks and Defenses, and is a
contributing author of Defending the Cloud: Waging War in Cyberspace.
He holds a master’s degree in Information Networking from Carnegie
Mellon University and a Bachelor of Engineering degree in Computer
Engineering. He is based out of San Francisco, California.

1

Chapter 1

Introduction

Welcome to our book about what we believe to be the most important
topic in information security for the foreseeable future: software security.
In the following sections, we will cover five major topics that highlight
the need, value, and challenges of software security. This will set the
stage for the remainder of the book, where we describe our model for
software security: building security into your software using an opera-
tionally relevant and manageable security development lifecycle (SDL)
that is applicable to all software development lifecycles (SDLCs). The
topics and reasons for including them in this introductory chapter are
listed below.

 1. The importance and relevance of software security. Software is
critical to everything we do in the modern world and is behind our
most critical systems. As such, it is imperative that it be secure by
design. Most information technology (IT)-related security solutions
have been developed to mitigate the risk caused by insecure software.
To justify a software security program, the importance and relevance
of the monetary costs and other risks for not building security into
your software must be known, as well as the importance, relevance,

2 Core Software Security

and costs for building security in. At the end of the day, software
security is as much a business decision as it is about avoiding secu-
rity risks.

 2. Software security and the software development lifecycle. It is
important to know the difference between what are generally known
in software development as software security and application security.
Although these terms are often used interchangeably, we differenti-
ate between them because we believe there is a distinct difference in
managing programs for these two purposes. In our model, software
security is about building security into the software through a SDL
in an SDLC, whereas application security is about protecting the soft-
ware and the systems on which it runs after release.

 3. Quality versus secure code. Although secure code is not necessar-
ily quality code, and quality code is not necessarily secure code, the
development process for producing software is based on the prin-
ciples of both quality and secure code. You cannot have quality code
without security or security without quality, and their attributes
complement each other. At a minimum, quality and software secu-
rity programs should be collaborating closely during the develop-
ment process; ideally, they should be part of the same organization
and both part of the software development engineering department.
We will discuss this organizational and operational perspective later
in the book.

 4. The three most important SDL security goals. At the core of all
software security analysis and implementation are three core elements
of security: confidentiality, integrity, and availability, also known as
the C.I.A. model. To ensure high confidence that the software being
developed is secure, these three attributes must be adhered to as key
components throughout the SDL.

 5. Threat modeling and attack surface validation. The most time-
consuming and misunderstood part of the SDL is threat modeling
and attack surface validation. In today’s world of Agile development,
you must get this right or you will likely fail to make your soft-
ware secure. Threat modeling and attack surface validation through-
out the SDL will maximize your potential to alleviate post-release
discovery of security vulnerabilities in your software product. We
believe this function to be so important that we have dedicated a
SDL section and a separate chapter to this topic.

Introduction 3

1.1 The Importance and Relevance
of Software Security

The 2005 U.S. President’s Information Technology Advisory Committee
(PITAC) report stated: “Commonly used software engineering practices
permit dangerous errors, such as improper handling of buffer overflows,
which enable hundreds of attack programs to compromise millions of com-
puters every year.”1 This happens mainly because “commercial software
engineering today lacks the scientific underpinnings and rigorous controls
needed to produce high-quality, secure products at acceptable cost.”2

The Gartner Group reports that more than 70 percent of current busi-
ness security vulnerabilities are found within software applications rather
than the network boundaries.3 A focus on application security has thus
emerged to reduce the risk of poor software development, integration,
and deployment. As a result, software assurance quickly became an infor-
mation assurance (IA) focus area in the financial, government, and manu-
facturing sectors to reduce the risk of unsecure code: Security built into
the software development lifecycle makes good business sense.

A U.S. Department of Homeland Security 2006 Draft, “Security in
the Software Lifecycle,” states the following:

The most critical difference between secure software and insecure
software lies in the nature of the processes and practices used to
specify, design, and develop the software . . . correcting potential
vulnerabilities as early as possible in the software development
lifecycle, mainly through the adoption of security-enhanced
process and practices, is far more cost-effective than the currently
pervasive approach of developing and releasing frequent patches
to operational software.4

At the RSA 2011 USA conference, cloud security issues were high-
lighted but very little discussion was devoted to addressing the problem;
however, at the 2012 conference, it was all about addressing the security
issues in the cloud that had been so aptly identified the year before. The
same thing happened in 2012, starting with a few key conferences, and
continued with a major focus on discussing solutions for software security
in 2013. For example, in early 2012, Information Week identified “Code
gets externally reviewed” as one of the ten security trends to watch in

4 Core Software Security

2012,5 and stated that “this business mandate is clear: Developers must
take the time to code cleanly, and eradicate every possible security flaw
before the code goes into production.” There was also a popular security
article published on March 1, 2012, titled “To Get Help with Secure
Software Development Issues, Find Your Own Flaws,” that highlighted
panel discussions at RSA 2012 in San Francisco.6 This panel did a great
job of identifying some of the critical issues but did not address solving
the software security challenges that it identified. However, things started
to change mid-year 2012: The agenda for Microsoft’s inaugural Security
Development Conference, held in May 2012,7 was less about Microsoft
and more about bringing secure software development thought leader-
ship together and in three separate tracks to include “security engineer-
ing,” “security development lifecycle (SDL) & business,” and “managing
the process” to discuss solutions to the most important security issue in
industry, secure software development. This trend continued with the
Black Hat USA 2012 Conference,8 the RSA 2013 Conference,9 and the
2013 Microsoft Security Development Conference.10

Think about it: What really causes a majority of the information secu-
rity problems we have today? What is the primary target of hackers, cyber-
criminals, and nation-state cyber warriors? It is insecure code. What has
quickly become the highest unnecessary cost to software development? It
is flaws arising from insecure code in software products that have already
been released to the market. When these flaws are discovered and/or
exploited, they cause interruptions in current product development cycles
to fix something that should have been fixed during the development of
the product that has the flaw; they cause delays in product release dates
because individuals or teams working on current products are pulled off
cycle to fix issues in a previously released product; and they result in vul-
nerability scope creep because vulnerabilities discovered in one pro duct
may affect the security of others in Web, software-as-a-service (SaaS),
and cloud applications. They also create legal issues, reputation degrada-
tion, and public relations nightmares such as those experienced by Sony,
Symantec, and RSA over the last couple of years. They can also result in
significant liability to the company. In an age of extensive regulations
governing privacy and exposure of data, this quickly adds up even for big
corporations. The point here is that even as the high-tech world, its con-
sumers, customers, regulators, and the media have started to realize that
not only is it imperative to fix software security problems, there is, in fact,
a way to solve these issues in the form of a structured security software

Introduction 5

development lifecycle or framework, such that all eyes will be on those
who develop software code, particularly code that is used in critical and
sensitive applications to see if the developers are adhering to this prac-
tice within their own environment whether it be traditional/Waterfall,
Scrum/Agile, or a blended development methodology.

Every sector of the global economy, from energy to transportation,
finance, and banking, telecommunications, public health, emergency ser-
vices, water, chemical, defense, industrial, food, agriculture, right down
to the postal and shipping sectors, relies on software. Anything that
threatens that software, in effect, poses a threat to our life. Because of all
the potential harm that could occur from exploitation of coding defects,
the product not only has to work right (quality), it also has to be secure
(security). Hence, we believe the title and content of this book addresses
perhaps the most critical challenge we face in information and cyber secu-
rity over the next few years.

Many believe that you can just fix software vulnerabilities after the
product has been developed and be done with it. This is not that easy,
however, because the cost to fix vulnerabilities increases over the SDLC,
as shown in Figure 1.1, and most security activities happen post-release,
including code audits, remediation, bug fixes, required patches, and also
hacking. In a cloud environment, there may be multiple versions of an
application running and it is often a challenge to fix security vulnerabili-
ties across all of them. Exposure in one version of an application in a
cloud environment can result in exploitation of all of them unless there
are stringent network segmentation controls in place. Even these might
prove to be insufficient in the event of sophisticated attacks.

Figure 1.1 Cost to address software problems mapped to SDLC phases.

6 Core Software Security

The cost associated with addressing software problems increases as the
lifecycle of a project matures (see Figure 1.1). In 1988 Barry Boehm stated
that defects found in the field cost 50–200 times as much to correct as
those corrected earlier.11 Years later, Boehm stated that this ratio was 5:1
for small noncritical systems.12 Data presented by Fortify in 2008 indicate
that the cost of correcting security flaws at the requirements level is up
to 100 times less than the cost of correcting security flaws in fielded soft-
ware.13 No matter what numbers are used, it is clear from the references
above and others used in industry that there are substantial cost savings
to fixing security flaws early in the development process rather than fixing
them after software is fielded. For vendors, the cost is magnified by the
expense of developing and patching vulnerable software after release and
can be a costly way of securing applications. Furthermore, patches are not
always applied by owners/users of the vulnerable software; and patches
can contain yet more vulnerabilities.14 We have seen patches that fix one
security problem but open (or re-open) other security issues. Companies
are not always able to give each patch (fix) the attention it deserves, or it
may not go through the regular software development cycle, resulting in
more security problems than the patch/fix is designed to mitigate.

For a number of years, the information security industry has focused
on network and application security, assuming that software is secure and
their security controls are all that is needed instead of actually protect-
ing organizations against software security failures. As we review the secu-
rity development lifecycle and its associated best practices in this book, it
should be clear that the network and application should come later in a
comprehensive and layered defense-in-depth security program, and that
software security should be considered the first step in the information
security lifecycle, not the last. In a nutshell, network and application secu-
rity programs are more about compensating controls, but it is only through
addressing security at the source that we can really address problems.

1.2 Software Security and the
Software Development Lifecycle

One significant area of confusion in the security industry over the years
has been a misunderstanding of the difference between software security
and application security. Gary McGraw has provided an excellent descrip-
tion of the difference between the two:

Introduction 7

On one hand, software security is about building secure soft-
ware: designing software to be secure; making sure that software
is secure; and educating software developers, architects, and users
about how to build security in. On the other hand, application
security is about protecting software and the systems that soft-
ware runs in a post facto, only after development is complete.15

Software security has come a long way since first attacks on a rea-
sonably large scale started to materialize toward the end of the 1980s.
Software back then was written without much thought for security (e.g.,
UNIX code, TCP/IP stack). After the advent of Microsoft Windows and
then the Web, attacks started increasing in sophistication and frequency
and thus it became necessary to look at software security. Industry started
to look for short-term fixes through various “add-ons.” These resulted in
anti-virus, firewalls, anti-spyware, and so on. However, the real issue—
how code was being developed and written—was not addressed. This
started to change only in the last decade when SDL practices started to
be taken seriously. Many enterprises impacted by software security defects
(e.g., Microsoft) started to look seriously at how to build security in soft-
ware code by improving software development practices. This resulted in
recommended SDL practices from academia and software giants such as
Microsoft. We now had the theory and guidelines on how to build secu-
rity into the code from the start and thus lessen the possibility of software
loopholes that could be exploited by attackers.

Confidentiality, integrity, and availability are the three primary
goals that the industry considers to be of the utmost importance in any
secure software development process. What the developers do to protect,
enforce, and ensure these primary goals will equate to the “justifiably
high confidence” part of the secure code definition. A developer can write
very efficient code that is easy to maintain and reusable; however, if that
code allows an unauthorized user to access the application’s assets, then
that code is either exposed or it is not, and there is no second chance for
getting it right.

SDLs should not be confused with the standard software develop-
ment lifecycle. SDL methodology, as the name suggests, is really aimed
at develop ing secure software, not necessarily quality software. As defined
in the IT Law Wiki, the “Security Development Lifecycle is a soft-
ware develop ment process used to reduce software maintenance costs
and increase reliability of software concerning software security related

8 Core Software Security

bugs.”16 In January 2002, many Microsoft software development groups
prompted “security pushes” to find ways to improve existing security
code. Under this directive, the Trustworthy Computing (TwC) team
formed the concepts that led to the Microsoft Security Development
Lifecycle. Established as a mandatory policy in 2004, the Microsoft
SDL was designed as an integral part of the software development pro-
cess at Microsoft.17 The term SDL has been used by others since then
both for representing the Microsoft process and as a generic term for
the process defined in the IT Law Wiki link above. Our use of the term
SDL throughout this book will be to represent a secure development
process composed of software security best practices based on compara-
tive research on Microsoft’s SDL and alternative models developed since
2004, the authors’ experience and research into what does and does
not work in most current development organizations, and the business
realities of today’s development austerity requirements coupled with the
increasing demands for securing code at the source with relevant, cost-
effective, and realistic software security practices.

The goals of SDL are twofold: The first goal is to reduce the num-
ber of security vulnerabilities and privacy problems; the second goal is to
reduce the severity of the vulnerabilities that remain. There are industry
standards that define what needs to be done in software development,
such as ISO/IEEE which define the primary phases of a traditional soft-
ware development approach to software engineering. The elements of an
SDL are typically very adaptive and are incorporated into the standard
development lifecycle for an organization.

Static analysis and threat modeling are among the tools used to
develop secure code. Static analysis tools look for a fixed set of patterns
or rules in the code in a manner similar to virus-checking programs.
While some of the more advanced tools allow new rules to be added to
the rule base, the tool will never find a problem if a rule has not been
written for it. The greatest promise of static analysis tools derives from
their ability to automatically identify many common coding problems.
Unfortunately, implementation bugs created by developer errors are often
only part of the problem. Static analysis tools cannot evaluate design and
architectural flaws. They cannot identify poorly designed cryptographic
libraries or improperly selected algorithms, and they cannot point out
design problems that might cause confusion between authentication and
 authorization. They also cannot identify passwords or magic numbers

Introduction 9

embedded in code. Static analysis tools can, however, peer into more
of a program’s dark corners with less fuss than dynamic analysis, which
requires actually running the code. Static analysis also has the potential to
be applied before a program reaches a level of completion at which testing
can be meaningfully performed. The earlier security risks are identified
and managed in the software development lifecycle, the better.

While these SDL practices have been good in theory, when applied
to enterprises, results have been mixed. There are multiple reasons for
this. Legacy code still forms a large codebase of our software industry, so
going back in time and applying these practices is very difficult. Software
outsourcing or off-shoring is another area where these practices are dif-
ficult to implement efficiently. Software developers and companies often
work under tight deadlines to put a product out before competition,
and thus software security has typically taken a back seat. There is a lack
of management commitment to effectively implement SDL practices in
such a fast-moving environment where software security is often done as
an afterthought.

Even though some security practices are common to both software and
application security, such as penetration testing, source code scanning,
security-oriented testing, and security education, there is no substitute for
integrating security into the software development lifecycle. The human
element of the process is key to the success of any security development
process and requires very seasoned software security architects and engi-
neers to be successful. Threat modeling, applying principles such as least
privilege and defense in depth, is perhaps the most understood, important,
and needed element of the software development lifecycle and requires
human expertise and not tools to accomplish. One must also gather the
real security requirements for a system and consider compliance, safety
issues, contractual requirements, what data the application will process,
and business risk.

Training is another critical element of the SDL that requires the
human element. Training helps to reduce the cost of security, and an
effective training program will motivate your development team to pro-
duce more secure software with fewer problems with more efficiency and
cost effectiveness. It should be emphasized that no point solutions will
provide a single solution for software security; rather, a holistic defense-
in-depth approach is required, including a blend of people, process, and
 technology with a heavy emphasis on people. Although tools can parse

10 Core Software Security

through large quantities of code rapidly, faster than a human could, they
are no replacement for humans. For the foreseeable future, software secu-
rity will still be considered an art, but the art can be augmented through
process and technology and, contrary to myths perpetrated by some prac-
titioners, the art can be taught through proper mentorship by seasoned
software security architects and engineers. These are the team members
who have the experience, can think like an adversary, and do it through-
out the development process, which is a key element for the success of any
SDL. Some authors differentiate between secure-coding best practices
and secure-design principles; we will address both in the software security
best practices presented in this book and leverage the experience of the
seasoned architects and engineers identified above to accomplish this.

Software security requires a focused effort to be successful and is not
a natural outcome of conventional software development processes, even
from development groups that have good traditional “quality” practices.
Software security, however, should be a key of a mature quality program.
As we will explain in this book, secure code does not necessarily mean
quality code, and quality code does not necessarily mean secure code, but
the foundation of software applications and the development processes
that produce them should be based on common best practices of both
quality code and secure code.

1.3 Quality Versus Secure Code

The foundation of software applications, and the development pro-
cesses that produce them, is based on the common best principles of
quality code and secure code. These principles are the driving force
behind the concepts and design of industry best practices. To produce
secure code that will stand the test of time, you must learn how to
incorporate these principles into the development process. Remember
that secure code is not necessarily quality code, and quality code is not
necessarily secure code.18

Secure code does not mean quality code: You must know how to write
quality code before you can write secure code. A developer can write very
secure code that authorizes and authenticates every user transaction, logs
the transaction, and denies all unauthorized requests; however, if the code
does not return expected results, then even this very secure code may
never see the light of day. Software quality characteristics are not the same

Introduction 11

as security. Quality is not measured in terms of confidentiality, integrity,
and availability, but rather in terms of ease of use and whether it is reus-
able and maintainable.19

Quality code does not mean secure code: A developer can write effi-
cient code that is easy to maintain and reusable, but if that code allows an
unauthorized user to access the application’s assets, then the code is of no
use. Unlike software quality, software security is not subjective. Sensitive
information is either exposed or it is not, and there is no second chance to
get it right. Ultimately, quality, security, and maintainability are the three
primary goals the industry considers to be of the upmost importance in
any secure software development process.20

You cannot have quality without security or security without quality.
These two attributes complement each other, and both enhance over-
all software product integrity and market value. Good developers should
be able to identify what quality factors are in software and how to code
them. Likewise, good developers should know how the software they
develop can be attacked and what the weakest areas are in the software;
if the code allows an unauthorized user to access the application’s assets,
then that code is either exposed or it’s not, and there is no second chance
to get it right.21

1.4 The Three Most Important SDL Security Goals

Any competent developer can write very efficient code that is maintain-
able and easy to reuse; however, if the code allows an unauthorized user
to access the application’s assets, then that code is not secure. Unfortu-
nately, security is still an area that is often either overlooked or mini-
mally applied during the software development lifecycle. There are three
minimum goals that that the information security industry considers of
primary importance for a SDL:

 1. Confidentiality
 2. Integrity
 3. Availability

These three goals are generally referred to collectively by the acronym
C.I.A. It is generally accepted that if the developers ensure, enforce, and
protect C.I.A. throughout the software development lifecycle through

12 Core Software Security

generally accepted practices, this will justify high confidence that the code
is secure.

Information security, confidentiality, integrity, and availability are
defined as follows in 44 U.S.C., Sec. 3542:

Information security: The protection of information and informa-
tion systems from unauthorized access, use, disclosure, disruption,
modification, or destruction in order to provide confidentiality,
integrity, and availability.

Confidentiality: Preserving authorized restrictions on information
access and disclosure, including means for protecting personal
privacy and proprietary information.

Integrity: Guarding against improper information modification or
destruction, and includes ensuring information non-repudiation
and authenticity.

Availability: Ensuring timely and reliable access to and use of
information.22

Confidentiality, availability and integrity combined provide informa-
tion security.

Confidentiality is achieved by keeping unauthorized users (human or
software) from accessing confidential information. By maintaining confi-
dentiality, the software will be considered trustworthy. Authorization and
authentication are the two properties that support confidentiality in that
authorization ensures that the user has the appropriate role and privilege
to view data, and authentication ensures that the user is who he or she
claims to be and that the data come from the appropriate place. The
integrity of the application is defined by the way in which the application
accepts, transmits, and stores data. The data must remain unchanged by
unauthorized users and remain very reliable from the data entry point
all the way to the database and back. Data encryption, digital signatures,
and public keys are just some examples of how to maintain integrity and
confidentiality. Excluding any scheduled downtimes, availability refers to
the percentage of time a system or software is available during its nor-
mally scheduled hours of operations. As key components of software
security, the lack of confidentiality, availability, and integrity will degrade

Introduction 13

the reputation of the product, resulting in both loss of reputation and loss
of sales. In the end, software security is as much about a good business
process as it is about quality.

1.5 Threat Modeling and Attack Surface Validation

Threat modeling and attack surface validation are perhaps the most time-
consuming, misunderstood, and difficult parts of the SDL. They require
the attention of the most seasoned and experienced person of the soft-
ware security team: the software security architect. The idea behind threat
modeling is simply to understand the potential security threats to the sys-
tem, determine risk, and establish appropriate mitigations (What? How
bad is it? How can it be fixed?). When it is performed correctly, threat
modeling occurs early in the project lifecycle and can be used to find
security design issues before code is committed. This can lead to signifi-
cant cost savings because issues are resolved early in the development life-
cycle. Threat modeling also helps businesses manage software risk, creates
awareness of security dependencies and assumptions, and provides the
ability to translate technical risk into business impact. The bottom line is
that the earlier security risks are identified and managed in the software
lifecycle, the better.

The correct way of doing threat modeling requires getting into the
mind of the hacker, and this takes a special breed of software security
professional: one who can think like a hacker and imagine all the ways
that an adversary could attack or exploit the software. It is thus a slightly
different way to test applications. While quality assurance professionals
can do security testing and can typically discover some vulnerabilities,
they usually have the customers’ thoughts in mind rather than those of
the hacker. In many cases, companies do not have this talent internally
and have to hire third-party contractors to do this work.

A U.S. Data and Analysis Center for Software (DACS) October 2008
report, “Enhancing the Development Lifecycle to Produce Secure Soft-
ware: A Reference Guidebook on Software Assurance,” defines a threat to a
software-intensive system as “any actor, agent, circumstance, or event that
has the potential to cause harm to that system or to the data or resources
to which the system has or enables access.”23 A threat can be categorized
based on its intentionality. For example, a threat can be unintentional,

14 Core Software Security

intentional but nonmalicious, or malicious; a malicious threat is assumed
to be intentional. Although threats in all three categories have the poten-
tial to compromise the security of software, only malicious threats are
realized by attacks. The DACS report also states:

The majority of attacks against software take advantage of, or
exploit, some vulnerability or weakness in that software; for this
reason, “attack” is often used interchangeably with “exploit,”
though the BuildSecurityIn Attack Pattern Glossary makes a
clear distinction between the two terms, with attack referring
to the action against the targeted software and exploit referring
to the mechanism (e.g., a technique or malicious code) by which
that action is carried out.

Modeling software is a way to envision the interactions of the pro-
posed software within its intended environment. The better the model
reflects the intended environment, the more useful the modeling
approach becomes. Therefore, secure software design and development
benefits from modeling that explicitly incorporates security threats. As
described in the DACS 2007 Software Security Assurance State-of-the-
Art Report (SOAR), “the primary issues in modeling are doing it well;
doing it thoroughly enough; and knowing what to do with the results
(e.g., how to transform the analysis into a metric and/or otherwise usable
decision point.” Combining the concepts of threats and modeling, the
report defines threat modeling as “. . . a methodical approach for assess-
ing and documenting the weaknesses of security risks associated with an
application. It allows a development team to identify the highest risk
components by approaching security from the perspective of an adversary
who has specific goals in attacking an application.”24

Given the normal constraints of time and resources, it is not possible
to test all code in an application However, at a minimum, testing should
cover the entry points and exit points of an application that may be acces-
sible to an attacker, commonly referred to as the application’s attack sur-
face. Accessibility increases the attack surface. For example, code that is
restricted to local access by an administrator has a smaller attack surface
than code exposed to remote access by an anonymous user.

The attack surface should be fully tested by exercising all the code
paths in an application that are part of the attack surface. The elements

Introduction 15

of the attack surface can be identified with the use of scanning tools, such
as port scanning tools for open ports, and code analysis tools to locate
the portions of the code that receive input and send output. It may even
be necessary to develop custom tools, for example, to locate entry point’s
specific to a custom application. The minimum attack surface is typically
defined early in the software development lifecycle and measured again
through the later phases. It is often helpful to formally define and mea-
sure the attack surface before testing. As we will discuss later in the book,
although tools will be useful at this stage of analysis, a human element is
still required, and it will take the expertise of the seasoned software secu-
rity architect described above.

1.6 Chapter Summary—What to
Expect from This Book

Software is only as secure as the quality and relevance of the best prac-
tices that the software development team uses. Software security must be
built in from the very beginning. It must be a critical part of the design
from the very beginning and included in every subsequent development
phase all the way through fielding a complete system. Correcting vul-
nerabilities as early as possible in the SDLC through the adoption of
security-enhanced processes and practices is far more cost-effective than
attempting to diagnose and correct such problems after the system goes
into production. This will greatly reduce the need to patch the software to
fix security holes discovered by others after release of the product, which
will degrade the reputation and credibility of the vendor and adversely
impact it financially. Today, we are seeing an increased need for security
in software development in that security requirements, design, and defen-
sive principles have to be worked into the traditional SDLC and, most
important, in choosing security development practices that embrace this
need throughout all the activities of the SDLC.

We have worked with Fortune 500 companies and have often seen
examples of breakdown of SDL practices. In this book, we take an experi-
ence-based approach to applying components of the best available SDLs
models in dealing with the problems described above in the form of a
SDL software security best practices model and framework. We shall
begin by giving an overview of the secure development lifecycle and then

16 Core Software Security

outline a model for mapping SDL best practices to the software develop-
ment lifecycle and how you can use this to build a mature SDL program.
Although security is not a natural component of the way industry has
been building software in recent years, we believe that security improve-
ments to development processes are possible, practical, and essential, and
we trust that the software security best practices and model presented in
this book will make this clear to all who read this book, whether you are
an executive, manager, or practitioner.

References

 1. President’s Information Technology Advisory Committee (2005), Cybersecurity: A
Crisis of Prioritization, Executive Office of the President, National Coordination
Office for Information Technology Research and Development, 2005, p. 39.
Retrieved from http://www.nitrd.gov/Pitac/reports/20050301_cybersecurity/
cybersecurity.pdf.

 2. Ibid.
 3. Aras, O., Ciaramitaro, B., and Livermore, J. (2008), “Secure Software

Development—The Role of IT Audit,” ISACA Journal, vol. 4, 2008. Retrieved
from http://www.isaca.org/Journal/Past-Issues/2008/Volume-4/Pages/Secure-
Software-Development-The-Role-of-IT-Audit1.aspx.

 4. U.S. Department of Homeland Security (2006), Security in the Software Lifecycle:
Making Software Development Processes—and Software Produced by Them—More
Secure, DRAFT Version 1.2, p. 13. Retrieved from http://www.cert.org/books/
secureswe/SecuritySL.pdf.

 5. Schwartz, M. (2012), “10 Security Trends to Watch in 2012.” Retrieved from
http://www.informationweek.com/security/vulnerabilities/10-security-trends-
to-watch-in-2012/232400392.

 6. Parizo, E. (2012), “To Get Help with Secure Software Development Issues,
Find Your Own Flaws.” Retrieved from http://searchsecurity.techtarget.com/
news/2240129160/To-get-help-with-secure-software-development-issues-find-
your-own-flaw.

 7. Microsoft Corporation (2012), Security Development Conference 2012
webpage, May 15–16, 2012, Washington, DC. Retrieved from https://www.
securitydevelopmentconference.com/main.aspx.

 8. blackhat.com (2013), Black Hat USA 2012 Conference webpage, July 21–26,
2012, Las Vegas, NV. Retrieved from http://www.blackhat.com/html/bh-us-12.

 9. rsaconference.com (2013), RSA 2013 Conference USA webpage, February 25–
March 1, 2013, San Francisco, CA. Retrieved from http://www.rsaconference.
com/events/2013/usa.

 10. securitydevelopmentconference.com (2013), Security Development Conference

Introduction 17

2013, May 14–15, 2013, San Francisco, CA. Retrieved from http://www.
securitydevelopmentconference.com.

 11. Boehm, B., and Papaccio, P. (1998), “Understanding and Controlling Software
Costs,” IEEE Transactions on Software Engineering, vol. 14, no. 10, October 1988,
pp. 1462–1477.

 12. Beohm, B., and Basili, V. (2001), “Software Defect Reduction Top 10 List,”
Computer, vol. 34, no. 1, January 2001, pp. 135–137.

 13. Meftah, B. (2008), “Business Software Assurance: Identifying and Reducing
Software Risk in the Enterprise,” 9th Semi-Annual Software Assurance Forum,
Gaithersburg, MD, October 2008. https://buildsecurityin.us-cert.gov/swa/
downloads/Meftah.pdf.

 14. Viega, J., and McGraw, G. (2006), Building Secure Software: How to Avoid Security
Problems the Right Way, Boston: Addison-Wesley.

 15. McGraw, G. (2006), Software Security: Building Security In, Boston: Addison-
Wesley, p. 20.

 16. IT Law Wiki (2012), “Security Development Lifecycle Definition.” Retrieved
from http://itlaw.wikia.com/wiki/Security_Development_Lifecycle.

 17. Microsoft Corporation (2012), “Evolution of the Microsoft SDL.” Retrieved from
http://www.microsoft.com/security/sdl/resources/evolution.aspx.

 18. Grembi, J. (2008), Secure Software Development: A Security Programmer’s Guide,
Boston: Course Technology.

 19. Ibid.
 20. Ibid.
 21. Ibid.
 22. United States Government (2006), 44 U.S.C., SEC. 3542: United States Code,

2006 Edition, Supplement 5, Title 44; CHAPTER 35 – COORDINATION OF
FEDERAL INFORMATION POLICY, SUBCHAPTER III – INFORMATION
SECURITY, Sec. 3542 – Definitions. Retrieved from http://www.gpo.gov/fdsys/
pkg/USCODE-2011-title44/pdf/USCODE-2011-title44-chap35-subchapIII-
sec3542.pdf.

 23. Goertzel, K., et al., for Department of Homeland Security and Department of
Defense Data and Analysis Center for Software (2008), Enhancing the Development
Life Cycle to Produce Secure Software: A Reference Guidebook on Software Assurance,”
Version 2, October 2008. Retrieved from https://www.thedacs.com/techs/
enhanced_life_cycles.

 24. Goertzel, K., et al. (2008), Software Security Assurance: State-of-the-Art Report
(SOAR), July 31, 2008. Retrieved from http://iac.dtic.mil/iatac/download/
security.pdf.

19

 Chapter 2

The Secure
Development Lifecycle

We start this chapter by introducing the concept of overcoming the
challenges of making software secure through the use of a secure
develop ment lifecycle (SDL). There will be further discussions of the
models, methodologies, tools, human talent, and metrics for managing
and overcoming the challenges to make software secure. We will close
with a discussion of the mapping of our SDL with its associated best
practices to a generic software development lifecycle (SDLC), which
will be the subject of the next six chapters, followed by a chapter map-
ping our SDL best practices to several of the most popular software
development methodologies.

There is still a need for better static and dynamic testing tools and a
formalized security methodology integrated into SDLCs that is within
the reach of a majority of software development organizations. In the past
decade or so, the predominant SDL models have been out of reach for all
but the most resource-rich companies. Our goal in this book is to create
a SDL based on leveraged minimal resources and best practices rather
than requiring resources that are out of reach for a majority of software
security teams.

20 Core Software Security

2.1 Overcoming Challenges in
Making Software Secure

As mentioned in Chapter 1, SDLs are the key step in the evolution of
software security and have helped to bring attention to the need to build
security into the software development lifecycle. In the past, software
product stakeholders did not view software security as a high priority. It
was believed that a secure network infrastructure would provide the level
of protection needed against malicious attacks. In recent history, how-
ever, network security alone has proved inadequate against such attacks.
Users have been successful in penetrating valid channels of authentica-
tion through techniques such as Cross-Site Scripting (XSS), Structured
Query Language (SQL) injection, and buffer overflow exploitation. In
such cases system assets were compromised and both data and organi-
zational integrity were damaged. The security industry has tried to solve
software security problems through stopgap measures. First came plat-
form security (OS security), then came network/perimeter security, and
now application security. We do need defense-in-depth to protect our
assets, but fundamentally it is a software security flaw and needs to be
remediated through a SDL approach.

The SDL has as its base components all of the activities and security
controls needed to develop industry and government-compliant and best
practices–hardened software. A knowledgeable staff as well as secure soft-
ware policies and controls is required in order to truly prevent, identify,
and mitigate exploitable vulnerabilities within developed systems.

Not meeting the least of the activities found within the SDL provides
an opportunity for misuse of system assets from both insider and outsider
threats. Security is not simply a network requirement, it is now an infor-
mation technology (IT) requirement, which includes the development of
all software for the intent to distribute, store, and manipulate informa-
tion. Organizations must implement the highest standards of develop-
ment in order to insure the highest quality of products for its customers
and the lives which they protect.

Implementation of a SDL program ensures that security is inherent
in good enterprise software design and development, not an afterthought
included later in production. Taking an SDL approach yields tangible
benefits such as ensuring that all software releases meet minimum security
criteria, and that all stakeholders support and enforce security guidelines.

The Secure Development Lifecycle 21

The elimination of software risk early in the development cycle, when
vulnerabilities are easier and less expensive to fix, provides a systematic
approach for information security teams to collaborate with during the
development process.

The most well known SDL model is the Trustworthy Computing
Security Development Lifecycle (or SDL), a process that Microsoft has
adopted for the development of software that needs to withstand mali-
cious attack. Microsoft’s SDL1 has been evolving for over a decade and
is considered the most mature of the top three models. Other popular
SDL models are the Cigital Software Security Touchpoints model,2 the
OWASP SDL,3 and the Cisco Secure Development Lifecycle (CSDL).4

The Microsoft SDL also has a Security Development Lifecycle (SDL)
Optimization Model5 designed to facilitate gradual, consistent, and
cost-effective implementation of the SDL by development organizations
outside of Microsoft. The model helps those responsible for integrating
security and privacy in their organization’s software development lifecycle
to assess their current state and to gradually move their organizations
toward adoption of the proven Microsoft program for producing more
secure software.

The SDL Optimization Model enables development managers and IT
policy makers to assess the state of the security in development. They can
then create a vision and roadmap for reducing customer risk by creating
more secure and reliable software in a cost-effective, consistent, and gradual
manner. As it moves through the maturity levels of the SDL Optimization
Model, your organization’s executive commitment to the goals and results
of SDL will increase from tentative acceptance to a strong mandate.6

2.2 Software Security Maturity Models

In recent years, two very popular software security maturity models have
been developed and continue to mature at a rapid rate. One is the Cigital
BSIMM,7 and the other is the OWASP Open SAMM.8 BSIMM is short
for Building Security In Maturity Model. The BSIMM is a study of real-
world software security initiatives organized so that you can determine
where you stand with your software security initiative and how to evolve
your efforts over time. It is a set of best practices that Cigital developed by
analyzing real-world data from nine leading software security initiatives

22 Core Software Security

and creating a framework based on common areas of success. There are 12
practices organized into four domains. These practices are used to orga-
nize the 109 BSIMM activities (BSIMM 4 has a total of 111 activities).

By studying what the nine initiatives were doing, BSIMM’s creators
were able to build a best practices model that is broken into 12 categories
that software makers can follow:

 1. Strategy and Metrics
 2. Compliance and Policy
 3. Training
 4. Attack Models
 5. Security Features and Design
 6. Standards and Requirements
 7. Architecture Analysis
 8. Code Review
 9. Security Testing
 10. Penetration Testing
 11. Software Environment
 12. Configuration and Vulnerability Management9

The fourth release of BSSIM was announced on September 18, 2012;
some of its highlights follow.

• For the first time in the BSIMM project, new activities were observed
in addition to the original 109, resulting in the addition of two new
activities to the model going forward. The activities are Simulate
Software Crisis and Automate Malicious Code Detection.

• BSIMM4 includes 51 firms from 12 industry verticals.
• BSIMM4 has grown 20 percent since BSIMM3 and is ten times

bigger than the original 2009 edition.
• The BSIMM4 data set has 95 distinct measurements (some firms

measured multiple times, some firms with multiple divisions mea-
sured separately and rolled into one firm score).

• BSIMM4 continues to show that leading firms on average employ
two full-time software security specialists for every 100 developers.

• BSIMM4 describes the work of 974 software security professionals
working with a development-based satellite of 2039 people to secure
the software developed by 218,286 developers.10

The Secure Development Lifecycle 23

The OWASP Software Assurance Maturity Model (SAMM) is a flex-
ible and prescriptive framework for building security into a software
development organization. Covering more than typical SDLC-based
models for security, SAMM enables organizations to self-assess their
security assurance program and then use recommended roadmaps to
improve in a way that is aligned to the specific risks facing the organiza-
tion. Beyond that, SAMM enables creation of scorecards for an orga-
nization’s effectiveness at secure software development throughout the
typical governance, development, and deployment business functions.
Scorecards also enable management within an organization to demon-
strate quantitative improvements through iterations of building a secu-
rity assurance program.11

2.3 ISO/IEC 27034—Information Technology—
Security Techniques—Application Security

In 2011, the International Standards Organization (ISO)/International
Electrotechnical Commission (IEC) published Part 1 of 6 of the ISO/
IEC 27034-1:2011 standard for Application Security.12 The standard
offers a concise, internationally recognized way to get transparency into a
vendor/supplier’s software security management process. It was designed
to be flexible enough to align with diverse engineering organizations but
specific enough to address real-world risk. Although it is not complete
yet, it is coming and will likely be similar to the ISO/IEC 27001 for
IT Security in that both customers and partners will expect compliance
and their engineering groups will be expected by both customers and
partners. As a standard for software security from an international body
and not a vendor, it is also not tied to specific technology. As of this
writing, Parts 2-6 are still in working Draft and composed of the fol-
lowing: Part 2, Organization Normative Framework; Part 3, Application
Security Management Process; Part 4, Application Security Validation;
Part 5, Protocols and Application Security Control Data Structure; and
Part 6, Security Guidance for Specific Applications.13 Over the years, as
organizations (and their customers) started paying attention to infor-
mation security, the security and compliance industry came up with a
 plethora of attestations, certifications, and methodologies. These stan-
dards/attestations all claimed to be unique in the way they would measure

24 Core Software Security

the security posture of an organization. Competition and marketing hype
drove confusion, with different organizations standardizing on differ-
ent attestations. The authors have seen organizations pushing their cus-
tomers (in most cases, other companies) to adopt their recommended
attestation. For Fortune 500 companies this meant getting multiple
attestations/certifications as a proof of security posture. It didn’t help
that most of these attestations/certifications focused on “compliance
controls” or “policy based security.” The situation became worse with
regulations such as SOX, GLBA, Safe Harbor, and HIPAA adding to the
confusion. Companies often went for a set of certifications, one each for
compliance, security, privacy, credit card, physical security, and so on.

The ISO)/IEC developed the ISO/IEC 27001 (incorporating ISO/
IEC 17799, which had been the previous de facto ISO standard for
information security). It is an information security management system
(ISMS) standard that specifies a management system intended to bring
information security under formal management control. It mandates spe-
cific requirements that need to be met when an organization adopts the
standard. The standard addresses information security holistically and
encompasses everything from physical security to compliance. Industry
has enthusiastically adopted the practices, and ISO/IEC 27001 is the
leading standard for an information security management system (ISMS)
today. Most of the controls from other standards can be mapped back
to ISO/IEC 27001. This has enabled organizations to consolidate mul-
tiple security efforts under one standard, pursue a single framework with
holistic security in mind, and collect metrics in a consistent manner to
measure and govern security in an organization.

The authors see the landscape for software security (and SDL) simi-
lar to what it was for information security as a whole a few years ago
before ISO/IEC 27001 came along. There are multiple SDL method-
ologies (open and proprietary), each claiming to be better than the next.
Confusion prevails over the best way to accomplish software security in
an organization. Applying any one framework to an organization either
requires the organization to adopt different processes or to customize an
SDL framework that will work in their environment. With the coming
of ISO/IEC 27034, the authors see consolidation on software security
standards/framework as the ISO/IEC 27001 has done for information
security. Even in its infancy, there is awareness of the importance of
ISO/IEC 27034. Microsoft has declared its SDL methodology to be in

The Secure Development Lifecycle 25

 conformance with ISO/IEC 27034-1.14 We expect to see similar results
for other frameworks in the near future.

The ISO/IEC 27034 standard provides guidance to help organiza-
tions embed security within their processes that help secure applications
running in the environment, including application lifecycle processes. It
is a risk-based framework to continuously improve security through pro-
cess integrating/improvements in managing applications. It takes a pro-
cess approach by design.

The authors’ recommended SDL framework can be mapped to ISO/
IEC 27034 frameworks. We will lay out relevant mapping with ISO/IEC
27034 in Appendix A.

2.4 Other Resources for SDL Best Practices

There are other sources for SDL best practices, and some of the most
popular are described below.

2.4.1 SAFECode

The Software Assurance Forum for Excellence in Code (SAFECode) is a
nonprofit organization dedicated to increasing trust in information and
communications technology products and services through the advance-
ment of effective software assurance methods. SAFECode is a global,
industry-led effort to identify and promote best practices for developing
and delivering more secure and reliable software, hardware, and services.
It is meant to provide a foundational set of secure development prac-
tices that have been effective in improving software security in real-world
implementations by SAFECode members across their diverse develop-
ment environments. These are the “practiced practices” employed by
SAFECode members, which we identified through an ongoing analysis of
members’ individual software security efforts. By bringing these methods
together and sharing them with the larger community, SAFECode
hopes to move the industry beyond defining theoretical best practices to
describing sets of software engineering practices that have been shown to
improve the security of software and are currently in use at leading soft-
ware companies.15,16

26 Core Software Security

2.4.2 U.S. Department of Homeland Security Software
Assurance Program

Since 2004, the U.S. Department of Homeland Security (DHS) Software
Assurance Program has sponsored development of the Build Security In
(BSI) website.17 BSI content is based on the principle that software secu-
rity is fundamentally a software engineering problem and must be man-
aged in a systematic way throughout the SDLC.

The Department of Homeland Security National Cyber Security
Division’s (NCSD) Software Assurance (SwA) Program seeks to reduce
software vulnerabilities, minimize exploitation, and address ways to
improve the routine development and deployment of trustworthy soft-
ware products. Consistent with the Open Government Directive, the
program enables public–private collaboration in developing, publishing,
and promoting the use of practical guidance and tools, fostering invest-
ment in more secure and reliable software. The DHS Software Assurance
Program collaborates with the private sector, academia, and other federal
departments and agencies to enhance the security of software lifecycle pro-
cesses and technologies through activities such as the Software Assurance
Forum that it co-sponsors with the Department of Defense (DoD) and
the National Institute of Standards and Technology (NIST). A key initia-
tive funded by the DHS NCSD and the National Security Agency (NSA)
is the Common Weakness Enumeration (CWE). CWE is a joint effort
of DHS with NSA and the software community, including government,
the private sector, and academia, with the MITRE Corporationproviding
technical leadership and project coordination. Over 800 software weak-
nesses have been identified and cataloged. More than 47 products and ser-
vices already use CWE in a compatible manner. With the aim of reducing
the most significant exploitable programming errors, the SANS Institute,
an active participant of the Software Assurance Forum, has promoted the
Top 25 CWEs. SANS came up with the idea of focusing on the Top 25
CWEs, and this effort represents a community collaboration to prioritize
the most exploitable constructs that make software vulnerable to attack or
failure. This promotes the DHS co-sponsored CWE efforts and plays off
the “Top XXX” brand that SANS has built since 2001, starting with their
Top 10—the first prioritized list of security problems that organizations
should address.18

The CWE is an important component of the NCSD’s Software
Assurance Program. This list of errors brings CWE to a practical,

The Secure Development Lifecycle 27

 actionable, and measurable focus that will enable people to make and
demon strate real progress. Public–private collaboration forms the foun-
dation of NCSD’s SwA Program. CWE is a good example of the type
of public–private collaboration the department has been advocating.
Consistent with the Open Government Directive, the SwA Program’s
sponsorship of CWE enables community participation, collaboration,
and transparency. CWE provides the requisite characterization of exploit-
able software constructs; thus it better enables the needed education and
training of programmers on how to eliminate all-too-common errors
before software is delivered and put into operation. This aligns with
the Build Security In approach to software assurance so that software
is developed more securely on the front end, thereby avoiding security
issues in the longer term. The CWE provides a standard means for under-
standing residual risks and thus enables more informed decision making
by suppliers and consumers concerning the security of software.19

2.4.3 National Institute of Standards and Technology

The National Institute of Standards and Technology (NIST) continues to
be of great value in providing research, information, and tools for both
the government and corporate information security community. The fol-
lowing are some of the key areas in which NIST contributes to the soft-
ware security community.

The NIST SAMATE (Software Assurance Metrics And Tool
Evaluation) project is dedicated to improving software assurance by
developing methods to enable software tool evaluations, measuring the
effectiveness of tools and techniques, and identifying gaps in tools and
methods. This project supports the Department of Homeland Security’s
Software Assurance Tools and R&D Requirements Identification
Program—in particular, Part 3, Technology (Tools and Requirements),
the identification, enhancement, and development of software assurance
tools. The scope of the SAMATE project is broad, ranging from operat-
ing systems to firewalls, SCADA to web applications, source code security
analyzers to correct-by-construction methods.20

NIST Special Publication (SP) 800-64, Security Considerations in
the System Development Life Cycle, has been developed to assist federal
govern ment agencies in integrating essential information technology
security steps into their established IT system development lifecycle. This

28 Core Software Security

 guideline applies to all federal IT systems other than national security
systems. The document is intended as a reference resource rather than as a
tutorial and should be used in conjunction with other NIST publications
as needed throughout the development of the system.21

The National Vulnerability Database (NVD) is the U.S. government
repository of standards-based vulnerability management data represented
using the Security Content Automation Protocol (SCAP). These data
enable automation of vulnerability management, security measurement,
and compliance. The NVD includes databases of security checklists, secu-
rity-related software flaws, misconfigurations, product names, and impact
metrics.22 The NVD Common Vulnerability Scoring System (CVSS)
provides an open framework for communicating the characteristics and
impacts of IT vulnerabilities. Its quantitative model ensures repeatable
accurate measurement while enabling users to see the underlying vul-
nerability characteristics that were used to generate the scores. Thus, the
CVSS is well suited as a standard measurement system for industries,
organizations, and governments that need accurate and consistent vulner-
ability impact scores. Two common uses of the CVSS are in prioritizing
vulnerability remediation activities and in calculating the severity of vul-
nerabilities discovered on one’s systems. The NVD provides CVSS scores
for almost all known vulnerabilities. In particular, the NVD supports the
CVSS Version 2 standard for all CVE vulnerabilities. The NVD provides
CVSS “base scores” which represent the innate characteristics of every
vulnerability. It does not currently provide “temporal scores” (scores that
change over time due to events external to the vulnerability). However, the
NVD does provide a CVSS score calculator to allow you to add tempo-
ral data and even to calculate environmental scores (scores customized to
reflect the impact of the vulnerability on your organization). This calcula-
tor contains support for U.S. government agencies to customize vulner-
ability impact scores based on FIPS 199 System ratings. We will discuss
the use of CVSS scores for managing software security later in the book.23

2.4.4 MITRE Corporation Common Computer
Vulnerabilities and Exposures

The MITRE Corporation Common Computer Vulnerabilities and
Exposures (CVE) is a list of information security vulnerabilities and expo-
sures that aims to provide common names for publicly known problems.

The Secure Development Lifecycle 29

The goal of CVE is to make it easier to share data across separate vulner-
ability capabilities (tools, repositories, and services) with this “common
enumeration.” Information security vulnerability is a mistake in software
that can be used directly by a hacker to gain access to a system or network.
See the Terminology page of the CVE website for a complete explanation
of how this term is used in the CVE. An information security exposure
is a mistake in software that allows access to information or capabilities
that can be used by a hacker as a stepping-stone into a system or network.
Using a common identifier makes it easier to share data across separate
databases, tools, and services, which, until the creation of CVE in 1999,
were not easily integrated. If a report from a security capability incor-
porates CVE Identifiers, you may then quickly and accurately access fix
information in one or more separate CVE-compatible tools, services, and
repositories to remediate the problem. With CVE, your tools and services
can “speak” (i.e., exchange data) with each other. You will know exactly
what each covers, because CVE provides you with a baseline for evaluat-
ing the coverage of your tools. This means that you can determine which
tools are most effective and appropriate for your organization’s needs. In
short, CVE-compatible tools, services, and databases will give you better
coverage, easier interoperability, and enhanced security.

Bugtraq IDs are identifiers for a commercially operated vulnerability
database that are used in security advisories and alerts, as well as for dis-
cussions on the Bugtraq mailing list. CVE Identifiers are from an interna-
tional information security effort that is publicly available and free to use.
CVE Identifiers are for the sole purpose of providing a common name.
For this reason, CVE Identifiers are frequently used by researchers and
the makers of security tools, websites, databases, and services as a standard
method for identifying vulnerabilities and for cross-linking with other
repositories that also use CVE Identifiers. A CVE Identifier will give you
a standardized identifier for any given vulnerability or exposure. Knowing
this identifier will allow you to quickly and accurately access information
about the problem across multiple information sources that are CVE-
compatible. For example, if you own a security tool whose reports contain
references to CVE Identifiers, you may then access fix information in a
separate CVE-compatible database. CVE also provides you with a base-
line for evaluating the coverage of your tools.

The CVE List feeds the U.S. National Vulnerability Database
(NVD), which then builds upon the information included in CVE
entries to provide enhanced information for each CVE Identifier such as

30 Core Software Security

fix information, severity scores, and impact ratings. NVD also provides
advanced searching features such as by individual CVE-ID; by OS; by
vendor name, product name, and/or version number; and by vulnerabil-
ity type, severity, related exploit range, and impact.

CVE is sponsored by the National Cyber Security Division (NCSD)
at the U.S. Department of Homeland Security. US-CERT is the opera-
tional arm of the NCSD. US-CERT incorporates CVE Identifiers into
its security advisories whenever possible and advocates the use of CVE
and CVE-compatible products and services to the U.S. government
and all members of the information security community. The MITRE
Corporation maintains CVE and this public website, manages the com-
patibility program, and provides impartial technical guidance to the CVE
Editorial Board throughout the process to ensure that CVE serves the
public interest.24,25

2.4.5 SANS Institute Top Cyber Security Risks

The SANS Top Cyber Security Risks, formerly the SANS Twenty Most
Critical Internet Security Vulnerabilities, is a consensus list of the most
critical problem areas in Internet security that require immediate reme-
diation if present on your systems. Step-by-step instructions and point-
ers to additional information useful for correcting these security flaws
are included as part of the list. The SANS list includes CVE Identifiers
to uniquely identify the vulnerabilities it describes. This helps system
administrators use CVE-compatible products and services to make their
networks more secure.26,27,28

2.4.6 U.S. Department of Defense Cyber Security
and Information Systems Information
Analysis Center (CSIAC)

In September 2012, the Data & Analysis Center for Software (DACS),
Information Assurance Technology Analysis Center (IATAC), and
Modeling and Simulation Information Analysis Center (MSIAC)
were merged to create the Cyber Security and Information Systems
Information Analysis Center (CSIAC). The CSIAC, one of eight
Information Analysis Centers (IACs) sponsored by DTIC, performs

The Secure Development Lifecycle 31

the Basic Center of Operations (BCO) functions necessary to fulfill the
 mission and objectives applicable to the Department of Defense Research
Development Test and Evaluation (RDT&E) and Acquisition communi-
ties’ needs for cyber security, information assurance, knowledge manage-
ment and information sharing, software-intensive systems engineering,
and modeling and simulation.29 In the past, the DACS has produced
some great documents on software security and the SDL for the commu-
nity, most notably, Enhancing the Development Lifecycle to Produce Secure
Software: A Reference Guidebook on Software Assurance (2008)30 and the
joint IATAC/DACS report Software Security Assurance: State-of-the-Art
Report (SOAR) (2008),31 and we expect them to continue to do so under
the umbrella of the CSIAC.

2.4.7 CERT, Bugtraq, and SecurityFocus

In addition to the sources we have discussed so far, the Carnegie Mellon
Computer Emergency Readiness Team (CERT),32 Bugtraq,33 and
SecurityFocus34 are three other sources to be aware of.

CERT provides timely alerts on security vulnerabilities as well as a
weekly summarized bulletin on vulnerabilities (CERT Cyber Security
Bulletin). Information in the bulletin includes CVSS scores as well as CVE
IDs to uniquely identify vulnerabilities. The compilation is based on vul-
nerabilities recorded in the NIST NVD35 over the previous week. We will
be discussing the CVSS scoring process in more detail later in the book.

Bugtraq is an electronic security mailing list that provides information
on security vulnerabilities as well as security bulletins and announcements
from vendors. The list often contains additional information such as
examples of exploitations as well as fixes for the issues identified. Bugtraq
is part of the SecurityFocus security portal which is currently owned by
Symantec. Bugtraq is one of the many security mailing lists available
through SecurityFocus. There are other useful mailing lists as well, such
as those dedicated to Microsoft, Linux, IDS, and incidents.

2.5 Critical Tools and Talent

As with all security tasks, whether they are offensive or defensive in their
approach, there is always a blend of process, technology, and people that

32 Core Software Security

are required to make it successful. So far, the processes and models that
are available for software security have been discussed in this section.
There are two elements of the technology (tool) side of the triad that
will make or break you in terms of software security, and another on the
people (talent) side.

2.5.1 The Tools

Three primary tools are basic to the SDL, which are categorized as fuzz-
ing, static, and dynamic analysis tools. Although we will go over the
details of the best practices for their use in the SDL later in the book, a
high-level overview follows.

2.5.1.1 Fuzzing

Fuzz testing or fuzzing is a black-box software testing technique which
can be automated or semiautomated, which provides invalid, unexpected,
or random data to the inputs of a computer software program. In other
words, it finds implementation bugs or security flaws by using malformed/
semimalformed data injection in an automated fashion. Inputs to the soft-
ware program are then monitored for exception returns such as crashes,
failing built-in code assertions, and potential memory leaks. Fuzzing has
become a key element in the testing for software or computer system
security problems. Fuzz testing has a distinct advantage over other tools in
that the test design is extremely simple and free of preconceptions about
system behavior

Fuzzing is a key element of software security and must be embedded in
the SDL. There are many vendors to choose from in this space, and some
developers even develop their own tools. Two popular fuzzing tools are
Codenomicon,36 which is one of the most mature fuzzing tools available
commercially, and the Peach Fuzzing Tool,37 which is one of the more
popular open-source tools. As you will see later on in the book, the timing
at which the fuzzing tools are used in the SDL is critical. It should also be
noted that fuzzing is used for both security and quality assurance testing.

Fuzzing has recently been recognized as both a key element and a major
deficiency in many software development programs, so much so that it is
now a Department of Defense Information Assurance Certification and
Accreditation Process (DIACAP) requirement.

The Secure Development Lifecycle 33

2.5.1.2 Static Analysis

Static program analysis is the analysis of computer software that is per-
formed without actually executing programs. It is predominantly used to
perform analysis on a version of the source code; however, this kind of
analysis may also be done on some form of the object code. In contrast,
dynamic analysis is performed by actually executing software programs.
Static analysis is performed by an automated software tool and should
not be confused with human analysis or software security architectural
reviews, which involve manual human code reviews, program under-
standing, and comprehension. When used properly, static analysis tools
have a distinct advantage over human static analysis in that analysis can
be performed much more frequently and with security knowledge gener-
ally superior to that of the standard software developer. It also frees up the
time of seasoned software security architects or engineers so that they only
need be brought in when absolutely necessary.

Static analysis, also known as static application security testing (SAST),
identifies vulnerabilities during the development or quality assurance
phase of a project. It provides line-of-code level detection that enables
development teams to remediate vulnerabilities quickly.

The use of static analysis tools and your choice of the appropriate
vendor for your environment is another technology factor key to your
success. Any technology that beneficially automates any portion of the
software development process should be welcome, but this software has
become “shelf-ware” in many organizations because the right people and
right process was not used in selecting the tool or tools. Not all tools in
this space are created equal, and some are better at some languages than
others while others have great governance/risk/compliance (GRC) and
metric analysis front ends. In some cases you may have to use up to three
different tools to be effective. In the end, you need to choose tools which
support your language, are scalable, can be embedded with your develop-
ment processes, and have minimum false positives.

Software development is a complex business, and anything you can do
to make the process more repeatable, predictable, and reduce “friction” is
a big win for most organizations. There are many benefits to using static
analysis tools. The most important reasons include the following.

• Static analysis tools can scale. They can review a great deal of code
very quickly, something humans cannot do very well.

34 Core Software Security

• Static analysis tools don’t get tired. A static analysis tool running for
four straight hours at 2:00 a.m. is just as effective as if it runs during
business hours. You can’t say the same thing about human reviewers.

• Static analysis tools help developers learn about security vulner-
abilities. In many cases you can use these tools and educational
resources from the vendor to educate your development teams
about software security.

2.5.1.3 Dynamic Analysis

Dynamic program analysis is the analysis of computer software that is per-
formed by executing programs on a real or virtual processor in real time. The
objective is to find security errors in a program while it is running, rather
than by repeatedly examining the code offline. By debugging a program in
all the scenarios for which it is designed, dynamic analysis eliminates the
need to artificially create situations likely to produce errors. It has a distinct
advantage of having the ability to identify vulnerabilities that might have
been false negatives and to validate findings in the static code analysis.

Dynamic analysis, also known as dynamic application security test-
ing (DAST), identifies vulnerabilities within a production application.
These tools are used to quickly assess a system’s overall security and are
used within both the SDL and SDLC. The same advantages and cautions
about using static analysis tools apply to dynamic analysis tools. Some
of the popular SAST vendor products are Coverity,38 HP Fortify Static
Code Analyzer,39 IBM Security AppScan Source,40 klocwork,41 Parasoft,42
and Veracode,43 while the more popular DAST vendor products include
HP Webinspect44 and QAinspect,45 IBM Security AppScan Enterprise,46
Veracode,47 and Whitehat Sentinel Source.48

The timing of the use of SAST and DAST tools in the SDL is criti-
cal, and takes place primarily in the design and development phase of the
SDL we will be presenting later in this book, as shown in Figure 2.1.

2.5.2 The Talent

2.5.2.1 Software Security Architects

As mentioned in Chapter 1, qualified senior software security architects
will make or break your software security program. On the people front,

Fi
g

ur
e

2
.1

D

es
ig

n
an

d
 d

ev
el

o
p

m
en

t
(A

4)
 s

ta
g

e
o

f
th

e
SD

L
ac

ti
vi

ti
es

 a
nd

 b
es

t
p

ra
ct

ic
es

.

36 Core Software Security

the most critical element of an effective software security program is a
cadre of senior level 3 and 4 software security architects. These are indi-
viduals who have five to ten years of development/coding experience
before they come into the security field and who are also experienced in
the areas of software, networking, and cloud/SaaS architectural design.

These are not the typical folks in IT security who run tools; they are
experienced architects who understand development and system architec-
ture as well as they understand security. In addition, they must also have
great political and people skills. These are the folks who are going to touch
every element of the SDLC and SDL; they should be part of the sign-off
process at each stage of the SDLC process, and they must be involved
from pre-commit to post-release. They will make or break your software
security practice and are key to its survival and success. Your senior soft-
ware/application security architects are critical to handle product security
escalations, train development team members, provide internal/external
customer responses, and solve complex software/ applications issues in
SaaS and cloud environments.

Distinguishing between architectural drivers and other requirements is
not simple, as it requires a complete understanding of the solution objec-
tives. Software security architecture is an interactive process that involves
assessment of the business value of system requirements and identifying
the requirements that are most critical to the success of a system. These
requirements include the functional requirements, the constraints, and
the behavior properties of the solution, all of which must be classified
and specified. These critical requirements are called architectural drivers,
because they shape the design of the system.

The security architect must figure out how, at the architectural level,
necessary security technologies will be integrated into the overall system.
In the cloud or SaaS environment, this includes network security require-
ments, such as firewalls, virtual private networks, etc. Architects explicitly
document trust assumptions in each part of the system, usually by draw-
ing trust boundaries (e.g., network traffic from outside the firewall is
untrusted, but local traffic is trusted). Of course, these boundaries must
be reflect business requirements. For instance, high-security applications
should not be willing to trust any unencrypted shared network media.
Security requirements should come from the user. A typical job descrip-
tion for a seasoned software security architect might be as follows.

The Software Security Architect is responsible for providing architec-
tural and technical guidance to product security across all of Company X.

The Secure Development Lifecycle 37

The Architect will design, plan, and implement secure coding practices
and security testing methodology; ensure that practices meet software cer-
tification processes; drive the security testing of the products; test and
evaluate security-related tools; and manage third-party vendors to meet
those responsibilities above. Specific roles and responsibilities include:

• Drive overall software security architecture.
• Provide technical leadership in the comprehensive planning, develop-

ment, and execution of Company X software security efforts.
• Work closely with product and engineering development teams to

ensure that products meet or exceed customer security and certifica-
tion requirements. This includes ensuring that the security architec-
ture is well documented and communicated.

• Provide planning and input into the software engineering and prod-
uct development process, related to security, sensitive to the con-
straints and needs of the business.

• Monitor security technology trends and requirements, such as
emerging standards, for new technology opportunities.

• Develop and execute security plans. This may include managing
joint development with third-party vendors, and providing guidance
(with other departments) to the engineering and testing practices.

• Ensure, and create as needed, security policies, processes, practices,
and operations to ensure reproducible development and high quality,
while keeping costs under control.

• Engage in hands-on, in-depth analysis, review, and design of the
software, including technical review and analysis of source code
with a security perspective. Will include reviews of in-house
 developed code, as well as review of technologies provided by third-
party vendors.

• Provide primary technical role in the security certifications process,
including preparing extensive documentation and working with
third-party evaluations.

• Provide training to staff, contractors, development, and quality
assurance teams, and product/software security champions related
to product security.

• Guide Company X software development teams through the
Company X Security Development Lifecycle (SDL) for its SDLC by
participating in design reviews, threat modeling, and in-depth secu-
rity penetration testing of code and systems. These responsibilities

38 Core Software Security

extend to providing input on application design, secure coding prac-
tices, log forensics, log design, and application code security.

The software security architects are the cadre who will be critical in
overseeing and training the efforts of software security champions that
should be identified through a cross–business unit/software security edu-
cation and awareness program. The architects will also spot and assess
candidates for software security champions, as they are involved in vari-
ous software products SDLs from concept commit to post-release.

2.5.2.2 Software Security Champions

Funding for corporate security departments, whether IT, physical, or
software, is not likely to get any better in the foreseeable future, which
means that you will have to be very judicious with your resources if you
plan to be successful. As we implied earlier, seasoned software security
architects are far and few between, and at best you will not likely be able
to find and afford more than a handful in today’s market. As you look
at the SDL model used in this book or others referenced earlier in this
chapter, you may be asking yourself how you can ever scale to this task
given the resources that security software and the development teams
working with them will have. The answer is that if you manage the soft-
ware security team or have that function working for you, you will use
the recruitment and leverage of software security champions (SSCs) to
manage this daunting task. Candidates for this role should typically have
a minimum of three to five years of software development experience;
a passion for or background in software security; time to be trained in
software security and on the centralized software security teams tools,
plans, and processes; and, most important, must not only know how to
develop (build) software but also how to deconstruct (take it apart) while
“thinking like a hacker” regarding all possible paths or exploits (attack
planes) that an adversary could take to exploit the software. Each product
development organization should have at least one individual who has
the technical capability to be trained as a software security champion and
eventually as a junior software security architect to assist the centralized
software security team in architecture security analysis/threat modeling. It
is also important that SSCs be volunteers and not assignees who may lack
the passion to succeed at this very challenging but rewarding role. Each

The Secure Development Lifecycle 39

 business unit for software development within a company should have
at least one SSC; for larger development organizations, it is preferable to
have one for each tier product per business unit. A typical job description
for a software security champion is as follows.

• SSCs must have a minimum of three to five years of software
develop ment experience; a passion for or background in software
security; time to be trained in software security and on the cen-
tralized and business unit–specific software security tools, plans,
and processes; and, most important, must not only know how to
develop (build) software but also how to deconstruct it (take it apart)
while “thinking like a hacker” regarding all possible paths or exploits
(attack planes) that an adversary could take to exploit the software.

• Each product development organization will have one individual
that has the technical capability to be trained as a software security
architect to assist the centralized software security group in archi-
tecture security analysis/threat modeling. Ideally, each team should
have an additional product security champion whose role is to assist
as a change agent (more project/program oriented individual) in
addition to the technically oriented product security champion if
deemed necessary.

• Specific roles and responsibilities include:
o Enforce the SDL: Assist the centralized software security group in

assuring the security tenants of confidentiality, integrity, availabil-
ity, and privacy are adhered to in the SDL as part of the Company
X SDLC.

o Review: Assist the centralized software security team software
security architects in conducting architecture security analysis,
reviews, and threat modeling.

o Tools Expert: Be the representative centralized software secu-
rity team software security tool expert (e.g., static and dynamic,
including fuzzing) within each development team, product group,
and/or business unit.

o Collocate: Be the eyes, ears, and advocate of the centralized
software security team within each development team, product
group, and business unit.

o Attend Meetings: Participate in monthly phone meetings and, as
budgets permit, twice-a-year face-to-face meetings, as members of
a global Company X team of software security champions.

40 Core Software Security

2.6 Principles of Least Privilege

In information security, computer science, and other fields, the principle
of least privilege (also known as the principle of minimal privilege or the
principle of least authority) requires that in a particular abstraction layer
of a computing environment, every module (such as a process, a user, or a
program, depending on the subject) must be able to access only the infor-
mation and resources that are necessary for its legitimate purpose.49,50

Limiting the elevation of privilege is a significant part of threat
 modeling as a core component of the Architecture (A2) phase of our
SDL, which we will discuss in Chapter 4. The concept of elevation of
privilege is considered so important that it is the theme of a Microsoft
Security Development Lifecycle card game designed to train developers
and security professionals to quickly and easily find threats to software
or computer systems.51 An unauthorized privilege escalation attack takes
advantage of programming errors or design flaws to grant the attacker
elevated access to the network and its associated data and applications.
These attacks can be either vertical, where the attacker grants himself
privileges, or horizontal, where the attacker uses the same level of privi-
leges he has already been granted, but assumes the identity of another
user with similar privileges.

Ensuring least privilege prevents the disclosure of sensitive data, and
prevents unauthorized users from gaining access to programs or areas they
were never meant to have. Software design should follow the principle
of least privilege, and this is a critical element in software development.
Limiting the level of privilege is critically important because the eleva-
tion of privilege can result in an attacker gaining authorizations beyond
those granted to a normal user. For example, an attacker with general user
privileges that are set for “read only” permissions may be able to hack the
software to elevate his access to include “read and write.” Facilitating least
privilege requires that a user be given no more privilege than is necessary
to perform a given task. During the design phase of the SDL/SDLC, you
will need to determine the minimum set of privileges required to perform
that job, and restrict the user to a domain with those privileges and noth-
ing more. Ensuring least privilege includes limiting not only user rights
but also resource permissions such as CPU limits, memory, network, and
file system permissions. This requires that multiple conditions have been
met before granting permissions to an object, because checking access to

The Secure Development Lifecycle 41

only one condition may not be adequate for strong security. For example,
an attacker may be restricted from conducting a successful attack if he
is able to obtain one privilege but not a second. Compartmenting soft-
ware into separate components that require multiple checks for access
can inhibit an attack or potentially prevent an attacker from taking over
an entire system. Careful delegation of access rights can restrict attackers
from successfully attacking software or a system. The minimum rights
and access to the resource should be limited to the shortest duration
neces sary to do the task.

2.7 Privacy

Protecting users’ privacy is another important component of the SDL
process and should be considered a system design principle of significant
importance in all phases of the SDLC. Just as with a failure in security, a
failure to protect the customer’s privacy will lead to an erosion of trust.
As more and more cases of unauthorized access to customers’ personal
information are disclosed in the press, the trust in software and sys-
tems to protect customers’ data is deteriorating. In addition, many new
privacy laws and regulations have placed an increased importance on
including privacy in the design and development of both software and
systems. As with security, software that has already progressed through
the development life cycle can be very expensive to change; it is much
less expensive to integrate privacy preservation methodologies and tech-
niques into the appropriate phases of the SDLC to preserve the privacy
of individuals and to protect personally identifiable information (PII)
data. Some key privacy design principles included in Microsoft’s SDL
include the ability to provide appropriate notice about data that is col-
lected, stored, or shared so that users can make informed decisions about
their personal information; enable user policy and control; minimize
data collection and sensitivity; and the protection of the storage and
transfer of data.52

It is imperative that privacy protections be built into the SDLC through
best practices implemented through the SDL. Ignoring the privacy con-
cerns of users can invite blocked deployments, litigation, negative media
coverage, and mistrust. We have incorporated privacy protection best
practices into our SDL, which will be described in subsequent chapters.

42 Core Software Security

2.8 The Importance of Metrics

In the words of Lord Kelvin, “If you cannot measure it, you cannot
improve it.”53 This maxim holds true today as it applies to product
security and the need to measure a software development organization’s
security posture accurately. Meaningful security metrics are critical as cor-
porations grapple with regulatory and risk management requirements,
tightening security budgets require shrewd security investments, and cus-
tomers demand proof that security and privacy is being built into their
products rather than through the historical post-release fixes.

Metrics tracking is like an insurance policy for your software projects
and also assists in managing protection against vulnerabilities. As we have
noted repeatedly, the cost of detecting a defect in successive stages of the
SDLC is very high compared with detecting the same defect at the stage
of the SDLC where the defect originated. Metrics can track these costs
and provide significant help in various ROI (return-on-investment) cal-
culations throughout the SDL/SDLC process. As shown in Figure1.1, it
costs little to avoid potential security defects early in development, espe-
cially compared to costing 10, 20, 50, or even 100 times that amount
much later in development. A visual representation of the cost of fix-
ing defects at different stages of the SDLC as part of the SDL process
is given in Figure 2.2. It can be argued that the cost of preventing just
one or two defects from going live is worth the cost of tracking metrics.
The ability to foresee defects and remediate them is a good indicator of
a healthy software security program, but quality metrics throughout the
SDL/SDLC process can help in managing and often avoiding excessive
remediation costs.

One goal of the SDL is to catch defects throughout the process as
a multistaged filtering process rather than through a single activity or
point in time, thus minimizing the remaining defects that lead to vulner-
abilities. Each defect removal activity can be thought of as a filter that
removes some percentage of defects that can lead to vulnerabilities from
the software product.54 The more defect removal filters there are in the
software development lifecycle, the fewer defects that can lead to vulner-
abilities will remain in the software product when it is released. More
important, early measurement of defects enables the organization to take
corrective action early in the SDLC. Each time defects are removed, they
are measured. Every defect removal point becomes a measurement point.

Fi
g

ur
e

2
.2

V

is
ua

l r
ep

re
se

nt
at

io
n

o
f t

he
 c

o
st

 o
f f

ix
in

g
 d

ef
ec

ts
 a

t d
iff

er
en

t s
ta

g
es

 o
f t

he
 S

D
LC

 a
s

p
ar

t o
f t

he
 S

D
L

p
ro

ce
ss

.

44 Core Software Security

Defect measurement leads to something even more important than defect
removal and prevention: It tells teams where they stand versus their goals,
helps them decide whether to move to the next step or to stop and take
corrective action, and indicates where to fix their process to meet their
goals.55 The SDL model that we will present in this book will focus on
filtering out defects throughout the SDLC, with a particular focus on
phases S1–S3 of our model (see Figure 2.3).

Security metrics can be an invaluable resource for assessing the effec-
tiveness of an organization’s software security program. Meaningful met-
rics can be used to continually improve the product security program’s
performance, substantiate regulatory compliance, raise the level of secu-
rity awareness among management and stakeholders, and assist deci-
sion makers with funding requests. Without metrics, organizations are
reduced to operating their product security programs under FUD: fear,
uncertainty, and doubt.

Meaningful security metrics allow an organization to determine the
effectiveness of its security controls. In order to measure the security pos-
ture of an organization effectively, product security must first ensure that
the proper framework is in place in order to derive meaningful metric
data. This includes a product security governance model suited to the

Figure 2.3 SDL phases S1–S3: defect identification and remediation filter-
ing process.

The Secure Development Lifecycle 45

entity’s strategic and operational requirements. Such a model should sup-
port implementation of practical product security policies and proce-
dures, consistent deployment of best practices and measures, and require
strong executive management support across the organization. Best prac-
tices dictate a model under which security is managed as an enterprise
issue—horizontally, vertically, and cross-functionally throughout the
organization. This model is better suited to enable consistent monitoring,
measurement, and reporting of an organization’s product security posture.

For security to be measured effectively, it must be managed effectively. As
companies struggle to protect valuable information assets and justify risk-
based decision making, a centralized metrics reporting mechanism is crucial
for producing meaningful metrics and providing an ongoing assessment of
the state of product security within a software development organization.

Rather than include a separate chapter on metrics in this book, our
approach will be to include metrics in each step of the SDL model pre-
sented. This will cumulate in a discussion of the use of SDL metrics in
managing the overall corporate software security program.

2.9 Mapping the Security Development Lifecycle
to the Software Development Lifecycle

Whatever form of SDL you use, whether it is one that already exists,
one you developed yourself, or a combination of both, you must map
it to your current SDLC to be effective. Figure 2.4 is a SDL activity
and best practices model that the authors have developed and mapped
to the typical SDLC phases. Each SDL activity and best practice is based
on real-world experience and examples from the authors to showing the
reader that security can be built into each of the SDLC phases—a map-
ping of security to the SDLC, if you will. If security is built into each
SDLC phase, then the software has a higher probability of being secure
by default, and later software changes are less likely to compromise overall
security. Another benefit of this mapping is that you will have presumably
worked with the owner(s) and stakeholders of the SDL, which will serve
to build buy-in, efficiency, and achievable security in both the opera-
tional and business processes of the SDLC and will include the develop-
ers, product and program managers, business managers, and executives.

Subsequent chapters will describe each phase of the SDL in Figure 2.4
in detail and will be broken up as shown in Figures 2.5–2.10.

Fi
g

ur
e

2
.4

M

ap
p

in
g

 t
he

 s
ec

ur
it

y
d

ev
el

o
p

m
en

t
lif

ec
yc

le
 t

o
 t

he
 s

o
ft

w
ar

e
d

ev
el

o
p

m
en

t
lif

ec
yc

le
.

Fi
g

ur
e

2
.5

C

ha
p

te
r

3:
 S

ec
ur

it
y

A
ss

es
sm

en
t

(A
1)

: S
D

L
ac

ti
vi

ti
es

 a
nd

 b
es

t
p

ra
ct

ic
es

.

Fi
g

ur
e

2
.6

C

ha
p

te
r

4:
 A

rc
hi

te
ct

ur
e

(A
2)

: S
D

L
ac

ti
vi

ti
es

 a
nd

 b
es

t
p

ra
ct

ic
es

.

Fi
g

ur
e

2
.7

C

ha
p

te
r

5:
 D

es
ig

n
an

d
 D

ev
el

o
p

m
en

t
(A

3)
: S

D
L

ac
ti

vi
ti

es
 a

nd
 b

es
t

p
ra

ct
ic

es
.

Fi
g

ur
e

2
.8

C

ha
p

te
r

6:
 D

es
ig

n
an

d
 D

ev
el

o
p

m
en

t
(A

4)
: S

D
L

ac
ti

vi
ti

es
 a

nd
 b

es
t

p
ra

ct
ic

es
.

Fi
g

ur
e

2
.1

0

C
ha

p
te

r
8:

 P
o

st
-R

el
ea

se
 S

up
p

o
rt

 (P
R

SA
1-

5)
: S

D
L

ac
ti

vi
ti

es
 a

nd
 b

es
t

p
ra

ct
ic

es
.

Fi
g

ur
e

2
.9

C

ha
p

te
r

7:
 S

hi
p

 (A
5)

: S
D

L
ac

ti
vi

ti
es

 a
nd

 b
es

t
p

ra
ct

ic
es

.

50 Core Software Security

Please note that, unlike some of the SDLs you may have seen before,
we include post-release support activities and best practices in our SDL,
as shown in Figure 2.10. We have included this because most software
security teams or their equivalent, especially those in mid-sized or small
companies, do not have the luxury of having an independent Product
Security Incident Response Team (PSIRT), a team dedicated solely to
conduct security M&A assessments, third-party reviews, post-release
certifications, internal reviews for new product combinations of cloud
deployments, or review for legacy software that is still in use or about to
be re-used. It takes some outside-the-box thinking to manage all of this
with a small team. Later in the book we will discuss leveraging seasoned
software security architects, software security champions, specialized soft-
ware, and third-party contractors to accomplish SDL goals and activities.

2.10 Software Development Methodologies

Earlier in the chapter we discussed the various SDLC models and pro-
vided a visual overview of our mapping of our SDL model to a generic
SDLC. It should be noted, however, that multiple software development
methodologies are used within the various SDLC models. Every software
development methodology approach acts as a basis for applying specific
frameworks to develop and maintain software and is less concerned with
the technical side but rather the organizational aspects of the process of cre-
ating software. Principal among these development methodologies are the
Waterfall model and Agile together with its many variants and spin-offs.
The Waterfall model is the oldest and most well known software develop-
ment methodology. The distinctive feature of the Waterfall model is its
sequential step-by-step process from requirements. Agile methodologies
are gaining popularity in industry although they comprise a mix of tra-
ditional and newly software development practices. You may see Agile or
traditional Waterfall or maybe a hybrid of the two. We have chosen to give
a high-level description of the Waterfall and Agile development models
and a variant or two of each as an introduction to software development
methodologies. Given the number of models that exist, we have not only a
generic model for our SDL model but will do the same in Chapter 9 when
we describe the applicability of our SDL to a few of the most popular soft-
ware development models that you may encounter over the next few years.

The Secure Development Lifecycle 51

2.10.1 Waterfall Development

Waterfall development (see Figure 2.11) is another name for the more
traditional approach to software development. This approach is typi-
cally higher-risk, more costly, and less efficient than the Agile approach
that will be discussed later in this chapter. The Waterfall approach uses
requirements that are already known, each stage is signed off before the
next commences, and requires extensive documentation because this is the
primary communication mechanism throughout the process. Although
most development organizations are moving toward Agile methods of
development, the Waterfall method may still be used when requirements
are fully understood and not complex. Since the plan is not to revisit a
phase using this methodology once it is completed, it is imperative that
you do it right the first time: There is generally no second chance.

Although Waterfall development methodologies vary, they tend to be
similar in that practitioners try to keep to the initial plan, do not have
working software until very late in the cycle, assume they know every-
thing upfront, minimize changes through a change control board (i.e.,
assume that change is bad and can be controlled), put most responsi-
bility on the project manager (PM), optimize conformance to schedule
and budget, generally use weak controls, and allow realization of value
only upon completion. They are driven by a PM-centric approach under
the belief that if the processes in the plan are followed, then everything

Plan

Build

Test

Review

Deploy

Figure 2.11 Waterfall software development methodology.

52 Core Software Security

will work as planned. In today’s development environment, most of the
items listed in the previous sentence are considered negative attributes of
the Waterfall methodology and are just a few of the reasons that indus-
try is moving toward Agile development methodologies. The Waterfall
approach may be looked on as an assembly-line approach which may be
excellent when applied properly to hardware but which has shortcomings
in comparison to Agile when it comes to software development.

2.10.1.1 Iterative Waterfall Development

The iterative Waterfall development model (see Figure 2.12) is an
improvement on the standard Waterfall model. This approach carries
less risk than a traditional Waterfall approach but is more risky and less
efficient than the Agile approach. In the iterative Waterfall method, the
overall project is divided into various phases, each executed using the tra-
ditional Waterfall method. Dividing larger projects into smaller identifi-
able phases results in a smaller scope of work for each phase, and the end
deliverable of each phase can be reviewed and improved if necessary before
moving to the next phase. Overall risk is thus reduced. Although the iter-
ative method is an improvement over the traditional Waterfall method,
you are more likely to face an Agile approach to software development

Plan Build Test Review Deploy

Plan Build Test Review Deploy

Figure 2.12 Iterative Waterfall software development methodology.

The Secure Development Lifecycle 53

rather than either a standard or an iterative Waterfall methodology in
today’s environment.

2.10.2 Agile Development

The Agile approach is based on both iterative and incremental develop-
ment methods. Requirements and solutions evolve through collaboration
among self-organizing, cross-functional teams, and a solution resulting
from every iteration is reviewed and refined regularly throughout the
process. The Agile method is a time-boxed iterative approach that facili-
tates a rapid and flexible response to change, which in turn encourages
evolutionary development and delivery while promoting adaptive plan-
ning, develop ment, teamwork, collaboration, and process adaptability
throughout the lifecycle of the project. Tasks are broken into small incre-
ments that require minimal planning. These iterations have short time
frames called “time boxes” that can last from one to four weeks. Multiple
iterations may be required to release a product or new features. A cross-
functional team is responsible for all software development functions
in each iteration, including planning, requirements analysis, design,
coding, unit testing, and acceptance testing. An Agile project is typi-
cally cross-functional, and self-organizing teams operate independently
from any corporate hierarchy or other corporate roles of individual team
members, who themselves decide how to meet each iteration’s require-
ments. This allows the project to adapt to changes quickly and mini-
mizes overall risk. The goal is to have an available release at the end of
the iteration, and a working product is demonstrated to stakeholders at
the end of each iteration.

2.10.2.1 Scrum

Scrum (see Figure 2.13) is an iterative and incremental Agile software
development method for managing software projects and product or
application development. Scrum adopts an empirical approach, accept-
ing that the problem cannot be fully understood or defined and focus-
ing instead on maximizing the team’s ability to deliver quickly and to
respond to emerging requirements. This is accomplished through the
use of co-located, self-organizing teams in which all disciplines can be

Fi
g

ur
e

2
.1

3

Sc
ru

m
 s

o
ft

w
ar

e
d

ev
el

o
p

m
en

t
m

et
ho

d
o

lo
g

y.

The Secure Development Lifecycle 55

 represented. In contrast to traditional planned or predictive methodolo-
gies, this concept facilitates the ability to handle churn resulting from
customers that change the requirements during project development. The
basic unit of development for Scrum is called a “sprint,” and a sprint
can last from one week to one month. Each sprint is time-boxed so that
finished portions of a product are completed on time. A prioritized list
of requirements is derived from the product backlog, and if they are not
completed during the sprint, they are left out and returned to the product
backlog. The team demonstrates the software after each sprint is com-
pleted. Generally accepted value-added attributes of Scrum include its
use of adaptive planning; that it requires feedback from working soft-
ware early during the first sprint (typically two weeks) and often; that it
stresses the maximization of good change such as focusing on maximiz-
ing learning throughout the project; that it puts most responsibility on
small, dedicated tight-thinking adaptive teams that plan and re-plan their
own work; that it has strong and frequent controls; optimizes business
value, time to market, and quality; and supports realization of value ear-
lier, potentially after every sprint.

2.10.2.2 Lean Development

In our experience, for those of you who have recently moved from or
are in the process of moving from a Waterfall methodology for software
development, Scrum is the most likely variant of Agile that you will
encounter. Lean (see Figure 2.14) is another methodology that is gaining

Figure 2.14 Lean software development methodology.

Plan

Build

Plan

Build

Plan

Build

Plan

Build

Plan

Build

Plan

Build

Plan

Build

Plan

Build

Test

Review

Test

Review

Test

Review

Test

Review

Test

Review

Test

Review

Test

Review

Test

Review

56 Core Software Security

popularity and is thus worth mentioning. Unfortunately, there are many
definitions of Lean, and it is a methodology that is evolving in many
directions. Although Lean is similar to Scrum in that it focuses on fea-
tures rather than groups of features, it takes this idea one step further in
that, in its simplest form, you select, plan, develop, test, and deploy one
feature before you select, plan, develop, test, and deploy the next feature.
The objective is to further isolate risk to the level of an individual fea-
ture. This isolation has the advantage of focusing on eliminating “waste”
when possible and doing nothing unless it is absolutely necessary or rel-
evant. Lean development can be summarized by seven principles based on
Lean manufacturing principle concepts: (1) eliminate waste, (3) amplify
learning, (3) decide as late as possible, (4) deliver as fast as possible, (5)
empower the team, (6) build integrity in, and (7) see the whole. One of
the key elements of Lean development is to provide a model where you
can see the whole, even when your developers are scattered across mul-
tiple locations and contractors. Although still considered related to Agile
by many in the community, Lean software development has evolved into
a related discipline rather than a specific subset of Agile.

2.3 Chapter Summary

In this chapter we described the importance and applicability of the SDL
and its relation and inclusion into the SDLC. Throughout the discus-
sion, we highlighted the models, methodologies, tools, human talent, and
metrics for managing and overcoming the challenges to make software
secure. Our SDL process encompasses a series of security-focused activi-
ties and best practices at each of the phases of our SDL. These activities
and best practices include the development of threat models during soft-
ware design, the use of static analysis code-scanning tools during imple-
mentation, and the conduct of code reviews, security testing, and metrics.
Lastly, we discussed our model for mapping the SDL to the SDLC and
the various popular software methodologies to which we will apply the
elements and best practices of our SDL in Chapter 9. In the next chapter,
we will start the process of walking through each step of our SDL model
and show that incremental implementation of the elements the SDL will
yield incremental improvements in an overall holistic approach to soft-
ware security.

The Secure Development Lifecycle 57

References

 1. Microsoft Corporation (2012), Graphic for Microsoft SDL. Retrieved from http://
www.microsoft.com/security/sdl/discover/default.aspx.

 2. Addison-Wesley (2012), Software Security Series. Graphic for “Build Security
in for Seven Touchpoints for Software Security.” Retrieved from http://www.
buildsecurityin.com/concepts/touchpoints.

 3. OWASP (2012), OWASP: The Open Web Application Security Project—
Security Code Review in the SDLC, Secure Code Review Process—
Operational Process. Retrieved from https://www.owasp.org/index.php/
Security_Code_Review_in_the_SDLC.

 4. Cisco Systems (2012), Cisco Secure Development Lifecycle (CSDL) Graphics.
Retrieved from http://www.cisco.com/web/about/security/cspo/csdl/index.html.

 5. Microsoft Corporation (2012). Microsoft Security Development Lifecycle: The
SDL Optimization Model Graphic. Retrieved from http://www.microsoft.com/
security/sdl/learn/assess.aspx.

 6. Microsoft Corporation (2012), “Microsoft SDL Optimization Model.”
Retrieved from http://www.microsoft.com/download/en/details.aspx?displaylang
=en&id=2830.

 7. Bsimm.com (2012), Building Security in Maturity Model.pdf. Graphic for the
BSIMM Software Security Framework (SSF), p. 24. Retrieved from bsimm.com/
download/dl.php.

 8. OWASP (2012), “Software Assurance Maturity Model (SAMM).”
Retrieved from https://www.owasp.org/index.php/Software_Assurance_Maturity_
Model_(SAMM).

 9. Businesswire.com (2012), “BSIMM4 Release Expands Software Security
Measurement Tool and Describes New Activities.” Retrieved from http://
www.businesswire.com/news/home/20120918005298/en/BSIMM4-Release-
Expands-Software-Security-Measurement-Tool.

 10. Ibid.
 11. OWASP (2012), “Software Assurance Maturity Model (SAMM).”

Retrieved from https://www.owasp.org/index.php/Software_Assurance_Maturity_
Model_(SAMM).

 12. ISO (2013), “ISO/IEC 27034-1:201: Information Technology—Security
Techniques—Application Security—Part 1: Overview and Concepts.” Retrieved
from http://www.iso.org/iso/catalogue_detail.htm?csnumber=44378.

 13. Pickel, J. (May 2013), “ISO/IEC 27034—Why, What, and How.” PowerPoint
presentation at the 2013 Microsoft Software Development Conference, delivered
on ebruary 25, 2013, San Francisco, CA.

 14. Ashord, W. (May 13, 2013), “Microsoft Declares Conformance with ISO 27034.”
Computer Weekly.Com. Retrieved from http://www.computerweekly.com/
news/2240184149/Microsoft-declares-conformance-with-ISO-27034-1.

 15. SAFECode (2012), SAFECode “About Us” webpage. Retrieved from http://www.
safecode.org/about_us.php.

58 Core Software Security

 16. SAFECode (2011), Fundamental Practices for Secure Software Development, 2nd
ed., A Guide to the Most Effective Secure Development Practices in Use Today,
February 8, 2011. Retrieved from www.safecode.org/publications/SAFECode_
Dev_Practices0211.pdf.

 17. U.S. Department of Homeland Security (2012), “Build Security In.” Retrieved
from https://buildsecurityin.us-cert.gov/bsi/home.html.

 18. U.S. Department of Homeland Security (2012), “Background: Department
of Homeland Security (DHS) National Cyber Security Division’s (NCSD).”
Retrieved from https://buildsecurityin.us-cert.gov/swa/cwe/background.html.

 19. U.S. Department of Homeland Security (2012), “Software Assurance:
Community Resources and Information Clearinghouse.” Retrieved from https://
buildsecurityin.us-cert.gov/swa/cwe.

 20. U.S. National Institute of Standards and Technology (2012), “Introduction to
SAMATE.” Retrieved from http://samate.nist.gov/index.php/Introduction_to_
SAMATE.html.

 21. U.S. National Institute of Standards and Technology (2008), NIST Special
Publication 800-64, Revision 2: Security Considerations in the System Development
Life Cycle, October 2008. Retrieved from http://csrc.nist.gov/publications/
nistpubs/800-64-Rev2/SP800-64-Revision2.pdf.

 22. U.S. National Institute of Standards and Technology (2012), National Vulnerability
Database, Version 2.2. Retrieved from http://nvd.nist.gov.

 23. U.S. National Institute of Standards and Technology (2012), “NVD Common
Vulnerability Scoring System Support v2.” Retrieved from http://nvd.nist.gov/
cvss.cfm?version=2.

 24. MITRE Corporation (2012), Common Vulnerabilities and Exposures (CVE)
homepage. Retrieved from http://cve.mitre.org.

 25. MITRE Corporation (2012), “CVE Frequently Asked Questions.” Retrieved from
http://cve.mitre.org/about/faqs.html.

 26. SANS Institute (2012), “Twenty Critical Security Controls for Effective Cyber
Defense: Consensus Audit Guidelines.” Retrieved from http://www.sans.org/
critical-security-controls.

 27. MITRE Corporation (2012), “CVE-Compatible Products and Services.” Retrieved
from http://cve.mitre.org/compatible/compatible.html.

 28. MITRE Corporation (2012), “CVE Frequently Asked Questions.” Retrieved from
http://cve.mitre.org/about/faqs.html.

 29. U.S. Department of Defense Cyber Security and Information Systems Information
Analysis Center (CSIAC) (2012), CSIAC webpage. Retrieved from https://www.
thecsiac.com/group/csiac.

 30. Goertzel, K., et al., for Department of Homeland Security and Department of
Defense Data and Analysis Center for Software (2008), Enhancing the Development
Life Cycle to Produce Secure Software: A Reference Guidebook on Software Assurance,
Version 2, October 2008. Retrieved from https://www.thedacs.com/techs/
enhanced_life_cycles.

 31. Goertzel, K., et al. (2008), Software Security Assurance: State-of-the-Art Report

The Secure Development Lifecycle 59

(SOAR), July 31, 2008. Retrieved from http://iac.dtic.mil/iatac/download/
security.pdf.

 32. Cert.org (2013), Carnegie Mellon cert.org webpage. Retrieved from http://www.
cert.org.

 33. SecurityFocus (2013), Bugtraq website. Retrieved from http://www.securityfocus.
com/archive/1.

 34. SecurityFocus (2013), Security website. Retrieved from http://www.securityfocus.
com.

 35. National Institute of Standards and Technology (2013), National Vulnerability
Database webpage. Retrieved from http://web.nvd.nist.gov/view/vuln/search.

 36. Codenomicon (2012), Codenomicon website. Retrieved at http://www.
codenomicon.com.

 37. Peachfuzzer.com (2012), Peach Fuzzing Platform webpage. Retrieved from http://
peachfuzzer.com/Tools.

 38. Coverity (2012), Coverity Static Analysis webpage. Retrieved from http://www.
coverity.com/products/static-analysis.html.

 39. HP (2012), HP Fortify Static Code Analyzer webpage. Retrieved from http://
www.hpenterprisesecurity.com/products/hp-fortify-software-security-center/
hp-fortify-static-code-analyzer.

 40. IBM (2012), IBM Security AppScan Source webpage. Retrieved from http://
www-01.ibm.com/software/rational/products/appscan/source.

 41. Klocwork (2012), Klocwork webpage. Retrieved from http://www.klocwork.
com/?utm_source=PPC-Google&utm_medium=text&utm_campaign= Search-
Klocwork&_kk=klocwork&gclid=CMy0_q6svbICFUjhQgodOGwAFg.

 42. Parasoft (2012), Static Analysis webpage. Retrieved from http://www.parasoft.
com/jsp/capabilities/static_analysis.jsp?itemId=547.

 43. Veracode (2012), Veracode webpage. Retrieved from http://www.veracode.com.
 44. Hewlett-Packard (2012), Webinspect webpage. Retrieved from http://

www. hpenterprisesecurity.com/products/hp-fortify-software-security-center/hp-
webinspect.

 45. Hewlett-Packard (2012), QAinspect webpage. Retrieved from http://
www. hpenterprisesecurity.com/products/hp-fortify-software-security-center/hp-
qainspect.

 46. IBM (2012), IBM Security AppScan Enterprise webpage. Retrieved from http://
www-01.ibm.com/software/awdtools/appscan/enterprise.

 47. Veracode (2012), Veracode webpage. Retrieved from http://www.veracode.com.
 48. White Security (2012), “How the WhiteHat Sentinel Services Fit in Software

Development Lifecycle.” Retrieved from (SDLC)https://www.whitehatsec.com/
sentinel_services/SDLC.html.

 49. Denning, P. J. (December 1976), “Fault Tolerant Operating Systems.” ACM
Computing Surveys, vol. 8, no. 4, pp. 359–389. DOI:10.1145/356678.356680.

 50. Saltzer, J., and Schroeder, M. (September 1975), “The Protection of Information
in Computer Systems.” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308.
DOI:10.1109/PROC.1975.9939.

60 Core Software Security

 51. Microsoft Corporation (2012), “Elevation of Privilege (EOP) Card Game.”
Retrieved from http://www.microsoft.com/security/sdl/adopt/eop.aspx.

 52. Microsoft Corporation (2012), Microsoft Security Development Lifecycle (SDL),
Version 3.2. Retrieved from http://www.microsoft.com/en-us/download/details.
aspx?id=24308.

 53. Quotationsbook.com (2012), Lord Kelvin quote. Retrieved from http://
quotationsbook.com/quote/46180.

 54. U.S. Department of Homeland Security (2012), “Build Security In.” Secure
Software Development Life Cycle Processes online doc. Retrieved from https://
buildsecurityin.us-cert.gov/bsi/articles/knowledge/sdlc/326-BSI.html.

 55. Ibid.

61

Chapter 3

Security Assessment
(A1): SDL Activities
and Best Practices

In this chapter, we will introduce the reader to the first phase of our secu-
rity development lifecycle. This phase (A1) is called Security Assessment.
We will describe different activities within this phase, why it is important,
and then walk the reader through key success factors, deliverables, and
metrics from this phase.

Security Assessment (A1) is the first phase of our SDL (see Figure 3.1).
This is the phase where the project team identifies the product risk profile
and the needed SDL activities; in some SDLs it is called the discovery
phase. An initial project outline for security milestones and controls is
developed and integrated into the development project schedule to allow
proper planning as changes occur. Throughout this phase, four principal
questions should be addressed to determine what is required to ensure the
security of the software:

 1. How critical is the software to meeting the customers’ mission?
 2. What security objectives are required by the software [e.g., confiden-

tiality, integrity, and availability (CIA), as described in Chapter 1]?

Fi
g

ur
e

3
.1

Se

cu
ri

ty
 A

ss
es

sm
en

t
(A

1)
: S

D
L

ac
ti

vi
ti

es
 a

nd
 b

es
t

p
ra

ct
ic

es
.

Security Assessment (A1): SDL Activities and Best Practices 63

 3. What regulations and policies are applicable in determining what is
to be protected?

 4. What threats are possible in the environment where the software will
be operating?

During the initial kick-off meeting, all key stakeholders should
discuss, identify, and have a common understanding of the security
privacy implications, considerations, and requirements. The initial set of
key security milestones, including time frames or development triggers
that signal a security step is approaching, are also outlined in these
discussions to enable the developers to plan security requirements and
asso ciated constraints into the project. It also reminds project leaders that
many decisions being made have security implications that should be
weighed appropriately as the project continues. These discussions should
also include the identification of all sources of security requirements,
including relevant laws, regulations, and standards.

Privacy, often neglected as part of the SDL in the past, is assessed at
this phase as well. The Privacy Impact Assessment (PIA) process evalu-
ates issues and privacy impact rating related to the privacy of personally
identi fiable information in the software and will be initiated during this
stage of the development process.

3.1 Software Security Team Is Looped in Early

SDLCs typically have formalized kick-off meetings, and it is impor-
tant that the software security team is included, to ensure that secu-
rity is a key element of the SDLC and is built into the process. An
in- person or live web conference meeting will give attendees and stake-
holders an important opportunity to gauge understanding and aware-
ness. Bringing the security team into the development process early is
the most cost-effective way to enable risk identification, planning, and
mitigation. Early identification and mitigation of security vulnerabilities
and misconfigurations will result in lower cost of security control imple-
mentation and vulnerability mitigation; provide awareness of poten-
tial engineering challenges caused by mandatory security controls; and
identification of shared security services and reuse of security strate gies
and tools to reduce development cost while improving security posture

64 Core Software Security

through proven methods and techniques. The early involvement of the
security team will enable the developers to plan security requirements
and associated constraints into the project. It also reminds project lead-
ers that many decisions being made have security implications that
should be weighed appropriately, as the project continues. Early plan-
ning and awareness will result in cost and time saving through proper
risk management planning. Security discussions should be performed
as part of, not separate from, the develop ment project to ensure solid
understandings among project personnel of business decisions and their
risk implications to the overall development project.1

3.2 Software Security Hosts a Discovery Meeting

The discovery meeting is essentially a SDL kick-off meeting where the
key SDLC stakeholders get on the same page at the beginning of the pro-
cess so that security is built in rather than bolted on post-release. Security
planning in the discovery meeting should include preparations for the
entire system life cycle, including the identification of key security mile-
stones and deliverables, and tools and technologies. Special considera-
tion should be given to items that may need to be procured, such as
software security testing and assessment tools, and the potential use of
third-party software security architects or engineers if staff augmentation
is needed or the customer requires third-party attestation. Other resource
impacts such as active testing, accreditation, and required training must
be considered as well. A series of milestones or security meetings should
be planned to discuss each of the security considerations throughout the
system development. The outcomes of the discovery meeting are typically
in terms of decisions that are made for future activities, which are fol-
lowed later in the SDL by actual security or privacy activities. A project
schedule should integrate security activities to ensure proper planning of
any future decisions associated with schedules and resources. All meeting
participants and stakeholders should walk away from this meeting with
common understanding of the security implications, considerations, and
requirements for the software.

The following four questions should be addressed in this phase to
determine the security controls that will be required for the software
being developed:

Security Assessment (A1): SDL Activities and Best Practices 65

 1. How critical is the system to meeting the organization’s mission?
 2. What are the security objectives required by the software in terms of

confidentiality, integrity, and availability (CIA)?
 3. What regulations and policies are applicable in determining what is

to be protected?
 4. What threats are possible in the environment where the system will

be operating?

Key tasks during the discovery meeting include the following:

• Develop an initial project outline for security milestones, which will
be integrated into the development project schedule and will allow
proper planning as changes occur.

• Identify the sources for the security requirements, such as relevant
laws, regulations, standards, and customer requirements.

• Identify any required certification and/or accreditation requirements
and the resources required for them.

• Identify any third-party or open-source software that will be
required.

• Identify the common security controls that will be used for the soft-
ware being developed, including those that will be needed if the
software is to be used in a SaaS/cloud environment or as part of a
larger solution using multiple software products.

• Identify and define the required security reporting metrics in both
tactical and strategic (business) terms.

• Develop an initial framework of key security milestones, including
time frames or development triggers that will signal a security step is
approaching.

• Define the security responsibilities of the core software security
team, the software security champions, developers, privacy team,
and any other stakeholders required to support security during the
SDL/SDLC process.

• Identify and document the software security design, architecture,
and security coding practices to be used.

• Identify the security testing and assessment techniques that will be
used.

• Lay out a pre-privacy impact assessment process, including deter-
mination of information categorization and identification of known

66 Core Software Security

special handling requirements to transmit, store, or create informa-
tion such as personally identifiable information, and preliminary
identification of any privacy requirements.

• When possible, project artifacts such as meeting minutes, brief-
ings, and role identifications should be standardized and provided
to developers for proper level-of-effort planning. This should be an
ongoing process throughout the SDL.

3.3 Software Security Team Creates an SDL
Project Plan

This can actually be considered initial project planning because the for-
mal plan will be finalized as an outcome of the design phase, which will
be covered in the next chapter. At this stage, the SDL project plan should
outline security milestones based on the information gained during the
discovery phase in 3.1 and integrate them into the overall SDLC sched-
ule to allow proper planning as changes occur. As in the discovery phase,
activities may be more in terms of decisions translated into milestones
that will be followed by security activities. This project plan integrates
the common understanding of security expectations identified in the
 discovery phase reflecting the initial schedule of security and privacy
activities or decisions.

3.4 Privacy Impact Assessment (PIA) Plan Initiated

There are a number of methods for privacy protection and management.
In the past, however, privacy tools have generally been applied in an ad-
hoc way, or in a piecemeal fashion to address immediate issues; as with
security, these issues are typically addressed post-release. Just as with secu-
rity, treating privacy as a secondary consideration or as an issue for future
exploration during system design does not provide an effective level of
privacy protection. Addressing components of privacy issues and not
through a holistic design and implementation leads to further potential
privacy issues. Privacy must be a fundamental design consideration that is
integrated into every phase of SDLC.

There are a growing number of privacy regulatory requirements on
a variety of levels—state, federal, and international—resulting in a

Security Assessment (A1): SDL Activities and Best Practices 67

 patchwork of compliance requirements that have serious penalties for non-
compliance. Rather than devote an entire chapter to recent and upcoming
privacy requirements and the potential ramifications of each, we will dis-
cuss the best practices needed to adequately cover a majority of what you
will face in terms of privacy, regulatory, and policy compliance. Software
programs are designed to integrate with the user’s computer, and therefore
may be able to access and store personal information. Software develop-
ers must adhere to the guidelines and privacy policies that relate to the
operating systems and platforms for which their software is designed. The
bottom line is that when customers entrust your company with sensitive
information, every employee is obligated to protect that information. As
with security, privacy violations have significant implications for the trust
customers have in you, which in turn will affect your company’s reputation
and the jpotential revenue from the software you develop.

Before you can begin developing a Privacy Impact Assessment (PIA),
you will need to evaluate what regulatory legislation or policies are appli-
cable to the software you are developing. In some models, this is called
the data sensitivity assessment. Since most developers do not have a back-
ground in law, and regulators generally do not have a background in
software development, understanding the issues surrounding regulatory
compliance can be difficult and frustrating. It is often very difficult for
developers to understand fully the language and requirements described
by legislation, and it is often not easy to pin down explicit software
requirements. To successfully translate regulations into requirements, it
will be necessary to engage with your corporate legal counsel and any
external legal privacy experts who may be on retainer. If you happen to
have a chief privacy officer (CPO), this person can be an ideal partner
who can offer you the resources and training you will need to meet the
challenge of building privacy into the SDL and ultimately the SDLC.

Microsoft’s Privacy Guidelines for Developing Software Products and
Services2 and NIST Special Publication 800-64 Revision 2: Security
Considerations in the System Development Life Cycle3 are among the most
popular references for developing a PIA in your SDL—You can use either
in its entirety or as a template to develop your own. No matter what
methodology you use, the following should be included in your PIA:

• Summary of the Legislation: Explains the act from a developer’s
point of view, telling you what you need to know in order to under-
stand its implications on your application development.

68 Core Software Security

• Required Process Steps: Explains in more depth which require-
ments are relevant to software developers. Generally speaking, this
section describes what types of data are considered sensitive and how
they need to be protected.

• Technologies and Techniques: Explains strategies and techniques
for meeting the legislative requirements. These are separated into five
main categories: Confidentiality, Integrity, Availability, Auditing
and Logging, and Authentication.

• Additional Resources: Provides links where you can gather more
information on the legislation in question.4

The primary task of the PIA process is the determination of need in the
system along with an initial definition of the problem to be a solved. The
PIA created at this phase is only a preliminary version for initial system
specifications and requirements, and is designed to guide developers in
assessing privacy through the early stages of development. For simplicity,
we have included only the privacy design principles requirements analysis
and part of the initial PIA analysis. At its core, this stage of the PIA is the
planning, documentation, and assessment of preliminary requirements
for personally identifiable information (PII) and personal information
used by the software and includes or accesses the following:

• Education of stakeholders. All stakeholders should be educated
on the “four C’s” of privacy design (comprehension, consciousness,
control, and consent) at the Security Assessment (A1) discovery and
kick-off meeting. The architects and developers should be asking
whether they need to collect the data, have a valid business need to
do so, and whether the customer will support the software’s business
purpose for collecting their PII.

• Additional software interaction. External system processes, other
systems interacting with the new software and their use of PII, per-
sonal information, and system users.

• Collection of PII. The purposes and requirements for the collection
of PII.

• PII storage retention. Proposed personal information retention
 periods and reasons for the lengths of those periods.

• Access. Determine what entities will have access to the PII and per-
sonal information and the preliminary design for separation of duty/
tasks/roles/data in the software.

Security Assessment (A1): SDL Activities and Best Practices 69

• Privacy management tools. Identification of privacy management
tools and system processes that may be needed to manage personal
information in the software and the solution it may be part of. This
is particularly important if the software is going to be a component
of an SaaS- or cloud-based solution.

• Security safeguards. The setting of requirements for security safe-
guards that will be used to protect PII and personal information.

• Integrity of the data. Determine that PII and personal information
is kept up to date and accurate.

• Assess whether there are any conflicts between security and pri-
vacy requirements. If so, they need to be addressed and resolved
at this stage of the development process. This step includes the cat-
egorization of the level of privacy and security protection that the
software will require.

• Apply the principle of least privilege. Essentially, this entails lim-
iting access to “need to know.”Access to user data should be limited
to those who have a legitimate business purpose for accessing the
data. In addition, nonusers such as administrators or database mana-
gers should only be given access to the smallest amount of user data
needed to achieve the specific business purpose. This must include
third parties that have access to the data or to which it is transferred:
They should only be given the specific data they need to fulfill their
business purpose. Data protection provisions, including retention
and destruction requirements, are typically required of third parties
through contract agreements.

• Websites and Web services. All externally facing websites must
have a link to a privacy statement on every page. This includes pop-
ups that collect PII. Whenever possible, the same privacy statement
should be used for all sites within a domain.

• The use of cookies. PII and identifiers that facilitate tracking
may be stored in cookies as small files which are stored on a user’s
 computer. They are designed to hold a modest amount of data spe-
cific to a particular client and website, and can be accessed either by
the Web server or the client computer. Privacy guidelines for cookie
usage apply to locally stored text files that allow a server-side con-
nection to store and retrieve information, including HTTP cookies
(e.g., Web cookies) and Flash cookies (e.g., Flash Shared Objects).
Persistent cookies must not be used where a session cookie would
satisfy the purpose. Persistent cookies should expire within the

70 Core Software Security

shortest timeframe that achieves the business purpose. PII stored in
a persistent cookie must be encrypted.

• IP addresses. The customer’s IP address is always sent with the data
as part of the communication protocol when it is transferred over
the network. As of the date of this writing, there is still a lot of
debate and discussion as to whether or not an IP address is PII. The
fact that privacy regulators are even discussing this is a warning sign
that we may need to consider the possibility that this information
will fall into the category of PII in the foreseeable future. Storing
an IP address with PII should be avoided if anonymity is required
in order to avoid correlation between the two. If possible, the IP
address should be stripped from the payload to reduce its sensitivity
by limiting the number of digits. The IP address can also be dis-
carded after translating it to a less precise location.

• Customer privacy notification. Software that collects user data
and transfers it must provide and give notice to the customer. These
are also called disclosure notices and must inform users of the type
of information that software will collect and how it will be used.
Depending on the type of software, an opt-out clause may be required
to allow users the ability to withhold certain types of personal infor-
mation if they so choose. The type of notice and consent required
depends on the type of user data being collected and how it will be
used. Customers must also be presented with a choice of whether
they want to share this information or not. All notices must be writ-
ten in clear, easy-to-read language. There are two types of notifica-
tion, prominent and discoverable. A “Prominent Notice” is one that
is designed to catch the customer’s attention and invites customers to
inspect the current privacy settings, learn more about their options,
and make choices. A “Discoverable Notice” is one the customer has
to find. This can be done by selecting a privacy statement link from
a Help menu in a software product or by locating and reading a pri-
vacy statement on a website. This notification typically includes the
type of data that will be stored, how it will be used, with whom it
will be shared, how it is protected, available user controls including
the update process if the PII is stored and reusable, and company
contact information. If you are developing a product to be used by
another company or as an original equipment manufacturer (OEM),
the customer company typically has specific privacy statements that

Security Assessment (A1): SDL Activities and Best Practices 71

third-party software developers are required to include. Other com-
panies may require that software that is designed to work with their
products contain a privacy statement that informs users that their
information will not be sold to other companies or displayed pub-
licly. Software developers must inform users of the software’s method
of safeguarding users’ personal information in the privacy policy and
notification. As we will discuss later in the book, this can be done
via a valid SSL certificate, or using other security and encryption
methods. As with other privacy-related areas, regulatory and other
requirements are dynamic, and you should consult your privacy
expert or legal counsel for the latest guidance for your software.

• Children’s privacy. Care must be taken to consider children’s pri-
vacy, since they may lack the discretion to differentiate when disclos-
ing their PII that doing so may put them at risk. This has become
particularly important with the advent of collaboration and shar-
ing features found in social software. Parental controls are typically
added to products, websites, and Web services to help protect the
privacy of children. Special efforts must be made to ensure that par-
ents retain control over whether their children can reveal PII. There
are numerous privacy requirements for those offering websites and
Web Services that target children and/or collect the age of their cus-
tomers. There are numerous existing and forthcoming state, local,
and international requirements for this area. Make sure you consult
your privacy expert and/or corporate counsel (or equivalent) if you
have software that will fall into this area.

• Third parties. Two types of third parties must be considered when
assessing your privacy requirements. One type of third party is
authorized to act on the company’s behalf and uses data in accor-
dance with the company’s privacy practices. An independent third
party follows its own privacy practices and uses customer informa-
tion for its own purposes, which require a contract specifying data
protection requirements. This requires a software provision for the
customer to provide opt-in consent. The customer must provide opt-
in consent before PII is shared with an independent third party.
Only a Discoverable Notice is required if PII is transferred via a
third party authorized to act on the company’s behalf.

• User controls. User controls give users the ability to manage and
control the privacy of their data and change their settings. These

72 Core Software Security

controls should be intuitive and easy to find. The data may reside
on a computer, within a Web service, or on a mobile device. A web-
page is used as the privacy site for Web services. Privacy controls for
mobile devices can be on the device itself or via a computer-based
user interface or a website that links to the device.

• Privacy controls required for software used on shared com-
puters. It is common for software used in home or small office/
home office (SOHO) environments to be shared by multiple users.
Software designed for use in these environments that also collects
or stores PII must provide controls over which users have access to
the data. These controls may include strict computer/file/document
access control and file permissions or encryption. Controls must also
be a default setting and not opt-in. Shared folders must be clearly
marked or highlighted.

• Collaboration, sharing, and social software privacy features.
This is an area with very complex challenges in that content can
be shared among a community, and in some cases, linked commu-
nity members and shared friends or contacts. Software that supports
these types of applications should provide controls and notifica-
tions to help prevent inadvertent sharing of PII with unintended
audiences.

• Security. Security, of course, is the topic of this book, and a criti-
cal element of both privacy and quality. The security requirements
will depend on the type of user data collected and whether it will be
stored locally, transferred, and/or stored remotely. The end goal for
security controls and measures is to protect PII from loss, misuse,
unauthorized access, disclosure, alteration, and destruction. The
controls and measures include not only software controls such as
access controls and encryption in transfer and storage but also physi-
cal security, disaster recovery, and auditing. Compensating controls
may be needed when standard protection is not possible due to
 business needs, such as the use of PII as a unique identifier or an IP
address or e-mail address used for routing.

• Privacy Impact Ratings. The Privacy Impact Rating (P1, P2, or P3)
is a practice used in the Microsoft SDL. It measures the sensitivity
of the data your software will process from a privacy point of view.
Early awareness of all the required steps for deploying a project with

Security Assessment (A1): SDL Activities and Best Practices 73

high privacy risk may help you decide whether the costs are worth
the business value gained. General definitions of privacy impact are
as follows:
o P1 High Privacy Risk. The feature, product, or service stores or

transfers PII or error reports, monitors the user with an ongoing
transfer of anonymous data, changes settings or file type associa-
tions, or installs software.

o P2 Moderate Privacy Risk. The sole behavior that affects privacy
in the feature, product, or service is a one-time, user- initiated;
anonymous data transfer (for example, the user clicks a link and
goes out to a website).

o P3 Low Privacy Risk. No behaviors exist within the feature,
product, or service that affect privacy. No anonymous or personal
data is transferred, no PII is stored on the machine, no settings are
changed on the user’s behalf, and no software is installed.5

The risk assessment questionnaire and risk ranking system developed
by Microsoft can be a great tool in assessing the risk and prioritizing the
work to remediate those risks in the SDL.

In summary, the purpose of the PIA is to provide details on where and
to what degree privacy information is collected, stored, or created within
the software that you are developing. The PIA should continue to be
reviewed and updated as major decisions occur or the proposed use of the
software and scope change significantly.

3.5 Security Assessment (A1) Key Success Factors
and Metrics

3.5.1 Key Success Factors

Setting success criteria for any SDL phase will make it more effective
and will help in performing post-mortem afterwards to understand what
worked and what didn’t. Table 3.1 outlines success criteria suggested by
the authors. However, each environment is different, and security teams
are in the best position to understand success criteria within their own
environment.

74 Core Software Security

Success Factor 1: Accuracy of Planned SDL Activities

The Security Assessment (A1) phase is the first phase of our SDL and
therefore is mostly discovery in nature. It sets the tone and direction of
future SDL activities. It is during this phase that a rough outline of needed
SDL activities is decided, as well as what emphasis should be placed on
each SDL activity (code review, threat modeling, etc.). Though one can
always course correct identified SDL activities and their importance later,
a key measure of success of this phase is how many revisions are made
to initial requirements and the direction of the SDL. Though this is not
measurable at the start, once the SDL cycle is complete, one should go
back to the initial planning documents to identify deviations from it and
reasons those variances happened. This should help in estimating future
SDL activities more accurately.

Success Factor 2: Product Risk Profile

Another key success factor is a product risk profile. Based on software, its
importance to customers (its use in their environment), data processed
through the software, and relevant regulations and target market/ countries,
a basic product risk profile can be prepared. The profile should include risk
arising out of customer expectations and use of the product, regulatory
compliance, as well as security changes needed to cater to different mar-
kets. This will also help articulate real cost to management.

Table 3.1 Key Success Factors

Key Success Factor Description

1. Accuracy of planned SDL
activities

All SDL activities are accurately
identified.

2. Product risk profile Management understands the true
cost of developing the product.

3. Accuracy of threat profile Mitigating steps and countermeasures
are in place for the product to be
successful in its environment.

4. Coverage of relevant
regulations, certifications, and
compliance frameworks

All applicable legal and compliance
aspects are covered.

5. Coverage of security objectives
needed for software

“Must have” security objectives are
met.

Security Assessment (A1): SDL Activities and Best Practices 75

Success Factor 3: Accuracy of Threat Profile

Too many times, software is developed without a complete understand-
ing of its intended use or the environment in which it will operate.
Though a product may be designed for certain uses, customers often add
their own enhancements and then use it in ways that were not thought
through before. Another example is APIs exposed to the public. In most
cases, APIs exposed increase over a period of time (often after software is
released). However, the threat profile from exposure of these APIs is not
always considered or done correctly. In other cases, software depends on
open-source (or closed-source) software that was not considered in defin-
ing the threat profile for the product.

Thus, one of the critical success factors to take away from this phase is
the accuracy of the threat profile. The profile should cover not only per-
ceived use cases but also research on customer integrations and security
exposure through dependency on other products or software.

Success Factor 4: Coverage of Relevant Regulations,
Certifications, and Compliance Frameworks

One key criterion for success of this phase is whether all key regulations,
compliance frameworks, and certifications for the product (or libraries)
have been identified. This success factor depends on understanding pro duct
objectives and customer uses. One can easily make the mistake of thinking
that certain regulations will not be applicable because their use cases are not
considered valid. Customers, however, often have a different take on this. A
cloud product that a customer uses to interact with other customers might
not need to be compliant with HIPAA from one viewpoint. However, for
a customer, it is crucial that this product, if not compliant with HIPAA, at
least does not create issues that may result in noncompliance.

Compliance frameworks are another thing to watch out for. Depending
on how the product is used (in-house or in the cloud), different permuta-
tions are expected by customers. If customers are going for an ISO 27001
certification and are using your product in a cloud environment, they
will expect a demonstrable and verifiable operational and product secu-
rity posture. If customers are paying for your service using credit cards,
not only they but your environment may fall under the regulations of
payment card industry standards. Though we are focusing on product
security here, operational security is equally important.

76 Core Software Security

Finally, many times, while covering regulations, compliance frame-
works, and certifications, security and development teams fail to look
closely at dependencies. For example, if the product needs to comply
with the Federal Information Processing Standards (FIPS), how will
using an open-source library affect compliance? If the product needs to
obtain Certification A, will dependent software make or break this cer-
tification? These questions need to be carefully considered to prevent
future fire fighting.

Success Factor 5: Coverage of Security Objectives Needed
for Software

Finally, one should look at how many of the security objectives were actu-
ally met at the conclusion of this phase. If some objectives were not met,
why not? One may start out with a laundry list of security objectives, but
they often compete with other product features and product manage-
ment may shoot them down. An example might be logging. If one of the
key security objectives is to detect and respond to threats as they happen,
one thing that can aid in doing this is logging. However, the feasibility
of logging (and logging securely) may compete with other requirements
(operational efficiency, other product features). One could insist on log-
ging events securely by encrypting them and transporting them safely to
a central repository. However, depending on resources and other compet-
ing demands, such logging might not make it to the final list.

Before closing out this phase, it is a good idea to see whether any
security objectives were not met in their entirety; if not, were these really
important to have, or were they just “nice to have.” This knowledge
should help future product SDL cycles. Having too many “nice to haves”
may actually undermine the credibility of the security team.

3.5.2 Deliverables

In each of our SDL phases, we will outline a key set of deliverables for that
phase. The idea is to make sure that all required activities have a tangible
documented outcome. Often we see only verbal or nonofficial documents
created and kept by a project management team. In our opinion, formal
documentation should be created and kept in a central repository with
appropriate sign-offs and versioning.

Security Assessment (A1): SDL Activities and Best Practices 77

Key deliverables for Phase A1 are listed in Table 3.2 and discussed below.

• Product risk profile. The product risk profile helps management see
the actual cost of the product from different perspective, including
selling it in different markets and liabilities that might be incurred if
it is a SaaS/cloud product.

• SDL project outline (for security milestones and mapping to
development schedule). An essential outcome of this phase is an
SDL project outline or plan. The SDL plan should include secu-
rity milestones that will be met during each phase, mapped to the
develop ment plan/schedule. Reporting should be set up to keep
track of progress on the project.

• Applicable laws and regulations. This deliverable is a compre-
hensive review of laws and regulations that may be applicable to
the product. The legal department should be heavily involved in
preparing this documentation and, for laws/regulations that are
not applicable, clearly articulate our understanding as to why those
were not applicable.

• Threat profile. This deliverable articulates our assumptions about
the environment in which the product will operate and potential
threats in that environment. This will be helpful in later stages to
focus our SDL activities to ensure the product is as secure as pos-
sible under the threat profile developed by the team. It will also be

Table 3.2 Deliverables for Phase A1

Deliverable Goal

Product risk profile Estimate actual cost of the product.

SDL project outline Map SDL to development schedule.

Applicable laws and regulations Obtain formal sign-off from
stakeholders on applicable laws.

Threat profile Guide SDL activities to mitigate
threats.

Certification requirements List requirements for product and
operations certifications.

List of third-party software Identify dependence on third-party
software.

Metrics template Establish cadence for regular reporting
to executives.

78 Core Software Security

useful for post-mortem in case we missed a threat/scenario in the
SDL phases.

• Certification requirements. This deliverable should articulate
clearly certifications needed for the product (e.g., FIPS) and result-
ing requirements. In the case of SaaS/cloud software, it should iden-
tify operational controls that will be needed for the software to be
certified by various frameworks.

• List of third-party software. Purpose of this list is to identify all
third-party components to be used with our software and thereby
incorporate them in our threat profile. It should also help us to
finalize the list of changes/requirements required for certifications.

• Metrics template. This deliverable is a template on metrics that we
plan to report to management on a periodic basis.

3.5.3 Metrics

In the SDL model we propose, we outline, in each and every phase,
metrics that should be measured. First, however, we would like to point
out a few things we have learned in our professional careers.

We should decide what to measure upfront and stick to those decisions
as much as possible. While we understand we may have to modify metrics
as we go along, we should resist the temptation to overhaul metrics every
now and then. The metrics template should be put together with its audi-
ence in mind. However, there is a tendency among executives to ask for a
slightly different set of metrics as the project moves along. We should try
to educate and make executives aware of why the metrics were chosen and
their importance. Often that should take care of conflicting suggestions
on metrics. In a nutshell, identify a set of metrics that is appropriate for
your audience and stick to it. In the long term, metrics will provide you
guidance on your overall progress so whatever set of metrics you choose,
it will serve you well.

Here are our suggestions for metrics for this phase:

• Time in weeks when software security team was looped in
• Percent of stakeholders participating in SDL
• Percent of SDL activities mapped to development activities
• Percent of security objectives met

Security Assessment (A1): SDL Activities and Best Practices 79

3.6 Chapter Summary

We have described the importance and best practices for addressing secu-
rity and privacy at the very beginning of the SDL/SDLC process. By now,
it should be clear that security and privacy are fundamental aspects of qual-
ity required to have a secure software development process and that the
optimal time to define the requirements for these two areas is during the
initial planning stage described in this chapter. Defining and establishing
these requirements allows the team to identify key milestones and deliver-
ables for integration of security and privacy into the software in a manner
that will minimize disruption to plans and schedules. Identification of
the key stakeholders and security roles for the SDL/SDLC, assessment
and specification of minimum security and privacy requirements for
the software to run in its planned operational environment, the overall
SDL plan, and an agreed-upon security vulnerability identification/reme-
diation work item tracking system are the key elements of the Security
Assessment (A1) phase described in this chapter. It should be clear that
both security and privacy risk assessments are mandatory components of
a SDL. These are key elements in defining functional aspects of the soft-
ware that will require a deeper review later in the development process.

Toward the end of the chapter we discussed key success factors and
their importance, deliverables from this phase, as well as metrics that
should be collected from this phase.

The best practices discussed in this chapter will serve as the ground-
work and baseline for the future phases of our SDL model. The next
phase, Architecture (A2), will be discussed next, in Chapter 4.

References

 1. Kissel, R., et al. (2008), U.S. Department of Commerce, NIST Special Publication
800-64 Revision 2: Security Considerations in the System Development Life Cycle.
Retrieved from http://csrc.nist.gov/publications/nistpubs/800-64-Rev2/SP800-
64-Revision2.pdf.

 2. Microsoft Corporation (2008), Privacy Guidelines for Developing Software Products
and Services, Version 3.1. Retrieved from www.microsoft.com/en-us/download/
details.aspx?id=16048.

 3. Kissel, R., et al. (2008), U.S. Department of Commerce, NIST Special Publication
800-64 Revision 2: Security Considerations in the System Development Life Cycle.

80 Core Software Security

Retrieved from http://csrc.nist.gov/publications/nistpubs/800-64-Rev2/SP800-
64-Revision2.pdf.

 4. Security Innovation, Inc. (2006), Regulatory Compliance Demystified: An
Introduction to Compliance for Developers. Retrieved from http://msdn.microsoft.
com/en-us/library/aa480484.aspx.

 5. Microsoft Corporation (2012), “Appendix C: SDL Privacy Questionnaire.”
Retrieved from http://msdn.microsoft.com/en-us/library/windows/desktop/cc307
393.aspx.

81

Chapter 4

Architecture (A2):
SDL Activities and
Best Practices

During the second phase of the security development lifecycle, security
considerations are brought into the software development lifecycle to
ensure that all threats, requirements, and potential constraints on func-
tionality and integration are considered (see Figure 4.1). At this stage of
the SDL, security is looked at more in terms of business risks, with inputs
from the software security group and discussions with key stakeholders
in the SDLC. Business requirements are defined in the security terms
of confidentiality, integrity, and availability, and needed privacy con-
trols are discussed for creation, transmission, and personally identifiable
information (PII). SDL policy and other security or privacy compliance
requirements are also identified at this stage of the SDL. This ensures
that security and privacy discussions are performed as part of, rather than
separate from, the SDLC, so that there are solid understandings among
project personnel about business decisions and their risk implications for
the overall development project. A cost analysis for development and sup-
port costs required for security and privacy consistent with business needs
is also done as part of the requirements analysis. As discussed previously,

Fi
g

ur
e

4
.1

A

rc
hi

te
ct

ur
e

(A
2)

: S
D

L
ac

ti
vi

ti
es

 a
nd

 b
es

t
p

ra
ct

ic
es

.

Architecture (A2): SDL Activities and Best Practices 83

the planning and awareness of security, privacy, and risk management
early in the SDLC through the proper used of an SDL will result in sig-
nificant cost and time savings.

Perhaps the most important, complex, and difficult part of the SDL
starts during this phase of the SDL. As discussed previously, threat
 modeling and architectural security analysis typically fall into the domain
of the senior software security architects and requires the most experience
and expertise of any of the tasks within the SDL. Fortunately, tools are
currently available and in the process of being developed that can assist
this phase, and help leverage and scale a skill set that is typically a limited
resource in a software security group.

Additional security training that may be needed for key developers
to understand the current threats and potential exploitations of their
products, as well as training for secure design and coding techniques
specific to the software being developed and for the systems with which
the software will be interacting, are identified at this stage of the SDL.
This enables the developers to work more efficiently with the software
security architects and others from the software security group to create
more secure designs and empower them to address key issues early in the
development processes.

4.1 A2 Policy Compliance Analysis

The purpose of a software security policy is to define what needs to be pro-
tected and how it will be protected, including reviewing and incor porating
policies from outside the SDL that may impact the development process.
These might include policies governing software or applications developed
or applied anywhere in the organization.During this phase, any policy
that exists outside the domain of the SDL policy is reviewed. Corporate
security and privacy policies will likely instruct designers and developers
on what the security and privacy features need to be and how they must
be implemented. Other policies may include those that govern the use
of third-party and open-source software or the protections and control
of source code and other intellectual property within and outside the
organization. Assuming the software security group is separate from the
centralized information security group, it is important that both groups
collaborate on all policies and guidelines related to the development and

84 Core Software Security

post-release security support and response of software from that organiza-
tion. It is also important to collaborate with the privacy function of the
company, whether it is a centralized group or outside legal counsel.

4.2 SDL Policy Assessment and Scoping

The SDL also provides an invaluable guide for software developers setting
a security standard for their organization and should offer a roadmap for
implementation without disrupting the core business of producing qual-
ity software applications. Unless the senior leadership of the development
organization and the management team support this model, the SDL will
likely fail. It must be driven by a policy that is signed off, promulgated,
and provides support by the software development management team
and ideally by the CEO. An organization should have a documented and
repeatable SDL policy and guideline that supports the SDLC including
its business needs and as a complement to the engineering and develop-
ment culture that it supports. The culture and maturity of the organiza-
tion is very important to consider in the development of the SDL policy,
so that you ensure it will be both feasible and practical to implement. The
management style, complexity of people, process, and technology needs,
including the overall architecture of the product, will help determine
how granular or objective in focus the guidelines will be. The amount
of outsourced development, if any, will need to be assessed as part of this
process as well. An internal development team will require more detailed
procedures, while an outsourced function will require more contractual
objects, service levels, and detailed deliverables. The vulnerabilities and
risk of using outsourced development resources will be covered later in
the book.

4.3 Threat Modeling/Architecture
Security Analysis

4.3.1 Threat Modeling

As discussed previously, threat modeling requires a special set of skills,
experience, and mindset: The people on the team who do this must be

Architecture (A2): SDL Activities and Best Practices 85

able to think like an adversary. A senior software security architect or
one of the more seasoned software security champions typically runs this
aspect. The developers and team members who are pulled into this pro-
cess must know not only how to develop or build software, but also how
to deconstruct or take apart the software and its architecture while think-
ing like an adversary.

Microsoft first documented its threat modeling methodology in
1999, and its method has evolved into an industry standard since that
time.1 This was not the first time anyone threat-modeled at Microsoft,
of course, but rather the first time the methodology was formalized or
considered as an abstracted engineering activity. The threat risk model-
ing process has five steps, enumerated below and shown graphically in
Figure 4.2. They are

 1. Identify security objectives.
 2. Survey the application.
 3. Decompose it.
 4. Identify threats.
 5. Identify vulnerabilities.

Following these five steps will help you understand what assets you need
to protect, from whom you need to protect them, how you can protect
them, what is the implementation priority, and what risk you will have
to live with if a few of the threats are not included in the implementa-
tion scope.

The focus of threat modeling should not be simply on the software
product itself, but include the context of the business and the user. The
implementation priorities can be limited to the software product itself
after the threat modeling, analysis, and architectural security risk analysis
are completed. Besides the cost savings achieved by building security in
early in the process, another advantage is to take into account the busi-
ness and user needs and requirements so you can balance out and make
security decisions that are cost-efficient and relevant to the competiveness
of the product in addition to facilitating expected and required security
and privacy controls.

The user context influences not only the scope of threats and vul-
nerabilities, it may also strongly affect priorities for implementation. For
example, if you are storing customers’ credit card data in your hosting

D
ec
om

po
se

D
ec
om

po
se

Ap
pl
ic
at
io
n

Id
en
tif
y
Se
cu
rit
y

O
bj
ec
tiv
es

Id
en

tif
y

Th
re
at
s

Ap
pl
ic
at
io
n

O
ve
rv
ie
w

Id
en

tif
y

Vu
ln
er
ab

ili
tie

s
Vu

ln
er
ab

ili
tie

s

Fi
g

ur
e

4
.2

Th

e
fiv

e
st

ep
s

o
f

th
re

at
 m

o
d

el
in

g
.

Architecture (A2): SDL Activities and Best Practices 87

environment, then the threat of data stealing by your internal support
staff or employees will be much more critical to mitigate then an outside
attack from an unknown community. To put this into perspective from
a practical threat modeling perspective, some of the scenarios on which
you should focus with regard to this user-centric view include considering
any possibility that an unauthorized user of your software product could
gain access; whether there is any possibility that this same unauthorized
user could escalate his privileges; and whether either an authorized or
unauthorized user could gain access to admin functions or provide direct
access to contents of back-end databases and then misuse the author-
ity. One of the worst-case scenarios would be an unauthorized user who
could compromise the Web/front-end server and obtain escalated privi-
leges on all resources available on the server; this would provide the ability
to exploit the trust relation to obtain unauthorized access to critical infor-
mation from access/event logs or configuration files. During the threat
modeling process, you must always think like an attacker, assume that
all inputs to your software product could be malicious, and that all trust
boundaries may be breached at the first level, that is, the first interaction
layer between the software product and the end user.2

The goal of threat modeling is to gain an understanding of the soft-
ware application by decomposing it and understanding how it interacts
with external entities. This is achieved by information gathering and
documentation into a clearly defined structure, which ensures that the
correct information is collected. From a security perspective, the key goal
in threat modeling is to gain an understanding of what success looks like,
and in order to accomplish that, you need a baseline of security success
criteria. A very useful list of such items appeared in MSDN Magazine in
2006 and is reproduced here:

Design Principles

• Open design: Assume the attackers have the sources and the specs.
• Fail-safe defaults: Fail closed; no single point of failure.
• Least privilege: No more privileges than what is needed.
• Economy of mechanism: Keep it simple, stupid.
• Separation of privileges: Don’t permit an operation based on a single

condition.
• Total mediation: Check everything, every time.

88 Core Software Security

• Least common mechanism: Beware of shared resources.
• Psychological acceptability: Will they use it?

Security Properties

• Confidentiality: Data is only available to the people intended to
access it.

• Integrity: Data and system resources are only changed in appropriate
ways by appropriate people.

• Availability: Systems are ready when needed and perform acceptably.
• Authentication: The identity of users is established (or you’re willing

to accept anonymous users).
• Authorization: Users are explicitly allowed or denied access to

resources.
• Nonrepudiation: Users can’t perform an action and later deny per-

forming it.3

The key steps involved in threat modeling are4

 1. Break down your product architecture using data flow diagrams
 2. Use STRIDE threat categories to identify what threats are applicable

to each element of the data flow diagram.
 3. Map all threats with relevant vulnerabilities as applicable in the con-

text of the usage scenario.
 4. Rank threats. Assign a risk rating to each threat and vulnerability to

understand the impact; this will help define the priority for fixing.
Use DREAD or other methodologies.

 5. Define the mitigation plan/countermeasures for each of the vulner-
abilities identified.

 6. Fix the vulnerabilities that are not acceptable to the business in order
of priority as decided in the preceding steps.

4.3.2 Data Flow Diagrams

The first step of the threat modeling process is to develop a visual repre-
sentation of the threat flows in the form of a diagram typically drawn
during a whiteboard session. It is important to provide a structure for
this process. Providing structure helps avoid mistakes. Without a good

Architecture (A2): SDL Activities and Best Practices 89

diagram, you likely won’t have a good threat model. It is important to
understand, first, that this exercise is about data flow and not the code
flow. This is a mistake often made by developers on the team because they
live, breath, and eat code development and are not typically focused on
the data security of the code they are developing. It should be no surprise
that the diagram produced in this stage of the threat modeling process
is called a data flow diagram or DFD. The focus of the DFD is on how
data moves through the software solution and what happens to the data
as it moves, giving us a better understanding of how the software works
and its underlying architecture by providing a visual representation of
how the software processes data. The visual representation is hierarchical
in structure, so it allows you to decompose the software architecture into
subsystems and then lower-level subsystems. At a high level, this allows
you to clarify the scope of the application being modeled, and at the
lower levels it allows you to focus on the specific processes involved when
processing specific data.

Before you get start developing your DFD, it is always a good idea to
understand the element images you are going to use. The basic elements
and symbols that are typically used in DFDs are shown in Figure 4.3. You
build the DFD by connecting these various elements as data flows and
applying boundaries between the elements where appropriate.

Our first example of the use of a DFD is a data flow diagram for threat
modeling of a Web application, as shown in Figure 4.4. This data flow
diagram represents the process by which customers and remote employees
access corporate marketing data from a corporate website. The first and
most obvious security control differentiates between file access by an
employee of the company versus file access by a customer. The employee
data might contain company IP information authorized only for com-
pany employees and, depending on their role, very sensitive competitive
marketing and pricing data authorized only for employees who have a
“need to know.”

The DFD in Figure 4.4 is for illustrative purposes only and does not
represent the best way to develop an application. Examining the flow
diagram more closely, we notice the following:

• There is no segmentation between data for employees and customers.
• There does not seem to be two-factor authentication for remote

employees (e.g., VPN) before they access data on the site.

El
em

en
tT

yp
e

Ty
pe

D
es
cr
ip
tio

n
El
em

en
tS

ym
bo

l

Ex
te
rn
al
El
em

en
t

An
el
em

en
to

ut
sid

e
yo
ur

co
nt
ro
la
nd

ex
te
rn
al
to

yo
ur

so
ft
w
ar
e
ap
pl
ic
at
io
n
bu

t
b

ll
d

i
ih

h
m
ay

be
ca
lle
d
to

or
in
te
ra
ct
w
ith

th
e

so
ft
w
ar
e
be

in
g
m
od

el
ed

vi
a
an

en
tr
y

po
in
t.

Pr
oc
es
s

Th
is
re
pr
es
en
ts
a
ta
sk

th
at

ha
nd

le
sd

at
a

w
ith

in
th
e
so
ft
w
ar
e.
Th
is
ta
sk

m
ay

pr
oc
es
so

rp
er
fo
rm

a
ta
sk

ba
se
d
on

th
e

da
ta
.

M
ul
tip

le
Pr
oc
es
se
s

Th
is
is
us
ed

to
re
pr
es
en
ta

co
lle
ct
io
n
of

su
b
pr
oc
es
se
sf
or

th
e
da
ta

an
d
ty
pi
ca
lly

in
di
ca
te
st
ha
ta

no
th
er

DF
D
w
ill
be

in
vo
lv
ed

in
w
hi
ch

ca
se

its
su
b
pr
oc
es
se
s

ar
e
br
ok
en

do
w
n
an
d
ex
te
nd

ed
in
to

an
ad
di
tio

na
lD

FD
.

Da
ta

St
or
e

Th
is
re
pr
es
en
ts
w
he

re
da
ta

is
st
or
ed

bu
t

no
tm

od
ifi
ed

.

Da
ta

Fl
ow

Th
is
re
pr
es
en
ts
th
e
m
ov
em

en
to

ft
he

da
ta

w
ith

in
th
e
so
ft
w
ar
e
an
d
its

di
re
ct
io
n

of
m
ov
em

en
ti
sr
ep

re
se
nt
ed

by
th
e

ar
ro
w

ar
ro
w
.

Tr
us
tB

ou
nd

ar
y

A
tr
us
tb

ou
nd

ar
y
oc
cu
rs
w
he

n
on

e
co
m
po

ne
nt

do
es
n'
tt
ru
st
th
e
co
m
po

ne
nt

on
th
e
ot
he

rs
id
e
of

th
e
bo

un
da
ry
.T
ru
st

bo
un

da
rie

sa
lw
ay
se

xi
st
be

tw
ee
n

el
em

en
ts
ru
nn

in
g
at

di
ffe

re
nt

pr
iv
ile
ge

el
em

en
ts
ru
nn

in
g
at

di
ffe

re
nt

pr
iv
ile
ge

le
ve
ls.

Th
er
e
ca
n
al
so

be
tr
us
t

bo
un

da
rie

sb
et
w
ee
n
di
ffe

re
nt

co
m
po

ne
nt
sr
un

ni
ng

at
th
e
sa
m
e

pr
iv
ile
ge

le
ve
l.

Fi
g

ur
e

4
.3

D

FD
 e

le
m

en
t

ty
p

es
.

Fi
g

ur
e

4
.4

E

xa
m

p
le

 d
at

a
flo

w
 d

ia
g

ra
m

 f
o

r
ap

p
lic

at
io

n
th

re
at

 m
o

d
el

in
g

.

U
se
r/
W
eb

Se
rv
er

Bo
un

da
ry

Da
ta

Co
rp
or
at
e

W
eb

sit
e

Co
rp
or
at
e
M
ar
ke
tin

g
Pr
od

uc
tS

he
et
s

Da
ta
ba
se

Da
ta
ba
se

Fi
le
s

W
eb

Pa
ge
s

on
Di
sk

SQ
L
Q
ue

ry
Ca

lls
SQ

L
Q
ue

ry
Ca
lls

U
se
r/
W
eb

Se
rv
er

Bo
un

da
ry

Re
qu

es
t

Re
qu

es
t

Re
sp
on

se

Re
m
ot
e
Em

pl
oy
ee
s

Cu
st
om

er
s

U
se
r/
W
eb

Se
rv
er

Bo
un

da
ry

Re
sp
on

se

Cu
st
om

er
/S
er
vi
ce

Pr
ov
id
er

Tr
us
tB

ou
nd

ar
y

Da
ta

*a
aS

Se
rv
ic
e

[C
lo
ud

Se
rv
ic
es
]

Cl
ou

d
O
pe

ra
tio

ns
/

Sa
aS

O
pe

ra
tio

ns
Cu

st
om

er
Da

ta
Ac
ce
ss

to
Se
rv
ic
e

th
ro
ug
h
W
eb

,A
PI
s

an
d
Ap

ps

Re
sp
on

se
/R
eq

ue
st

Re
sp
on

se
Re

sp
on

se
/R
eq

ue
st

Re
qu

es
t

Re
sp
on

se

Cu
st
om

er
/S
er
vi
ce

Pr
ov
id
er

Tr
us
tB

ou
nd

ar
y

Cu
st
om

er
s

q

Fi
g

ur
e

4
.5

E

xa
m

p
le

 d
at

a
flo

w
 d

ia
g

ra
m

 f
o

r
a

cl
o

ud
-b

as
ed

 a
p

p
lic

at
io

n.

Architecture (A2): SDL Activities and Best Practices 93

• Tiered structure that should be part of Web applications is not
 developed fully (or at least not part of this DFD). This might sim-
plify the diagram but may also hide some use cases and flows.

The DFD in Figure 4.5 is an example of *aaS based services provided
to customers. Instead of a traditional Web application, this DFD shows
an example of how customers access services through a cloud provider.
The most obvious security control in this case is protecting customer
data through cloud operations. Customers can access service in multi-
ple ways—through API calls, Web applications, or custom application
development.

Examining the flow diagram more closely, we notice the following:

• There is no distinction between application access through an API
or the Web.

• Cloud operations is a high-level abstraction for more detailed cloud
operations architecture.

• The DFD does not tell us anything about segmentation between
different customers.

• It also does not show how secure the data is—i.e., is it encrypted, are
Web servers talking only to database servers in a cluster or is com-
munication any-any?

Getting the DFD right is key to getting the threat model right. Spend
enough time on yours, making sure all the pieces of your system are repre-
sented. Each of the elements (processes, data stores, data flows, and inter-
actors) has a set of threats to which it is susceptible, as you can see in
Figure 4.6. This chart, along with your DFD, gives you a framework for
investigating how your system might fail.5

The DFD process requires not only that you think like an attacker
but possibly like multiple attackers, particularly if your software pro-
duct is going to be operating in the could or a SaaS environment. Once
the DFD is completed, you should have an accurate overview of the
how data is processed by the software, including how it moves and what
happens to it within the application and others that may be associated
with it. The high levels of the DFD clarify the scope of the applica-
tion, and the lower levels clarify processes involved when specific data
is being processed.

D
at
a
Fl
ow

D
at
a
St
or
e

Pr
oc
es
s

Ex
te
rn
al

Sp
oo

fin
g

Ta
m
pe

rin
g

Re
pu

di
at
e

*
In
fo
rm

at
io
n

In
fo
rm

at
io
n

D
is
cl
os
ur
e

D
en

ia
lo
f

Se
rv
ic
e

ElEl
ev
at
e

Pr
iv
ile
ge

Fi
g

ur
e

4
.6

Th

re
at

s
af

fe
ct

in
g

 e
le

m
en

ts
.

(*
Fo

r
d

at
a

st
o

re
s

th
at

 a
re

 l
o

g
s,

 t
he

re
 i

s
co

nc
er

n
ab

o
ut

 r
ep

ud
ia

ti
o

n
is

su
es

,
an

d

at
ta

ck
s

o
n

th
e

d
at

a
st

o
re

 t
o

 d
el

et
e

th
e

lo
g

s.
 A

 s
et

 o
f q

ue
st

io
ns

 t
o

 m
ak

e
th

es
e

th
re

at
s

m
o

re
 c

o
nc

re
te

 a
nd

 a
cc

es
si

b
le

 s
ho

ul
d

b

e
us

ed
 t

o
 m

ak
e

th
is

 a
ss

es
sm

en
t

m
o

re
 c

o
m

p
le

te
.35

)

Architecture (A2): SDL Activities and Best Practices 95

4.3.3 Architectural Threat Analysis
and Ranking of Threats

4.3.3.1 Threat Determination

The first step in determining threats is to adopt a methodology by which
you can categorize them. This provides the ability to systematically iden-
tify sets of threat categories within the software application in a structured
and repeatable manner. STRIDE is a method of threat categorization that
was popularized by Microsoft a number of years ago and will be used
in this chapter as an example of a threat determination tool, but it is
certainly not the only methodology that can be used. Each letter in the
acronym STRIDE helps classify attacker goals:

• Spoofing
• Tampering
• Repudiation
• Information disclosure
• Denial of service
• Elevation of privilege6

The first step in STRIDE is to decompose your system into relevant
components, then analyze each component for susceptibility to the
threats, and finally, mitigate the threats. The process is then repeated
until you are comfortable with any remaining threats. The system is then
considered secure, since you have now broken your software application
and system down to individual components and mitigated the threats
to each. Of course, this methodology has its flaws in that the individual
components of the software and system can be part of a larger system and
you are only as secure as your weakest link. Individual components of a
software product and system may not be susceptible to a threat in isola-
tion but may be once it is part of a larger system. This is particularly true
for software products that were not designed to be used on the Internet,
in the cloud or SaaS environment.

General threats and the security controls they may affect within each
of the STRIDE categories include the following:

• Spoofing: A threat action that is designed to illegally access
and use another user’s credentials, such as username and
password—Authentication

96 Core Software Security

• Tampering: Threat action aimed to maliciously change/modify per-
sistent data, such as persistent data in a database, and the alteration
of data in transit between two computers over an open network,
such as the Internet—Integrity

• Repudiation: Threat action aimed to perform illegal opera-
tions in a system that lacks the ability to trace the prohibited
operations—Nonrepudiation

• Information disclosure: Threat action to read a file that one was not
granted access to, or to read data in transit—Confidentiality

• Denial of service: Threat aimed to deny access to valid users,
such as by making a Web server temporarily unavailable or
unusable—Availability

• Elevation of privilege: Threat aimed to gain privileged access to
resources for gaining unauthorized access to information or to com-
promise a system—Authorization7

4.3.3.2 Threat Analysis

After you have completed the DFD, you should identify the design and
implementation approaches for input validation, authentication, authori-
zation, configuration management, and the other areas where applica-
tions are most susceptible to vulnerabilities, creating what is called a
security profile.

A practical example of the kind of questions that are typically asked
in analyzing each aspect of the design and implementation of your soft-
ware application is the following.8 We divide these into broad categories
of input validation, authentication, authorization, configuration man-
agement, sensitive data, session management, cryptography, exception
manage ment, parameter manipulation, and audit and logging.

Input Validation

Rationale behind this is that tall user input should be considered untrusted
and should be validated before being used in software. Below are relevant
questions to ask for input validation:

 1. Is all input data validated?
 2. Could an attacker inject commands or malicious data into the

application?

Architecture (A2): SDL Activities and Best Practices 97

 3. Is data validated as it is passed between separate trust boundaries (by
the recipient entry point)?

 4. Can data in the database be trusted?
 5. Would you prefer whitelisting or blacklisting of user input?

Authentication

All of user interactions (and software/API) interactions with overall sys-
tem should be thought through and validated through authentication.
None of the services and functionality should be available without vali-
dating if user/system/API/component is legitimate. Whether or not it can
use the functionality takes us into authorization. Typically questions to
ask for authentication are as follows:

 1. Are credentials secured if they are passed over the network?
 2. Are strong account policies used?
 3. Are strong passwords enforced?
 4. Are you using certificates? Are there any wild card certificates in

use?
 5. Are password verifiers (using one-way hashes) used for user

passwords?
 6. How do system components authenticate to each other (e.g. how

does a service authenticate to a database)?
 7. During boot process for the service/application, how do system

components authenticate to each other?
 8. Are keys used for authentication instead of password?

Authorization

Many a times we would like to restrict users/systems/API/components
from accessing certain functionality in a software system. Authorization
enables us to do just that i.e. prevent certain operations to certain agents.
Questions typically related to authorization are as follows:

 1. What gatekeepers are used at the entry points of the application?
 2. How is authorization enforced at the database?
 3. Is a defense-in-depth strategy used?
 4. Do you fail securely and only allow access upon successful confirma-

tion of credentials?

98 Core Software Security

Configuration Management

Configuration management enables us to harden software, systems, ser-
vices and devices and lock them down thus reducing risk to the environ-
ment. Components of configuration management include hardening
standards and guidelines, reviewing application dependencies on services,
looking at user and administrator interfaces, security change management
and so on. Questions are along the following lines:

 1. What administration interfaces does the application support?
 2. How are they secured?
 3. How is remote administration secured?
 4. What configuration stores are used and how are they secured?
 5. Have hardening standards been developed for the software stack

(OS, DB, Application)?
 6. Does software system provide a way to detect variances from

approved security configuration changes?
 7. Do all groups (IT, QA, Engineering, Operations) only use approved

(golden master) software images for different components such as
OS, DB, Web, and Application servers?

 8. Do approved images are used across entire lifecycle from develop-
ment to deployment?

Sensitive Data

This aspect deals with awareness around type of data handled by appli-
cation and systems. In many cases, we have found that developers and
operations teams are not aware or educated enough on type of data their
application will handle (either by design or mistake) and if protection is
enough for data elements.

 1. What sensitive data is handled by the application?
 2. What regulatory/compliance requirements are applicable to data/

data elements?
 3. How is it secured over the network and in persistent stores? Is this

good enough given legal/regulatory requirements?
 4. What type of encryption is used and how are encryption keys

secured?
 5. Are sensitive data elements present in logs, source code or configura-

tion (e.g., XML) files?

Architecture (A2): SDL Activities and Best Practices 99

Session Management

Securely establishing and mainlining integrity of session is one of the key
components of today’s applications specifically web applications. Once
user is authenticated, a session is established. This can result in multiple
scenarios where session can be abused. Session management focuses on
preventing such abuses. Questions asked for this aspect are typically along
the following lines:

 1. How are session cookies generated?
 2. How are they secured to prevent session hijacking?
 3. How is persistent session state secured?
 4. Where is session information stored? On server or the client side?
 5. How is session state secured as it crosses the network?
 6. How does the application authenticate with the session store?
 7. Are credentials passed over the wire and are they maintained by the

application? If so, how are they secured?
 8. How are multiple sessions from a user/component handled?

Cryptography

Everyone uses cryptography. Cryptography tends to provide a sense of secu-
rity for most developers and users. However, proper use of cryptography is
not that common in our experience. Using cryptography to solve the wrong
problem can often cause frustration and even exposure. When dealing with
cryptography, it is best to stick with well-tested, publicly available algo-
rithms and libraries. Questions on cryptography can include the following:

 1. What is the problem cryptography is going to solve (confidentiality,
integrity or both)?

 2. What algorithms and cryptographic techniques are used?
 3. Are there any proprietary or in-house algorithms used?
 4. How long are encryption keys and how are they secured?
 5. Does the application put its own encryption into action?
 6. How often are keys recycled? Are certificates checked for their

 validity? Are certificates checked against revocation lists?

Parameter Manipulation

Application often passes parameters to communicate with the other
side. Parameters range from (not so important) iterators, variable names

100 Core Software Security

and values to session tokens. Man-in-the middle (MITM) attacks and
deliberate parameter tampering makes it important for us to device
mechanism to detect if para meters received are indeed safe and can be
used as designed. Imperative here is on the receiver side—like input
validation, do not blindly trust parameters.

 1. Does the application detect tampered parameters?
 2. Does the application rely on only client-side validation or there is

server side validation as well?
 3. Does it validate all parameters in form fields, view state, cookie data,

and HTTP headers?
 4. Are parameters directly used in database queries?
 5. Are parameters directly reflected back to the browser?

Exception Management

Gracefully handling error conditions and exceptions is critical to soft-
ware applications. Often, developers miss such conditions or handle them
incorrectly. Side affects from improper error handling/exception manage-
ment range from denial of service or information leakage. Sample ques-
tions to probe this aspect are as follows:

 1. How does the application handle error conditions?
 2. Is there a default catch for exceptions?
 3. Are exceptions ever allowed to propagate back to the client?
 4. Are generic error messages that do not contain exploitable informa-

tion used?
 5. Do exceptions log any sensitive information to logs?
 6. Are built-in capabilities from programming languages used for this

purpose or developers rely on in-house modules?

Auditing and Logging

Audit and logging is critical for multiple reasons. Security being one
of them, audit trail in case of legal issues being another. Operations/
debugging is often the driver for audit/logging though increasingly
 attention is being paid to security aspect as well. Below are sample ques-
tions that can be asked to get a sense of audit and logging.

Architecture (A2): SDL Activities and Best Practices 101

 1. Does your application audit activity across all tiers on all servers?
 2. How are log files secured?
 3. Does application log any sensitive information (e.g. credentials, data

elements, session tokens)?
 4. Are log files transported securely (e.g. TCP/TLS)?
 5. Is retention period clearly defined for log files? Does it align with

regulatory and legal requirements?
 6. How often are logs rotated?
 7. Are trigger levels defined for certain types of events?

Now that you have a visual representation of the threat and have
answered questions as above, the next step is to identify the threats
that may affect your software application. This is also where you bring
together elements of the software security group and the development
team for a whiteboard meeting to brainstorm cost-effective and practical
solutions to the vulnerabilities that have been identified in threat model-
ing. The goals of the attacker are addressed in relation to the threats and
questions during the STRIDE assessment. This is done from a somewhat
higher architectural and multifunctional perspective given the makeup
of the brainstorming team. It is also common practice to use any avail-
able categorized threat list and apply it to any of the vulnerabilities iden-
tified earlier.

The use of attack trees and attack patterns is a traditional approach to
threat assessment that can help you identify additional potential threats.
Although attack patterns represent commonly known attacks, their com-
bination with attack trees can be used for a greater depth of analysis high-
lighting areas you may have missed in your initial analysis or through
the use of categorized lists of known threats. Since attack trees are in a
hierarchical, structured, and flow diagram style, they give a great visual
representation of attacks and help focus efforts on potential additional
approaches to avoiding or mitigating such attacks. They are also useful
for the creation of test plans and the assessment of security costs. Since
the primary focus of attack patterns, attacker techniques, and STRIDE is
on the goals of the attacker, using them in combination with attack trees
helps bring a holistic approach to this process, especially when used in
face-to-face brainstorming sessions.

Before you move on to the next stage of the threat modeling and archi-
tectural risk assessment process and start assigning values to the risk, it

102 Core Software Security

is important to be sure you have addressed risk with regard to the ease
of exploitation, possibility, and impact. A visual representation of what
knowledge you must have before moving on to the next step is given in
Figure 4.7. If you don’t have the information required to address an area
of risk, you will need to go back through the process and fill in the gaps
in your knowledge and understanding.

4.3.3.3 Ranking the Threats

During the final stage of the threat modeling and architecture security
analysis, the threats are ranked from a risk perspective. Given that it
may not be economically feasible to mitigate all of the identified threats,
they are ranked from the highest to lowest risk. Some threats may also
be ignored because of the very limited likelihood that they will occur in
addition to the limited harm the vulnerabilities would cause if they were
exploited. A prioritized list of threats by risk will significantly help the
priority and importance of mitigation. At a high level, these risks will
typically be ranked as high, medium, and low. A typical risk probability

Figure 4.7 Risk assessment process.

Architecture (A2): SDL Activities and Best Practices 103

formula used in industry shows the risk and consequence of a particular
vulnerability as equal to the probability of the threat occurring multiplied
by the damage potential. That is,

Risk = Probability × Damage Potential

A 10-scale measurement is typically used in risk probability calcula-
tions, with the number 1 representing a threat or component of a threat
that is least likely to occur and the number 10 representing that which is
most likely to occur. The same 1-to-10 ranking system is used for assign-
ing damage potential, with 1 indicating the least damage potential and
10 the most.

As an example of the mechanics involved, a threat that is moderately
likely to occur, with a probability risk score of 5, and a high damage
potential of 10 has a risk equal to that of a threat having a probability risk
score of 10 and a medium damage risk potential of 5. Mathematically,

If Probability = 5 and Damage Potential = 10, then Risk = 5 × 10 = 50%
If Probability = 10 and Damage Potential = 5, then Risk = 10 × 5 = 50%

As you can see from this example, 100 can be divided into three ranges
of numbers to indicate a high, medium, or low risk rating. Obviously,
your level of priority to fix the vulnerabilities will start with the highest
priority of risk, which likely means that immediate mitigation is required.
Then you would tackle vulnerabilities of medium risk, which should be
done shortly thereafter but with less priority. The priority of low risks,as
noted previously, will depend on the level of effort, exposure, and finan-
cial or legal risk also associated with the risk.

4.3.3.4 DREAD

Although many different risk models can be used when assessing vulner-
abilities during the software development process, the DREAD model
used by Microsoft is one the most popular. The acronym DREAD stands
for Damage potential, Reproducibility, Exploitability, Affected users,
and Discoverability. Answers to questions used to establish a risk rating
for each of these elements produces a number from 0 -10; the higher
the number, the more serious is the risk. These numbers are used as a

104 Core Software Security

 classification scheme for quantifying, comparing, and prioritizing the
amount of risk presented by each evaluated threat and calculating the
overall risk in numeric form so that threats can be ranked and sorted with
any other risks found in the software application.

The DREAD algorithm, shown below, is used to compute a risk value,
which is an average of all five categories:

Risk_DREAD = (DAMAGE + REPRODUCIBILITY +
EXPLOITABILITY + AFFECTED USERS +

DISCOVERABILITY)/59

Here are some examples of how you arrive at the risk rating for a given
threat by asking questions to quantify the DREAD categories:10

Damage Potential

• If a threat exploit occurs, how much damage will be caused?
o 0 = nothing
o 5 = individual user data is compromised or affected
o 10 = complete system or data destruction

Reproducibility

• How easy is it to reproduce the threat exploit?
o 0 = very hard or impossible, even for administrators of the

application
o 5 = one or two steps required; may need to be an authorized user
o 10 = just a Web browser and the address bar is sufficient, without

authentication

Exploitability

• What is needed to exploit this threat?
o 0 = advanced programming and networking knowledge, with

custom or advanced attack tools
o 5 = malware exists on the Internet, or an exploit is easily per-

formed using available attack tools
o 10 = just a Web browser

Architecture (A2): SDL Activities and Best Practices 105

Affected Users

• How many users will be affected?
o 0 = none
o 5 = some users, but not all
o 10 = all users

Discoverability

• How easy is it to discover this threat?
o 0 = very hard to impossible; requires source code or administra-

tive access
o 5 = can figure it out by guessing or by monitoring network traces
o 9 = details of faults like this are already in the public domain and

can be easily discovered using a search engine
o 10 = the information is visible in the Web browser address bar or

in a form

The next step is to classify your threat ratings as low (value = 1),
medium (value = 2), or high (value = 3) for each category of DREAD
based on your answers. Answers that would indicate a low, medium, or
high risk for each DREAD category are shown below:11

Damage Potential

Low (value = 1): Leaking trivial information.
Medium (value = 2): Leaking sensitive information.
High (value = 3): The attacker can subvert the security system; get
full trust authorization; run as administrator; upload content.

Reproducibility

Low (value = 1): The attack is very difficult to reproduce, even with
knowledge of the security hole.
Medium (value = 2): The attack can be reproduced, but only with a
timing window and a particular race situation.
High (value = 3): The attack can be reproduced every time and does
not require a timing window.

D
RE

AD
Ca
te
go
ry

Lo
w
Ri
sk

(1
)

M
ed

iu
m

Ri
sk

(2
)

H
ig
h
Ri
sk

(3
)

Su
bt
ot
al
Ri
sk

Sc
or
es

Da
m
ag
e
Po

te
nt
ia
l(
D)

Re
pr
od

uc
ib
ili
ty

(R
)

l
b
l

(
)

Ex
pl
oi
ta
bi
lit
y
(E
)

Af
fe
ct
ed

U
se
rs
(A
)

Di
sc
ov
er
ab
ili
ty

(D
)

To
ta
lR

is
k
Sc
or
e

Fi
g

ur
e

4
.8

D

R
E

A
D

 t
hr

ea
t

ra
ti

ng
 t

ab
le

.

Architecture (A2): SDL Activities and Best Practices 107

Exploitability

Low (value = 1): The attack requires an extremely skilled person and
in-depth knowledge every time to exploit.
Medium (value = 2): A skilled programmer could make the attack,
and then repeat the steps.
High (value = 3): A novice programmer could make the attack in a
short time.

Affected Users

Low (value = 1): Very small percentage of users, obscure feature;
affects anonymous users.
Medium (value = 2): Some users, nondefault configuration.
High (value = 3): All users, default configuration, key customers.

Discoverability

Low (value = 1): The bug is obscure, and it is unlikely that users will
work out damage potential.
Medium (value = 2): The vulnerability is in a seldom-used part of
the product, and only a few users should come across it. It would
take some thinking to see malicious use.
High (value = 3): Published information explains the attack. The
vulnerability is found in the most commonly used feature and is
very noticeable.

These numbers can then be put into a matrix similar to the one shown
in Figure 4.8. After you count and sum the values for a given threat, the
result will fall in the range of 5 to 15. Threats with overall ratings of 12
to 15 are typically considered high risk, those with ratings from 8 to 11 as
medium risk, and and those with ratings from 5 to 7 as low risk.

4.3.3.5 Web Application Security Frame

The Web Application Security Frame, also called the Application Security
Frame (ASF), uses categories to organize common security vulnerabilities

108 Core Software Security

focused on Web software applications. If you use these categories when
you review your application design to create a threat model, you can sys-
tematically reveal the threats and vulnerabilities specific to your applica-
tion architecture. There are nine frame categories; sample questions used
in the process are listed below.

Web Application Security Frame Categories and Assessment
Questions12

• Input and Data Validation
 How do you know that the input your application receives is valid

and safe? Input validation refers to how your application filters,
scrubs, or rejects input before additional processing. Consider con-
straining input through entry points and encoding output through
exit points. Do you trust data from sources such as databases and
file shares?

• Authentication
 Who are you? Authentication is the process whereby an entity proves

the identity of another entity, typically through credentials, such as
a user name and password.

• Authorization
 What can you do? Authorization is how your application provides

access controls for resources and operations.

• Configuration Management
 Who does your application run as? Which databases does it connect

to? How is your application administered? How are these settings
secured? Configuration management refers to how your application
handles these operational issues.

• Sensitive Data
 How does your application handle sensitive data? Sensitive data

refers to how your application handles any data that must be pro-
tected either in memory, over the network, or in persistent stores.

• Session Management
 How does your application handle and protect user sessions? A ses-

sion refers to a series of related interactions between a user and your
Web application.

Architecture (A2): SDL Activities and Best Practices 109

• Cryptography
 How are you keeping secrets (confidentiality)? How are you

 tamper-proofing your data or libraries (integrity)? How are you
providing seeds for random values that must be cryptographically
strong? Cryptography refers to how your application enforces confi-
dentiality and integrity.

• Exception Management
 When a method call in your application fails, what does your appli-

cation do? How much do you reveal? Do you return friendly error
information to end users? Do you pass valuable exception informa-
tion back to the caller? Does your application fail gracefully?

• Auditing and Logging
 Who did what and when? Auditing and logging refer to how your

application records security-related events.

4.3.3.6 The Generic Risk Model

Microsoft threat modeling processes such as STRIDE and DREAD may
not be appropriate for your application, and you may want to use other
threat risk models or modify the Microsoft processes for your own use,
adopting the most appropriate threat modeling methodologies for your
own organization. Using qualitative values such as high, medium, and
low can also help avoid the ranking becoming too subjective, as with the
numbering system used in DREAD.

These examples help in the calculation of the overall risk values by
assigning qualitative values such as high, medium, and low to likeli-
hood and impact factors. Here too, using qualitative values rather than
numeric ones as in the DREAD model helps avoid the ranking becoming
overly subjective.

An example of a more subjective model is the Generic Risk Model,
which takes into consideration the likelihood (e.g., the probability of an
attack) and the impact (e.g., damage potential) and is represented mathe-
matically as13

Risk = Likelihood × Impact

The likelihood or probability is defined by the ease of exploitation, which
depends mainly on the type of threat and the system characteristics, and

110 Core Software Security

by the possibility to realize a threat, which is determined by the existence
of an appropriate countermeasure. The following is a set of considerations
for determining ease of exploitation:

 1. Can an attacker exploit this remotely?
 2. Does the attacker need to be authenticated?
 3. Can the exploit be automated?

The impact depends mainly on the damage potential and the extent
of the impact, such as the number of components that are affected by a
threat. Examples to determine the damage potential are

 1. Can an attacker completely take over and manipulate the system?
 2. Can an attacker gain administration access to the system?
 3. Can an attacker crash the system?
 4. Can the attacker obtain access to sensitive information such as

secrets, PII

Examples to determine the number of components that are affected
by a threat include:

 1. How many data sources and systems can be impacted?
 2. How “deep” into the infrastructure can the threat agent go?

4.3.3.7 Trike

An alternative threat modeling methodology to STRIDE and DREAD is
Trike. Trike is a unified conceptual framework for security auditing from
a risk management perspective through the generation of threat models
in a reliable, repeatable manner.14 Trike uses a threat modeling framework
that is similar to the Microsoft threat modeling methodologies. However,
Trike differs in that it uses a risk-based approach with distinct implemen-
tation, threat, and risk models, instead of using the STRIDE/DREAD
aggregated threat model (attacks, threats, and weaknesses).15

Trike is distinguished from other threat modeling methodologies by
the high levels of automation possible within the system, the defensive
perspective of the system, and the degree of formalism present in the

Architecture (A2): SDL Activities and Best Practices 111

 methodology.16 The latest version of the Trike tool can be downloaded at
the Source Forge website at http://sourceforge.net/projects/trike/files/trike.

A security auditing team can use it to describe the security characteris-
tics of a system from its high-level architecture to its low-level implemen-
tation details. The goal of Trike is to automate the repetitive parts of threat
modeling. Trike automatically generates threats (and some attacks) based
on a description of the system, but this requires that the user describe the
system to Trike and check whether these threats and attacks apply.17 A key
element of Trike is the empowerment, involvement, and communications
with the key stakeholders with complete progress and task status transpar-
ency so that they know the level of risk and can evaluate acceptance of the
risk throughout the software development process.

4.3.3.8 PASTA (Process for Attack Simulation and
Threat Analysis)

In 2011, a new application threat modeling methodology developed
by Marco Morana and Tony Uceda Velez was presented. PASTA is a
seven-step process that is applicable to most application development
methodologies and is platform-agnostic. It not only aligns business
objectives with technical requirements it also takes into account compli-
ance requirements, business impact analysis, and a dynamic approach
to threat management, enumeration, and scoring. The process begins
with a clear definition of business objectives, security and compliance
requirements, and business impact analysis. Similar to the Microsoft
process, the application is decomposed into components, with use case
diagrams and DFDs to illustrate the threat model with which threat and
vulnerability analysis can be performed. The next step involves use of
threat trees, abuse cases, scoring systems, and enumerations for further
reference in analysis. Following this, the threat model is viewed from an
attacker perspective by attack modeling in attack trees and attack sur-
face analysis. In the final step, risk and business impact can be qualified
and quantified, and necessary countermeasures identified. This process
combines the best of various threat modeling approaches, with the attack
trees serving as an attacker-centric means of viewing a threat, as well
as, in combination with risk and impact analysis, helping to create an
asset-centric means of planning a mitigation strategy. The threat trees,

112 Core Software Security

with mapping of threats to existing vulnerabilities, work in favor of easy
and scalable threat management. Beyond the technical aspects, the risk
and business impact analysis take threat modeling beyond just a software
development exercise to involve participation of key decision makers in
the vulnerability management process. What differentiates this method-
ology from Trike is that it focuses on involving risk management steps
in the final stage of the process. This ensures that it is not limited to a
specific risk estimation formula.18

The seven-step PASTA Threat Modeling Methodology is as follows:19

1. Define Objectives

• Identify business objectives
• Identify security and compliance requirements
• Business impact analysis

2. Define Technical Scope

• Capture the boundaries of the technical environment
• Capture infrastructure, application, and software dependencies

3. Application Decomposition

• Identify uses cases and define application entry points and trust
levels

• Indentify actors, assets, services, roles and data sources
• Data flow diagramming and trust boundaries

4. Threat Analysis

• Probabilistic attack scenarios analysis
• Regression analysis on security events
• Threat intelligence correlation and analytics

5. Vulnerability and Weakness Analysis

• Queries of existing vulnerability reports and issues tracking
• Threat to existing vulnerability mapping using threat trees
• Design flaw analysis using use and abuse cases
• Scorings (CVSS/CWSS) and enumerations (CWE/CVE)

Architecture (A2): SDL Activities and Best Practices 113

6. Attack Modeling

• Attack surface analysis
• Attack tree development and attack library management
• Attack to vulnerability and exploits analysis using attack trees

7. Risk and Impact Analysis

• Qualify and quantify business impact
• Countermeasure identification and residual risk analysis
• ID risk mitigation strategies

There is also fairly new threat-modeling tool called ThreatModeler,
developed by MyAppSecurity, Inc., that supports the PASTA methodol-
ogy. ThreatModeler is a threat modeling product which brings a mind
mapping approach to threat modeling. It allows companies to scale their
threat modeling initiative across thousands of applications easily and
effortlessly. ThreatModeler automatically generates threats and classi-
fies them under various risk categories. It provides a centralized threat
management platform where organizations can define threats related
to network, host, applications, mobile, Web services, etc., and associate
attributes such as technical impacts, business impacts, and threat agents
to better understand a threat and prioritize mitigation strategies.20,21

Although its original focus was on banking malware threats, PASTA
certainly has applicability across all software applications and will fit well
into most SDLCs. It will be interesting to see how widely it is accepted in
industry over the next few years.

4.3.3.9 CVSS

Another risk assessment methodology that is very popular and is used exten-
sively by corporate product security incident response teams (PSIRTs) and
internal software security groups to classify externally discovered software
vulnerabilities is the U.S. government’s Common Vulnerability Scoring
System (CVSS). The National Infrastructure Advisory Council (NIAC)
commissioned CVSS to support the global Vulnerability Disclosure
Framework. CVSS is currently maintained by the Forum of Incident
Response and Security Teams (FIRST),22 and was a joint effort involving

114 Core Software Security

many companies, including CERT/CC, Cisco Systems, DHS/MITRE,
eBay, Internet Security Systems, Microsoft, Qualys, and Symantec. The
CVSS model is designed to provide end users with an overall composite
score representing the severity and risk of a vulnerability. It is derived from
metrics and formulas. The metrics are in three distinct categories that can
be quantitatively or qualitatively measured. Base metrics contain qualities
that are intrinsic to any given vulnerability; these qualities do not change
over time or in different environments. Temporal metrics contain charac-
teristics of a vulnerability that evolve over the lifetime of the vulnerability.
Environmental metrics contain characteristics of a vulnerability that are
related to an implementation in a specific user’s environment. Scoring is
the process of combining all metric values according to specific formulas
and based on a series of measurements called metrics based on expert
assessment which is described below:23

• Base scoring is computed by the vendor or originator with the inten-
tion of being published, and, once set, is not expected to change.
Base scoring is also computed from confidentiality, integrity, and
availability. This is the foundation that is modified by the temporal
and environmental metrics. The base score has the largest bearing
on the final score and represents vulnerability severity.

• Temporal scoring is also computed by vendors and coordinators for
publication, and modifies the base score. It allows for the introduc-
tion of mitigating factors to reduce the score of a vulnerability and
is designed to be reevaluated at specific intervals as a vulnerability
ages. The temporal score represents vulnerability urgency at specific
points in time.

• Environment scoring is optionally computed by end-user organiza-
tions and adjusts the combined base-temporal score. This adjusted
combined score should be considered the final score and represents
a moment in time, tailored to a specific environment. User organi-
zations should use this score to prioritize responses within their
own environments.

A useful tool is the the Common Vulnerability Scoring System
Version 2 Calculator, which can be found on the National Institute of
Standards and Technology (NIST) National Vulnerability Database web-
site at http://nvd.nist.gov/cvss.cfm?calculator&version=2.

Architecture (A2): SDL Activities and Best Practices 115

The CVSS has become an industry standard for assessing the severity
of computer system security vulnerabilities. It establishes a measure of
how much concern vulnerability should warrant compared to other vul-
nerabilities so that mitigation efforts can be prioritized. As of the writing
of this book, the current version of CVSS is version 2.

The CVSS is typically used by an internal software security group to
respond to a security researcher or other source that has notified you that
your software product has vulnerability. This provides the ability to keep
your severity ratings normalized, consistent, and accurate. The scores are
also used in the communication to the customers acknowledging that
there is a vulnerability in the product that they have purchased, the sever-
ity of the vulnerability, and what your company is doing to mitigate that
vulnerability, including any patch releases for the vulnerability. In turn,
a security researcher will likely use the CVSS ranking system to provide
a risk rating to the company within whose software product they have
found a vulnerability, so that the vendor has a good idea of the severity of
the vulnerability that is being disclosed and the details of what to verify
with its product development team.

It should be noted that the CVSS is not a threat modeling methodol-
ogy and is not used to find or reduce the attack surface or to help specify
risks within a piece of code. It is, rather, a risk scoring system and it
adds complexities that don’t exist in STRIDE and DREAD. It is used
to calculate risks that are identified post-product release in addition to
environmental factors.

4.3.3.10 OCTAVE

OCTAVE (Operationally Critical Threat, Asset, and Vulnerability
Evaluation) is a very complex risk methodology approach originat-
ing from Carnegie Mellon University’s Software Engineering Institute
(SEI) in collaboration with the SEI Computer Emergency Response
Team (CERT). OCTAVE focuses on organizational risk, not technical
risk. It comprises a suite of tools, techniques, and methods for risk-based
information security strategic assessment and planning. There are three
OCTAVE methods: (1) the original OCTAVE method, which forms the
basis for the OCTAVE body of knowledge; (2) OCTAVE-S, for smaller
organizations; and (3) OCTAVE-Allegro, a streamlined approach for

116 Core Software Security

information security assessment and assurance. All of the methods have
specific catalogs of practices, profiles, and worksheets to document the
modeling outcomes. OCTAVE methods are founded on the OCTAVE
criteria—a standard approach for a risk-driven and practice-based infor-
mation security evaluation. The OCTAVE criteria establish the funda-
mental principles and attributes of risk management that are used by the
OCTAVE methods.24

OCTAVE is a valuable structured approach to documenting and mea-
suring overall IT security risk, particularly as it relates to corporate IT
and business risk management and when documenting risks surround-
ing complete systems becomes necessary. Although a software security
professional may be involved in a portion of the assessment as a software
or process for building software security into the development process
may be within its scope, it is not valuable for modeling, defining, and
ranking specific risks and vulnerabilities within the SDL process. As with
CVSS scoring, OCTAVE does not include threat risk modeling and is
used primarily to enumerate risk. It is also much more complex than
most other risk assessment and scoring methodologies in that it consists
of 18 volumes with many worksheets to work through. The comprehen-
sive version of OCTAVE (unlike OCTAVE-S for small organizations)
defines “likelihood” assuming that the threat will always occur, which
is not applicable to many large organizations. For these reasons, it is not
likely to be an approach that is used throughout the software develop-
ment lifecycle.

4.3.3.11 AS/NZS ISO 31000:2009

The Australian/New Zealand Standard AS/NZS 4360, first issued in
1999 and revised in 2004, was the world’s first formal standard for docu-
menting and managing risk and is still one of the few formal standards
for managing it.25 AS/NZS ISO 31000:2009 is a newer standard pub-
lished November 20, 2009, for managing risk and supersedes AS/NZS
4360:2004.26

ISO 31000:2009 provides principles and generic guidelines on risk
management and can be used by any public, private, or community enter-
prise, association, group, or individual, and is not specific to any industry
or sector. It can be applied throughout the life of an organization, and to

Architecture (A2): SDL Activities and Best Practices 117

a wide range of activities, including strategies and decisions, operations,
processes, functions, projects, products, services, and assets. It can also be
applied to any type of risk, whatever its nature, whether having positive
or negative consequences. Although ISO 31000:2009 provides generic
guidelines, it is not intended to promote uniformity of risk management
across organizations. The design and implementation of risk management
plans and frameworks will need to take into account the varying needs of
a specific organization, its particular objectives, context, structure, opera-
tions, processes, functions, projects, products, services, or assets, and spe-
cific practices employed. It is intended that ISO 31000:2009 be utilized
to harmonize risk management processes in existing and future standards.
It provides a common approach in support of standards dealing with spe-
cific risks and/or sectors, and does not replace those standards.27

ISO 31000:2009 does not define the methodology to perform a struc-
tured threat risk modeling exercise or a structured approach to specify
software application security risks and works best in evaluating business
or systemic risks rather than for technical risks. As with OCTAVE, this
methodology is likely to be used by a centralized corporate risk manage-
ment team. Software security professionals may be involved in a portion
of the assessment because their software or process for building software
security into the development process may be in scope, but it is not
likely that this methodology will be used in the SDL as a primary risk
 methodology because it is not valuable for modeling, defining, and rank-
ing specific risks and vulnerabilities within the SDLC process.

4.3.4 Risk Mitigation

Before you move onto the risk mitigation phase you will need to make a
master list of high-risk vulnerabilities during the threat modeling process,
including STRIDE or an equivalent. This will give you a priority list from
which to work as you follow through your mitigation plan.

There are four ways you can plan mitigation and address threats:28

 1. Redesign the process to eliminate the threat.
 2. Apply a standard mitigation as per general recommendations.
 3. Invent a new mitigation strategy (risky and time-consuming)
 4. Accept vulnerabilities with low risk and high effort to fix them.

118 Core Software Security

Vulnerability threats that have no countermeasures in STRIDE or
Application Security Frame (ASF) are categorized, and counter measured
for specific threats are identified for each of the categories they fall into.
OWASP has two checklists that, although not inclusive, can serve as a
great guideline for this activity. Both lists can be found at https://www.
owasp.org/index.php/Application_Threat_Modeling and is also described
below with corresponding mitigation techniques.

STRIDE Threat & Mitigation Techniques List29

Spoofing identity
• Appropriate authentication
• Protect secret data
• Don’t store secrets

Tampering with data
• Appropriate authorization
• Hashes
• MACs
• Digital signatures
• Tamper-resistant protocols

Repudiation
• Digital signatures
• Timestamps
• Audit trails

Information disclosure
• Authorization
• Privacy-enhanced protocols
• Encryption
• Protect secrets
• Don’t store secrets

Denial of service
• Appropriate authentication
• Appropriate authorization
• Filtering
• Throttling
• Quality of service

Architecture (A2): SDL Activities and Best Practices 119

Elevation of privilege
• Run with least privilege

ASF Threat and Countermeasures List30

Authentication
 1. Credentials and authentication tokens are protected with encryp-

tion in storage and transit.
 2. Protocols are resistant to brute force, dictionary, and replay attacks.
 3. Strong password policies are enforced.
 4. Trusted server authentication is used instead of SQL authentication.
 5. Passwords are stored with salted hashes.
 6. Password resets do not reveal password hints and valid usernames.

Authorization
 1. Strong ACLs are used for enforcing authorized access to resources.
 2. Role-based access controls are used to restrict access to specific

operations.
 3. The system follows the principle of least privilege for user and ser-

vice accounts.
 4. Privilege separation is correctly configured within the presentation,

business, and data access layers.

Configuration management
 1. Least privileged processes are used and service accounts with no

administration capability.
 2. Auditing and logging of all administration activities is enabled..
 3. Access to configuration files and administrator interfaces is restricted

to administrators

Data protection in storage and transit
 1. Standard encryption algorithms and correct key sizes are used.
 2. Hashed message authentication codes (HMACs) are used to protect

data integrity.
 3. Secrets (e.g., keys, confidential data) are cryptographically protected

both in transport and in storage.
 4. Built-in secure storage is used for protecting keys.
 5. No credentials and sensitive data are sent in clear text over the wire.

120 Core Software Security

Data validation/parameter validation
 1. Data type, format, length, and range checks are enforced.
 2. All data sent from the client is validated.
 3. No security decision is based on parameters (e.g., URL parameters)

that can be manipulated.
 4. Input filtering via white list validation is used.
 5. Output encoding is used.

Error handling and exception management
 1. All exceptions are handled in a structured manner.
 2. Privileges are restored to the appropriate level in case of errors and

exceptions.
 3. Error messages are scrubbed so that no sensitive information is

revealed to the attacker.

User and session management
 1. No sensitive information is stored in clear text in the cookie.
 2. The contents of the authentication cookies is encrypted.
 3. Cookies are configured to expire.
 4. Sessions are resistant to replay attacks.
 5. Secure communication channels are used to protect authentication

cookies.
 6. User is forced to re-authenticate when performing critical functions.
 7. Sessions are expired at logout.

Auditing and logging
 1. Sensitive information (e.g., passwords, PII) is not logged.
 2. Access controls (e.g., ACLs) are enforced on log files to prevent

unauthorized access.
 3. Integrity controls (e.g., signatures) are enforced on log files to pro-

vide nonrepudiation.
 4. Log files provide for audit trail for sensitive operations and logging

of key events.
 5. Auditing and logging is enabled across the tiers on multiple servers.

After you have identified the software threats and associated mitiga-
tion strategies and ranked the risks, it is possible to identify a mitigation
threat profile for each threat that has been identified through the threat

Architecture (A2): SDL Activities and Best Practices 121

modeling/architecture security analysis process. The following criteria are
used to categorize your final list from this process:

• Fully mitigated threats: Threats that have appropriate counter-
measures in place and do not expose vulnerability or cause impact.

• Partially mitigated threats: Threats partially mitigated by one or
more countermeasures, which represent vulnerabilities that can only
partially be exploited and cause a limited impact.

• Nonmitigated threats: Threats that have no countermeasures and
represent vulnerabilities that can be fully exploited and cause an
impact31

Now that you have categorized your threats in one of the three catego-
ries above, you have a choice to make concerning what strategy you are
going to pursue. Your choices of action will likely fall under one of the
following five options:

 1. Do nothing: for example, hope for the best.
 2. Inform about the risk: for example, warn your user population about

the risk.
 3. Mitigate the risk: for example, by putting countermeasures in place.
 4. Accept the risk: for example, after evaluating the impact of the

exploitation (business impact).
 5. Transfer the risk: for example, through contractual agreements and

insurance.32

Your decision as to which of the strategies listed above will be used will
depend on several factors:

• The impact an exploitation of a threat can have
• The likelihood of its occurrence
• The costs for transferring (i.e., costs for insurance) or avoiding (i.e.,

costs or losses due to redesign) it.33

Risk in this sense is an identified threatening situation due to the
potential presence of an actor, motivation, and vulnerability with a sig-
nificant probability and business impact. The risk of a threat is not the
issue, but rather an identified risk that has been ranked in severity with a

122 Core Software Security

significant business consequence as the result of the outcome of a threat.
The probability of the threat is considered separately because it is affected
by the motivation of the actor and the specifics and external factors affect-
ing the vulnerability. Business impact is also a key element of risk that
is affected by both the type of actor, which can be state, industrial, or
criminal, and the specifics of the vulnerability. This can be visualized as
shown in Figure 4.9.

In this section we have shown some of the options and standard
 methodologies that can be used to assess your threats, rank your risk, and
develop a risk mitigation plan. The process we have described is visualized
in Figure 4.10.

The bottom line is that risk assessment is about business risk and
results in trade-offs as it relates to security risk to the software, the system
it interacts with, and the overall business risk management strategy. It is
important for security professionals to know this, and that is why we have
included two popular overall business risk assessment methodologies that
focus on information security risk, specifically, OCTAVE and AS/NZS
ISO 31000:2009. As with the ecosystem the software is part of, the risk
assessment methodology used for secure software development will also
have points of intersection with the overall business risk management
methodology, and those areas need to be taken into account as part of the
software risk analysis.

Ultimately this will be a business decision. This is why one decision
may be to fix vulnerabilities only where the cost to fix is less than the
potential business impact that might result from exploitation of the vul-
nerability, or why another decision may be made to accept the risk when
the loss of some security controls (e.g., confidentiality, integrity, and
availability) risks only a small degradation of the service, not a loss of a
critical business function.34

Threat Probability Business
Impact Risk

Figure 4.9 Elements of risk.

Fi
g

ur
e

4
.1

0

A
 h

o
lis

ti
c

ap
p

ro
ac

h
fo

r
so

ft
w

ar
e

se
cu

ri
ty

 r
is

k
as

se
ss

m
en

t.

Th
re
at

M
od

el
in
g

Id
en

tif
y
Se
cu
rit
y
O
bj
ec
tiv

es
Su
rv
ey

th
e
Ap

pl
ic
at
io
n

D
i

Ar
ch
ite

ct
ur
al

Th
re
at

An
al
ys
is

Ra
nk

in
g
of

Th
re
at
s

Ri
sk

An
al
ys
is

D
ec
om

po
se

it
Id
en

tif
y
Th

re
at
s

Id
en

tif
y
Vu

ln
er
ab

ili
tie

s

Th
re
at

An
al
ys
is

Th
re
at
s

Ri
sk

M
iti
ga
tio

n
g Pl
an

124 Core Software Security

4.4 Open-Source Selection

There has been an increasing trend in the software industry over the last
few years to draw on the strengths of both open-source and proprietary
software to deliver the highest value at the lowest cost. The blend of both
is called “mixed source” and is becoming a dominant practice in industry.
Understanding and managing the licensing of your software assets will
be critical as open source becomes an ever-greater part of the software
develop ment landscape, but this is beyond the scope of our discussion
and will be handled by others on the software development team.

There is an ongoing debate as to whether open-source software
increases software security or is detrimental to it, but the bottom line is
that you are importing software into your software application or solu-
tion that your company did not develop or have security oversight over.
This will require an extensive review, typically called a third-party security
assessment, that will be conducted by your software security architect, a
third party, or a combination of both. While it may be tempting to rely
on tools and a cursory review of the open-source development processes,
without the proper training and experience it is easy to misinterpret
results, and difficult to create an actionable remediation strategy. That
is why senior software security architects or the third-party equivalent
must be involved in this review process. They have years of code security
auditing experience, routinely review and mitigate highly complex and
advanced software security and architectural challenges, know how to
identify and examine vulnerable points in design, and can uncover flaws
that may result in a security compromise. Without the proper training
and experience it is easy to misinterpret results, and difficult to create
any necessary actionable remediation strategy. Essentially, the review of
any open-source software or component used in your software product
will require both tool assessment and follow-on threat modeling and risk
assessment conducted by a seasoned software security architect.

4.5 Privacy Information Gathering and Analysis

It is important to consider if the system will transmit, store, or create infor-
mation that may be considered privacy information early in the SDLC.
The gathering of information and identification and plan for implement-
ing proper safeguards and security controls, including processes to address

Architecture (A2): SDL Activities and Best Practices 125

privacy information incident handling and reporting requirements, is
determined at this stage. This stage of the SDL is where the information
gathering and analysis for the Privacy Impact Assessment (PIA) begins.
The analysis phase determines how PII will be handled to ensure that it
conforms to applicable legal, regulatory, and policy requirements regarding
privacy; what the risks and effects of collecting, maintaining, and dissemi-
nating privacy information in identifiable form in the software and overall
system being developed or one that it potentially interfaces with in a cloud
or SaaS environment; and examine and evaluate protections and alterna-
tive processes for handling information to mitigate potential privacy risks.

4.6 Key Success Factors and Metrics

4.6.1 Key Success Factors

Success of this second phase of the SDL depends on how well the SDLC
identifies the threats, requirements, and constraints in functionality and
integration and mitigates the risk. Key success factors for this second
phase are listed in Table 4.1.

Table 4.1 Key Success Factors

Key Success Factor Description

1. Identification of business
requirements and risks

Mapping of business requirements and
risks defined in terms of CIA

2. Effective threat modeling Identifying threats for the software

3. Effective architectural threat analysis Analysis of threats to the software and
probability of threat materializing

4. Effective risk mitigation strategy Risk acceptance, tolerance, and
mitigation plan per business
requirements

5. Accuracy of DFDs Data flow diagrams used during threat
modeling

Success Factor 1: Identification of Business Requirements
and Risks

During this phase, key stakeholders including the software security group
help write out business risks and requirements. Business requirements are
defined through the CIA pillars of information security. It is imperative

126 Core Software Security

for a successful SDL cycle that all requirements are identified and cap-
tured to the best extent possible.

Success Factor 2: Effective Threat Modeling

Though it is a complex and challenging task, on threat modeling rests the
entire risk mitigation plan. Any gaps in a threat model will result in lack
of effective security controls in the software and/or deployment.

Success Factor 3: Effective Architectural Threat Analysis

Architectural threat analysis enables identification of threats and ranks
them in order of priority. It is essential that all threat vectors resulting in
the risk are identified and prioritized.

Success Factor 4: Effective Risk Mitigation Strategy

The culmination of threat modeling and threat analysis is risk acceptance,
tolerance, and a risk mitigation plan. It is imperative that business appe-
tite for risk acceptance and tolerance be thoroughly vetted, including
through legal and finance.

Success Factor 5: Accuracy of DFDs

DFDs are used during threat modeling to identify various components/
elements of interest. DFDs should be as detailed as possible. Any assump-
tions should be reviewed carefully. Specifically, trust boundaries (client/
server, private/public infrastructure, tiered architecture), etc., should be
properly documented and reviewed.

4.6.2 Deliverables

Table 4.2 lists deliverables for this phase of the SDL.

Business Requirements

A formal business requirement is an artifact that lists software require-
ments and business risks mapped to the three pillars of information secu-
rity: confidentiality, integrity, and availability.

Architecture (A2): SDL Activities and Best Practices 127

Threat Modeling Artifacts

A critical component of this SDL phase, there are a few artifacts that
come from this step. Key artifacts include data flow diagrams, techni-
cal threat modeling reports, high-level executive threat modeling reports,
threat lists, and recommendations for threat analysis.

Architecture Threat Analysis

The key artifact from this step of the SDL is an artifact that outlines risks
of threat materializing. Another one that should be required from this
step is threat ranking/priority.

Risk Mitigation Plan

The risk mitigation plan outlines risks (and threats) to be mitigated,
accepted, or tolerated. For each of these categories, it also outlines steps
on mitigation risks. Finally, this report should be presented to business for
sign-off before actual work on the project begins.

Policy Compliance Analysis

This artifact is a report on compliance with different security and nonse-
curity policies within the company—for example, how does software to
be developed comply with information security policy, data governance
policy, data retention and cryptography policy, and so on.

4.6.3 Metrics

The following metrics should be collected and recorded for this second
phase of the SDL cycle:

Table 4.2 Deliverables for Phase A2

Deliverable Goal

Business requirements Software requirements, including CIA

Threat modeling artifacts Data flow diagrams, elements, threat listing

Architecture threat analysis Prioritization of threats and risks based on
threat analysis

Risk mitigation plan Plan to mitigate, accept, or tolerate risk

Policy compliance analysis Analysis of adherence to company policies

128 Core Software Security

• List of business threats, technical threats (mapped to business
threats), and threat actors

• Number of security objectives unmet after this phase
• Percent compliance with company policies (existing)
• Number of entry points for software (using DFDs)
• Percent of risk (and threats) accepted, mitigated, and tolerated
• Percent of initial software requirements redefined
• Number of planned software architectural changes (major and

minor) in a product
• Number of software architectural changes needed based on security

requirements

4.7 Chapter Summary

The primary goal of the Architecture (A2) phase of our DSL model is
to identify the overall requirements and structure for the software from
a security perspective. The key elements of this phase are threat model-
ing, documentation of elements of the software attack surface from an
architectural perspective; definition of security architecture and design
guidelines; continued security, SDL, and privacy policy and requirements
compliance reviews; and software product security release requirements.

These best practices result in the definition of the overall structure
of the software from a security perspective. They identify those compo-
nents whose correct functioning is essential to security. They also identify
the appropriate security design techniques applicable for the soft product
architecture, including the application of least privilege, and minimize the
attack surface of the software product and any supporting infrastructure.
Although a higher layer may depend on the services of lower layers, the
lower layers are forbidden from depending on higher layers. Although the
security architecture identifies an overall perspective on security design,
the specifics of individual elements of the architecture will be detailed in
individual design specifications.

The identification and measurement of the individual elements of
the attack surface provides the development and software security team
with an ongoing metric for default security and enables them to detect
instances where the software has been made susceptible to attack. During
this phase, all exceptions to reducing the attack surface must be reviewed,
because the goal is to maximize security as a default for a software product

Architecture (A2): SDL Activities and Best Practices 129

that is being developed. Threat modeling uses a structured approach at a
component-by-component level, identifying the assets that the software
must manage and the interfaces by which those assets can be accessed.
The likelihood of harm being done to any of the assets identified dur-
ing threat modeling is estimated as a measure of risk. Countermeasures
or compensating controls to mitigate the risk are also identified. Where
appropriate and feasible, tools should be used that can capture the threat
models in machine-readable form for storage and updating. Specific pre-
ship software security criteria are also identified at this stage of the SDL.

Toward the end of the chapter we discussed key success factors and
their importance, deliverables from this phase, and metrics that should be
collected from this phase.

References

 1. Kohnfelder, L., and Garg, P. (1999), “The threats to our products.” Microsoft
Interface, April 1, 1999. Retrieved from http://blogs.msdn.com/sdl/attachment/
9887486.Ashx.

 2. cisodesk.com (2012), “SiteXposure: Threat Modeling Process—Overview.”
Retrieved from http://www.cisodesk.com/web-application-security/threat-
modeling-overview.

 3. Hernan, S., et al. (2006), “Threat Modeling: Uncover Security Design Flaws
Using the STRIDE Approach.” MSDN Magazine. Retrieved from http://msdn.
microsoft.com/en-us/magazine/cc163519.aspx#S3.

 4. cisodesk.com (2012), “SiteXposure: Threat Modeling—Practice.” Retrieved from
http://www.cisodesk.com/web-application-security/threat-modeling-in-practice.

 5. Hernan, S., et al. (2006), “Threat Modeling: Uncover Security Design Flaws
Using the STRIDE Approach.” MSDN Magazine. Retrieved from http://msdn.
microsoft.com/en-us/magazine/cc163519.aspx#S3.

 6. http://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx.
 7. OWASP (2012), Application Threat Modeling. Retrieved from https://www.owasp.

org/index.php/Application_Threat_Modeling#Data_Flow_Diagrams.
 8. Meier, J., et al. (June 2003), Microsoft Corporation MSDN Library Doc: Improving

Web Application Security: Threats and Countermeasures. Retrieved from http://
msdn.microsoft.com/en-us/library/ff648644.aspx.

 9. OWASP (2012), Threat Risk Modeling. Retrieved from https://www.owasp.org/
index.php/Threat_Risk_Modeling.

 10. Ibid.
 11. Meier, J., et al. (June 2003), Microsoft Corporation MSDN Library Doc: Improving

Web Application Security: Threats and Countermeasures. Retrieved from http://
msdn.microsoft.com/en-us/library/ff648644.aspx.

 12. Microsoft MSDN (2012), Cheat Sheet: Web Application Security Frame—Web

130 Core Software Security

Application Security Frame Categories. Retrieved from http://msdn.microsoft.com/
en-us/library/ff649461.aspx.

 13. OWASP (2012), Application Threat Modeling. https://www.owasp.org/index.php/
Application_Threat_Modeling.

 14. Saitta, P., Larcom, B., and Eddington, M. (2005), Trike v.1 Methodology Document
[Draft]. Retrieved from http://octotrike.org/papers/Trike_v1_Methodology_
Document-draft.pdf.

 15. OWASP (2012), Threat Risk Modeling. Retrieved from https://www.owasp.org/
index.php/Threat_Risk_Modeling.

 16. Saitta, P., Larcom, B., and Eddington, M. (2005), Trike v.1 Methodology Document
[Draft]. Retrieved from http://octotrike.org/papers/Trike_v1_Methodology_
Document-draft.pdf.

 17. U.S. Department of Homeland Security—US CERT (2009), Requirements and
Analysis for Secure Software—Software Assurance Pocket Guide Series: Development,
Volume IV Version 1.0, October 5, 2009. Retrieved from https://buildsecurityin.
us-cert.gov/swa/downloads/RequirementsMWV1001AM091111.pdf.

 18. MyAppSecurity (2012), Comparison of Threat Modeling Methodologies: P.A.S.T.A
(Process for Attack Simulation and Threat Analysis). Retrieved from http://www.
myappsecurity.com/threat-modeling/comparison-threat-modeling-methodologies.

 19. Morana, M., and Ucedavelez, T. (2011), “OWASP Threat Modeling of Banking
Malware-Based Attacks Presentation,” AppSec EU, June 10, 2011, Trinity College,
Dublin, Ireland. Retrieved from https://www.owasp.org/images/5/5f/Marco_
Morana_and_Tony_UV_-_Threat_Modeling_of_Banking_Malware.pdf.

 20. Morana, M. (2011), “Writing Secure Software Blog: Attack Simulation and
Threat Analysis of Banking Malware-Based Attacks,” June 10, 2011. Retrieved
from http://securesoftware.blogspot.com/2011/06/attack-simulation-and-threat-
analysis.html.

 21. MyApp Security (2012), ThreatModeler. Retrieved from http://www.myappsecurity.
com.

 22. FiRST (2012), FiRST Homepage. Retrieved from http://www.first.org.
 23. FiRST (2012), “CVSS Frequently Asked Questions.” Retrieved from http://www.

first.org/cvss/faq.
 24. Software Engineering Institute–Carnegie Mellon (2012), OCTAVE. Retrieved

from http://www.cert.org/octave.
 25. OWASP (2012), Threat Risk Modeling. Retrieved from https://www.owasp.org/

index.php/Threat_Risk_Modeling.
 26. STANDARDS Australia–New Zealand (2012), AS/NZS ISO 31000:2009 Risk

Management-Principles and Guidelines. Retrieved from http://sherq.org/31000.pdf.
 27. ISO (2012), ISO 31000:2009—Risk Management—Principles and Guidelines.

Retrieved from http://www.iso.org/iso/catalogue_detail?csnumber=43170.
 28. Cisodesk (2012), Threat Modeling—Practice Guide. Retrieved from http://www.

cisodesk.com/web-application-security/threat-modeling-in-practice.
 29. OWASP (2012), Application Threat Modeling: STRIDE Threat & Mitigation

Techniques List. Retrieved from https://www.owasp.org/index.php/Application_
Threat_Modeling.

Architecture (A2): SDL Activities and Best Practices 131

 30. OWASP (2012), Application Threat Modeling: ASF Threat & Countermeasures List.
Retrieved from https://www.owasp.org/index.php/Application_Threat_Modeling.

 31. OWASP (2012), Application Threat Modeling. Retrieved from https://www.owasp.
org/index.php/Application_Threat_Modeling.

 32. Ibid.
 33. Ibid.
 34. Ibid.
 35. Shostack, A. (2008), “Experiences Threat Modeling at Microsoft.” Retrieved from

http://www.homeport.org/~adam/modsec08/Shostack-ModSec08-Experiences-
Threat-Modeling-At-Microsoft.pdf.

133

Chapter 5

Design and
Development (A3):
SDL Activities and
Best Practices

The design and development (A3) phase (see Figure 5.1) is when the
end user of your software is foremost in your mind. During this phase
you will do an analysis of policy compliance, create the test plan docu-
mentation, update your threat model if necessary, conduct a design secu-
rity analysis and review, and do a privacy implementation assessment so
you can make informed decisions about how to deploy your software
securely and establish development best practices to detect and remove
security and privacy issues early in the development cycle. You will per-
form static analysis during both the design and development (A3) and
the ship (A4) phases of your SDL . We will provide a detailed description
of static analy sis in the next chapter. You will build the plan for how you
will take your project through the rest of the SDL process, from imple-
mentation, to verification, to release. During the design and development
(A3) phase you establish best practices for this phase using functional and
design specifications.

Fi
g

ur
e

5
.1

D

es
ig

n
an

d
 D

ev
el

o
p

m
en

t
(A

3)
: S

D
L

ac
ti

vi
ti

es
 a

nd
 b

es
t

p
ra

ct
ic

es
.

Design and Development (A3): SDL Activities and Best Practices 135

5.1 A3 Policy Compliance Analysis

A3 policy compliance analysis is a continuation of the A2 policy compli-
ance review described in Chapter 4. During this phase, any policy that
exists outside the domain of the SDL policy is reviewed. These might
include policies from outside the development organization that set
security and privacy requirements and guidelines to be adhered to when
developing software or applications. Corporate security and privacy poli-
cies will likely instruct designers and developers on what the security and
privacy features need to be and how they must be implemented. Other
policies might focus on third-party and open-source software used as part
of a software product, or on the protection and control of source code and
other intellectual property within and outside the organization. Assuming
the software security group is separate from the centralized information
security group, it is important that both groups collaborate on all policies
and guidelines related to the development and post-release security sup-
port and response of software from that organization. It is also important
to collaborate with the privacy function of your company, whether it is a
centralized group or outside legal counsel.

5.2 Security Test Plan Composition

Testing activities validate the secure implementation of a product, which
reduces the likelihood of security bugs being released and discovered by
customers and/or malicious users. Software assurance and competency
from a security perspective is demonstrated by security testing and the
use of artifacts, reports, and tools. The goal is not to test for insecurity,
but rather to validate the robustness and security of the software products
before making the product available to customers. These security test-
ing methods do find security bugs, especially in products that may not
have undergone critical secure development process changes. The results
of security testing and evaluation may also uncover deficiencies in the
security controls used to protect the software that is under development.
A detailed plan of action and milestone schedule are required to docu-
ment the corrective measures planned to increase the effectiveness of the
security controls and provide the requisite security for the software prior
to its release.

136 Core Software Security

As with the risk analysis methodologies discussed in Chapter 4, a
holistic approach is necessary for security testing to be effective. Security
testing confirms that the software complies with security requirements
through design and code analysis and software behavior investigation.
In other words, security testing is conducted to demonstrate that the
software functions as specified by the requirements, and every software
requirement must be tested using at least one relevant test case. The num-
ber of requirements tested versus the total number of requirements can
be traced from test cases to functional requirements; then the ratio of
requirements tested to the total number of requirements will become a
test requirement metric.

Another element of security testing is to identify software weaknesses
so that security violations and noncompliance with security requirements
that could cause the software to fail or be out of compliance with any of
software security requirements are avoided. As discussed in the risk analy-
sis ranking section, due to resource limitations, security test plan efforts
typically focus only on software requirement items that are considered
to be critical. A master test plan is used to outline the entire test process,
and is augmented by detailed test plans for individual test stages and indi-
vidual modules.

While traditional requirements-based testing is important to the cor-
rectness and adequacy of security functions implemented by software,
no amount of testing can fully demonstrate that software is free from
vulnerabilities; any such testing can only provide a small-scale view of
what is needed to verify the security of the software. Even the most
robustly specified security requirements are not likely to address all pos-
sible conditions under which the software may be forced to operate in
the real world, including the behavior of software under anomalous and
hos tile conditions.

Generally, the shortcomings of requirements-based over risk-based
software security testing can be summarized as follows:

• The changing nature of threats to the software you have in develop-
ment may result in new attack methodologies both pre- and
post-release.

• Your software may change its position as a functional component of
a SaaS or cloud-based solution, which may also change the attack
surface and thus require new security fixes or mitigations.

Design and Development (A3): SDL Activities and Best Practices 137

• In today’s competitive and rapidly changing environment, the design
assumptions on which the requirements were based may be obsolete
by the time the software is ready for testing.

• Other factors often change frequently and likely more rapidly than
your specification can keep up.

• If the software is going to use components acquired from a third
party, the original architecture may not account for future versions
that were not planned for in the initial implementation.

• The original design assumptions may not account for vulnerability
susceptibilities due to design changes or new external attacker capa-
bilities or exploits that may occur during the time taken to develop
later versions of the software.

This list highlights why software risk-based security testing as
described in this section should always augment traditional requirements-
based testing.

As mentioned previously and used as a continuing theme throughout
this book, problems found early in the software lifecycle by “building
security in” are significantly easier and less costly to correct than problems
discovered post-implementation or, worse, post-deployment. This is why
it is imperative that a disciplined approach to security reviews and tests
begin early in the SDL/SDLC process and continue post-release until the
software reaches end of life.

Software security testing takes the perspective that the tester is the
attacker. Test scenarios should be based on misuse and abuse possibilities
developed through the methodologies and threat modeling described in
Chapter 4, and should incorporate both known attack patterns as well as
anomalous interactions that seek to invalidate assumptions made by and
about the software and its environment. Comprehensive test scenarios,
test cases, and test oracles should be derived. Be sure that all that mis-
use cases developed in the previous stage are executed and thoroughly
tested. The testing of each development iteration, use case, and misuse
case will identify major design flaws early in the SDL and should catch
up to 95 percent of defects well before the last phase.1

The test environment should duplicate as closely as possible the antici-
pated execution environment in which the software will be deployed, and
it should be kept entirely separate from the development environment.
It should also provide for strict configuration management control to

138 Core Software Security

 prevent tampering or corruption of test data, testing tools, the integrated
test environment, as well as the test plan itself and both the raw and final-
ized test results. It is also important to ensure that each tool set and test
technique is appropriate for the individual software vulnerabilities that
are being tested.

Testing for both functionality and security requires execution of the
code and validation/verification of the results. It is also not always auto-
mated, because human intervention by experienced software security
architects is typically needed. Because of the complexities and inter actions
of software ecosystems such as SaaS or cloud environments, the knowledge
of such experts is required so that a wider range of scenarios can be tested.

As mentioned previously, the test plan lays out what needs to be tested
for functionality, protected for security, and how the application will react
to specific attacks. The test plan is a joint effort by the project manage-
ment, development, and security teams, among others, to specify the
logistics of the test plan, including who will execute the testing and when
testing will begin and end.

The following are common steps that can be used to implement a test
plan regardless of the strategy, framework, or standard being used:

• Define test scripts. Scripts are very detailed, logical steps of instruc-
tions that tell a person or tool what to do during the testing. Func-
tional testing scripts are step-by-step instructions that depict a
specific scenario or situation that the use case will encounter as well
as the expected results. Secure testing scripts are scripts created spe-
cifically to test the security of the application. The basis for these
scripts comes from the threat models that were generated during the
design phase. Misuse cases define what needs to be protected (assets)
and what types of attacks can gain access to those assets. Secure test
scripts define the acts of carrying out those attacks.

• Define the user community. Defining the user community helps
testers identify acceptable levels of failures and risk.

• Identify the showstoppers. Defining the must-haves and the “what-
if-available” scenarios should be in the use case. If not, a revisit to
the requirements might be necessary so that these specifications can
be documented.

• Identify internal resources. Internal resources come from the com-
pany’s organization, including developers, analysts, software tools,
and sometimes project managers.

Design and Development (A3): SDL Activities and Best Practices 139

• Identify external resources. External resources are tools or people
who are hired on a temporary basis to come into a project, test the
application, and report findings. External resources are best suited
for security testing because they typically come highly trained in
secure programming techniques and they are far removed from the
code and any internal politics. If external resources are needed, the
test plan needs to answer the following questions: (1) What are they
going to test? (2) To whom will they report? and (3) With whom will
they be working?2

Assessing the security properties and behaviors of software as it inter-
sects with external entities such as human users, the environment, and
other software and as its own components interact with each other is a
primary objective of security testing. As such, it should verify that soft-
ware exhibits the following properties and behaviors:

• Its behavior is predictable and secure.
• It exposes no vulnerabilities or weaknesses.
• Its error- and exception-handling routines enable it to maintain a

secure state when confronted by attack patterns or intentional faults.
• It satisfies all of its specified and implicit nonfunctional security

requirements.
• It does not violate any specified and implicit nonfunctional security

requirements.
• It does not violate any specified security constraints.
• As much of its runtime-interpretable source code and byte code

as possible has been obscured or obfuscated to deter reverse
engineering.3,4

A security test plan should be included in the overall software test
plan and should define all security-related testing activities, including the
following:

• Security test cases or scenarios (based on abuse cases)
• Test data, including attack patterns
• Test oracle (if one is to be used)
• Test tools (white box, black box, static, and dynamic)
• Analyses to be performed to interpret, correlate, and synthesize the

results from the various tests and outputs from the various tools.5,6

140 Core Software Security

Software security testing techniques can be categorized as white box,
gray box, or black box:

• White box. Testing from an internal perspective, i.e., with full
knowledge of the software internals; the source code, architecture
and design documents, and configuration files are available for
analysis.

• Gray box. Analyzing the source code for the purpose of design-
ing the test cases, but using black-box testing techniques; both the
source code and executable binary are available for analysis.

• Black box. Testing the software from an external perspective, i.e.,
with no prior knowledge of the software; only binary executable or
intermediate byte code is available for analysis.7,8

The commonly used security testing techniques can be categorized
using the above as follows:

• Source code analysis (white box). Source-code security analyzers
examine source code to detect and report software weaknesses that
can lead to security vulnerabilities. The principal advantage that
source-code security analyzers have over the other types of static anal-
ysis tools is the availability of the source code. The source code con-
tains more information than code that must be reverse- engineered
from byte code or binary. Therefore, it is easier to discover software
weaknesses that can lead to security vulnerabilities. Additionally, if
the source code is available in its original form, it will be easier to fix
any security vulnerabilities that are found.

• Property-based (white box). Property-based testing is a formal
analysis technique developed by the University of California Davis.
Property-based testing validates that the software’s implemented
functionality satisfies its specifications. It does this by examining
security-relevant properties revealed by the source code, such as the
absence of insecure state changes. Then these security-relevant pro-
perties in the code are compared against the software’s specification
to determine if the security assumptions have been met.

• Source-code fault injection (white box, gray box). Fault injec-
tion is a technique used to improve code coverage by testing all code
paths, especially error-handling code paths that may not be exercised

Design and Development (A3): SDL Activities and Best Practices 141

during functional testing. In fault injection testing, errors are
injected into the software to simulate unintentional attacks on the
software through its environment, and attacks on the environment
itself. In source-code fault injection, the tester decides when environ-
ment faults should be triggered. The tester then “instruments” the
source code by nonintrusively inserting changes into the program
that reflect the changed environment data that would result from
those faults. The instrumental source code is then compiled and
executed, and the tester observes the ways in which the executing
software’s state changes when the instrumental portions of code are
executed. This allows the tester to observe the secure and nonsecure
state changes in the software resulting from changes in its environ-
ment. The tester can also analyze the ways in which the software’s
state change results from a fault propagating through the source
code. This type of analy sis is typically referred to as fault propagation
analysis, and involves two techniques of source-code fault injection:
extended propagation analysis and interface propagation analysis.

• Dynamic code analysis (gray box). Dynamic code analysis exam-
ines the code as it executes in a running application, with the tester
tracing the external interfaces in the source code to the correspond-
ing interactions in the executing code, so that any vulnerabilities or
anomalies that arise in the executing interfaces are simultaneously
located in the source code, where they can be fixed. Unlike static
analysis, dynamic analysis enables the tester to exercise the software in
ways that expose vulnerabilities introduced by interactions with users
and changes in the configuration or behavior of environmental com-
ponents. Because the software is not fully linked and deployed in its
actual target environment, the testing tool essentially simulates these
interactions and their associated inputs and environment conditions.

• Binary fault injection (gray box, black box). Binary fault injection
is a runtime analysis technique whereby an executing application is
monitored as faults are injected. By monitoring system call traces, a
tester can identify the names of system calls, the parameters to each
call, and the call’s return code. This allows the tester to discover the
names and types of resources being accessed by the calling software,
how the resources are being used, and the success or failure of each
access attempt. In binary fault analysis, faults are injected into the
environment resources that surround the application.

142 Core Software Security

• Fuzz testing (black box). Fuzzing is a technique that is used to
detect faults and security-related bugs in software by providing
random inputs (fuzz) to a program. As opposed to static analysis,
where source code is reviewed line by line for bugs, fuzzing con-
ducts dynamic analysis by generating a variety of valid and invalid
inputs to a program and monitoring the results. In some instances,
the result might be the program crashing.

• Binary code analysis (black box). Binary code scanners analyze
machine code to model a language-neutral representation of the
program’s behaviors, control and data flows, call trees, and exter-
nal function calls. Such a model may then be traversed by an auto-
mated vulnerability scanner in order to locate vulnerabilities caused
by common coding errors and simple back doors. A source code
emitter can use the model to generate a human-readable source code
repre sentation of the program’s behavior, enabling manual code
review for design-level security weaknesses and subtle back doors
that cannot be found by automated scanners.

• Byte code analysis (black box). Byte code scanners are used just
like source-code security analyzers, but they detect vulnerabilities
in the byte code. For example, the Java language is compiled into
a platform-independent byte code format that is executed in the
runtime environment (Java Virtual Machine). Much of the infor-
mation contained in the original Java source code is preserved in
the compiled byte code, thus making de-compilation possible. Byte
code scanners can be used in cases where the source code is not
available for the software—for example, to evaluate the impact a
third-party software component will have on the security posture of
an application.

• Black box debugging (black box). Debuggers for low-level pro-
gramming languages such as C or ASM are software tools that
enable the tester to monitor the execution of a program, start and
stop a program, set breakpoints, and modify values. Debuggers are
 typically used to debug an application when the source code or the
compiler symbols are available. The source-code and compiler sym-
bols allow information, the values of internal variable, to be tracked
to discover some aspect of internal program behavior. However,
sometimes only the binary is available, and the binary was com-
piled from code with no compiler symbols or debug flags set. This
is typical in commercial software, legacy software, and software that

Design and Development (A3): SDL Activities and Best Practices 143

implements protective measures, such as code obfuscation, to pre-
vent reverse engineering. In this case, traditional debugging is not
possible. It should be noted that if the focus of debugging effort is
on the software interaction with an external component, the binary
may be all that is needed.

• Vulnerability scanning (black box). Automated vulnerability scan-
ning of operating system and application-level software involves use
of commercial or open-source scanning tools that observe execut-
ing software systems for behaviors associated with attack patterns
that target specific known vulnerabilities. Like virus scanners,
vulnerability scanners rely on a repository of “signatures,” in this
case indicating recognizable vulnerabilities. Like automated code
review tools, although many vulnerability scanners attempt to pro-
vide some mechanism for aggregating vulnerabilities, they are still
unable to detect complex vulnerabilities or vulnerabilities exposed
only as a result of unpredictable (combinations of) attack patterns.
In addition to signature-based scanning, most vulnerability scan-
ners attempt to simulate the reconnaissance attack patterns used by
attackers to “probe” software for exposed, exploitable vulnerabilities.

• Penetration testing (black box). The portion of security testing in
which the evaluators attempt to circumvent the security features of
a system. The evaluators might be assumed to use all systems design
and implementation documentation, which can include listings of
system source code, manuals, and circuit diagrams. The evaluators
work under the same conditions as are applied to ordinary users.9–12

The test plan organizes the security testing process and outlines which
components of the software system are to be tested and what test proce-
dure is to be used on each one. The outline is more than just a list of high-
level tasks to be completed; it should also include which artifacts are to
be tested, what methodologies are to be used, and a general description of
the tests themselves, including prerequisites, setup, execution, and what
to look for in the test results. The risk analysis described previously is
 typically used to prioritize the tests, since it is usually not possible, given
time and budget constraints, to test every component of the software.
Security test planning is an ongoing process, and the details of the test
process are fleshed out as additional information becomes available.

The developing organization may modify software because problems
have been uncovered and then send the software back to be retested.

144 Core Software Security

Therefore it is often inefficient for begin testing only after development
is complete, so one component may be in testing while other compo-
nents of the same system are still being developed. For larger projects, the
test plan is typically broken down into test cycles. Given the examples
above, test cycles may be created because of the need to retest software
that was already tested once before; or test cycles may be created because
the nature of the development effort requires that different modules be
tested at different times.

Intercomponent dependencies, including those elements or software
components in a SaaS or cloud environment that may interact with the
software being developed, must be taken into account so that the poten-
tial need for retesting is minimized. A development organization typically
has a very regimented development process, so the security team needs
to be involved from the beginning of the SDLC process. The security
team needs to specify early the order in which components should be
tested, to ensure that each module is tested before other modules that
might depend on it are developed and tested. The concept of “building
security in” should be used not just to promote the security program; it
must be strictly adhered to if the SDL is to be successful. This means the
security team needs to be included in the general test plan discussions
to ensure that the elements of security are included in the validation of
the test environment and the test data, and how the test cases define the
test condition. The test condition is what is actually going to be tested to
see how the software is actually going to respond. Test cases are created
during the test execution process and include information about the test
pre-conditions and post-conditions, how it will be set up and terminated,
and how the results will be evaluated.

Automation will be key to making the process run smoothly and most
importantly, repeatable and should be used wherever possible. As men-
tioned, previously, this will not always be possible and the human element
will be absolutely necessary, particularly the skills of senior software secu-
rity architects. The test plan will be expected to provide as much guidance
as possible to let the tester definitely know what they are looking for in
each test and what the specific test preparations are

Michael and Radosevich, of Cigital, listed the following typical ele-
ments of a security test plan that can be used as a guideline for develop ing
your own plan in their 2005 white paper titled “Risk-Based and Functional
Security Testing”:

Design and Development (A3): SDL Activities and Best Practices 145

• Purpose
• Software Under Test Overview

o Software and Components
o Test Boundaries
o Test Limitations

• Risk Analysis
o Synopsis of Risk Analysis

• Test Strategy
o Assumptions
o Test Approach
o Items Not to Be Tested

• Test Requirements
o Functionality Test Requirements
o Security Test Requirements
o Installation/Configuration Test Requirements
o Stress and Load Test Requirements
o User Documentation
o Personnel Requirements
o Facility and Hardware Requirements

• Test Environment
• Test Case Specifications

o Unique Test Identifier
o Requirement Traceability (what requirement number from
 requirement document does test case validate)
o Input Specifications
o Output Specifications/Expected Results
o Environmental Needs
o Special Procedural Requirements
o Dependencies Among Test Cases

• Test Automation and Testware
o Testware Architecture
o Test Tools
o Testware

• Test Execution
o Test Entry Criteria
o QA Acceptance Tests
o Regression Testing
o Test Procedures, Special Requirements, Procedure Steps

146 Core Software Security

o Test Schedule
o Test Exit Criteria

• Test Management Plan
• Definitions and Acronyms13

5.3 Threat Model Updating

After working through the threat modeling process described in Chapter 4,
it is important to know when you are done with the process. This will
involve answering a few questions such as the following, whose answers
will likely depend on competing business and security risk interests and
may require some trade-offs:

 1. Have you accounted for all the policies, laws, or regulations rele-
vant to the software that you are developing, and accounted for and
gained approval for the level of effort for each of these requirements?

 2. Have all your stakeholders reviewed the security assessment and
risks identified as a result of the threat modeling process? The appro-
priate architects, developers, testers, program managers, and others
who understand the software should have been asked to contri-
bute to threat models and to review them. Broad input and reviews
should have been solicited to ensure that the threat models are as
comprehensive as possible. It is also important that all stakeholders
agree on the threats and risks that have been identified. If this is not
the case, implementing appropriate counter-measures may prove to
be difficult.

 3. Have you accounted for and have your stakeholders agreed to the
availability of time and resources required as both a result of the
threat modeling process and any resulting mitigation and testing?

 4. Have you ranked your threats and risks according to consensus from
stakeholders? If you were a buy of this software, would you agree
with this ranking?

5.4 Design Security Analysis and Review

In a 1974 paper, Saltzer and Schroeder of the University of Virginia
addressed the protection of information stored in a computer system by

Design and Development (A3): SDL Activities and Best Practices 147

focusing on hardware and software issues that are necessary to support
information protection.14 The paper presented the following 11 security
design principles:

 1. Least privilege. The principle of least privilege maintains that an
individual, process, or other type of entity should be given the
minimum privileges and resources for the minimum period of time
required to complete a task. This approach eliminates the opportu-
nity for unauthorized access to sensitive information.

 2. Separation of duties. This principle requires that completion of
a specified sensitive activity or access to sensitive objects is depen-
dent on the satisfaction of multiple conditions. Separation of duties
forces collusion among entities in order to compromise the system.

 3. Defense in depth. This is the application of multiple layers of pro-
tection, such that a subsequent layer will provide protection if a pre-
vious layer is breached.

 4. Fail safe. This means that if a system fails, it should fail to a state
where the security of the system and its data are not compromised.
In the situation where system recovery is not done automatically, the
failed system should permit access only by the system administrator
and not by users, until security controls are reestablished.

 5. Economy of mechanism. This promotes simple and comprehen-
sible design and implementation of protection mechanisms, so that
unintended access paths do not exist or can be readily identified
and eliminated.

 6. Complete mediation. This is where every request by a subject to
access an object in a computer system must undergo a valid and effec-
tive authorization procedure. This mediation must not be suspend
or become capable of being bypassed, even when the information
system is being initialized, undergoing shutdown, being restarted,
or is in maintenance mode. Complete mediation entails: (a) identi-
fication of the entity making the access request; (b) verification that
the request has not changed since its initiation; (c) application of
the appropriate authorization procedures; and (d) reexamination of
previously authorized requests by the same entity.

 7. Open design. There has always been discussion of the merits and
strength of security of designs that are kept secret versus designs
that are open to scrutiny and evaluation by the community at large.
For most purposes, an open-access control system design that has

148 Core Software Security

been evaluated and tested by a large number of experts provides
a more secure authentication method than one that has not been
widely assessed.

 8. Least common mechanism. This principle states that a minimum
number of protective mechanisms should be common to multiple
users, as shared access paths can be sources of unauthorized informa-
tion exchange. Shared access paths that provide unintentional data
transfers are known as covert channels. The least common mechanism
promotes the least possible sharing of common security mechanisms.

 9. Psychological acceptability. This refers to the ease of use and intui-
tiveness of the user interface that controls and interacts with the
access control mechanisms. The user must be able to understand
the user interface and use it without having to interpret complex
instructions.

 10. Weakest link. As in the old saying, “A chain is only as strong as its
weakest link,” the security of an information system is only as good
as its weakest component. It is important to identify the weakest
mechanisms in the security chain and layers of defense and improve
them so that risks to the system are mitigated to an acceptable level.

 11. Leveraging existing components. In many instances, the security
mechanisms of an information system are not configured properly or
used to their maximum capability. Reviewing the state and settings
of the extant security mechanisms and ensuring that they are operat-
ing at their optimum design points will greatly improve the security
posture of an information system. Another approach that can be used
to increase system security by leveraging existing components is to
partition a system into defended subunits. Then, if a security mecha-
nism is penetrated for one subunit, it will not affect the other sub-
units and damage to the computing resources will be minimized.15,16

Designing good software isn’t easy, and building security in makes it
even more difficult. Although some software flaws may not matter from
a user perspective, from a security perspective they may matter because
an attacker may be able induce failures by setting up the highly specific
conditions necessary to trigger a flaw. Something that may have had a
low probability of happening randomly and dismissed as irrelevant may
be significant if an attacker can take advantage of it. In the summary of
Saltzer and Schroeder’s design principles, the principles are stated clearly
but they lack the success criteria for security. We fortunately do have a

Design and Development (A3): SDL Activities and Best Practices 149

general idea of what security looks like and can avoid failure in this area
by incorporating the long-accepted properties of confidentiality, integrity,
and availability into the design principles. There are of course different
views of security, from that of a software developer, who may think of
security primarily in terms of quality; to that of a network administra-
tor, who may think of security in terms of firewalls, IDS/IPS systems,
incident response, and system management; or even those of managers
and academics, who may think of security mostly in terms of the classic
design principles described above or in terms of various security models.
All these viewpoints are important in building secure systems and relevant
to modeling the overall threat to your software. You must stay focused on
the ultimate prize when designing security in: the potential exploitation
of the software you are developing.

Detailed design artifacts are used to build each software component
needed to satisfy the use case requirements required to effectively design
your software for security. A thorough analysis of each software artifact
for possible vulnerabilities is conducted for every feature, property, and
service that exists in every component. As a result of analyzing each soft-
ware component for the use cases and in misuse case scenarios identified
through the processes described in Chapter 4, developers will be able to
design appropriate countermeasures up front and transparently, so that
the entire team is able to see how software security is being handled in the
application. As a result, the use case concepts can be converted to actual
software requirement specifications. As the developers review the specific
application software they are developing, they should also assess any vul-
nerabilities found in the associated ecosystem it will support, including
its network, architecture, and supporting software. It is also important
for the development security team to stay current with the latest vulner-
abilities that may affect your specific software and associated ecosystem,
both pre- and post-release, to prepare for new potential planes of attack
previously unknown or discovered, both internally and externally. It will
be much easier and less expensive to fix or develop a countermeasure to
an identified risk as the software is being designed and developed than
after it is released. Although the secure design of the code is critical and
of upmost importance, mistakes will be made, new attack methodologies
will be discovered and will continue to drive the need to research and
assess new methods of attack and vulnerabilities long after the product has
shipped and likely until it reaches end of life. This of course is why it is so
important to minimize the attack surface through the methods described

150 Core Software Security

in Chapter 4, combined with good design principles to maximize the
limitation of severity of any security flaws that may be missed in the code.
The design as organized framework will be a strategy breaking down the
problem into smaller parts that are more easily solved. Threat modeling
will be key to your success and process in this endeavor, as it will typi-
cally identify a secure design issue that might have gone un noticed until
much later. The data flow diagram results will be used next, along with
the brainstorming of attacks and review of known checklists. Apply what-
ever combined methodology works best for you, conduct all the necessary
research, and apply it early in your design to minimize any component
failing late in the development process.

5.5 Privacy Implementation Assessment

The authors believe that the most concise, clear, and field-tested privacy
implementation assessment processes, procedures, and guidelines for soft-
ware development are available from Microsoft and are contained in three
primary documents:

 1. Microsoft’s Privacy Guidelines for Developing Software Products and
Services, Version 3.1; September 200817

 2. Microsoft MSDN’s SDL—Process Guidance—Appendix C: SDL
 Privacy Questionnaire18

 3. Microsoft’s Simplified Implementation of the Microsoft SDL19

The process and guidance by which you determine your Privacy
Impact Rating and estimate the work required to be compliant is
described in Microsoft’s Privacy Guidelines for Developing Software
Products and Services, Version 3.1; September, 2008,20 and their SDL—
Process Guidance—Appendix C: SDL Privacy Questionnaire.21 The ratings
(P1, P2, or P3) represent the degree of risk your software presents from
a privacy perspective. You need to complete only the steps that apply to
your rating, based on the following guidelines:

• P1: High Privacy Risk. The feature, product, or service stores or
transfers personally identifiable information (PII), changes settings
or file type associations, or installs software.

Design and Development (A3): SDL Activities and Best Practices 151

• P2: Moderate Privacy Risk. The sole behavior that affects pri-
vacy in the feature, product, or service is a one-time, user-initiated,
anony mous data transfer (for example, the user clicks on a link and
the software goes out to a website).

• P3: Low Privacy Risk. No behaviors exist within the feature, pro-
duct, or service that affect privacy. No anonymous or personal data is
transferred, no PII is stored on the machine, no settings are changed
on the user’s behalf, and no software is installed.22

The questions are designed to help you complete the privacy aspects of
the SDL, and you can complete some sections, such as the initial assess-
ment and a detailed analysis, on your own. It is recommended that you
complete other sections, such as the privacy review, together with your
privacy advisor.23

One of the best ways to protect a customer’s privacy is not to collect
his or her user data in the first place. The questions that should constantly
be asked by architects, developers, and administrators of data collection
systems include:

• “Do I need to collect this data?”
• “Do I have a valid business purpose?”
• “Will customers support my business purpose?”24

The development organization must keep in mind that for customers
to have control over their personal information, they need to know what
personal information will be collected, with whom it will be shared, and
how it will be used. In addition:

• Customers must provide consent before any personal information is
transferred from their computer; and

• If customers’ personal information is transferred over the Internet
and stored remotely, they must be offered a mechanism for accessing
and updating the information.25

The guidelines developed in the Microsoft Privacy Guidelines for
Developing Software Products and Services, Version 3.1,26 are based on
the core concepts of the Organization for Economic Co-operation and
Development (OECD) Fair Information Practices27 and privacy laws

152 Core Software Security

such as the EU Data Protection Directive,28 the U.S. Children’s Online
Privacy Protection Act of 1998 (COPPA),29 and the U.S. Computer Fraud
and Abuse Act30 and its amendments. The Microsoft Privacy Guidelines
for Developing Software Products and Services31 document is divided into
two main sections. Section 1 provides an introduction to key privacy
concepts and definitions. Section 2 enumerates detailed guidelines for
specific software product and website development scenarios. The table
of contents for the Privacy Guidelines for Developing Software Products and
Services is provided below to show the breadth and scope of the guidance
in the document.

 Table of Contents
 Introduction
 1 Basic Concepts and Definitions
 1.1 User Data
 1.1.1 User Data Categories
 1.2 Data Minimization and Data Management
 1.2.1 Minimizing Data Collected
 1.2.2 Limiting Access to “Need to Know”
 1.2.3 Reducing the Sensitivity of Data Retained
 1.2.4 Reducing Duration of Data Retention
 1.3 Notice, Choice, and Consent
 1.3.1 Types of Notice
 1.3.2 Types of Consent
 1.4 Notice Mechanisms
 1.4.1 Just-in-Time Notice
 1.4.2 First Run Notice
 1.4.3 Installation Time Notice
 1.4.4 “Out of the Box” Notice
 1.5 Security
 1.6 Access
 1.7 Data Integrity
 1.8 Types of Privacy Controls
 1.8.1 User Controls
 1.8.2 Administrator Privacy Controls
 1.9 Shared Computers
 1.10 Children’s Privacy
 1.11 Software Installation

Design and Development (A3): SDL Activities and Best Practices 153

 1.12 Server Products
 Third Parties
 1.13 Web Sites and Web Services
 1.13.1 Using P3P for Privacy Statements
 1.13.2 Using Cookies
 1.14 Special Considerations
 1.14.1 Pre-Release Products
 1.14.2 Essential Transfers and Updates
 1.14.3 File and Path Names
 1.14.4 IP Address
 1.14.5 When Things Change
 2 Guidelines
 2.1 How to Use This Section
 2.2 Scenarios
 Scenario 1: Transferring PII to and from the Customer’s
 System
 Scenario 2: Storing PII on the Customer’s System
 Scenario 3: Transferring Anonymous Data from the
 Customer’s System
 Scenario 4: Installing Software on a Customer’s System
 Scenario 5: Deploying a Web Site
 Scenario 6: Storing and Processing User Data at the
 Company
 Scenario 7: Transferring User Data outside the
 Company
 Scenario 8: Interacting with Children
 Scenario 9: Server Deployment
 Appendix A Windows Media Player 10 Privacy Experience
 Appendix B Security and Data Protection
 Appendix C User Data Examples

As part of the design requirements activities, additional privacy
actions include the creation of privacy design specifications, specifica-
tion review, and specification of minimal cryptographic design require-
ments. Design specifications should describe privacy features that will
be directly exposed to users, such as those that require user authentica-
tion to access specific data or user consent before use of a high-risk pri-
vacy feature. In addition, all design specifications should describe how

154 Core Software Security

to securely implement all functionality provided by a given feature or
function. It is good practice to validate design specifications against the
application’s functional specification. The functional specification should
include (1) an accurate and complete description of the intended use of a
feature or function, and (2) a description of how to deploy the feature or
function in a secure fashion.32

Security controls that help to protect PII data must consider all aspects
of data protection, including, but not limited to, access controls, data
encryption in transfer and storage, physical security, disaster recovery,
and auditing. In many cases, the same security controls that are essen-
tial to protecting critical business data, including confidential and pro-
prietary in formation, from compromise and loss are the same that will
be used to protect personal information of customers and employees and
should be leveraged whenever possible. This can only be determined after
identifying, understanding, and classifying the PII data that the organiza-
tion collects, stores, or transfers, according to the guidance described in
this section.

5.6 Key Success Factors and Metrics

5.6.1 Key Success Factors

Success of this third phase of the SDL depends on a security test plan,
design security analysis review, and privacy implementation assessment.
It is during this phase that a plan for the rest of the SDL process from
implementation to testing is built. Table 5.1 lists key success factors for
this third phase.

Success Factor 1: Comprehensive Security Test Plan

During this phase, security architects and the assessment team define var-
ious aspects of the software that need to be tested and the types of testing
that need to be scheduled and planned both before and after release of
the software. The security test plan should map code development phases
to the type of testing. For example, with every check-in associated static
analysis, a comprehensive static analysis is a must after final code commit.
Once the software enters the pre-release cycle, vulnerability assessments,
gray box testing, and binary testing should be scheduled. One of the

Design and Development (A3): SDL Activities and Best Practices 155

most critical success factors of this phase and the overall SDL is that the
 security test plan is able to eliminate most security vulnerabilities before
the product is deployed.

Success Factor 2: Effective Threat Modeling

If new threat or attack vectors are identified during this phase, the threat
model and artifacts need to be updated to make sure the risk mitigation
plan is comprehensive.

Success Factor 3: Design Security Analysis

Along with accuracy of security test plans, review of software design from
a security viewpoint is perhaps the most important success factor during
the first three phases of the SDL. It is important to minimize the attack
surface and improve design principles to maximize the limitation of sever-
ity of any security flaws that may be missed in the code.

Success Factor 4: Privacy Implementation Assessment

It is imperative that your estimate of work required in adhering to pri-
vacy policies and practices both within the company and outside it are
as accurate as possible. This will enable significant cost savings down the
road. For example, if privacy practices require that PII data be encrypted
across the board, it is critical that this need is identified during the design
phase. Once the software is in the execution and release stages, it is often

Table 5.1 Key Success Factors

Key Success Factor Description

1. Comprehensive security test plan Mapping types of security testing
required at different stages of SDLC

2. Effective threat modeling Identifying threats to the software

3. Design security analysis Analysis of threats to various software
components

4. Privacy implementation
assessment

Effort required for implementation of
privacy-related controls based on
assessment

5. Policy compliance review
(updates)

Updates for policy compliance as related
to Phase 3

156 Core Software Security

cost-prohibitive to do this. The authors have seen Fortune 500 companies
where such decisions are taken during service pack release. By then, how-
ever, it is extremely difficult to fix the problem accurately. It is also very
expensive. Another example of the problem is network segmentation.
In a cloud/SaaS-based environment, this is an important decision to
make. Often there will be multiple products hosted out from this shared
environ ment. How to best protect one product from another is an impor-
tant question for the design phase.

Success Factor 5: Policy Compliance Review (Updates)

If existing policies are updated or additional policies are identified, it is
a good idea to review compliance against the new set of requirements.
An example of an updated policy might be inclusion of any remaining
privacy-related policies or forward-looking strategies.

5.6.2 Deliverables

Table 5.2 lists deliverables for this phase of the SDL.

Updated Threat Modeling Artifacts

Updated data flow diagrams, a technical threat modeling report, a high-
level executive threat modeling report, threat lists, and recommendations

Table 5.2 Deliverables for Phase A3

Deliverable Goal

Updated threat modeling
artifacts

Data flow diagrams, elements,
threat listing

Design security review Modifications to design of
software components based on
security assessments

Security test plans Plan to mitigate, accept, or
tolerate risk

Updated policy compliance
analysis

Analysis of adherence to
company policies

Privacy implementation
assessment results

Recommendations from privacy
assessment

Design and Development (A3): SDL Activities and Best Practices 157

for threat analysis based on any new requirements/inputs to attack vectors
need to be created.

Design Security Review

This is a formal specification that lists changes to software components
and software design based on security review from security architects
and assessments.

Security Test Plans

This is a formal security test schedule that maps different stages of the
SDL process to different types of security testing (static analysis, fuzzing,
vulnerability assessments, binary testing, etc.)

Updated Policy Compliance Analysis

Policy compliance analysis artifacts (see Chapter 4) should be updated
based on any new requirements or policies that might have come up dur-
ing this phase of the SDL.

Privacy Implementation Assessment Results

This is a roadmap to implement recommendations from the privacy
implementation assessment. It should be based on privacy risk (high,
medium, or low).

5.6.3 Metrics

Since some of the success factors and deliverables are similar to those for
Phase 2 of the SDL, the same metrics should be collected and recorded:

• Threats, probability and severity
• Percent compliance with company policies (updated)

o Percent of compliance in Phase 2 versus Phase 3
• Entry points for software (using DFDs)
• Percent of risk accepted versus mitigated
• Percent of initial software requirements redefined

158 Core Software Security

• Percent of software architecture changes
• Percent of SDLC phases without corresponding software security

testing
• Percent of software components with implementations related to

privacy controls
• Number of lines of code
• Number of security defects found using static analysis tools
• Number of high-risk defects found using static analysis tools
• Defect density (security issues per 1000 lines of code)

Note that if too many controls related to privacy need to be imple-
mented in the software components, you might want to review the design
of the components.

5.7 Chapter Summary

During our discussion of design and development (Phase A3), we
described the importance of an analysis of policy compliance, creation of
the test plan documentation, updates to the threat modeling discussed in
the last chapter if necessary, completion of a design security analysis and
review, and a privacy implementation assessment. Out of all of this, best
practices are created from the functional and design specifications that
have been created that will be used throughout the remainder of the SDL
process. Toward the end of the chapter, we discussed key success factors,
deliverables, and metrics for this phase.

References

 1. McConnell, S. (1996), Rapid Development. Microsoft Press, Redmond, WA.
 2. Grembi, J. (2008), Secure Software Development: A Security Programmer’ s Guide.

Course Technology, Boston, MA.
 3. Krutz, R., and Fry, A. (2009), The CSSLP Prep Guide: Mastering the Certified

Secure Software Lifecycle Professional. Wiley, Indianapolis, IN.
 4. Information Assurance Technology Analysis Center (ITAC)/Data and Analysis

Center for Software (DACS) (2007), Software Security Assurance State-of-the-Art
Report (SOAR). Available at http://iac.dtic.mil/csiac/download/security.pdf.

 5. Krutz, R., and Fry, A. (2009), The CSSLP Prep Guide: Mastering the Certified
Secure Software Lifecycle Professional. Wiley, Indianapolis, IN.

Design and Development (A3): SDL Activities and Best Practices 159

 6. Information Assurance Technology Analysis Center (ITAC)/Data and Analysis
Center for Software (DACS) (2007), Software Security Assurance State-of-the-Art
Report (SOAR). Available at http://iac.dtic.mil/csiac/download/security.pdf.

 7. Krutz, R., and Fry, A. (2009), The CSSLP Prep Guide: Mastering the Certified
Secure Software Lifecycle Professional. Wiley, Indianapolis, IN.

 8. Information Assurance Technology Analysis Center (ITAC)/Data and Analysis
Center for Software (DACS) (2007), Software Security Assurance State-of-the-Art
Report (SOAR). Available at http://iac.dtic.mil/csiac/download/security.pdf.

 9. Krutz, R., and Fry, A. (2009), The CSSLP Prep Guide: Mastering the Certified
Secure Software Lifecycle Professional. Wiley, Indianapolis, IN.

 10. Information Assurance Technology Analysis Center (ITAC)/Data and Analysis
Center for Software (DACS) (2007), Software Security Assurance State-of-the-Art
Report (SOAR). Available at http://iac.dtic.mil/csiac/download/security.pdf.

 11. Fink, G., and Bishop, M. (1997), “Property-Based Testing: A New Approach
to Testing for Assurance.” SIGSOFT Software Engineering Notes, vol. 22, no. 4,
pp. 74–80.

 12. Goertzel, K., et al. (2008), Enhancing the Development Life Cycle to Produce Secure
Software. Version 2.0. U.S. Department of Defense Data and Analysis Center for
Software, Rome, NY.

 13. Michael, C., and Radosevich, W. (2005), “Risk-Based and Functional Security
Testing.” Cigital white paper, U.S. Department of Homeland Security. Updated
2009-07-23 by Ken van Wyk. Available at https://buildsecurityin.us-cert.gov/bsi/
articles/best-practices/testing/255-BSI.html#dsy255-BSI_sstest.

 14. Saltzer, J., and Schroeder, M. (1974), “The Protection of Information in Computer
Systems.” Fourth ACM Symposium on Operating Systems Principle, October
1974.

 15. Ibid.
 16. Grembi, J. (2008), Secure Software Development: A Security Programmer’s Guide.

Course Technology, Boston, MA.
 17. Microsoft Corporation (2008), Privacy Guidelines for Developing Software Products

and Services, Version 3.1; September 2008. Available at http://www.microsoft.
com/en-us/download/details.aspx?id=16048.

 18. Microsoft Corporation (2012). MSDN, SDL—Process Guidance—Appendix C:
SDL Privacy Questionnaire. Available at http://msdn.microsoft.com/en-us/library/
cc307393.aspx.

 19. Microsoft (2011), Simplified Implementation of the Microsoft SDL. Available at
http://www.microsoft.com/en-us/download/details.aspx?id=12379.

 20. Microsoft Corporation (2008), Privacy Guidelines for Developing Software Products
and Services, Version 3.1; September 2008. Available at http://www.microsoft.
com/en-us/download/details.aspx?id=16048.

 21. Microsoft Corporation (2012), MSDN, SDL—Process Guidance—Appendix C:
SDL Privacy Questionnaire. Available at http://msdn.microsoft.com/en-us/library/
cc307393.aspx.

 22. Microsoft (2011), Simplified Implementation of the Microsoft SDL. Available at
http://www.microsoft.com/en-us/download/details.aspx?id=12379.

160 Core Software Security

 23. Microsoft Corporation (2012), MSDN, SDL—Process Guidance—Appendix C:
SDL Privacy Questionnaire. Available at http://msdn.microsoft.com/en-us/library/
cc307393.aspx.

 24. Microsoft Corporation (2008), Privacy Guidelines for Developing Software Products
and Services, Version 3.1; September 2008. Available at http://www.microsoft.
com/en-us/download/details.aspx?id=16048.

 25. Ibid.
 26. Ibid.
 27. Organisation for Economic Co-operation and Development (1980), OECD

Guidelines on the Protection of Privacy and Transborder Flows of Personal Data:
Background. Available at http://oecdprivacy.org.

 28. Official Journal of the European Communities (2001), “REGULATION (EC) No
45/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of
18 December 2000 on the Protection of Individuals with Regard to the Processing
of Personal Data by the Community Institutions and Bodies and on the Free
Movement of Such Data.” Available at http://eurlex.europa.eu/LexUriServ/
LexUriServ.do?uri=OJ:L:2001:008:0001:0022:en:PDF.

 29. United States Government (1998), Children’s Online Privacy Protection Act of
1998 (COPPA). 15 U.S.C. §§ 6501–6506 (Pub.L. 105-277, 112 Stat. 2581-728,
enacted October 21, 1998). Available at http://www.ftc.gov/ogc/coppa1.htm.

 30. Doyle, C. (2008), CRS Report for Congress—Cybercrime: A Sketch of 18 U.S.C.
1030 and Related Federal Criminal Laws, Updated February 25, 2008. Available at
http://fpc.state.gov/documents/organization/103707.pdf.

 31. Microsoft Corporation (2008), Privacy Guidelines for Developing Software Products
and Services, Version 3.1; September 2008. Available at http://www.microsoft.
com/en-us/download/details.aspx?id=16048.

 32. Microsoft (2011), Simplified Implementation of the Microsoft SDL. Available at
http://www.microsoft.com/en-us/download/details.aspx?id=12379.

161

Chapter 6

Design and
Development (A4):
SDL Activities and
Best Practices

In this chapter we will describe the SDL activities for the design and
develop ment (A4) phase of our security development lifecycle (see
Figure 6.1). This phase can be mapped to the “readiness” phase in a typi-
cal software development lifecycle. We start with the continuation of pol-
icy compliance analysis for this phase and then move on to describe the
elements of security test case execution. Building on the proper process
for security testing that should have already been created, documented,
and tested, analysis will continue until necessary tuning is identified in
order to accomplish the required security level. We then describe the use
of automated tools such as static, dynamic, and fuzz test tools to help
automate and enforce security practices efficiently and effectively at a
low cost. Static analysis analyzes the source code prior to compiling, pro-
vides a scalable method of security code review, and helps ensure that
secure coding policies are being followed. Dynamic analysis monitors
application behavior and ensures that the software functionality works

Fi
g

ur
e

6
.1

D

es
ig

n
an

d
 D

ev
el

o
p

m
en

t
(A

4)
: S

D
L

ac
ti

vi
ti

es
 a

nd
 b

es
t

p
ra

ct
ic

es
.

Design and Development (A4): SDL Activities and Best Practices 163

as designed. Fuzz testing induces program failure by deliberately intro-
ducing malformed or random data to an application and can be used as
an effective and low-cost way of finding potential security issues prior
to release and potentially throughout the SDL process. Fuzz testing is a
specialized form of dynamic analysis. By using the latest version of these
automated tools, the latest known automated security analysis, vulnera-
bilities, and recommended protections will be identified. After these
multiple automated tools have been used to quickly analyze the flaws
and vulnerabilities in the software, the code is then reviewed manually,
every issue validated, and the code inspected to overcome the limitations
of automated tools and techniques. As part of this process, attack surface
and threat model reviews will ensure that any new attack vectors that
have been created by any design or implementation changes have been
identified and mitigated. Finally, we discuss the need, value, and process
for privacy validation and remediation to be conducted during this phase
of the SDL.

6.1 A4 Policy Compliance Analysis

This is a continuation of the A3 policy compliance review described in
the previous chapter. As you will see, we continue to perform policy com-
pliance analysis during different phases and review it again and again. It
is of paramount importance that you persist through this and not make
an assumption that you have covered everything in previous iterations.
You will be surprised how often things are missed during initial phases/
iterations of this step.

During this phase, any policy that exists outside the domain of the
SDL policy is reviewed (or reviewed again). This may include policies
from outside the development organization that carry security and privacy
requirements and guidelines to be adhered to when developing software
or applications anywhere within the organization. Often, too, policies
are updated during the development process, and new requirements are
added. Thus it is best to obtain a list of updated policies and make sure
you have incorporated any additional requirements.

Corporate security and privacy policies will likely instruct designers
and developers on what the security and privacy features need to be and
how they must be implemented. Other policies may focus on the use of

164 Core Software Security

third-party and open-source software used as part of a software product or
on the protections and control of source code and other intellectual pro-
perty within and outside the organization. Assuming the software secu-
rity group is separate from the centralized information security group, it
is important that the two groups collaborate on all policies and guide-
lines related to the development and post-release security support by the
organi zation. It helps the information security group to fine-tune its poli-
cies not only for corporate security policies/practices but also for software
development. It is also important to collaborate with the privacy function
of your company, whether it be a centralized group or outside legal coun-
sel. If the company identifies potential new markets, privacy policies and
practices (for that particular market) may be updated.

6.2 Security Test Case Execution

Security testing is a time-consuming process that requires proper prepa-
ration, consistency, and coordination with all stakeholders, as well as a
deep understanding of what you are actually testing. It starts early and
continues throughout the SDLC process. The approach for security test-
ing is different from other forms of testing in that its purpose is to identify
various vulnerabilities in a software design which are exposed and due to
improper design or coding issues. The premise of this book is to secure
at the source, and testing at this level will prevent many of the vulner-
abilities that are typically found only when the software is exposed at the
network level. Security, especially at the design level, can help us identify
potential security problems and their impact before they are part of a
larger system and network and perhaps cost-prohibitive to fix. Software
security is a dynamic risk management exercise in that you are balancing
the costs of potential assurance remedies against the skills and resources of
adversaries—and there are always intelligent adversaries who are focused
on breaking and exploiting your software. Thus, the security test itself
must assess the probability of occurrence of an event based on exploiting
a vulnerability and the risk associated with each potential occurrence.

In a typical SDLC cycle, software goes through quality assurance (QA)
testing that includes unit, performance, system, and regression testing.
If the software passes through test criteria for this QA testing, it will be
given a “Go” by the QA team. Basically, this means that the software has

Design and Development (A4): SDL Activities and Best Practices 165

been tested for quality and is good to go. From the authors’ point of view,
QA testing is not complete unless all security tests have been performed
and the security test acceptance criteria are all met. Software cannot be
a quality product unless it has been comprehensively tested for security
issues. Treating security testing as an add-on is a mistake that many com-
panies still make. Once QA testing is complete, the software goes to the
security team for security testing. In our opinion, routine security testing
should be part of the QA cycle. The QA team should treat security testing
just like any other testing, and should create test cases and perform both
manual and automated testing just as they would any other testing. The
QA team, however, often does not have the skills to execute security test
cases, which therefore often means that the QA team relies on the secu-
rity team to perform all testing. This approach is not very effective and
takes time away from the security team, which has to perform basic secu-
rity tests instead of looking at advanced threats/corner cases. QA secu-
rity testing is not meant to replace security testing by the security team.
Instead, it should be looked upon as enabling the security team to focus
on advanced testing. Below are a few examples of issues that QA security
testing should look for:

• Plaintext passwords/weak passwords in configuration files
• Default accounts on the stack (Apache, Tomcat, operating systems)
• Sensitive information in log files
• Input validation (XSS, SQLi)
• Parameter tampering for Web applications
• Insecure services used by the software team (e.g., Telnet)
• Security configurations for various services (e.g., NFS)

The QA team should focus not just on application but also on the
stack on which the software will run. This means testing various configu-
rations of operating systems and related services, Web servers, etc., from a
security point of view. Before QA gives the “Go” for a product, the entire
stack (application, operation system, Web servers, storage) should have
been tested for basic security issues.

Security test case execution is carried out from two primary perspectives:

 1. Security mechanisms are tested to ensure that their functionality is
properly implemented; and

166 Core Software Security

 2. Security testing is conducted in relation to understanding and simu-
lating the attacker’s approach as identified during threat modeling
and other associated risk-based analyses.

Typically, three specific test type categories are performed on a soft-
ware product and its associated system(s):

 1. Benchmarks. These tests are used to compare estimates to actual
results.

 2. Scheduled tests. These tests include mandatory requirements to
validate the security of the software and associated system(s) being
tested, which must be conducted regardless of whether security
issues or vulnerabilities are detected or tuning is required.

 3. Exploratory tests. Exploratory testing emphasizes the personal free-
dom and responsibility of the individual tester to continually opti-
mize the quality of his or her work by treating test-related learning,
test design, test execution, and test result interpretation as mutually
supportive activities that run in parallel throughout the project.1
The tester actively controls the design of the tests, and those tests are
performed while testing to design new and better tests.

A successful security test execution plan assumes that:

• You have done a detailed risk analysis to evaluate the software and
the system(s) with which it will be associated. This process was
detailed in the Chapter 5.

• Test assets have been developed as part of the risk management plan
and the development of a security engineering/development test
strategy.

Successful security test execution includes the following:

• Baseline and benchmark tests have been performed to ensure that
obvious security issues have been identified early in the testing cycle.

• Automated test scripts have been validated as correct.
• Re-benchmarking testing has been conducted after tuning.
• A basis for future test comparison has been created.
• The results of the security test case execution have been analyzed.

Design and Development (A4): SDL Activities and Best Practices 167

o Test execution results have been evaluated. Your seasoned software
security architects have a key role here, as they apply their skills
and experience to compare the evaluation to previous tests, find-
ing and analyze patterns including identification of obvious or
potential security issues and/or the effects of the tuning effort,
and apply their past experiences to the evaluation. Since this eval-
uation is more an art than a science, the software security archi-
tects should also involve the testers and developers in the analysis
after the architects’ initial review and evaluation to optimize the
results of the analysis toward driving tuning efforts.

o You have determined whether security test case execution acceptance
criteria have been met. This is a result of comparing the results
from the most recent test, or suite of tests, to the acceptance cri-
teria. If all of the results meet or exceed the security test execution
criteria, then the test is complete; if not, the team should con-
tinue to evaluate the results.

o You have determined whether the security test case execution results
are conclusive. If the results do not meet the acceptance criteria,
then the test is likely inconclusive because the test results are not
reproducible and you are unable to determine what is causing
the security issue in the software. If results are inconclusive, an
exploratory test will be needed.

o You have determined whether tuning is required at this point. At this
stage, either a security issue has been detected or more tests are
needed to validate compliance with additional acceptance criteria.
Either the last test will be executed again to see whether the results
are reproducible, or you will move on to tuning.

o There are some tests where no security issues are found and no
tuning is required, but the software must be tested because there
it is mandatory to validate the security of the software and its
associated system(s) against specifically known software security
issues and vulnerabilities.

Successful security test case execution completion criteria include the
following:

• The specific target security requirements and goals of the software
that has been tested have been met.

168 Core Software Security

• When a situation outside the control of the software security group
or its equivalent cannot be resolved, the security testing may be
deemed complete as a result of any one of the following situations,
if the company stakeholders responsible for the development of the
software accept the risk:
o The situation preventing the software security group or its equiva-

lent from achieving its security test case criteria is outside the
group’s control or contractual obligations.

o The predetermined engagement end date is reached and company
stakeholders responsible for the development of the software
accept the risk of not meeting the security criteria. In many
cases this is accepted if a commitment to fix the vulnerability is
scheduled for the next update of the product and/or patch release.

o The software security group or its equivalent and all other stake-
holders agree that the application performs acceptably, even though
some security requirements or goals have not been achieved. As
with the previous situation, this is typically not accepted unless
the commitment to fix the vulnerability is scheduled for the next
update of the product and/or patch release.

6.3 Code Review in the SDLC/SDL Process

Code review can be especially productive for identifying security vulner-
abilities during software development. A properly conducted code review
can do more for the security of your code than nearly any other activity.
A code review allows you to find and fix a large number of security issues
before the code is tested or shipped. There are four basic techniques for
analyzing the security of a software application: automated scanning,
manual penetration testing, static analysis, and manual code review. All of
these methodologies, of course, have strengths, weaknesses, sweet spots,
and blind spots. Collectively, these four types of security code reviews are
likely the fastest and most accurate way to find and diagnose many secu-
rity problems while being less expensive or time-consuming than they are
warranted to be. If planned for and managed correctly, code reviews are
very cost-effective, especially if they are built into the SDLC as part of the
process, thereby avoiding the expensive process of handling, locating, and
fixing security vulnerabilities during later stages of development or after

Design and Development (A4): SDL Activities and Best Practices 169

software product release. Experienced and empowered security personnel
who are knowledgeable about the four basic techniques of code review
should be employed to ensure that the various techniques are mixed and
matched as appropriate to create the most cost-effective and well man-
aged plan for identifying all potential and known significant security
issues in the software being developed. The human element in the process
will also help apply context to the security vulnerabilities found by the
automated tools. This holistic approach will be able to find problems
or potential issues, prove that they are exploitable, and verify them by
examining the code. Another advantage of this approach is that it facili-
tates the experience and education of the development team in the use of
security best practices, which will help prevent future security issues. The
process can be broken down into four primary steps as shown graphically
in Figure 6.2 and described below.

1. Identify Security Code Review Objectives

During this step, goals and constraints are established for the review as
the bases for an overall plan. As with most projects, if there is no basis
for a plan, there will likely be a failed project. This is particularly the
case when large amounts of code and/or complex SaaS/cloud applications
are involved. A focused code review is an effective code review. This is
why it is important to review the code with specific goals, time limits,
and knowledge of the issues you want to uncover. This will significantly

Figure 6.2 Four-step code review cycle.

170 Core Software Security

increase your chances for success while reducing the amount of time
required for review. Having a plan will allow the reviewers to focus on
reviewing the code each time there is a meaningful change rather than
trying to find all of the security issues at once, or waiting until the end
of the project and reviewing everything at one time. For efficiency, you
should also identify any stated security objectives that are already known
prior to review, so you can differentiate between vulnerability types that
have elevated priority and others that may be out of scope based on your
security objectives.

Security code review is most successful if it is planned and executed
in the context of other security-related efforts such as threat modeling as
described in the previous chapter. Threat modeling helps to identify a
critical area of code that then becomes a subject of detailed review, and
its results can likewise be used to validate or question security assump-
tions specified in a threat model and help to understand the application’s
functionality, technical design, and existing security threats and counter-
measures. A security code review should begin with a review of the threat
models and design specifications, then move on to source code.

The ideal flow of activities for code review success is perhaps best
described by the steps identified by Chmielewski et al. in MSDN Magazine:

 (a) Threat Modeling: Understand code and data flows; identify high-risk
areas and entry points.

 (b) Code Reviews: Document all findings in an appropriate way, as well
as the process itself.

 (c) Resolve Problems: Cooperate with owners of code on applying fixes
and further efforts.

 (d) Learn the Lesson: Update tools, educate development teams, improve
processes, and plan future iterations.2

For an effective security code review, set goals and constraints for the
following.

• Time: Set a time limit. This helps you to avoid spending too much
time on a single issue. Performing multiple, smaller reviews is more
effective than doing one long review.

• Types of issues: Determine what types of issues you are looking for.
For example, consider:

Design and Development (A4): SDL Activities and Best Practices 171

o General issues that affect confidentially, integrity, and availability
o Issues related to your application’s security quality-of-service

requirements
o Issues related to your application’s compliance requirements
o Issues related to the technologies your application uses
o Issues related to the functionality your application exposes
o Issues you found during threat modeling

• Out-of-scope items: Identify what you will not be looking for. Explain
why these things are out of scope.3

2. Perform Preliminary Scan

Static analysis is used to find an initial set of security issues and to improve
your understanding of where you will be most likely to find security issues
when you review the code more fully and to discover hot spots where
additional security issues are likely to be discovered in later steps. This is
typically done with automatic scans, manual scans, or a combination of
both, depending on the review objectives and time limitations of the code
review plan. Automated scans have an advantage in their ability to quickly
identify “low-hanging fruit” across large sets of applications. The results
from these scans are used in creating a prioritized list of potential security
vulnerabilities and security mechanisms to review and investigate.

An automatic scan can be used to supplement a manual review, as an
extra check to go through large volumes of code that would be cost- and/
or time-prohibitive to do manually, to target areas to focus on for manual
reviews, and to find security issues that may have been missed during
manual review. Automatic scanning tools are typically good at finding
security issues that are a result of single lines of code, finding security
issues that span multiple lines of code in a single function, and may find
problems that manual reviews will miss. Although automatic scanning can
supplement a manual review, it should not be used to replace it because of
the contextual problems and inability to find security issues over multiple
functions such as those found in SaaS/cloud applications. Another issue
with automated tools is the number of false positives and negatives that
are found, which may require significant efforts to tune down to a rea-
sonable number. On the positive side, these types of results will force you
to gain a better understanding of the code, including controls and data
flow, by forcing you to review why a false positive is false. Another risk of

172 Core Software Security

using automated tools is the possible sense of security in believing there
are no security issues in your software if no security issues are identified
as a result of the scan. A significantly sized and complex software product
should never be assumed to be free of security vulnerabilities. All possible
steps should be taken to limit the number of coding errors and reduce
their practical impact, but something is always missed. Automated secu-
rity tools are able to identify more and more coding errors, but some vul-
nerabilities will still be missed and either not detected or hidden among
large numbers of false positives. Manual source code analysis is not a
replacement for these tools, but it helps maximize the identification of
vulnerabilities when integrated with them. As mentioned throughout this
book, it requires a holistic approach to security, including a human ele-
ment, to ensure that both false positives are false and that the code is really
free of security vulnerabilities in spite of being given what appears to be a
clean bill of health by the automated tools. Using both methods together
enables reviewers to identify more software security vulnerabilities both
efficiently and cost-effectively. For these reasons, automated review com-
bined with a manual review is the best approach.

To catch the simpler issues, available security tools should be run
against the code before manual review begins. To avoid finding already-
known issues, all previously identified security vulnerabilities should be
fixed. A manual scan is then conducted to gain a better understanding
of the code and to recognize patterns; the results of the scan will iden-
tify areas that merit further analysis as the reviewers analyze the code for
security issues in Step 3 below. This effort, however, should be a small
percentage of the total code review time and should focus on answering
the following questions:

• Input data validation: Does the application have an input validation
architecture? Is validation performed on the client, on the server, or
both? Is there a centralized validation mechanism, or are validation
routines spread throughout the code base?

• Code that authenticates and authorizes users: Does the application
authenticate users? What roles are allowed, and how do they inter-
act? Is there custom authentication or authorization code?

• Error-handling code: Is there a consistent error-handling architecture?
Does the application catch and throw structured exceptions? Are
there areas of the code with especially dense or sparse error handling?

Design and Development (A4): SDL Activities and Best Practices 173

• Complex code: Are there areas of the code that appear especially
complex?

• Cryptography: Does the application use cryptography?
• Interop: Does the application use interop to call into native code?4

3. Review Code for Security Issues

The results from Step 2 are typically used to focus the analysis of the
reviewer during Step 3.

4. Review for Security Issues Unique to the Architecture

This is where the software security architect or seasoned software security
champion come into play. In some cases, a third party may be used if
you don’t have the expertise in-house. This allows experts to apply their
knowledge of the business logic, use and abuse cases, and prior experience
to identify vulnerabilities while reducing the likelihood of false positives
and false negatives. Static analysis tools are incapable of finding applica-
tion flaws and business logic vulnerabilities and require the context and
application understanding of a human analyst to identify. Having sea-
soned security professionals involved throughout the SDLC process will
balance the developers’ tendency to overlook certain coding errors even
though they wrote the specific fragments of code and usually understand
them best. Seasoned security experts can also help in understanding the
technological context of the code, including not only the specific tech-
nologies that are used in the software product, but also operating-system
and third-party dependencies as well as tools used in development. From
a security perspective, these security experts can identify relationships
between a product and other systems, applications, or services. In the
context of security, it is possible for them to determine what compo-
nents a product relies on, as well as what other software depends on the
pro duct, and how these relationships can be used to determine how a
pro duct affects the rest of the system and how it may be affected by it.
Human errors are typically the cause of most security problems; given the
current shortcomings of automated tools, humans should also be part
of the solution. For example, a small coding error can result in a critical
vulnerability that ends up compromising the security of an entire system
or network or may result from a sequence of errors that occur during the

174 Core Software Security

course of the development cycle where a coding error is introduced and
goes undetected during the testing phases, and available defense mecha-
nisms do not stop a successful attack. This is just another example of why
the human element is necessary in the process, to be able to assess these
types of situations which are currently beyond the capabilities of auto-
mated software security tools.

The basic design of a product may also contain flaws, and it should
be noted that some coding errors, although they may affect product reli-
ability, are not actual vulnerabilities. Remember that the ultimate goal of
security code reviews is to find code vulnerabilities that are accessible by
an attacker and that may allow the attacker to bypass a security boundary.

6.4 Security Analysis Tools

The final goal of the security code review process is to improve the overall
security of the product and to provide output that can be used by the
development team to make changes and/or mitigations that will achieve
improved software product security compared to what existed at concept
commit for the start of the SDLC/SDL process. In this section we discuss
the details of what functions and roles static analysis, dynamic analysis,
fuzz testing, and manual code review have in this overall process. Before
we begin, however, it is important to recognize that each approach has
certain practical advantages and limitations.

Advantages of Static Code Analysis

 1. Access to the actual instructions the software will be executing
 • No need to guess or interpret behavior
 • Full access to all of the software’s possible behaviors

 2. Can find exact location of weaknesses in the code
 3. Can be conducted by trained software assurance developers who

fully understand the code
 4. Allows quick turnaround for fixes
 5. Relatively fast if automated tools are used
 6. Automated tools can scan the entire code base.
 7. Automated tools can provide mitigation recommendations, reducing

research time.

Design and Development (A4): SDL Activities and Best Practices 175

 8. Permits weaknesses to be found earlier in the development lifecycle,
reducing the cost to fix5,6

Limitations of Static Code Analysis

 1. Requires access to source code or at least binary code and typically
needs access to enough software artifacts to execute a build

 2. Typically requires proficiency in running software builds
 3. Will not find issues related to operational deployment environments
 4. Time-consuming if conducted manually
 5. Automated tools do not support all programming languages.
 6. Automated tools produce false positives and false negatives.
 7. There are not enough trained personnel to thoroughly conduct

static code analysis.
 8. Automated tools can provide a false sense of security that everything

is being addressed.
 9. Automated tools are only as good as the rules they are using to scan

with.
 10. Does not find vulnerabilities introduced in the runtime environment7,8

Advantages of Dynamic Code Analysis

 1. Limited scope of what can be found
 • Application must be footprinted to find the test area.
 • That can cause areas to be missed.
 • You can only test what you have found.

 2. No access to actual instructions being executed
 • The tool is exercising the application.
 • Pattern matching on requests and responses.

 3. Requires only a running system to perform a test
 4. No requirement to have access to source code or binary code
 5. No need to understand how to write software or execute builds

 • Tools tend to be more “fire and forget.”
 6. Tests a specific operational deployment

 • Can find infrastructure, configuration, and patch errors that static
 analysis tools will miss.

 7. Identifies vulnerabilities in a runtime environment
 8. Automated tools provide flexibility on what to scan for.

176 Core Software Security

 9. Allows for analysis of applications without access to the actual code
 10. Identifies vulnerabilities that might have been false negatives in the

static code analysis
 11. Permits validation of static code analysis findings
 12. Can be conducted on any application9,10

Limitations of Dynamic Code Analysis

 1. Automated tools provide a false sense of security that everything is
being addressed.

 2. Automated tools produce false positives and false negatives.
 3. Automated tools are only as good as the rules they are using to scan

with.
 4. As for static analysis, there are not enough trained personnel to thor-

oughly conduct dynamic code analysis.
 5. It is more difficult to trace the vulnerability back to the exact loca-

tion in the code, taking longer to fix the problem.11,12

If you have no access to source or binaries, are not a software developer,
and don’t understand software builds, or you are performing a “pen test”
or other test of an operational environment, you will likely choose to use
a dynamic tool; otherwise, you will likely use a static analysis tool. Ideally,
you should use both when possible.

Advantages of Fuzz Testing

 1. The great advantage of fuzz testing is that the test design is extremely
simple, and free of preconceptions about system behavior.

 2. The systematical/random approach allows this method to find bugs
that would often be missed by human eyes. Plus, when the tested
system is totally closed (e.g., a SIP phone), fuzzing is one of the only
means of reviewing its quality.

 3. Bugs found using fuzz testing are frequently severe, exploitable bugs
that could be used by a real attacker. This has become even truer
as fuzz testing has become more widely known, because the same
techniques and tools are now used by attackers to exploit deployed
software. This is a major advantage over binary or source auditing,
or even fuzzing’s close cousin, fault injection, which often relies on
artificial fault conditions that are difficult or impossible to exploit.

Design and Development (A4): SDL Activities and Best Practices 177

Limitations of Fuzz Testing

 1. Fuzzers usually tend to find simple bugs; plus, the more a fuzzer is
protocol-aware, the fewer weird errors it will find. This is why the
exhaustive/random approach is still popular.

 2. Another problem is that when you do some black-box testing, you
usually attack a closed system, which increases the difficulty of eval-
uating the danger/impact of the found vulnerability (no debugging
possibilities).

 3. The main problem with fuzzing to find program faults is that it gen-
erally finds only very simple faults. The problem itself is exponen-
tial, and every fuzzer takes shortcuts to find something interesting in
a timeframe that a human cares about. A primitive fuzzer may have
poor code coverage; for example, if the input includes a checksum
which is not properly updated to match other random changes, only
the checksum validation code will be verified. Code coverage tools
are often used to estimate how “well” a fuzzer works, but these are
only guidelines to fuzzer quality. Every fuzzer can be expected to
find a different set of bugs.13,14

Advantages of Manual Source Code Review

 1. Requires no supporting technology
 2. Can be applied to a variety of situations
 3. Flexible
 4. Promotes teamwork
 5. Early in the SDLC

Limitations of Manual Source Code Review

 1. Can be time-consuming
 2. Supporting material not always available
 3. Requires significant human thought and skill to be effective15

6.4.1 Static Analysis

Static program analysis is the analysis of computer software that is per-
formed without actually executing programs. It is used predominantly to
perform analysis on a version of the source code; it is also performed on

178 Core Software Security

object code. In contrast, dynamic analysis is performed by actually execut-
ing the software programs. Static analysis is performed by an automated
software tool and should not be confused with human analysis or soft-
ware security architectural reviews, which involve manual human code
reviews, including program understanding and comprehension. When
static analysis tools are used properly, they have a distinct advantage over
human static analysis in that the analysis can be performed much more
frequently and with security knowledge superior to that of many software
developers. It thus allows for expert software security architects or engi-
neers to be brought in only when absolutely necessary.

Static analysis (see Figure 6.3) is also known as static application secu-
rity testing (SAST). It identifies vulnerabilities during the development
or quality assurance (QA) phase of a project. SAST provides line-of-code-
level detection that enables development teams to remediate vulnerabili-
ties quickly.

The use of static analysis tools and your choice of an appropriate vendor
for your environment is another technology factor that is key to success.
Any technology that beneficially automates any portion of the software
development process should be welcome, but this software has become

Input
(Source Code)

Testing
(Static Analysis)

Output
(Potential Defects

Identified)

• Has access to the
actual instructions
the software will be

i

• Defects identified
include
XSS, SQL injection,

ifiexecuting.
• Can provide exact

location of code
where problem

id

specific
problems/errors with
applications,
configuration

i k d hresides.
• Can be executed by

software developers
before checking in

d

mistakes, and patch
errors.

• Limited scope of
what can be found
Id tificode. • Identifies.
vulnerabilities in
operational
environment or

tiruntime.

Figure 6.3 Static analysis flow diagram.

Design and Development (A4): SDL Activities and Best Practices 179

“shelfware” in many organizations because the right people and/or the
right process was not used in selecting the tool or tools. Not all tools are
created equal in this space: Some are better at some languages than others,
whereas others have great front-end GRC (governance, risk management,
and compliance) and metric analysis capabilities. In some cases you may
have to use up to three different tools to be effective. Some of the popular
SAST vendor products are Coverity,16 HP Fortify Static Code Analyzer,17
IBM Security AppScan Source,18 klocwork,19 Parasoft,20 and Veracode.21

One of the challenges in using a static analysis tool is that false posi-
tives may be reported when analyzing an application that interacts with
closed-source components or external systems, because without the source
code it is impossible to trace the flow of data in the external system and
hence ensure the integrity and security of the data. The use of static code
analysis tools can also result in false negative results, when vulnerabilities
exist but the tool does not report them. This might occur if a new vulner-
ability is discovered in an external component or if the analysis tool has
no knowledge of the runtime environment and whether it is configured
securely. A static code analysis tool will often produce false positive results
where the tool reports a possible vulnerability that in fact is not. This
often occurs because the tool cannot be sure of the integrity and security
of data as it flows through the application from input to output.22

Michael Howard, in his Security & Privacy 2006 IEEE article titled “A
Process for Performing Security Code Reviews,”23 proposes the following
heuristic as an aid to determining code review priority. The heuristic can
be used as a guide for prioritizing static, dynamic, fuzzing, and manual
code reviews.

• Old code: Older code may have more vulnerabilities than new code,
because newer code often reflects a better understanding of security
issues. All “legacy” code should be reviewed in depth.

• Code that runs by default: Attackers often go after installed code
that runs by default. Such code should be reviewed earlier and more
deeply than code that does not execute by default. Code running by
default increases an application’s attack surface.

• Code that runs in elevated context: Code that runs in elevated
identities, e.g., root in *nix, for example, also requires earlier and
deeper review, because code identity is another component of the
attack surface.

180 Core Software Security

• Anonymously accessible code: Code that anonymous users can
access should be reviewed in greater depth than code that only valid
users and administrators can access.

• Code listening on a globally accessible network interface: Code
that listens by default on a network, especially uncontrolled net-
works such as the Internet, is open to substantial risk and must be
reviewed in depth for security vulnerabilities.

• Code written in C/C++/assembly language: Because these lan-
guages have direct access to memory, buffer-manipulation vulner-
abilities within the code can lead to buffer overflows, which often
lead to malicious code execution. Code written in these languages
should be analyzed in depth for buffer overflow vulnerabilities.

• Code with a history of vulnerabilities: Code that has shown a
number of security vulnerabilities in the past should be suspect,
unless it can be demonstrated that those vulnerabilities have been
effectively removed.

• Code that handles sensitive data: Code that handles sensitive data
should be analyzed to ensure that weaknesses in the code do not
disclose such data to untrusted users.

• Complex code: Complex code has a higher bug probability, is more
difficult to understand, and may be likely to have more security
vulnerabilities.

• Code that changes frequently: Frequently changing code often
results in new bugs being introduced. Not all of these bugs will be
security vulnerabilities, but compared with a stable set of code that is
updated only infrequently, code that is less stable will probably have
more vulnerabilities.

In Michael Howard’s 2004 Microsoft article titled “Mitigate Security
Risks by Minimizing the Code You Expose to Untrusted Users,”24 he also
suggests a notional three-phase code analysis process that optimizes the
use of static analysis tools:

Phase 1: Run all available code analysis tools.

• Multiple tools should be used to offset tool biases and minimize false
positives and false negatives.

• Analysts should pay attention to every warning or error.

Design and Development (A4): SDL Activities and Best Practices 181

• Warnings from multiple tools may indicate that the code needs
closer scrutiny (e.g., manual analysis). Code should be evaluated
early, preferably with each build, and re-evaluated at every milestone.

Phase 2: Look for common vulnerability patterns.

• Analysts should make sure that code reviews cover the most common
vulnerabilities and weaknesses, such as integer arithmetic issues, buf-
fer overruns, SQL injection, and cross-site scripting (XSS).

• Sources for such common vulnerabilities and weaknesses include
the Common Vulnerabilities and Exposures (CVE) and Common
Weaknesses Enumeration (CWE) databases, maintained by the
MITRE Corporation and accessible at: http://cve.mitre.org/cve/
and http://cwe.mitre.org.

• MITRE, in cooperation with the SANS Institute, also maintain a list
of the “Top 25 Most Dangerous Programming Errors” (http://cwe.
mitre.org/top25/index.html) that can lead to serious vulnerabilities.

• Static code analysis tool and manual techniques should, at a mini-
mum, address the “Top 25.”

Phase 3: Dig deep into risky code.

• Analysts should also use manual analysis (e.g., code inspection) to
more thoroughly evaluate any risky code that has been identified
based on the attack surface, or based on the heuristics as discussed
previously.

• Such code review should start at the entry point for each module
under review and should trace data flow through the system, evalu-
ating the data, how it is used, and whether security objectives might
be compromised.

Below is an example of an issue that can be found through static analy-

sis. Injection vulnerabilities are at the top of the OWASP Top 10 2013
list.25 These vulnerabilities occur when untrusted data is used directly for
a query or as a result of construct commands without validation. There are
different types of injection vulnerabilities, SQL, OS, and LDAP among
them. SQL injection attacks are possible if user input is used directly to
craft a SQL query.

182 Core Software Security

Let’s say that a user wants to review his account details. The applica-
tion needs his user id or identifier to query account information from
a back-end database. The application can pass this on through a URL
parameter by doing something like this:

http://example.com/application/reviewaccount?account_id=’1007’

In this case, the application is getting user account_id ‘1007’ and will use
this id to pull information from the database. Let’s say the back-end query
looks like this:

String insecureQuery = “SELECT * FROM accounts WHERE
accountID=’ ” + request.getParameter(“account_id”) + “ ’ ”;

If a malicious user changes the parameter value to ‘ or ‘1’=’1, the follow-
ing string insecure query will have the value

SELECT * FROM accounts WHERE accountID=’ ” ‘ or ‘1’=’1’;

‘1’=’1’ will always be true, and thus this query can yield information
about all accounts. This was not the intention of the developer, but by
trusting user input to create a query, he or she has allowed a malicious
user to execute arbitrary database commands.

Static analysis tools executed against code will identify that the query
is built with user input and can result in SQL injection attacks.

6.4.2 Dynamic Analysis

Dynamic program analysis is the analysis of computer software that is
performed by executing programs on a real or virtual processor in real
time. The objective is to find security errors in a program while it is run-
ning, rather than by repeatedly examining the code offline. By debugging
a program under all the scenarios for which it is designed, dynamic analy-
sis eliminates the need to artificially create situations likely to produce
errors. It has the distinct advantages of having the ability to identify vul-
nerabilities that might have been false negatives and to validate findings
in the static code analysis.

Design and Development (A4): SDL Activities and Best Practices 183

Dynamic analysis (see Figure 6.4) is also known as dynamic applica-
tion security testing (DAST). It identifies vulnerabilities within a produc-
tion application. DAST tools are used to quickly assess a system’s overall
security and are used within both the SDL and SDLC. The same advan-
tages and cautions about using static analysis tools apply to dynamic
analysis tools. Some of the more popular DAST vendor products include
HP Webinspect26 and QAinspect,27 IBM Security AppScan Enterprise,28
Veracode,29 and Whitehat Sentinel Source.30

The following explanation of how dynamic analysis is used through-
out the SDLC is taken from the Peng and Wallace (1993) NIST Special
Publication 500-209, Software Error Analysis.31

• Commonly used dynamic analysis techniques for the design phase
include sizing and timing analysis, prototyping, and simulation.
 Sizing and timing analysis is useful in analyzing real-time programs
with response-time requirements and constrained memory and
 execution-space requirements. This type of analysis is especially

Input
(Running application(Running application,

infrastructure, or
operational deployment

[Source Code not
required])

Testing
(Dynamic Analysis)

Output
(Potential Defects

Identified)

• Does not always
have access to the
actual instructions
h f ill b

• Defects identified
include buffer
overflows, SQL
i j i XSSthe software will be

executing.
• Can not provide

exact location of
d h

injection, XSS,
memory leaks, weak
ciphers, etc..

• Does not find
l bili icode where

problem resides.
• Executed in

operations
i t

vulnerabilities
introduced in the
runtime environment
or operations
d l tenvironment. deployment.

• Does not always find
authentication issues,
business logic flaws,

i for insecure use of
cryptography.

Figure 6.4 Dynamic analysis flow diagram.

184 Core Software Security

 useful for determining that allocations for hardware and software
are made appropriately for the design architecture; it would be quite
costly to learn in system testing that the performance problems are
caused by the basic system design. An automated simulation may be
appropriate for larger designs. Prototyping can be used as an aid in
examining the design architecture in general or a specific set of func-
tions. For large, complicated systems, prototyping can prevent inap-
propriate designs from resulting in costly, wasted implementations.32

• Dynamic analysis techniques help to determine the functional and
computational correctness of the code. Regression analysis is used to
re-evaluate requirements and design issues whenever any significant
code change is made. This analysis ensures awareness of the original
system requirements. Sizing and timing analysis is performed dur-
ing incremental code development and analysis results are compared
against predicted values.33

• Dynamic analysis in the test phase involves different types of test-
ing and test strategies. Traditionally there are four types of testing:
unit, integration, system, and acceptance. Unit testing may be either
structural or functional testing performed on software units, mod-
ules, or subroutines. Structural testing examines the logic of the units
and may be used to support requirements for test coverage—that is,
how much of the program has been executed. Functional testing
evaluates how software requirements have been implemented. For
functional testing, testers usually need no information about the
design of the program, because test cases are based on the software
requirements.34

• The most commonly used dynamic analysis techniques for the final
phase of the SDLC are regression analysis and test, simulation, and
test certification. When any changes to the product are made during
this phase, regression analysis is performed to verify that the basic
requirements and design assumptions affecting other areas of the
program have not been violated. Simulation is used to test operator
procedures and to isolate installation problems. Test certification,
particularly in critical software systems, is used to verify that the
required tests have been executed and that the delivered software
product is identical to the product subjected to software verification
and validation.35

Design and Development (A4): SDL Activities and Best Practices 185

Static analysis finds issues by analyzing source code. Dynamic analysis
tools do not need source code but can still identify the problem. During
our discussion of static analysis, we reviewed an SQL injection attack
example. For that example, the tool would identify that account_id is
passed as a URL parameter and would try to tamper the value of the
parameter and evaluate the response from the application.

6.4.3 Fuzz Testing

Fuzz testing (see Figure 6.5), or fuzzing, is a black-box software testing
technique that can be automated or semiautomated and provides invalid,
unexpected, or random data to the inputs of a computer software pro-
gram. In other words, it finds implementation bugs or security flaws by
using malformed/semi-malformed data injection in an automated fashion.
Inputs to the software program are then monitored for exception returns
such as crashes, failing built-in code assertions, and potential memory
leaks. Fuzzing has become a key element in testing for software or com-
puter system security problems. Fuzz testing has a distinct advantage over

Figure 6.5 Fuzz testing flow diagram.

Input
(Running application(Running application,

infrastructure, or
operational deployment

[Source Code not
required])

Testing
(Fuzz Testing)

Output
(Potential Defects

Identified)

• Does not have
access to the actual
instructions the

f ill b

• Defects identified
include
application/system

h isoftware will be
executing.

• Can not point out
exact location of

bl i d

crashes, assertion
failures, memory
leaks, error handling,
and invalid input

blproblem in code.
• Works by providing

random and invalid
inputs that can

li ti t

problems.
• Limited utility in

finding bugs that do
not cause crash.

cause application to
crash.

186 Core Software Security

other tools in that the test design is extremely simple and free of precon-
ceptions about system behavior.

Fuzzing is a key element of software security and must be embed-
ded in the SDL. There are many vendors to choose from in this space,
and some even develop their own tools. Two popular fuzzing tools are
Codenomicon,36 which is one of the most mature commercially available
fuzzing tools on the market, and the Peach Fuzzing Tool,37 which is one
of the more popular open-source tools. Fuzzing is used for both security
and quality assurance testing. Fuzzing has recently been recognized as
both a key element and a major deficiency in many software develop-
ment programs, so much so that it is now a U.S. Department of Defense
(DoD) Information Assurance Certification and Accreditation Process
(DIACAP) requirement.

Fuzzing is a form of attack simulation in which unexpected data is fed
to the system through an open interface, and the behavior of the system is
then monitored. If the system fails, for example, by crashing or by failing
built-in code assertions, then there is a flaw in the software. Although all of
the issues found by fuzzing tools are critical and exploitable, unlike static
analysis tools, fuzzing can only find bugs that can be accessed through an
open interface. Fuzzing tools must also be able to interoperate with the
tested software so that they can access the deeper protocol layers and test
the system more thoroughly by testing multiple layers.

While static analysis has the benefit of full test coverage and is a good
method for improving the general software quality level, it cannot easily
provide test results that solve for complex problems and, as discussed pre-
viously, it also results in a large number of false positives, both of which
require further analysis by a human and consume valuable and limited
resources. There are no false positives in fuzz testing, because every flaw
discovered is a result of a simulated attack

Static analysis is performed on code that is not being executed, and it
can only be performed offline. In contrast, fuzz testing must be executed
against executable code, can be run against live software, and therefore can
find vulnerabilities that may not be visible in the static code. Fuzz test-
ing targets the problems attackers would also find and therefore is a good
test for robustness while also streamlining the process by focusing only
on the most critical interfaces that may be susceptible to attack. Because
of its ability to test robustness, fuzz testing is typically used during the
verification phase of the SDLC just before product release. As with static

Design and Development (A4): SDL Activities and Best Practices 187

and dynamic analysis, fuzz testing can be used from the moment the first
software components are ready and even after release—not just at some
point in time during the SDLC process. This attribute, of course, can
yield significant cost savings by finding and fixing vulnerabilities early in
the SDLC.

Standard fuzz testing techniques are limited in their use of random
mutation to create test cases, which will find only some of the soft-
ware vulnerabilities. However, this testing still has value because these
are the same vulnerabilities that attackers would find. It is important
to remember that attackers use fuzzing tools as well, and it is a tell-tale
sign of a weak software security development program if fuzzing tools by
 discoverers or attackers find flaws in products you have already released
to your customers. More sophisticated fuzzing techniques are used to
improve and optimize coverage by using protocol specifications to target
protocol areas most susceptible to vulnerabilities and to reduce the num-
ber of test cases needed without compromising test coverage. Static code
analysis is used to ensure that secure coding policies are being followed,
but protocol fuzzing tools are used to gain an attacker’s perspective to the
threat and risk.

Another advantage of fuzz testing is that it can be used with black-box,
gray-box, or white-box testing and does not require source code access.
Like the dynamic analysis tools discussed in this chapter, this feature
makes it a great tool for testing third-party software or software that has
been outsourced for development. One drawback of fuzz testing, how-
ever, is that it is intrusive and may well crash the system, which will likely
require initial testing to occur in a separate environment such as a testing
lab or virtualized environment.

There are two main types of fuzz testing, “smart” and “dumb.”

• In “smart” (generational) fuzzing, the fuzzer pushes data to the pro-
gram in a logical way, usually by waiting for responses and possibly
altering the stack. This method requires in-depth knowledge of the
target and specialized tools, but less crash analysis is required and
also less duplication of findings than with dumb fuzzing.38,39

• In “dumb” (mutational) fuzzing, the fuzzer systematically pushes data
to the program without waiting for proper responses. This method
is closely tied to denial-of-service attacks. This method requires no
knowledge of the target and uses existing tools. However, more crash

188 Core Software Security

analysis is required, and there is more duplication of findings than
with “smart” fuzzing.40,41

To carry out a fuzz test, the following steps are followed for each file or
field that feeds into the application:

 1. Enter random data or spaces to some part of the input file.
 2. Execute the application with that input file.
 3. Evaluate results. What broke? What ran as normal? What was

expected to happen?
 4. Number each test case and report findings to project management.42

6.4.4 Manual Code Review

Manual security code reviews are typically done as a line-by-line inspec-
tion of the software to determine any security vulnerabilities in the soft-
ware product. This will include a thorough review of programming source
code of multitier and multicomponent enterprise software products. After
the use of multiple automated tools, which help quickly analyze flaws and
vulnerabilities, the code is reviewed manually. Every issue discovered is
validated, and the code is inspected to overcome the limitations of the
automated tools and techniques. Coding errors can be found using differ-
ent approaches, but even when compared to sophisticated tools, manual
code reviews have clearly proven their value in terms of precision and
quality. Unfortunately, manual code reviews are also the most expensive
to execute.

Manual code reviews by definition are human-driven, and although
the highest value-add for their use is for architectural design reviews, these
software security reviews are done with a holistic approach that includes
people, policies, and processes. Assuming limited resources, manual
code review is best performed on only the most critical components of
an application. These reviews will also include manually reviewing the
documentation, secure coding policies, security requirements, and archi-
tectural designs. There is also a mentoring aspect of manual reviews, in
that the software security architects will be able to teach others on the
development team about the art of testing, how to understand the secu-
rity process, policy awareness, and the appropriate skills for designing or

Design and Development (A4): SDL Activities and Best Practices 189

 implementing a secure application. Even with seasoned and security-savvy
development teams, software security architects should adopt a trust-
but-verify model. This process is enhanced by the fact that the architects
usually analyze documentation together with the stakeholders and appro-
priate development team members and also interview the designers or
system owners for their input.

It should be noted that if good software engineering processes are
adhered to, they can alleviate many of the concerns that are being assessed
by the code review team. In most cases, static and dynamic analysis or fuzz
testing is more efficient at catching implementation-level bugs than code
review, but if some of the security vulnerabilities that manual code review
finds are rare, it is the only way they will be found. Once a type of security
vulnerability has been found through manual code review, it should be
incorporated into automatic code review tools. As mentioned previously,
efficient and effective software security requires a holistic approach and
includes not just manual software reviews, but also mandatory software
security training, security design reviews, threat modeling, fuzz testing,
static and dynamic analysis, the identification of high-risk practices, and
measurable criteria and requirements for each of the various phases in the
software lifecycle, including servicing and support.

The following steps are typically used for manual software security
reviews:

• The threat model that was used to identify the risk and tell the
develop ment team which code to look at first and with the most
scrutiny will also help the team to understand existing security
threats in relation to the software’s functionality.

• The various automated tools described above are used to assess
the code for semantic and language security vulnerabilities, and to
optimize the search for the highest risk and the greatest effort to fix
or mitigate.

• A line-by-line inspection of the software code is done manually to
find logical errors, insecure use of cryptography, insecure system
configurations, and other known issues specific to the platform.

Using a question-driven approach can help with the review activity. A
list of standard questions can help you focus on common security vulner-
abilities that are not unique to your software’s architecture, This approach

190 Core Software Security

can be used in conjunction with techniques such as control flow and data
flow analysis to optimize the ability to trace those paths through the code
that are most likely to reveal security issues. Questions should address at
least the most common coding vulnerabilities. Ask these questions while
you are using control flow and dataflow analysis. Keep in mind that find-
ing some vulnerabilities may require contextual knowledge of control and
data flow, while others will be context-free and can be found using simple
pattern matching. Some of the following techniques may be combined
when doing a manual security review of the code:

• Control flow analysis. Control flow analysis is the mechanism used to
step through logical conditions in the code. The process is as follows:

 1. Examine a function and determine each branch condition. These
may include loops, switch statements, “if ” statements, and “try/
catch” blocks.

 2. Understand the conditions under which each block will execute.
 3. Move to the next function and repeat.

• Data flow analysis. Data flow analysis is the mechanism used to
trace data from the points of input to the points of output. Because
there can be many data flows in an application, use your code review
objectives and the flagged areas from Step 2 to focus your work. The
process is as follows:

 1. For each input location, determine how much you trust the
source of input. When in doubt, you should give it no trust.

 2. Trace the flow of data to each possible output. Note any attempts
at data validation.

 3. Move to the next input and continue.43

While performing data flow analysis, review the list of inputs and
outputs, and then match this to the code that you need to review. You
must pay particular attention to prioritizing any areas where the code
crosses trust boundaries and where the code changes trust levels, just as
you did during the threat modeling process. A set of common validation
routines that your software can call as soon as it receives any untrusted
data should be available which will give your software product a central
validation area that can be updated as new information is discovered. As
the data flow analysis is performed, give special attention to areas where
the data is parsed and may go to multiple output locations, to ensure

Design and Development (A4): SDL Activities and Best Practices 191

that the data is traced back to its source, and trust is assigned based on
the weakest link.

There are other lists of questions that should be considered. Some of
these are organized into sets of key areas based on the implementation
mistakes that result in the most common software vulnerabilities relevant
to the software product or solution being developed, also called hotspots.
These questions are typically developed by the software security architect
and revolve around the last top 10–20 CVE or OWASP “Top 10” lists
described earlier in the book.

A review for security issues unique to the architecture should also be
conducted as part of the manual security review process. This step is par-
ticularly important if the software product uses a custom security mecha-
nism or has features to mitigate known security threats. During this step,
the list of code review objectives is also examined for anything that has
not yet been reviewed. Here, too, a question-driven approach such as the
following list will be useful, as the final code review step to verify that
the security features and requirements that are unique to your software
architecture have been met.

• Does your architecture include a custom security implementation? A
custom security implementation is a great place to look for security
issues for these reasons:
o It has already been recognized that a security problem exists,

which is why the custom security code was written in the first
place.

o Unlike other areas of the product, a functional issue is very likely
to result in security vulnerability.

• Are there known threats that have been specifically mitigated? Code
that mitigates known threats needs to be carefully reviewed for prob-
lems that could be used to circumvent the mitigation.

• Are there unique roles in the application? The use of roles assumes that
there are some users with lower privileges than others. Make sure
that there are no problems in the code that could allow one role to
assume the privileges of another.44

We would like to reiterate that it is not an either/or proposition
between different types of security testing. For a product to be secure, it
should go through all types of security testing—static analysis, dynamic
analysis, manual code review, penetration testing, and fuzzing. Often,

192 Core Software Security

trade-offs are made during the development cycle due to time constraints
or deadlines, and testing is skipped as a product is rushed to market. This
might save some time and a product may be released a few weeks/months
sooner. However, this is an expensive proposition from a ROI point of
view. Further, security problems found after a product is released can
cause a lot of damage to customers and the brand name of the company.

6.5 Key Success Factors

Success of this fourth phase of the SDL depends on review of policy com-
pliance, security test case execution, completion of different types of secu-
rity testing, and validation of privacy requirements. Table 6.1 lists key
success factors for this phase.

Table 6.1 Key Success Factors

Key Success Factor Description

1. Security test case execution Coverage of all relevant test cases

2. Security testing Completion of all types of security
testing and remediation of problems
found

3. Privacy validation and remediation Effectiveness of privacy-related
controls and remediation of any
issues found

4. Policy compliance review Updates for policy compliance as
related to Phase 4

Success Factor 1: Security Test Case Execution

Refer to Section 6.2 for details on success criteria for security test execu-
tion plan.

Success Factor 2: Security Testing

It is critical to complete all types of security testing—manual code
review, static analysis, dynamic analysis, penetration testing, and fuzzing.
Issues found during each type of testing should be evaluated for risk and
prioritized. Any security defect with medium or higher severity should
be remediated before a product is released or deployed. Defects with

Design and Development (A4): SDL Activities and Best Practices 193

low severity should not be ignored but should be put on a roadmap for
remediation as soon as possible.

Success Factor 3: Privacy Validation and Remediation

Validation of privacy issues should be part of security test plans and secu-
rity testing. However, it is a good idea to have a separate workstream to
assess effectiveness of controls in the product as related to privacy. Any
issues identified should be prioritized and remediated before the product
is released or deployed.

Success Factor 4: Policy Compliance Review (Updates)

If any additional policies are identified or previously identified policies
have been updated since analysis was performed in Phase 3, updates should
be reviewed and changes to the product should be planned accordingly.

6.6 Deliverables

Table 6.2 lists deliverables for this phase of the SDL.

Security Test Execution Report

The execution report should provide status on security tests executed and
frequency of tests. The report should also provide information on the
number of re-tests performed to validate remediation of issues.

Table 6.2 Deliverables for Phase A4

Deliverable Goal

Security test execution report Review progress against identified security
test cases

Updated policy compliance
analysis

Analysis of adherence to company policies

Privacy compliance report Validation that recommendations from
privacy assessment have been implemented

Security testing reports Findings from different types of security
testing

Remediation report Provide status on security posture of
product

194 Core Software Security

Updated Policy Compliance Analysis

Policy compliance analysis artifacts (see Chapters 4 and 5) should be
updated based on any new requirements or policies that might have come
up during this phase of the SDL.

Privacy Compliance Report

The privacy compliance report should provide progress against privacy
requirements provided in earlier phases. Any outstanding requirement
should be implemented as soon as possible. It is also prudent to assess
any changes in laws/regulations to identify (and put on a roadmap) any
new requirements.

Security Testing Reports

A findings summary should be prepared for each type of security testing:
manual code review, static analysis, dynamic analysis, penetration testing,
and fuzzing. The reports should provide the type and number of issues
identified as well as any consistent theme that can be derived from the
findings. For example, if there are far fewer XSS issues in one component
of the application compared to another, it could be because developers
in the former were better trained or implemented the framework more
effectively. Such feedback should be looped back into earlier stages of the
SDL during the next release cycle.

Remediation Report

A remediation report/dashboard should be prepared and updated regu-
larly from this stage. The purpose of this report is to showcase the security
posture and risk of the product at a technical level.

6.7 Metrics

The following metrics should be collected during this phase of the SDL
(some of these may overlap metrics we discussed earlier).

• Percent compliance with company policies (updated)
o Percent of compliance in Phase 3 versus Phase 4

Design and Development (A4): SDL Activities and Best Practices 195

• Number of lines of code tested effectively with static analysis tools
• Number of security defects found through static analysis tools
• Number of high-risk defects found through static analysis tools
• Defect density (security issues per 1000 lines of code)
• Number and types of security issues found through static analysis,

dynamic analysis, manual code review, penetration testing, and
fuzzing
o Overlap of security issues found through different types of testing
o Comparison of severity of findings from different types of testing
o Mapping of findings to threats/risks identified earlier

• Number of security findings remediated
o Severity of findings
o Time spent (approximate) in hours to remediate findings

• Number, types, and severity of findings outstanding
• Percentage compliance with security test plan
• Number of security test cases executed

o Number of findings from security test case execution
o Number of re-tests executed

6.8 Chapter Summary

During our discussion of the design and development (A4) phase, we
described the process for successful test case execution, the process of
proper code review through the use of both automated tools and manual
review, and the process for privacy validation and remediation to be con-
ducted during this phase of the SDL. Perhaps the most important pro-
cesses and procedures described in this chapter are those that provide the
ability to effectively and efficiently test, tune, and remediate all known
and discovered vulnerabilities, and to ensure that secure coding policies
have been followed which provide the necessary security and privacy vul-
nerability protections before moving on to the product ship (A5) phase
of the SDL.

References

 1. Kaner, C. (2008, April). A Tutorial in Exploratory Testing, p. 36. Available at http://
www.kaner.com/pdfs/QAIExploring.pdf.

196 Core Software Security

 2. Chmielewski, M., Clift, N., Fonrobert, S., and Ostwald, T. (2007, November).
“MSDN Magazine: Find and Fix Vulnerabilities Before Your Application Ships.”
Available at http://msdn.microsoft.com/en-us/magazine/cc163312.aspx.

 3. Microsoft Corporation (2012). How To: Perform a Security Code Review for
Managed Code (.NET Framework 2.0). Available at http://msdn.microsoft.com/
en-us/library/ff649315.aspx.

 4. Ibid.
 5. Jackson, W. (2009, February). GCN—Technology, Tools and Tactics for Public

Sector IT: “Static vs. Dynamic Code Analysis: Advantages and Disadvantages.”
Available at http://gcn.com/Articles/2009/02/09/Static-vs-dynamic-code-analysis.
aspx?p=1.

 6. Cornell, D. (2008, January). OWASP San Antonio Presentation:
“Static Analysis Techniques for Testing Application Security.”
Available at http://www.denimgroup.com/media/pdfs/DenimGroup_
StaticAnalysisTechniquesForTestingApplicationSecurity_OWASPSan
Antonio_20080131.pdf.

 7. Jackson, W. (2009, February). GCN—Technology, Tools and Tactics for Public
Sector IT: “Static vs. Dynamic Code Analysis: Advantages and Disadvantages.”
Available at http://gcn.com/Articles/2009/02/09/Static-vs-dynamic-code-analysis.
aspx?p=1.

 8. Cornell, D. (2008, January). OWASP San Antonio Presentation:
“Static Analysis Techniques for Testing Application Security.”
Available at http://www.denimgroup.com/media/pdfs/DenimGroup_
StaticAnalysisTechniquesForTestingApplicationSecurity_OWASPSan
Antonio_20080131.pdf.

 9. Jackson, W. (2009, February). GCN—Technology, Tools and Tactics for Public
Sector IT: “Static vs. Dynamic Code Analysis: Advantages and Disadvantages.”
Available at http://gcn.com/Articles/2009/02/09/Static-vs-dynamic-code-analysis.
aspx?p=1.

 10. Cornell, D. (2008, January). OWASP San Antonio Presentation:
“Static Analysis Techniques for Testing Application Security.”
Available at http://www.denimgroup.com/media/pdfs/DenimGroup_
StaticAnalysisTechniquesForTestingApplicationSecurity_OWASPSan
Antonio_20080131.pdf.

 11. Jackson, W. (2009, February). GCN—Technology, Tools and Tactics for Public
Sector IT: “Static vs. Dynamic Code Analysis: Advantages and Disadvantages.”
Available at http://gcn.com/Articles/2009/02/09/Static-vs-dynamic-code-analysis.
aspx?p=1.

 12. Cornell, D. (2008, January). OWASP San Antonio Presentation:
“Static Analysis Techniques for Testing Application Security.”
Available at http://www.denimgroup.com/media/pdfs/DenimGroup_
StaticAnalysisTechniquesForTestingApplicationSecurity_OWASPSan
Antonio_20080131.pdf.

 13. The Open Web Application Security Project (OWASP) (2012). “Fuzzing.”
Available at https://www.owasp.org/index.php/Fuzzing.

Design and Development (A4): SDL Activities and Best Practices 197

 14. R2Launch (2012). “Fuzz.” Available at http://www.r2launch.nl/index.php/
software-testing/fuzz.

 15. The Open Web Application Security Project (OWASP) (2012). “Testing
Guide Introduction.” Available at https://www.owasp.org/index.php/
Testing_Guide_Introduction#Manual_Inspections_.26_Reviews.

 16. Coverity (2012). Coverity Static Analysis webpage. Retrieved from http://www.
coverity.com/products/static-analysis.html.

 17. HP (2012). HP Fortify Static Code Analyzer webpage. Retrieved from http://
www.hpenterprisesecurity.com/products/hp-fortify-software-security-center/
hp-fortify-static-code-analyzer.

 18. IBM (2012). IBM Security AppScan Source webpage. Retrieved from http://
www-01.ibm.com/software/rational/products/appscan/source.

 19. Klocwork (2012). Klocwork webpage. Retrieved from http://www.klocwork.
com/?utm_source=PPC-Google&utm_medium=text&utm_campaign=Search-
Klocwork&_kk=klocwork&gclid=CMy0_q6svbICFUjhQgodOGwAFg.

 20. Parasoft (2012). Static Analysis webpage. Retrieved from http://www.parasoft.
com/jsp/capabilities/static_analysis.jsp?itemId=547.

 21. Veracode (2012). Veracode webpage. Retrieved from http://www.veracode.com.
 22. The Open Web Application Security Project (OWASP) (2012). “Static

Code Analysis.” Available at https://www.owasp.org/index.php/Static_
Code_Analysis.

 23. Howard, M. (2006, July–August). “A Process for Performing Security Code
Reviews.” IEEE Security & Privacy, pp. 74–79.

 24. Howard, M. (2004, November). “Mitigate Security Risks by Minimizing the
Code You Expose to Untrusted Users.” Available at http://msdn.microsoft.com/
msdnmag/issues/04/11/AttackSurface.

 25. OWASP (2013). “Top 10 2013—Top 10.” Retrieved from https://www.owasp.
org/index.php/Top_10_2013-Top_10.

 26. Hewlett-Packard (2012). Webinspect webpage. Retrieved from http://www.
hpenterprisesecurity.com/products/hp-fortify-software-security-center/
hp-webinspect.

 27. Hewlett-Packard (2012). QAinspect webpage. Retrieved from http://www.hpen-
terprisesecurity.com/products/hp-fortify-software-security-center/hp-qainspect.

 28. IBM (2012). IBM Security AppScan Enterprise webpage. Retrieved from http://
www-01.ibm.com/software/awdtools/appscan/enterprise.

 29. Veracode (2012). Veracode webpage. Retrieved from http://www.veracode.com.
 30. White Security (2012). “How the WhiteHat Sentinel Services Fit in Software

Development Lifecycle.” Retrieved from (SDLC)https://www.whitehatsec.com/
sentinel_services/SDLC.html.

 31. Peng, W., and Wallace, D. (1993, March). NIST Special Publication 500-209,
Software Error Analysis. Available at http://hissa.nist.gov/SWERROR.

 32. Ibid.
 33. Ibid.
 34. Ibid.
 35. Ibid.

198 Core Software Security

 36. Codenomicon (2012). Codenomicon website. Retrieved from http://www.
codenomicon.com.

 37. Peachfuzzer.com (2012). Peach Fuzzing Platform webpage. Retrieved from http://
peachfuzzer.com/Tools.

 38. Royal, M., and Pokorny, P. (2012, April). Cameron University IT 4444—
Capstone: “Dumb Fuzzing in Practice.” Available at http://www.cameron.edu/
uploads/8d/e3/8de36a6c024c2be6dff3c34448711075/5.pdf.

 39. Manion, A., and Orlando, M. (2011, May). ICSJWG Presentation: “Fuzz Testing
for Dummies.” Available at: http://www.us-cert.gov/control_systems/icsjwg/
presentations/spring2011/ag_16b_ICSJWG_Spring_2011_Conf_Manion_
Orlando.pdf.

 40. Royal, M., and Pokorny, P. (2012, April). Cameron University IT 4444—
Capstone: “Dumb Fuzzing in Practice.” Available at http://www.cameron.edu/
uploads/8d/e3/8de36a6c024c2be6dff3c34448711075/5.pdf.

 41. Ibid.
 42. Grembi, J. (2008). Secure Software Development: A Security Programmer’s Guide.

Course Technology, Boston.
 43. Meier, J., et al. (2005, October). Microsoft Corporation—MSDN Library: How

To: Perform a Security Code Review for Managed Code (.NET Framework 2.0).
Available at http://msdn.microsoft.com/en-us/library/ff649315.aspx.

 44. Ibid.

199

 Chapter 7

Ship (A5): SDL Activities
and Best Practices

Now that you have reached the last phase of the software development
lifecycle, you need to ensure that the software is secure and that privacy
issues have been addressed to a level at which the software is acceptable
for release and ready to ship. Software security and privacy requirements
should have come from initial phases and been refined throughout the
cycle. In this chapter, we will take you through the last stage of policy
compliance review, followed by the final vulnerability scan, pre-release
penetration testing, open-source licensing review, and the final security
and privacy reviews (see Figure 7.1).

As discussed in SDL Phases (A1)–(A4), SDL policy compliance covers
all projects that have meaningful security and privacy risks and is analyzed
in each phase and updated to cover new threats and practices. In the final
policy compliance review, the SDL policy will be reviewed to ensure that
the policy provides specific requirements based on different development
criteria, such as product type, code type, and platform.

A vulnerability scan will look for any remaining vulnerabilities in your
software and associated systems and report potential exposures. This pro-
cess is usually automated, and it will typically be run by somebody in

Fi
g

ur
e

7
.1

Sh

ip
 (A

5)
: S

D
L

ac
ti

vi
ti

es
 a

nd
 b

es
t

p
ra

ct
ic

es
.

Ship (A5): SDL Activities and Best Practices 201

your own organization. In contrast, a penetration test actually exploits
weaknesses in the architecture of your systems and requires various levels
of expertise within your scope of the software and associated systems you
are testing. A seasoned security individual or team that is part of a third
party to provide an independent point of view, high-level or specialized
external expertise, and “another set of eyes” typically conducts the testing.

During the final phase of the SDL security review of the software
being assessed, all of the security activities performed during the process,
including threat models, tools outputs, and performance against require-
ments defined early in the process will be assessed to determine whether
the software product is ready for release and shipping. We will discuss the
three options that can occur as part of this process.

It is essential to be in compliance with applicable open-source require-
ments to avoid costly and time-consuming litigation. The two primary
areas that need to be of concern for those managing the SDL where open
source software is used as part of the product or solution are license com-
pliance and security.

The privacy requirements must be satisfied before the software can
be released. Privacy requirement verification is typically verified concur-
rently with the final security review and in many cases is now considered
part of the same process.

7.1 A5 Policy Compliance Analysis

As discussed for SDL Phases (A1)–(A4), SDL policy compliance covers
all projects that have meaningful security and privacy risks and is analyzed
in each phase and updated to cover new threats and practices. Specifically,
activities and standards in the policy have been refreshed in each SDL
phase, and have incorporated lessons learned from root-cause analysis of
security incidents, adapted to the changing threat environment, and will
have resulted in tools and technique improvements. During the subse-
quent phases, SDL policy compliance has been tracked and, if needed,
exceptions have been issued for high-risk projects. From the beginning
of the SDL process, the SDL policy has formally defined which projects
qualify for SDL mandates and what the requirements are for compliance.
This policy has become a significant part in the governance of the SDL
process in that it:

202 Core Software Security

• Standardizes the types of projects that fall under the SDL mandate
and activities

• Defines the policy and processes that must happen at each phase of
the SDL/SDLC for project compliance

• Sets the requirements for the quality gates that must be met before
release

In the final policy compliance analysis, the policy will be reviewed to
ensure that it provides specific requirements based on different develop-
ment criteria, such as product type, code type, and platform.

7.2 Vulnerability Scan

Although there is no substitute for actual source-code review by a human,
automated tools do have their advantages and can be used to save time
and resources. They are particularly useful to conduct regression testing
at this stage of the process, as a double check that any possible vulnera-
bilities have not inadvertently been re-introduced into the code and that
all previously identified vulnerabilities have been mitigated throughout
the process. It is also possible that other products with similar function-
ality have had publically disclosed vulnerabilities since the beginning of
the SDL for a particular software product, and these can be checked
during the final security review as well. Given that software products
commonly include 500,000 lines or more of code, vulnerability scan-
ners can be very useful as a cost-effective and time-limited final check
of the SDL. These scanners can carry out complex and comprehensive
data flow analysis to identify vulnerability points that might be missed in
the course of manual human review. These products are a much quicker
and more efficient way to analyze every possible path through a com-
piled code base to find the root-cause-level vulnerabilities than using the
human approach. They are also good tools to “check the checker,” that
is, the software security architect who has conducted manual reviews
throughout the process.

Vulnerability scanning tools explore applications and use databases of
signatures to attempt to identify weaknesses. Vulnerability scans are not
the same as penetration tests and should not be categorized as such; how-
ever, some of the same tools may be used in both processes. A vulnerability

Ship (A5): SDL Activities and Best Practices 203

scan is actually an assessment, and as such will look for known vulner-
abilities in the software and associated systems. It is automated, it can
typically be run by a technician, and it will report potential exposures.
Having your own development staff conduct the vulnerability scans will
help them not only build up a baseline of what is normal for software
security but also to understand it. In contrast, a penetration test actually
exploits weaknesses in the architecture of your systems and requires vari-
ous levels of expertise within your scope of the software and associated
systems you are testing. Such testing is typically conducted by a seasoned
software security professional such as a software security architect or sea-
soned software security engineer.

Vulnerability scanning is a necessary part of software security and the
SDL. Given its automated nature and ease of performance, it should be
run at various times through the SDL as a cost-effective, efficient, and
minimally intrusive way to continually check your work. The results
should be continually baselined to identify code or architectural changes
that may have introduced new vulnerabilities during the process.

Although every effort must be taken to remediate all discovered vul-
nerabilities, there are some cases where the scanner may falsely identify
vulnerability or exceptions are made. False positives are vulnerabilities
where the scanner has identified the software as being vulnerable when, in
fact, it is not. Of course, once this is proven, the false positive can be dis-
counted. Exceptions are made because the remediation will prevent opti-
mal software performance, restrict a critical function in the product, or
even require a complete architecture redesign. The risk is deemed accept-
able because compensating controls are in place or can be put in place
with minimal effort to mitigate the risk. Exceptions may be permanent or
they may have an expiration date attached. The typical vulnerability scan
process is diagramed in Figure 7.2.

Static or dynamic source code vulnerability scanner tools, as discussed
earlier in this book, can be used during this phase as appropriate. If the
software is a Web application, you must use tools designed specifically
for Web application vulnerability analysis. One mistake that should be
avoided if you are using a Web application vulnerability scanner is not to
scan for just the OWASP “Top 10” vulnerabilities, but rather scan for all
software application vulnerabilities. As with static or other dynamic vul-
nerability scanners, if critical, high, or severe application vulnerabilities
are identified by scanning, those vulnerabilities must be fixed before the

204 Core Software Security

application is released to the production environment or shipped. Some
common Web application vulnerability scanners include:

• AppScan by IBM (http://www-01.ibm.com/software/awdtools/appscan)
• GFI Languard by GFI (http://www.gfi.com/network-security-

vulnerability-scanner)
• Hailstorm by Cenzic (http://www.cenzic.com/index.html)
• McAfee Vulnerability Manager (MVM) by McAfee (http://www.

mcafee.com/us/products/vulnerability-manager.aspx)
• Nessus by Tenable Network Security (www.nessus.org)
• Retina Web Security Scanner by eEye Digital Security (http://www.

eeye.com/Products/Retina/Web-Security-Scanner.aspx)
• WebInspect by HP (http://www.hpenterprisesecurity.com/products/

hp-fortify-software-security-center/hp-webinspect)

Figure 7.2 Typical vulnerability scan process.

Ship (A5): SDL Activities and Best Practices 205

You should use as many vulnerability scanners as possible across the
stack. Web application scanning alone will not be sufficient, as the software
stack (operating system, Web servers, application servers) can also have
vulnerabilities that need to be remediated. Vulnerability scanning should
include external scans, internal scans and authenticated scans of the entire
stack (especially in a cloud environment). External scans are primarily tar-
geted at exploring security issues that can be found outside the firewall.
Since a firewall often restricts ports, these scans may be of only limited
utility at times; however, they can still be very valuable because findings
from external scans are often also quite accessible to attackers. Internal
scans are executed from inside firewalls and thus findings are not restricted
to ports everyone can see from outside firewalls. Internal scans allow us to
identify security issues that an attacker or malicious insider can exploit if
he or she gets inside the network (and is not outside restricted by firewalls).
Authenticated scans are most comprehensive in that they not only iden-
tify issues covered by external and internal scans but also identify missing
patches and reduce false positives. Authenticated scans require software to
log on to a system to scan it, however, and thus are most intrusive.

Earlier in the process, security architecture should have laid out con-
figuration requirements for the software stack to harden the stack and
remove attack surfaces. Configuration guidelines exist in various forms,
including hardening standards for operating systems and other software
on which the product will be deployed. For example, off-the-shelf oper-
ating systems will have many unnecessary services and configurations
that increase the attack surface on the stack. Hardening guidelines can be
instrumental in reducing risk from the default configuration.

In addition to vulnerability scanning, the security configuration
should also be validated to ensure that the stack itself is hardened. An
ideal solution is to create a “hardened image” of the stack itself and stamp
it with security approval. Any variances from this image should raise a
red flag when product is finally deployed in the operational environment.

7.3 Penetration Testing

Penetration testing is a white-box security analysis of a software system to
simulate the actions of a hacker, with the objective of uncovering potential
vulnerabilities resulting from coding errors, system configuration faults,

206 Core Software Security

or other operational deployment weaknesses. It is also used to validate
whether code implementation follows the intended design, to validate
implemented security functionality, and to uncover exploitable vulnera-
bilities. White-box testing requires knowledge of how the system is imple-
mented in order to ensure the robustness of the software product and its
associated systems against intended and unintended software behavior,
including malicious attacks as well as regular software failures. The white-
box test assessors must be skilled and seasoned security professionals who
have the background and knowledge as to what makes software secure or
insecure, how to think like an attacker, and how to use different testing
tools and techniques to simulate the actions of a hacker. Penetration tests
are typically performed in conjunction with automated and manual code
reviews and require the analysis of data flow, control flow, information
flow, coding practices, and exception and error handling within the soft-
ware and its associated systems.

To successfully conduct a white-box security test of the code being
developed and the systems with which it will be interacting, three basic
requirements must be satisfied holistically, not independent of each other.
The assessor(s)/tester(s) must:

 1. Have access to and be able to comprehend and analyze available
design documentation, source code, and other relevant development
artifacts, and have the background and knowledge of what makes
software secure

 2. Be able to think like an attacker and have the ability to create tests
that exploit software

 3. Have knowledge and experience with the different tools and tech-
niques available for white-box testing and the ability to think “out-
side the box” or unconventionally, as an adversary would use the
same tools and techniques.

Independence is a key element and requirement for penetration testing,
and that is why engaging a third-party external security firm to conduct
a security review and/or penetration testing should always be considered.
This provides the benefit of both an “outside set of eyes” and indepen-
dence and should be mandatory for all projects that are considered to be a
high business risk. An outside view and perspective will help identify the
types of vulnerabilities that other processes are not preventing and make
the current state of security maturity clear to all. The third party should

Ship (A5): SDL Activities and Best Practices 207

be afforded access to the threat models and architectural diagrams cre-
ated during the SDL to determine priorities, test, and attack the software
as a hacker might. The level of scrutiny will always be predicated on the
available budget, since these types of firms typically charge a premium
for their services. Any security issues or vulnerabilities identified during
penetration testing must be addressed and resolved before the project is
approved for release and shipping.

To achieve the minimum requirements for penetration testing, the
four-phase process shown in Figure 7.3 should be followed.

The penetration test report is the final deliverable of the penetra-
tion test. The main body of the report should focus on what data was
compromised and how, provide the customer with the actual method of
attack and exploit, along with the value of the data exploited. If needed
or desired by the SDL and development teams, possible solutions can be
included in the report as well. The detailed listing of the vulnerabilities

Figure 7.3 The four-phase process of penetration testing.

208 Core Software Security

that had attempted exploits and the false positives or vulnerabilities that
were exploited but resulted in no data loss should be included in an
appendix rather than the main body of the report, in order to keep the
primary part of this report succinct and to the point.

The long list of possible exposures typically generated from a vulner-
ability scan should be in the vulnerability scan report or readout and not
part of the final penetration report. As mentioned in the previous section,
the purpose for each activity and its results are different.

Security has been in the limelight for all the wrong reasons of late,
given that some very well known companies have been attacked, and
some popular products have been in the news for having security holes.
This has resulted in customers (whether for traditional software or SaaS/
cloud service) asking that an enterprise demonstrate and prove its security
posture for products/services they are purchasing. At this point in the
release cycle, it is a good idea to get together with your sales and market-
ing team and create a framework for discussing security with customers.
The group should consider creating a security whitepaper that can be
given to customers (and potential customers) during the sales cycle. They
should also consider setting up an annual review cycle for whitepapers as
new issues are identified and hopefully remediated. Customers often need
to demonstrate security and compliance within their own enterprise, and
thus will reach out to the product company for information about the
security posture of the product or service you are selling. In our experi-
ence, such requests often come in the form of requests for penetration test
results or detailed security findings reports on a regular basis (quarterly
or annually). Especially in a cloud or SaaS environment, it may not be
feasible to either allow customers to perform their own penetration tests
or to share each and every security finding with them. It is not feasible,
however, to align the remediation service-level agreements of all your cus-
tomers. In a nutshell, a framework within which to discuss security with
your customers is very important if you do not want them to be setting or
disrupting your own security priorities.

7.4 Open-Source Licensing Review

Although open-source software is free and it increases innovation, effi-
ciency, and competitiveness for software product development, it must

Ship (A5): SDL Activities and Best Practices 209

also be managed as an asset, the license obligations observed, and it must
be as secure as internally developed software standards and requirements
require. These sometimes unique and complex license and business risks
can delay, and potentially prevent, software deployment or shipment if
not properly managed. It is essential to be in compliance with applicable
open-source requirements to avoid costly and time-consuming litigation.
The two primary areas that need to be of concern for those managing an
SDL in which open-source software is used as part of the product or solu-
tion are license compliance and security.

 1. Open-source software license compliance. Noncompliance with
open-source software licensing requirements can result in costly
and time-consuming litigation, court time, copyright infringe-
ment, public press exposure, bad publicity, and negative risk to the
noncompliant organization’s reputation and business relationships.
Mismanagement and noncompliance with open-source licenses
may also result in difficulty or inability to provide software product
support, delay of current release and ship dates, or the stoppage of
orders currently scheduled to ship.

 2. Open-source software security. SDL and development teams, as
well as their executive sponsors, need to be aware of and understand
vulnerabilities associated with open-source software code to be used
in their own software product. As with the software being developed
in-house, all vulnerabilities known to the open-source and software
security community must be identified, assessed, and mitigated
throughout the SDL process and include the same threat modeling,
architectural security and privacy review, and risk assessment rigor
and as the code being developed in-house.

To put this into perspective, a few examples of the consequences of
not properly managing open-source software license or security are given
below.

• Diebold and PES. Artifex Software, the company behind the
open-source Ghostscript PDF processing software, filed a lawsuit
against voting machine vendor Diebold and its subsidiary Premier
Election Solutions. Artifex said that Diebold violated the General
Public License (GPL) by incorporating Ghostscript into commercial

210 Core Software Security

 electronic voting machine systems. Ghostscript, which was origi-
nally developed in the late 1980s, is distributed free under the GNU
GPL. This license permits developers to study, modify, use, and
redistribute the software but requires that derivatives be made avail-
able under the same terms. Companies that want to use Ghostscript
in closed-source proprietary software projects can avoid the copy-
right requirement by purchasing a commercial license from Artifex.
Among commercial Ghostscript users who have purchased licenses
from Artifex are some of the biggest names in the printing and
technology industries, including HP, IBM, Kodak, Siemens, SGI,
and Xerox.1

• Skype. Skype was found guilty of violating the GNU GPL by a
Munich, Germany, regional court. This decision has influenced the
way companies approached GPL compliance since.2

• Verizon. Two software developers reached a settlement in a lawsuit
against Verizon Communications in which they claimed the tele-
com giant’s broadband service violated the terms of the widely used
open-source agreement under which their product was licensed. The
issue centered on claims that a subcontractor used an open-source
program called BusyBox in Verizon’s wireless routers. As part of the
settlement, Verizon subcontractor Actiontec Electronics must pay
an undisclosed sum to developers Erick Andersen and Rob Landley.
It must also appoint an internal officer to ensure that it is in compli-
ance with licenses governing the open-source software it uses.3

• Google. Google and other companies continue to receive bad pub-
licity because they use the Android mobile platform, which was
launched with known security vulnerabilities and continues to be
a major target for hackers. Mobile malware tracked by McAfee
exploded in 2012, growing almost 700 percent over the 2011 num-
bers. Close to 85 percent of this malware targets smart phones
running Android. The big surprise in the huge increase is not that
Android is being attacked: Google’s smartphone platform has been
a key focus for the bad guys for some time. The big surprise is that
Google has not managed to stem the tide in any significant way.
Security concerns about Android should not be news to Google, and
Google should be putting security at the top of its list of priorities.4

• Oracle. Security experts accused Oracle of not paying attention to
its flagship database software and underreporting the severity of a
“ fundamental” flaw. Even as Oracle fixed numerous flaws across

Ship (A5): SDL Activities and Best Practices 211

multiple products in their January 2013 Critical Patch Update, secu-
rity experts criticized the company for the low number of database
fixes and claimed that the company is downplaying the severity of a
flaw in its flagship relational database. As Oracle expands its prod-
uct portfolio and increases the total number of products patched
through the quarterly CPU, there appears to be a “bottleneck”
in Oracle’s patching process. This CPU was the first time Oracle
included the open-source MySQL database, which it acquired in
2010 as part of the Sun Microsystems acquisition.5

• CNET Download.com. CNET Download.com was caught add-
ing spyware, adware, and other malware to thousands of software
packages that it distributes, including their Nmap Security Scanner.
They did this even though it clearly violated their own anti-adware
policy. (They did remove the anti-adware/spyware promise from the
page.) After widespread criticism of the practice, Download.com
removed its rogue installer from Nmap and some other software,
but the company still uses it widely and has announced plans to
expand it. For these reasons, we suggest avoiding CNET Download.
com entirely. It is safer to download apps from official sites or more
ethical aggregators such as FileHippo, NiNite, or Softpedia.6

Using manual methods to find, select, monitor, and validate open-
source code is time-consuming, inefficient, and an unnecessary drain on
scarce development team resources. Automation through tools such as
Black Duck Software (www.blackducksoftware.com) or Palamida (www.
palameda.com) is essential to effectively and efficiently incorporate open-
source software into SDLC development efforts to drive down develop-
ment costs and manage the software and its security throughout the SDL.
Black Duck Software’s products and services allow organizations to ana-
lyze the composition of software source code and binary files, search for
reusable code, manage open-source and third-party code approval, honor
the legal obligations associated with mixed-origin code, and monitor
related security vulnerabilities.7–9 Palamida enables organizations to man-
age the growing complexity of multisource development environments by
answering the question, “What’s in your code?” Through detailed analysis
of the code base, customers gain insight into their code inventory—a
critical component of quality control, risk mitigation, and vulnerability
assessment with the goal of eliminating legal and vulnerability concerns
associated with its use.10

212 Core Software Security

7.5 Final Security Review

During final security review of software being developed, all of the secu-
rity activities performed, including threat modeling, tools output, and
performance against requirements defined early in the process, are assessed
again to determine whether the software product is ready for release and
shipping. This process will result in one of three outcomes:

 1. The final security review is passed. In this case, all final security
review issues that have been identified have been corrected, the soft-
ware is certified to have met all SDL requirements, and it is ready for
release from a security perspective.

 2. The final security review is passed with exceptions. In this case,
not all issues that have been identified have been corrected, but an
acceptable compromise has been made for one or more exceptions
that the SDL and development team were not able to resolve. As
exceptions, the unresolved issues will not be resolved in the cur-
rent release and will be addressed and corrected in the next patch or
release.

 3. The final security review is not passed and requires an escala-
tion. In this case, the SDL and development team cannot reach a
compromise on a specific security vulnerability and its remediation,
and so the software cannot be approved for release and shipment.
There is typically a business justification identified earlier in the
SDL process that prevents the identified issue from being compliant
with an SDL security requirement. The SDL requirements that are
blocking the release cannot be resolved by the two teams and must
be escalated to higher management for a decision, which of course
will take into account the risk and consequences identified if the
software is released without meeting the requirement. The escalation
to management should be a consolidated report composed by both
the SDL and development teams that includes a description and
rationale of the security risk.

The final security review must be scheduled carefully in order to maxi-
mize the time needed to fully analyze and remediate both known and any
security issues that may be discovered during the final review, in ample
time to account for the software product release and ship dates.

Ship (A5): SDL Activities and Best Practices 213

The final security review process should include the following:

• Scheduling. The product security review must be scheduled so that
all required information from the SDL to complete this step has
been acquired and is available, and enough time has been allowed to
minimize any delay in the release date. The start date cannot be set
until all security review activities defined and agreed to at the begin-
ning of the SDL process have been completed, including in-depth
security vulnerability reviews, threat modeling, and appropriate and
relevant static, dynamic, and fuzz testing tool analysis.

• Specific final security review tasks.
o The SDL and development team will meet to review and ensure

that satisfactory responses have been made for all questions that
have arisen and documented during the SDL process.

o Threat models developed earlier in the process have been reviewed
and updated as of the start date of the final security review, to
ensure that all known and suspected threats identified through
the process have been mitigated.

o All security vulnerabilities have been reviewed against the criteria
established for release early in the process, and at least the mini-
mum security standard has been enforced throughout the SDL.
Any security vulnerabilities that were rejected or deferred for the
current release of the software product must be reviewed as well.
It is important to note that if the SDL and development team is
not constantly evaluating the severity of security vulnerabilities
against the standard that is used during the SDL process, then a
large number of security vulnerabilities may re-appear or be dis-
covered during the final security review and result in unnecessary
and possibly significant use of resources and time, thus delaying
the release of the product.

o The static, dynamic, and fuzz testing tools should be run before
final security review so that results can be fully evaluated before
a decision is made for final release. In some cases the tools may
provide inaccurate or unacceptable results, in which case you may
need to re-run the tools or find more acceptable alternatives to the
ones used during the process.

o You must review and ensure that all of the relevant internal secu-
rity policies and external regulatory requirements have been

214 Core Software Security

 followed and that software being reviewed is in compliance with
the requirements for each.

o If a specific SDL security requirement cannot be met and the
overall security risk is tolerable, an exception must be requested,
preferably well in advance of the final security review and as early
as possible in the process.

The final product security review can be described as a four-step pro-
cess as outlined below and represented graphically in Figure 7.4.

Figure 7.4 Four-step final security review process.

Ship (A5): SDL Activities and Best Practices 215

 1. Assess resource availability. In this step, the resources that will be
required and available in order to conduct the final security review
are identified. The ability to enforce the quality gates required before
the software can be released is also assessed. Minimum acceptable
levels of security as it relates to quality are established through qual-
ity gates. Having the quality gates early in the SDLC process so
that security risks are understood early in the SDL process helps
ensure that vulnerabilities are identified and fixed early, which will
avoid unnecessary work and delays later in the process. The SDL
and development team must show compliance with the quality gates
as part of the final security review. If security has truly been built
into the SDLC process as a result of the SDL, the time required
to complete the final security review will be minimal; if not, more
time and resources will be required, which might delay the ability to
release and ship on time.

 2. Identify feature eligibility. During this step, security tasks that are
eligible for work in the final security review are identified. Feature
eligibility should have been done earlier in the SDL process, to avoid
unfinished security work in the final security review. Scrutiny should
have also been given to areas or sub-teams where vulnerabilities have
not been reported yet during the SDL process but that historically
have a history of vulnerabilities with high scores that could bring a
surprise task to the teams during the final security review.

 3. Evaluate and plan for remediation. During this step, the stake-
holders responsible for the tasks identified in the previous step are
notified, and scheduling for the final security review is set.

 4. Release and ship. The product security review is completed after
all SDL requirements, such as fuzzing, vulnerability scans, secure
 coding policies review, and other current security practices, as well
as any exceptions to quality gates or vulnerabilities, have been for-
mally reviewed and approved. Functional regression will have typi-
cally taken place during the final security review as well. Regression
testing is used to discover new software vulnerabilities or regressions
from what was already discovered, hence the term regression. These
regressions can be a result of changes in the existing functional and
nonfunctional areas of the software or the system after changes have
been made. In short, regression testing assesses whether a change in
one part of the software has resulted in a change in other parts of the
software or system it interacts with.

216 Core Software Security

7.6 Final Privacy Review

Typically, privacy requirements must be satisfied before the software can
be released. Although the final security review must be completed before
release, security exceptions as discussed previously highlights that not all
security issues have to be satisfied before release. Privacy requirement veri-
fication is typically verified concurrently with the final security review and
in many cases is now considered part of the same process. This requires
that significant changes that occurred after the completion of the general
privacy questionnaire, such as collecting different data types, substantively
changing the language of a notice or the style of consent, or identification
of new software behavior that negatively affects the protection of privacy
are addressed. This entails reviewing the software for any relevant changes
or open issues that were identified during previous privacy reviews or as
part of the final security review. Specific privacy requirements for the final
review should include the following.

• If the project has been determined to be a P1 project, then the
SDL team and privacy lead must review the Microsoft SDL Privacy
Questionnaire (Appendix C)11 mentioned in the previous chapter or
its equivalent to determine whether a privacy disclosure is required. If
the privacy lead determines that a privacy disclosure is waived or cov-
ered, then there is no need to meet this requirement. The privacy lead
will give final approval for release of the privacy disclosure statement.

• If the project has been determined to be a P2 project, then the pri-
vacy lead will determine if a privacy design review is being requested,
provide a confirmation that the software architectural design is com-
pliant with privacy standards applicable to this software product, or
determine if an exception request is needed. The privacy lead typi-
cally works with the SDL and developer lead and legal advisor as
appropriate to complete the privacy disclosure before public release
of the product and ensure the privacy disclosure is posted appropri-
ately for Web-centric products.

• If the project is a P3 project, then no changes affecting privacy
requirements compliance have been identified, and no additional
reviews or approvals are needed and the final privacy review is
 complete. If not, then the SDL team and privacy lead will provide a
list of required changes.

Ship (A5): SDL Activities and Best Practices 217

In addition to the responsibilities, process, and procedures required
for a response to software product security vulnerabilities discovered after
release and shipment, a similar function to the product incident response
team (PSIRT) is created for response to privacy issues discovered after
release and shipment. This element will be discussed in the next chapter
in relation to the post-release support activities.

7.7 Key Success Factors

Success of this fifth phase of the SDL depends on final review of policy
compliance, comprehensive vulnerability scanning and penetration test-
ing, and final security and privacy reviews. Table 7.1 lists key success fac-
tors for this phase, as discussed below.

Table 7.1 Key Success Factors

Key Success Factor Description

1. Policy compliance analysis Final review of security and
compliance requirements
during development process

2. Vulnerability scanning Scanning software stack for
identifying security issues

3. Penetration testing Exploiting any/all security
issues on software stack

4. Open-source licensing review Final review of open-source
software used in the stack

5. Final security review Final review of compliance
against all security
requirements identified during
SDL cycle

6. Final privacy review Final review of compliance
against all privacy requirements
identified during SDL cycle

7. Customer engagement
framework

Framework that defines
process for sharing security-
related information with
customers

218 Core Software Security

Success Factor 1: Policy Compliance Analysis

If any new security requirements have been identified (based on threats
or updates to policies), they need to be vetted for feasibility of imple-
mentation so late in the development process. Some requirements may
not make it into the product, while others might be important enough
to delay the release date until the product does in fact incorporate them.

Success Factor 2: Vulnerability Scanning

Vulnerability scanning as well as security configuration validation pro-
vides one final opportunity to identify and remediate security issues
across the software stack. Vulnerability scanning and security configura-
tion validation should include assessment from different vantage points
(external, internal, and authenticated). It should also cover all layers in
the stack, from the operating system to applications.

Success Factor 3: Penetration Testing

Penetration testing provides an opportunity to determine what security
flaws could be exploited and to what extent. Making sure there is no confu-
sion between penetration testing and vulnerability scanning is important.
Vulnerability scanning provides a list of security findings along with the
potential impact if those findings can be exploited. Penetration testing, on
the other hand, is carte blanche for security testers to exploit any/all secu-
rity flaws and often in a cascading manner. Impact often depends on the
skills, imagination, and experience of the penetration testers. Vulnerability
scanning feeds into penetration testing, but it is just a starting point.

Success Factor 4: Open-Source Licensing Review

Final review of open-source software to be sure that all licensing require-
ments have been met is essential to mitigate legal liability. It also enables
identification of technologies that need to feed into a different a type of
security testing (vulnerability scanning and penetration testing).

Success Factor 5: Final Security Review

It is critical that a final security review be performed before this phase
of the SDL ends. If all requirements are met, then security can say “Go”

Ship (A5): SDL Activities and Best Practices 219

without any exceptions. If there are exceptions to security requirements,
they need to be well documented and be time-bound. An example is a
“conditional go,” under which unmet requirements do not stop release
but will be remediated by an agreed-upon date.

Success Factor 6: Final Privacy Review

Similar to Factor 5, this step allows final review of the product against pri-
vacy requirements that were laid out at the start of the cycle and that have
been updated or refined since then. If any requirements are unmet, they
should be documented as exceptions that are time-bound and require
remediation by a definite date.

Success Factor 7: Customer Engagement Framework

As discussed earlier in the chapter, it is important that a framework be
defined to engage customers in security-related discussions both during
and after the sale process. This can limit ad-hoc requests and escalations
from customers and give them confidence that your company has a han-
dle on security.

7.8 Deliverables

Table 7.2 lists deliverables for this phase of the SDL.

Updated Policy Compliance Analysis

Policy compliance analysis artifacts (see Chapters 4, 5, and 6) should be
updated based on any new requirements or policies that may have come
up during this phase of the SDL.

Security Testing Reports

The findings summary as discussed in Chapter 6 should be updated to
include vulnerability scanning (external, internal, and authenticated) as
well as any new penetration testing that is performed during this phase.
A customer-facing report should also be prepared to share with enter-
prise customers.

220 Core Software Security

Remediation Report

In addition to updating security testing reports (or findings), the reme-
diation report should also be updated to give a better idea of the security
posture of the product going into release. Any findings that have not been
remediated by now (and are not to be remediated before the release date),
should be discussed and put on a roadmap.

Open-Source Licensing Review Report

A formal review report should be prepared of open-source software used
in the software stack that outlines different licensing requirements (The
MIT License, GNU General Public License, GNU Lesser General Public
License, BSD License) and how they are being met. The security and pri-
vacy officers should review the report and sign off on it.

Final Security and Privacy Review Reports

After final review of compliance against security and privacy requirements,
a formal sign-off by security and privacy officers should be required.

Table 7.2 Deliverables for Phase A5

Deliverable Goal

Updated policy compliance
analysis

Analysis of adherence to
company policies

Security testing reports Findings from different types of
security testing in this phase of
SDL

Remediation report Provide status on security posture
of product

Open-source licensing review
report

Review of compliance with
licensing requirements if open-
source software is used

Final security and privacy review
reports

Review of compliance with
security and privacy requirements

Customer engagement
framework

Detailed framework to engage
customers during different stages
of product life cycle

Ship (A5): SDL Activities and Best Practices 221

Customer Engagement Framework

A formally documented process to share security information with cus-
tomers should be delivered as part of this phase. The process should
include types of information (and frequency) that should be shared with
customers, notification in case of security incidents, as well as security
findings and remediation SLAs.

7.9 Metrics

The following metrics should be collected during this phase of the SDL:

• Percent compliance with company policies (updated)
o Percent of compliance in Phase 5 versus Phase 4

• Number, type, and severity of security issues found through vulner-
ability scanning and penetration testing
o Overlap of security issues found through different types of testing
o Comparison of severity of findings from different types of testing
o Mapping of findings to threats/risks identified earlier

• Number of security findings remediated (updated)
o Severity of findings
o Time spent (approximate) in hours to remediate findings

• Number, types, and severity of findings outstanding (updated)
• Percentage compliance with security and privacy requirements

7.10 Chapter Summary

In this chapter we have described the requirements for successful release
and ship of the software product after it has finished the SDLC and
 associated SDL activities and best practices (see Figure 7.5). Now that
we have made it through SDL Phase A5 and the product has been
released, the next chapter will describe SDL Phase A6, which will out-
line the SDL post-release support activity (PRSA) phase of our SDL.
After a software product is released and shipped, the software security,
development, and privacy teams, with support from the corporate pub-
lic relations, legal, and other groups must be available to respond to any
possible security vulnerabilities or privacy issues that warrant a response.

Fi
g

ur
e

7
.5

A

1
to

 A
5

SD
L

ac
ti

vi
ti

es
 a

nd
 b

es
t

p
ra

ct
ic

es
.

Ship (A5): SDL Activities and Best Practices 223

In addition, a response plan detailing appropriate processes and proce-
dures must be developed that includes preparations for potential post-
release issues. In addition to external vulnerability disclosure responses,
this phase should include internal review for new product combinations
or cloud deployment, post-release certifications, security architectural
reviews, and tool-based assessments of current, legacy, and M&A pro-
ducts and solutions, as well as third-party reviews of released software
products that may be required by customers, regulatory requirements,
or industry standards.

References

 1. Paul, R. (2008). “Diebold Faces GPL Infringement Lawsuit over Voting Machines:
Artifex Software, the Company Behind Ghostscript, Has Filed a Lawsuit
Against. . . .” Arstechnica: Technology Lab/Information Technology, November
4. Available at http://arstechnica.com/information-technology/2008/11/
diebold-faces-gpl-infringement-lawsuit-over-voting-machines.

 2. Broersma, M. (2007). “Skype Found Guilty of GPL Violations.” IDG News
Service, July 26. Available at http://www.pcworld.com/article/135120/article.
html.

 3. McDougall, P. (2008). “Verizon Settles Open Source Software Lawsuit:
The Issue Centered on Claims That a Subcontractor Used an Open Source
Program Called BusyBox in Verizon’s Wireless Routers.” Information
Week, March 17. Available at http://www.informationweek.com/
verizon-settles-open-source-software-law/206904096.

 4. Koetsier, J. (2012). “Sorry, Google Fanboys: Android Security Suffers as Malware
Explodes by 700%.” VentureBeat, September 4. Available at http://venturebeat.
com/2012/09/04/sorry-google-fanboys-android-security-sucks-hard-as-malware-
explodes-by-700/#FKvUAhZrG8g5jywy.99.

 5. Rashid, F. (2012). “Oracle Accused of Downplaying Database Flaws,
Severity.” eWeek, January 1. Available at http://www.eweek.com/c/a/Security/
Oracle-Accused-of-Downplaying-Database-Flaws-Severity-155094.

 6. Insecure.org (2013). “Download.com Caught Adding Malware to Nmap & Other
Software.” Available at http://insecure.org/news/download-com-fiasco.html.

 7. Schwartz, E. (2007). “Open Source Lands in the Enterprise with Both
Feet: Major Business Applications on Linux Turns OS into a Commodity.”
Infoworld, August 6. Available at http://www.infoworld.com/t/applications/
open-source-lands-in-enterprise-both-feet-576.

 8. Worthington, D. (2007). “Quacking Through Licensing Complexity: Black
Duck’s Open Source Licensing Solution Tackles GPLv3.” SDTimes, August 6.
Available at http://www.sdtimes.com/link/31007.

224 Core Software Security

 9. Boston Business Journal Staff (2007). “Battles over Open Source Carve Niche
for Startup.” Boston Business Journal, December 17. Available at http://www.
bizjournals.com/boston/stories/2007/12/17/story13.html?page=all.

 10. VentureBeatProfiles (2012). Palamida. Available at http://venturebeatprofiles.
com/company/profile/palamida.

 11. Microsoft Corporation (2012). “Appendix C: SDL Privacy Questionnaire.”
Available at http://msdn.microsoft.com/en-us/library/windows/desktop/cc307393.
aspx.

225

Chapter 8

Post-Release Support
(PRSA1–5)

Many of the functions and their associated activities and best practices
described in this chapter (see Figure 8.1) are handled by groups other
than the software security group that would have the principal oversight
over SDL activities and best practices (A1–A5) described in the previous
chapters. In this chapter we will describe them as activities that are the
responsibility of the centralized software security group in an organiza-
tion. We have found that this is a much more cost-effective and efficient
way to manage these activities using existing resources. This is precisely
the reason we highly recommend that the core software security group be
composed of senior software security architects who have hard “dotted-
line” relationships with the software security champions, who in turn
have the same relationships with the software security evangelists. There
should also be a strong relationship between the software security archi-
tects in the centralized software security group and the product managers
of each Tier 1 software product, just as there is for the software security
champions. It is also important that the software security group and func-
tion be in the right organization so they can be most successful.

Fi
g

ur
e

8
.1

P

o
st

-r
el

ea
se

 s
up

p
o

rt
 (P

R
SA

1-
5)

: S
D

L
ac

ti
vi

ti
es

 a
nd

 b
es

t
p

ra
ct

ic
es

.

Post-Release Support (PRSA1–5) 227

8.1 Right-Sizing Your Software Security Group

First we will walk through each of the software security group relation-
ships and the importance of putting everything into perspective in order
to “right-size” the building of a successful software security program.
Doing this means having

• The right organizational location
• The right people
• The right process

8.1.1 The Right Organizational Location

Although there have been great advances in software security technology
over the last few years, we believe that people are still the most important
element of a successful software security program that includes the imple-
mentation and management of the activities and best practices. In order
to facilitate the best use of the people responsible for software security,
they must be part of the right organization (see Figure 8.2). Having been
in seven Chief Security Officer (CSO) and Chief Information Security
Officer (CISO) roles, James Ransome, one of the co-authors of this book,
has had software security reporting to him in several of his roles. Based on
both his experience and communication with his peers in the industry, it
is clear that the software security function ideally should fall within the
engineering (software development) function and, in particular, within
the quality function. The general consensus is that the application security
role typically reports to the centralized information security role CSO/
CISO position and should not be confused with the software security
function. Typically, those who are in an application security role within
an IT security organization are great at running tools but do not have the
software development background necessary to fully interpret the results.
To make this point clear, it is important to differentiate between software
and application security. Perhaps the best way to clarity this distinction is
with a quote from Gary McGraw:

Software security is about building secure software: designing
software to be secure; making sure making sure that software is
secure; and educating software developers, architects, and users

228 Core Software Security

about how to build security in. On the other hand, application
security is about protecting software and the systems that soft-
ware runs in a post facto way, only after development is complete.1

Another advantage of having the software security experts reporting
to the engineering organization is that they are empowered by the fact
that they are part of the same organization; are directly responsible for
implementing the SDL policies and procedures and associated tools; and
understand software development, its architecture, and the level of effort
required to fix the same. Earlier in this book we described the importance
of software security as an element of quality and organization, and the
same relationship should exist within the engineering organization.

Product Quality Group
(Engineering Software)

Product Security Group
(Software)

Principal
Software
Security
Architect

Senior
Software
Security
Architect

Software
Security
Architect

Senior
Software
Security
Architect

Software
Security
Architect

Architect Architect Architect

Engineering Software
Product Development

Group

Product
Business
Unit 1

Product
Business
Unit 2

Product
Business
Unit 3

Product
Business
Unit 4

Product
Business
Unit 5

Figure 8.2 The right organizational location.

Post-Release Support (PRSA1–5) 229

The authors believe that software security should be a group of its own
within engineering/software development and should work very closely
with the central security group; it may even have a “dotted-line” relation-
ship to the CSO/CISO.

A few reasons for our preference for the software security group to
report to the software quality group include the following.

 1. Security vulnerabilities are, by definition, quality issues.
 2. Security features are architectural functions with a very close rela-

tionship to product management.
 3. Based on (1) and (2) above, security is both a feature and a quality

function.
 4. Quality is best served when it is integral to the development process

(engineering) and includes security.

8.1.2 The Right People

In Chapter 2 we discussed the talent required to make the SDL model
we describe in this book a success. This will include a minimum of one
principal software security architect, a mix of senior and general soft-
ware security architects, and, ideally, one software security architect in
the software product security group per software product security group
in the organization. This relationship is represented in Figure 8.3. This
talent pool provides the ability to scale in that there will also ideally be
one software security champion (SSC) per Tier 1 software product within
each engineering software product development group. Another element
of the talent is the software security evangelists (SSEs) for organizations
that are large enough to have extra candidates for the software security
champions’ (SSCs) role, who can be candidates for SSEs until there is a
slot for them as a SSC. SSEs have two roles, as a SSC in training and as an
evangelist for the overall software product security program promulgated
policy, enforcing policy, and evangelizing the overall SDL process.

8.1.3 The Right Process

The right process is the core SDL activities and best practices described
in this book so far and summarized in Figure 8.4. In addition to the

Fi
g

ur
e

8
.3

Th

e
ri

g
ht

 p
eo

p
le

.

Fi
g

ur
e

8
.4

SD

L
A

1–
A

5
ac

ti
vi

ti
es

 a
nd

 b
es

t
p

ra
ct

ic
es

.

232 Core Software Security

core activities and best practices, we have added the activities and best
practices highlighted in Figure 8.1. Given the continued pressure to do
more with less, we don’t believe most organizations will have the luxury
of having most of the elements of PRSAs 1–5 as separate organizations
but will need to provide for innovative ways to include them in their over-
all software security program to optimize the leverage of use of available
resources. Sections 8.2–8.6 of this chapter will provide our approach to
the activities and best practices required to make this a success in every
organization in which it is appropriate.

8.2 PRSA1: External Vulnerability
Disclosure Response

One of the key elements of our post-release methodology is that the
typical Product Security Incident Response Team (PSIRT) function can
be a shared responsibility within our proposed leveraged organizational
structure for software security and privacy that covers responses to both
post-release security vulnerability and privacy issue discoveries. No mat-
ter how good your software security program and associated SDL is,
the fact is that something will be missed at some point, and you need a
plan to respond to this. Most important, if discovery of software secu-
rity vulnerabilities and privacy issues in post-release software products
is a common occurrence, that is a clear sign that building security into
the organization’s SDLC through an SDL-like process is weak or non-
existent. Such weakness can result in negative visibility due to publically
disclosed exploitation of vulnerabilities or security flaws inherent to the
post-release software, subsequent loss of market share due to brand defa-
mation, lawsuits or breach of contracts, and a resultant major target for
further exploitation by adversarial opportunists.

Based on our experiences, we cannot emphasize enough how impor-
tant it is to have a single group that acts a focal point of all communica-
tions with customers about security vulnerabilities. Often we have seen
at least three different groups communicating with customers: customer
support, sales, and an information security group. PSIRT may or may not
be part of the information security organization in a particular company,
though this is certainly desirable. To summarize, a clearly defined chain
of communications with customers is of critical importance to prevent

Post-Release Support (PRSA1–5) 233

 disclosure of unintended information and to avoid panic and putting
entire accounts at stake.

8.2.1 Post-Release PSIRT Response

In relation to software security, a Product Security Incident Response
Team (PSIRT) is responsible for responding to software product security
incidents involving external discoveries of post-release software product
security vulnerabilities. As part of this role, the team manages the investi-
gation of publicly discovered security vulnerabilities of their company’s
software products and the systems they interact with. The external dis-
coverers might be independent security researchers, consultants, industry
organizations, other vendors, or benevolent or possibly even nefarious
hackers who identify possible security issues with software products for
which the PSIRT is responsible. Issues identified are prioritized based on
the potential severity of the vulnerability, typically using the CVSS scor-
ing system described earlier in the book as well as other environmental
factors. The resolution of a reported incident may require upgrades to
products that are under active support from the PSIRT’s parent company.

Shortly after its identification and during the investigation of a claim of
vulnerability, the PSIRT should work collaboratively with the discoverer
to confirm the nature of the vulnerability, gather required technical infor-
mation, and ascertain appropriate remedial action.

When the initial investigation is complete, the results are delivered
to the discoverer along with a plan for resolution and public disclosure.
If the incident reporter disagrees with the conclusion, the PSIRT should
attempt to address those concerns.

The discoverer(s) will be asked to maintain strict confidentiality until
complete resolutions are available for customers and have been published
by the PSIRT on the company’s website through the appropriate coordi-
nated public disclosure typically called a security bulletin (SB). During
the investigation and pre-reporting process, the PSIRT coordinates com-
munications with the discoverer, including status and documentation
updates on the investigation of the incident. Further information may also
be required from the discoverer to validate the claim and the methods
used to exploit the vulnerability. Discoverers will also be notified that
if they disclose the vulnerability before publication by the PSIRT, then

234 Core Software Security

the discoverers will not be given credit in the public disclosure by the
company and the case will be treated as a “zero day,” no-notice discovery
that has been reported publically by an external source. In the case of a
zero-day discovery, the PSIRT and development teams work together to
 remediate the vulnerability as soon as possible, according to the severity of
the Common Vulnerability Scoring System (CVSS) (http://nvd.nist.gov/
cvss.cfm) scoring for the particular vulnerability. In the case of a zero-day,
highly scored vulnerability, the company PR team will work closely with
the PSIRT to manage potential negative press and customer reaction.

During the investigation of a reported vulnerability, the PSIRT coordi-
nates and manages all sensitive information on a highly confidential basis.
Internal distribution is limited to those individuals who have a legitimate
need to know and can actively assist in resolution of the vulnerability.

The PSIRT will also work with third-party coordination centers such
as the CERT Coordination Center (CERT/CC) (http://www.cert.org/
certcc.html), and others to manage a coordinated industry disclosure for
reported vulnerabilities affecting the software products they are respon-
sible for. In some cases, multiple vendors will be affected and will be
involved in the coordinated response with centers such as CERT. If a
coordination center is involved, then, depending on the circumstances,
the PSIRT may contact the center on the behalf of the discoverers, or
assist them in doing it themselves.

If a third-party component of the product is affected, this will compli-
cate the remediation process because the PSIRT will be dependent on a
third party for remediation. A further complication is that the PSIRT will
have to coordinate and in many cases notify the vendor directly to ensure
coordination with the third-party coordination center and likely direct
involvement with the discoverer. Even though a third-party component
has been used, the assumption is that the owner of the primary soft-
ware product is ultimately responsible for all components of the software,
whether they own them or not.

As mentioned above, PSIRTs generally use the CVSS to assess the
severity of a vulnerability as part of their standard process for evaluat-
ing reported potential vulnerabilities in their products and determining
which vulnerabilities warrant external and internal reporting.

The CVSS model uses three distinct measurements or scores that
include base, temporal, and environmental calculations, and the sum of
all three scores should be considered the final CVSS score. This score
 represents a single moment in time; it is tailored to a specific environment

Post-Release Support (PRSA1–5) 235

and is used to prioritize responses to a particular externally discovered
vulnerability. In addition, most PSIRTs will consider modifying the final
score to account for factors that are not properly captured in the CVSS
score. PSIRTs typically use the following CVSS guidelines when deter-
mining the severity of a particular vulnerability and the need to report it:

• High (H)—Critical—CVSS base score of 7.0–10.0
• Medium (M)—CVSS base score of 4.0–6.9
• Low (L)—CVSS base score of 0.1–3.92

If there is a security issue involving a third-party software component
in the product the PSIRT is responsible for, then, depending on the situa-
tion, and whether the third party has a CVSS score, the PSIRT may use
the CVSS score provided by the component creator and/or may adjust
the score to reflect the impact on the overall software product.

Public disclosure, including the relevant base and temporal CVSS
scores and a CVE ID3 report, is typically made for an external post-release
discovery event when one or more of the following have occurred:

• The incident response process has been completed and has deter-
mined that enough software patches or other remediations exist
to address the vulnerability. Public disclosure of code fixes can be
issued to address high-severity vulnerabilities.

• Active exploitation of a vulnerability that could lead to increased
risk for the PSIRT company’s customers has been observed that
requires a published security vulnerability announcement. The
announcement may or may not include a complete set of patches
or other remediation steps. When possible, compensating con-
trols are included in the public announcement to provide interim
protection that will limit exposure until the permanent fix is
announced.

• A zero-day announcement or other potential for increased public
awareness of a vulnerability affecting the PSIRT company’s pro-
duct is probable that could lead to increased risk for customers. In
these cases, the PSIRT has worked closely with the company PR
team to help assess public indicators and warnings such as Twitter
feeds and blogs that this exposure is imminent and will have
 prepared for a statement ahead of time. Again, this accelerated
public vulnerability announcement will not include a complete

236 Core Software Security

set of patches or other remediation steps, but, ideally, interim
compensating controls to limit exposure can be identified.

A typical step-by-step PSIRT case-handling process will include the
following steps.

 1. Notification of vulnerability as assessed by an individual discoverer
or organization is received.

 2. The responsible software product development group is identified,
together with resources required for assessment of the discoverers’
vulnerability claim.

 3. If the claim is credible, an impact assessment is made and a timeline
for a fix is determined. The level of effort needed and priority to
develop a fix is balanced against the likelihood of public disclosure
of the severity and risk of the vulnerability. In some cases, external
resources may be required due to other critical tasks the develop-
ment team is carrying out. If the claim is not credible, additional
information is requested from the discoverer to ensure the threat was
properly re-created in the testing environment. If it is not credible
after the testing environment has been confirmed, then the discov-
erer is notified of the company’s findings. If the discoverer goes pub-
lic claiming the vulnerability is credible even though the company
has determined it is not, then the PSIRT typically works with the
company’s PR team to publish the results of the company’s finding
as a counter to the discoverer.

 4. The timeframe for remediation, the resources needed to fix a con-
firmed vulnerability, and the reporting format (e.g., security bulle-
tin, knowledge base article, or other form of public notification) are
committed to.

 5. After patch or other remediation methods have been identified, all
customers are notified simultaneously on the date of the availability
of the fix through the reporting format determined in Step 4.

8.2.1.1 ISO 29147 and ISO 30111

Two International Standards Organization (ISO) standards expected to
be released by the end of the year 2013 relate to the proper functioning
of a vendor PSIRT:

Post-Release Support (PRSA1–5) 237

• ISO Standard on Vulnerability Disclosure (29147)
• ISO Standard on Vulnerability Handling Processes (30111)

The following information is derived from a presentation of Katie
Moussouris at the 2013 Carnegie Mellon CERT Vendor Meeting in San
Francisco.4

ISO 29147 provides guidance on how vendors should deal with vul-
nerability reports from external finders and the recommended process for
interfacing between vendors and the external discoverers or finders. These
discoverers can be either benevolent or adversarial in nature. In order for
vendor to optimize their ability to respond to externally discovered vul-
nerabilities in their products they should, as a minimum:

• Have a clear way to receive vulnerability reports
• Acknowledge receipt of vulnerability reports within 7 calendar days
• Coordinate with finders
• Issue advisories that contain useful information, as a minimum:

o Some unique identifier
o Affected products
o Impact/severity of damage if vulnerability is exploited
o How to eliminate or mitigate the issue (guidance or patching

instructions)
o Consider giving finders credit in the advisory if the finder wishes

to be publicly acknowledged

ISO 30111 provides guidance on how vendors should investigate, tri-
age, and resolve all potential vulnerabilities, whether reported by external
finders or via the vendor’s internal testing. In order for vendors to opti-
mize their ability to respond to discovered vulnerabilities in their prod-
ucts, they should, as a minimum:

• Have a process and organizational structure to support vulnerability
investigation and remediation

• Perform root-cause analysis
• Weigh various remediation options to adjust for real-world risk fac-

tors and balance speed with thoroughness
• Try to coordinate with other vendors if appropriate, such as in cases

involving multi-vendor or supply-chain issues

238 Core Software Security

A detailed five-step process recommended for handling and processing
vulnerability reports is

 1. Vulnerability report received
 2. Verification
 3. Resolution development
 4. Release
 5. Post release

The overall process is similar for either an external finder or a vulner-
ability discovered as a result of internal testing, but the risks may be dif-
ferent. If an external finder is involved, ISO 29147 should be followed
and it is important to

• Understand the communication expectations
• Take into consideration the finder’s intentions and publication plans

during the resolution-development phase
• Release the remediation via an advisory, as outlined in the processes

defined in ISO 29147

8.2.2 Post-Release Privacy Response

In addition to post-release security issues that may be discovered and dis-
closed, potential privacy issues may also be discovered. In our experience,
privacy-related issues do not get as much attention as security vulnerabili-
ties, nor is a group charted specifically to deal with such issues. A software
development company may have a chief privacy officer (CPO) or equiva-
lent, such as a specialized counsel on retainer, but most do not have a staff
and are likely limited to one privacy support expert at best. This neces-
sitates a close alignment and working relationship between the PSIRT
function and the centralized software security group and the privacy func-
tion of the company, whether the latter is in- or out-sourced. Post-release
privacy response should be built into the PSIRT process just as security
should be built into the SDLC. Given the potential legal nature of privacy
issues or privacy control vulnerability exploitations, the privacy advisor
should script basic talking points, response procedures, and legal escala-
tion requirements for the response team to use to respond to any potential
privacy issues discovered post-release. Some basic guidelines follow:

Post-Release Support (PRSA1–5) 239

• Privacy experts should be directly involved in all incidents that fall
into the P1 and P2 categories described earlier in this book.

• Additional development, quality assurance, and security resources
appropriate for potential post-release privacy issue discovery issues
should be identified during the SDL process to be participate in
post-release privacy incident response issues.

• Software develop organizations should develop their own privacy
response plan or modify the Microsoft SDL Privacy Escalation
Response Framework (Appendix K)5 for their own use. This should
include risk assessment, detailed diagnosis, short-term and long-
term action planning, and implementation of action plans. As with
the PSIRT responses outlined above, the response might include
creating a patch or other risk-remediation procedures, replying to
media inquiries, and reaching out to the external discoverer.

8.2.3 Optimizing Post-Release Third-Party Response

Collaboration between different teams and stakeholders provides the
best possible chance of success in post-release response. The collective of
software security champions, software security evangelists, and an ongo-
ing formal software security programmatic relationship with the software
development product managers and quality team to support and collabo-
rate with the centralized software security team as proposed in this book
provides several distinct advantages over solely dedicated teams to handle
post-release PSIRT and privacy support:

• Direct PSIRT and privacy response ownership is achieved by imbed-
ding these functions into the engineering and development groups
directly responsible for fixing the product directly affected by the
discovered vulnerability or privacy issue.

• Direct knowledge of the code, architecture, and overall software
product design and functionality with a direct influence on the
remediation process will result in increased efficiency, control,
and response over an external organizational entity without direct
knowledge of the product. Essentially, this removes the middleman
and streamlines the process.

• This process provides for better return on investment for both the
PSIRT and the privacy response function through the leverage

240 Core Software Security

of resources, and direct knowledge of the software product at
the source through the direct involvement and ownership by the
develop ment teams.

• Direct empowerment of the development teams and project manag-
ers, their more direct ownership of the remediation process, and a
centralized software security group embedded in the engineering/
software development group provide single-organizational responsi-
bility for the response.

• Software security champions and software security evangelists oper-
ate locally with the software product manager and appropriate
product development resources to directly drive the assessment and
remediation (if needed) of the claimed vulnerability by an external
discoverer.

• All the above result in faster time to execution and response and,
most important, help speed up the mitigation of negative press
exposure and customer risk. We believe there is an advantage to our
proposed organizational infrastructure in providing a cost-effective,
minimal resource, and an efficient way to respond to this type of
incident while reducing the burden on resources dedicated to the
development of the software itself.

8.3 PRSA2: Third-Party Reviews

Over the last few years, customers of software vendor have increasingly
requested independent audits to verify the security and quality of soft-
ware applications they have either purchased or are evaluating for pur-
chase. Software vulnerabilities have increasingly been tied to high-profile
data breaches over the last few years and have resulted in more customers
requiring independent and visible proof that the software they purchase
is secure. This, of course, has helped put pressure on companies that
develop software to ensure that the secure software development processes
are built into the SDLC to avoid the very costly discovery of vulnerabili-
ties that are caught post-release—often a sign of an immature, ineffective,
or nonexistent software security program. Because of the preponderance
of post-release code having security vulnerabilities and privacy issues
that should have been caught during development, third-party assess-
ment of post-release or near-release code has become the norm in the
industry, whether the company producing the software has a reputation

Post-Release Support (PRSA1–5) 241

for producing secure code or not. In some cases it is demanded by the
prospective or current customer, and in other cases it is conducted pro-
actively by the company producing the code.

Even for companies that have outstanding software security programs,
software applications can alternate in and out of compliance with poli-
cies or regulatory requirements over long periods of time for a variety of
reasons. For example, a new functionality or use case in a new version
of the application may introduce new vulnerabilities or planes of attack,
causing the application to drop out of compliance. Additionally, these
requirements may change over time. Many companies use third-party
code reviews to help identify these situations rather than spend the lim-
ited resources of their internal teams.

Third-party testing should include testing the entire stack, not just
your product. That means performing testing as outlined in earlier chap-
ters as well as continuous post-release testing. At a minimum, post-release
testing should include annual penetration testing (application and soft-
ware stack). Any new code released after initial release should follow the
SDL requirements outlined in previous chapters.

The biggest challenge is to do this in a timely and cost-effective man-
ner while also protecting the source code and other intellectual property
during the process. Some of the choices for third-party testing include
the following.

 1. Hand over source code to a third party for inspection. This is not a real
option for those who want to protect the most precious intellectual
property that a software development organization possesses—their
source code.

 2. Contract manual penetration testing services that can also do deep-dive
code and software architectural design reviews for each new release. To
avoid the risk of source code leaving the control of the company
that is developing it, contractors must be required to work onsite in
a controlled environment, under special nondisclosure agreements
and under specific guidelines. These typically include a source-code
protection policy and IP protection guidelines. An alternative to this
approach is to employ a company that only uses tools that require
the exposure of binary code only. In this case, the contractor inspects
the application at the same level as it is attacked, the binaries, and
can ensure that all threats are detected. This type of testing can be
done onsite or remotely as a service.

242 Core Software Security

 3. Purchase, install, and train development teams to use on-premise tools
and function as lower-level software security architects as an extension
of the software security group to conduct the “people side” of the software
security architectural review. Then invite auditors into your organiza-
tion to document your processes. Many mature software security
organizations have done this. A mature software security program
such as that described in this book will help scale and reduce the
need for additional headcount to do this work. Building this into
your SDL/SDLC process is a cost-effective, efficient, and manage-
able way to do this.

 4. Require third-party suppliers of code in your application to do the same.
In today’s software development environments, a majority of software
development organizations make use of code developed elsewhere,
either Commercial Off-The-Shelf (COTS) or open-source software.
Just as with internally developed software, a third party should prepare
an attestation report per the software application owner’s requirements,
which may include an attack surface review, review of cryptography,
architecture risk analysis, technology-specific security testing, binary
analysis if source code is unavailable, source code analysis if it is, and
fuzz testing in addition to a general pen testing routine.

8.4 PRSA3: Post-Release Certifications

There are numerous security-focused certifications that a software
develop ment team may face after the release of the product that are
added on as a requirement rather than during the development process
for a variety of reasons. These reasons may include use of the software in
industry or government sectors that were not planned for during design
and development, new uses for the software, and new government, coun-
try, regional, business or industry sector, or regulatory requirements that
did not exist prior to the release of the product. Post-release certifica-
tion requirements that did not exist prior to the release of the product
are a forgivable offense, but missing any that are currently required and
were missed early in the SDL are not. Avoiding noncompliance to cer-
tifications required for the use of the software that is being developed
requires either an internal resource in the company dedicated to follow-
ing software use certifications and other requirements, including privacy
requirements, or an individual or organization that specializes in this area

Post-Release Support (PRSA1–5) 243

of experience. This becomes particularly challenging as the number of
these types of certifications and requirements increases rapidly around the
globe. Following is a short list of examples of security or privacy certifica-
tions or standards that could become necessary for a software product to
comply with post-release requirements due to market or use-case changes:

• The Federal Information Security Management Act (FISMA)6

• Federal Information Standard 140-2 (FIPS 14-2)—Security
Requirements for Cryptographic Modules7

• The U.S. Department of Defense Information Assurance Certifica-
tion and Accreditation Process (DIACAP)8,9

• The Health Insurance Portability and Accountability Act of 1996
(HIPAA) (privacy and security rules)10

• Safe Harbor (privacy)11

• The Federal Service for Technical and Export Control (FSTEK of
Russia) Certification (Privacy and Security)12,13

8.5 PRSA4: Internal Review for New Product
Combinations or Cloud Deployments

In our profession, we continue to encounter the misconception that once
software has been through a SDL, you can re-use the software code any
way you want. This presumption is false because any architectural changes
that have occurred after release of a software product will likely introduce
new attack vectors in the previously secure code. For this reason, software
code must be put through the SDL process again when there is a new use
of the software or an architectural change to the code post-release. Any
new code must also be vetted through the various types of security testing
outlined in earlier chapters.

8.6 PRSA5: Security Architectural Reviews
and Tool-Based Assessments of Current,
Legacy, and M&A Products and Solutions

8.6.1 Legacy Code

Although they may have once been viewed as an unnecessary cost bur-
den, the best activities and best practices we have outlined in our SDL

244 Core Software Security

are a consequence of the discovery that security was not always a key
element of the software development process and sometimes led to
security vulnerabilities and risk mitigation costs that rivaled the initial
cost of the software to be developed. The acceptance of legacy code
is based on an assumption of what is expected to happen, in that the
software must be proven to be functionally correct and operationally
viable. However, when it comes to software security, the unexpected
is what typically causes the vulnerabilities. Not only are these security
vulnera bilities financially unacceptable, they are also unacceptable from
an operational, functional, and overall risk perspective. This is particu-
larly true when the software supports embedded critical systems and
applications such as those found in national and regional infrastruc-
tures, transportation, defense, medicine, and finance. In these applica-
tions, the liabilities, costs, mission, and business impacts associated with
unexpected security software and system vulnerabilities are considered
unacceptable. Unless the architecture of legacy software is correctly
assessed and analyzed from a security perspective, the impact of changes
cannot be predicted, nor can changes be applied effectively. This is why
the same testing and review rigor that is followed during the SDL must
be followed during legacy code reviews: as a means of mitigating the
unexpected. If done with the proper process and rigor, this will go far in
ensuring secure code implementation that is consistent between legacy
and new code.

A legacy software application is one that continues to be used because
of the cost of replacing or redesigning it and often despite its poor compet-
itiveness and compatibility with newer equivalents. The most significant
issue in this regard is that the organization has likely been depending on
this legacy software application for some time, and it pre-dates software
development security activities such as those described in our SDL and
the mandates that currently drive these practices. Further, a considerable
amount of money and resources may be required to eliminate this secu-
rity “technical debt.” Technical debt is the difference between what was
delivered and what should have been delivered. The importance of work-
ing with legacy code and technical debt is critical for most companies that
develop software.14

Legacy code with technical debt can also exist because even though
the product should be have been put in “end of life” status, one or more
customers do not or cannot upgrade to a newer version of the software,

Post-Release Support (PRSA1–5) 245

and that customer happens to be a critical customer who considers this
product essential to its business. This “critical customer” status often leads
to legacy code and products staying in service so the relationship with the
customer(s) still using the product is not jeopardized.

It is not always necessary to pay your technical debt, as it is your finan-
cial debt. There may be parts of the code that should be fixed but the soft-
ware product still works as advertised; optimizing the code and removing
known technical debt may not yield a worthwhile return on investment.
You may also decide to just take the code out of the program because it
no longer serves a purpose. In cases like these, you may never need to pay
off that technical debt.

Most important to this discussion is that the technical debt in legacy
software may contain security vulnerabilities. Over the course of a proj-
ect, it is tempting for an organization to become lax regarding soft-
ware quality and security. Most commonly, this results when teams are
expected to complete too much functionality in a given time frame, or
quality and security are simply not considered high-priority characteris-
tics for the software.15 In these situations, there may be security vulner-
abilities in the legacy code that exist as a result of the technical debt.
From a software product security perspective, the key task when looking
at legacy code is to balance the return on investment of addressing the
security technical debt against the risk of leaving it in. Two primary deci-
sions must be considered:

 1. How much new code presumably scrubbed by the SDL are you
writing to replace the existing old code? At what rate will the vol-
ume of old code be replaced, and what security risk is there for
whatever remains?

 2. Reviewing old code is a slow and tedious process. Serious return on
investment decisions must be made. You must reserve resources for
this work to reduce the technical security debt for current resources.
The level of effort for this work will depend on whether the SDL
existed at the time the code was developed. If there was no SDL at
the time the legacy code was being developed, the level of effort will
be high.

This is the basic process for assessing the security of legacy software
applications:

246 Core Software Security

• Assess the business criticality of the application. The software appli-
cation has likely been successfully relied on for years, and this may
be the first time it has been looked at from a security perspective.
In fact, it is highly probable that this is the first time it has been
examined with this level of scrutiny. If any security vulnerabilities
or flaws are discovered, even though there may be only one or two,
they will likely require a large-scale effort and significant resources
to mitigate. It is important to identify business criticality in order
to balance the business risk versus the security risk and return on
investment in these cases.

• Identify someone who is very familiar with the code. Since the legacy
code is “old” code, it most likely has not been updated recently and
there may be few if any people in the organization who understand
the software anymore. Further, it may have been developed on top
of an old language base, and/or poorly documented or commented.
If this is the case, then the next step will be to conduct a software
security assessment very similar to what is done during the SDL pro-
cess. If the original developers, documentation, and history exist for
the legacy software, and some security was built into the software,
then the security assessment process can be shortened to focus just
on assessing the gaps in current knowledge.

• Other basic questions should also be asked, such as:
o Has this application previously been exploited because of a known

security vulnerability or flaw?
o Has it been fixed? If not, what can be done about it now?
o Have there been any changes in the software architecture, func-

tion, or use that may have added new security vulnerabilities or
new planes of attack?

• Assess the security of the software using the key software security
assessment techniques of the SDL.

• Create a proposal that will tell the business how to remediate the
security vulnerabilities or flaws in the software (cost + time) or how
quickly they should think about replacing it (cost). If it is deter-
mined that the software is to be replaced, there will be risks in the
interim, so you need to make sure you know where the security
vulnerabilities and flaws are and develop a plan to mitigate and limit
any damage that may result from an adversarial attack or exploita-
tion of the software until the legacy code is replaced.

Post-Release Support (PRSA1–5) 247

• If the cost of remediation is considered unacceptable by the business
and there are no customer, industry, or regulatory requirements that
require that security vulnerability or flaws be fixed, then the senior
management for the business unit developing the software and pos-
sibly the head of the software engineering development organization
and legal counsel will be required to sign off on accepting the risk for
continued use of the legacy software.

8.6.2 Mergers and Acquisitions (M&As)

To be competitive, most companies want to develop new products and
access new markets and will seek alternatives such as a merger and acqui-
sition (M&A) when they cannot do this with their current resources.
M&As occur for many reasons but are typically driven by the desire to
improve competitiveness, profitability, or other value to the company and
its products. In the software world, this is typically a function that you
need in your solution set or in the product itself. The talent that may
come with acquisition will be a bonus if the primary focus of the M&A is
the software of the target company. The activities of an M&A start when
the initial discussions for the M&A begin and continue through the due-
diligence phase and on to the integration of the target company and/
or the acquired technology into the parent company. The level of effort
and scope of work in the process will depend on the size and complexity
of the effort. It should be noted that M&As do not always include all of
the resources of the target company. They may include the code for one
software product, or multiple technologies or products that are attractive
and of value to the acquiring company.

The due-diligence phase of an M&A is critical, and security plays a
vital role in helping make it successful. If software is included as part of
the M&A, a security architectural review and use of automated tools will
be required. This may be done either through the use of the potential
acquirer’s software security staff or through a third party, depending on
the restrictions that are imposed as part of the assessment and whether
source code can be reviewed. Due to the proprietary nature of source
code, most target companies with not allow a review of their source code
during the M&A assessment process. Thus an automated tool will be
needed that can conduct comprehensive code review via static binary

248 Core Software Security

analysis. This is done by scanning compiled or “byte” code at the binary
level rather than reviewing source code and typically includes static,
dynamic, and manual techniques.

Perhaps the best checklist for conducting a M&A software security
assessment can be found in Table 1, “Software Assurance (SwA) Concern
Categories,” and Table 2, “Questions for GOTS (Proprietary & Open
Source) and Custom Software,” in the Carnegie Mellon US CERT Software
Supply Chain Risk Management & Due-Diligence, Software Assurance Pocket
Guide Series: Acquisition & Outsourcing, Volume II, Version 1.2,16 which
can be accessed at https://buildsecurityin.us-cert.gov/sites/default/files/
DueDiligenceMWV12_01AM090909.pdf. Another similar and useful
resource is the Carnegie Mellon Software Engineering Institute Working
Paper, “Adapting the SQUARE Method for Security Requirements
Engineering to Acquisition,”17 which can be accessed at www.cert.org/.../
SQUARE_for_Acquisition_Working_Paper_v2.pdf. SQUARE stands for
Systems Quality Requirements Engineering. This particular paper describes
the SQUARE for acquisition (A-SQUARE) process for security require-
ments engineering and is adapted for different acquisition situations.

Some key items that a software security assessor should keep in mind
during an M&A software security review include the following.

 1. The intent of the M&A software security review is not to focus on
getting rid of elements of the target software, but rather to assess any
business risk that could result from any security risks identified.

 2. Highlight anything that may shift the nature of the deal or nega-
tively affect the integration.

 3. Look for anything that may be a possible deal breaker.

8.7 Key Success Factors

External Vulnerability Disclosure Response Process

In this post-release phase of the SDL cycle, it is critical to have a well-
defined and documented external vulnerability disclosure response
process. Stakeholders should be clearly identified and a responsibil-
ity assignment or responsibility assignment matrix (Responsible,
Accountable, Consulted, and Informed [RACI] matrix) should be

Post-Release Support (PRSA1–5) 249

created. Most important, only one team should have responsibility to
interface with customers to discuss vulnerabilities and remediation. All
other teams and stakeholders should work with that team and assure
that there are no other channels of communication or any information
leaked selectively to customers. It is often the case that large accounts
or enterprise customers are given preferential treatment and are privy to
information that small and medium-size businesses is not. This is not a
good security practice. Vulnerability information should be disclosed to
everyone or no one. Selective disclosure is not a good idea, plays favorites
with customers, and in some cases may be illegal and/or counter what
constitutes fair and equitable treatment of all customers.

It is also important to define and formalize the internal vulnerability-
handling process as part of overall vulnerability management and reme-
diation programs. In addition to security teams and external researches,
employees or internal customers of the products/services will often iden-
tify security problems and communicate them to the product or opera-
tions team. There needs to be a well-defined process to make sure all
relevant security vulnerabilities are captured and put through the reme-
diation queue.

Post-Release Certifications

Relevant certifications needed after the product is released (or deployed
in the cloud) should have been identified in one of the earlier phases of
the SDL cycle. Requirements for certifications should have been included
in security and privacy requirements. This will prevent any retrofitting or
findings during compliance audits for certifications. Certifications often
do require annual audits or surveillance audits. The security team should
work with the security compliance team to ensure that all relevant con-
trols requirements are met.

Third-Party Security Reviews

As we have discussed, third-party reviews are often critical to demonstrate
“security” to end users and customers. A preferred list of vendors should
be created by the software team, and these vendors should be vetted for
their skills as well as ability to handle sensitive information. Since these
vendors will be handling sensitive security information, it is important

250 Core Software Security

to note if they use full disk encryption, communicate securely, dispose of
any customer data as soon as testing ends, and so on. Any time there is a
need for security testing, one of these vendors should be selected for the
testing. Security testing of the entire software stack and product portfolio
should be performed at least annually.

SDL Cycle for Any Architectural Changes or Code Re-uses

Any architectural or code changes or code/component re-uses should
trigger SDL activities (though not all may be needed, depending on the
significance of the changes).

Security Strategy and Process for Legacy Code, M&A,
and EOL Products

Legacy code most likely will never be updated or modified. In addition,
a legacy software stack will also never be patched or upgraded. Software
running on old Apache Web server will have severe dependencies on it as
well as the operating system and thus will not be upgraded without the
application itself being changed. Any security issues identified in legacy
code will take a long time to remediate (if at all). The best way to deal
with legacy code is to move away from it as soon as you can. Alternatives
include defining a security process for managing security vulnerabilities
in legacy code, monitoring legacy code closely (at least annually), and
quarantining products running legacy code so that they pose minimal risk
to the environment.

M&A security assessment strategy is one of the key success factors in
the post-release phase. As mentioned earlier, you may not have access to
source code, so assessment strategies need to take this into account—that
is, you may need to use binaries rather than source code. In the end,
M&A security assessment should provide input into the overall quality
of the software being acquired. If this assessment is not thought through
carefully or done correctly, the software security group or the information
security group may end up dealing with repercussions for a long time to
come. A weakness in acquired software may weaken the software posture
of other products deployed in the environment.

In addition to a strategy for treating legacy code and products and
M&A, it is important to define end-of-line plans for the current version of

Post-Release Support (PRSA1–5) 251

the product/release. An end-of-line road map can guide security strategy
from this point on.

8.8 Deliverables

Key deliverables for this phase are listed in Table 8.1.

External Vulnerability Disclosure Response Process

This deliverable should clearly identify stakeholders in the process and
create a RACI for their role in it. In addition, communication cadence
with customers should be formalized and published so that everyone in
the company is aware of it and can invoke it if needed. Most important,
the process should be followed every time a security comes from external
channels or needs to be disclosed to customers.

Post-Release Certifications

Post-release certifications may include multiple deliverables or certifica-
tions based on target markets, regulatory needs, and customer requests.
Any one of these factors may drive a certification strategy. Certification
should be renewed if drivers for these certifications are still present.

Table 8.1 Key Deliverables

Deliverable Description

External vulnerability disclosure
response process

Process to define evaluation and
communication of security
vulnerabilities

Post-release certifications Certifications from external parties
to demonstrate security posture of
products/services

Third-party security reviews Security assessments performed by
groups other than internal testing
teams

Security strategy and process for
legacy code, M&A, and EOL plans

Strategy to mitigate security risk
from legacy code and M&As

252 Core Software Security

Third-Party Security Reviews

This deliverable consists of multiple security assessments from independent
third parties. At least two reports based on assessments should be created:
one for internal consumption and one for external use. External reports
should not list details of security vulnerabilities or expose critical informa-
tion. Reports for internal consumption should be as detailed as possible
and provide short- as well as long-term remediation recommendations.

Security Strategy for Legacy Code, M&A, and EOL Plans

There are three different deliverables under this umbrella: security strategy
for legacy code and products, security strategy for M&As, and end-of-
life plans. Each of these should be vetted with relevant stakeholders and
implemented in practice once they have been signed off by everyone.

8.9 Metrics

The following metrics should be captured as part of this phase of the SDL:

• Time in hours to respond to externally disclosed security
vulnerabilities

• Monthly FTE (full-time employee) hours required for external dis-
closure process

• Number of security findings (ranked by severity) after product has
been released

• Number of customer-reported security issues per month
• Number of customer-reported security issues not identified during

any SDL activities

8.10 Chapter Summary

This chapter concludes the step-by-step overview of our SDL and covers
what we believe to be a unique, practical, timely, and operationally rele-
vant approach to post-release security and privacy support. This approach
not only brings the tasks and organizational responsibilities back into the
SDL but also keeps the centralized software security group and engineer-
ing software development teams empowered to own their own security

Post-Release Support (PRSA1–5) 253

process for products they are directly responsible for. Most important,
we covered the organizational structure, people, and process required to
do this both effectively and efficiently while maximizing the return on
investment for security and privacy support in the post-release environ-
ment. In the next chapter, we will take everything we have discussed so
far and make it relevant to the various software development methodolo-
gies, whether Waterfall, Agile, a blend, or something in between. We have
included deliverables and metrics (Chapters 3 through 8), which can be
used by organizations to manage, optimize, and measure the effective-
ness of their software security programs. In Chapter 9, we bring it all
together to apply elements of the SDL framework as solutions to real-
world problems.

References

 1. McGraw, G. (2006). Software Security: Building Security In. Addison Wesley/
Pearson Education, Boston, p. 20.

 2. Mell, P., Scarfone, K., and Romanosky, S. (2013). CVSS: A Complete Guide to the
Common Vulnerability Scoring System Version 2. Retrieved from http://www.first.
org/cvss/cvss-guide.html.

 3. Mitre (2013). CVE—Common Vulnerabilities and Exposures—The Standard for
Information Security Vulnerability Names. Retrieved from http://cve.mitre.org/
index.html.

 4. Moussouris, K. (2013). “A Tale of Two Standards: Vulnerability Disclosure (29147)
and Vulnerability Handling Processes (30111).” PowerPoint presentation given at
the 2013 CERT Vendor Meeting, San Francisco, February 25.

 5. Microsft Corporation (2013). “Appendix K: SDL Privacy Escalation Response
Framework (Sample).” Retrieved from http://msdn.microsoft.com/en-us/library/
windows/desktop/cc307401.aspx.

 6. U.S. Department of Homeland Security (2013). Federal Information
Security Management Act (FISMA). Retrieved from http://www.dhs.gov/
federal-information-security-management-act-fisma.

 7. National Institute of Standards and Technology (2001). Federal Information
Standard 140-2 (FIPS 14-2)—Security Requirements for Cryptographic Modules.
Retrieved from http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf.

 8. U.S. Department of Defense (2013). Department of Defense Information Assurance
Certification and Accreditation Process (DIACAP). Retrieved from http://www.
prim.osd.mil/Documents/DIACAP_Slick_Sheet.pdf.

 9. U.S. Department of Defense (2003). Department of Defense Instruction Number
8500.2, February 6, 2003—Information Assurance (IA) Implementation. Retrieved
from http://www.dtic.mil/whs/directives/corres/pdf/850002p.pdf.

 10. U.S. Government Printing Office (1996). Health Insurance Portability and

254 Core Software Security

Accountability Act of 1996 (HIPAA), Public Law 104-191, 104th Congress.
Retrieved from http://www.gpo.gov/fdsys/pkg/PLAW-104publ191/html/PLAW-
104publ191.htm.

 11. Export.gov (2013). U.S.-EU & U.S.-Swiss Safe Harbor Frameworks. Retrieved
from http://export.gov/safeharbor.

 12. Government of the Russian Federation (2013). Federal Service for Technical and
Export Control of the Russian Federation. Retrieved from http://government.ru/
eng/power/96.

 13. Technology Risk Consulting (2010). Russian Federal Technical and Export
Control Order of February 5, 2010 No. 58—Regulations on the Methods and
Means of Securing the Personal Data Information Systems. Retrieved from http://
technology-risk.com/lawproject/FSTEK58.html.

 14. Mar, K., and James, M. (2010). CollabNet Whitepaper: Technical Debt and Design
Death. Retrieved from http://www.danube.com/system/files/CollabNet_WP_
Technical_Debt_041910.pdf.

 15. Ibid.
 16. United States Government–—US CERT (2009). Software Supply Chain

Risk Management & Due-Diligence, Software Assurance Pocket Guide
Series: Acquisition & Outsourcing, Volume II Version 1.2, June 16, 2009.
Retrieved from https://buildsecurityin.us-cert.gov/swa/downloads/Due
DiligenceMWV12_01AM090909.pdf.

 17. Mead, N. (2010). Carnegie Mellon Software Engineering Institute
Working Paper: Adapting the SQUARE Method for Security Requirements
Engineering to Acquisition. Retrieved from www.cert.org/.../
SQUARE_for_Acquisition_Working_Paper_v2.pdf.

255

Chapter 9

Applying the SDL
Framework to the
Real World

By Brook Schoenfi eld

In this chapter, we would like to introduce you to Brook Schoenfield. He is
a true thought leader and a well-respected software and enterprise security
architect. Because of Brook’s extensive experience as a software security archi-
tect, we have asked him to write this chapter. We believe this topic to be the
most difficult and critical part of the SDL and requires a seasoned software
security architect’s point of view to lend credibility to the solutions proposed.
Brook has been a co-worker and great friend of ours for several years and has
experienced the same challenges that we have in building, mentoring, manag-
ing, and providing technical leadership to both large and small software and
enterprise security programs. The following chapter is the result of many years
of experience by Brook of what works, what doesn’t work, and most impor-
tant, what should work to secure software during development. The model
presented in this chapter is also the result of many months of brain storm-
ing between James and Brook. As part of our introduction to Brook, we are
including an overview of his background below.

256 Core Software Security

Brook S. E. Schoenfield is McAfee’s Principal Architect, Product
Security. He provides technical leadership for all aspects of
product security across McAfee’s broad product portfolio.
Previously, he was Autodesk Inc.’s Enterprise Security Architect,
leading technical IT security strategy. As Cisco Systems’ Senior
Security Architect, he was the technical lead for SaaS product
security for the enterprise. Mr. Schoenfield has been a speaker at
conferences including RSA, Software Professionals, SANS What
Works Summits, and many others, presenting in his areas of
expertise: SaaS security, software security, information security
risk, Web security, service-oriented architectures, and identity
management. He has been published by SANS Institute, Cisco,
and IEEE.

9.0 Introduction

Software security depends on a series of properly executed tasks. There is
no “silver bullet” task whose execution will deliver “good enough” software
security. Security must be designed in from very early in the development
lifecycle. And each activity for finding defects is complementary to the
others. Leave out one of the activities and the others compensate only so
much for what’s been missed. The differences between software projects
dictates which tasks will deliver the most security return for investment;
some activities will be irrelevant for some systems. While the application
of some SDL security tasks depends on each project’s particular attri-
butes, there are other SDL tasks that lie at the heart of secure develop-
ment. These tasks are core to developing software that can be relied on
and that is also self-protective. This set of core activities applies to every
software project that must maintain a security posture, whatever that pos-
ture may be. These tasks are applied to every project.

Regardless of the development methodology employed, there will be
high-level system architecture tasks, software architecture considerations,
and software design issues. These constitute those tasks that must be done
before much production code has been written (though one may choose
to skip some of these when experimenting). After there is code to test,
there is the test plan to execute, which must include the functional tests
as well as testing from the attacker’s point of view. In between these pro-
cess markers, i.e., design time and testing, code will be written. Code

Applying the SDL Framework to the Real World 257

 production is the heart of software development. In some methodologies,
there may be some design work that occurs just before writing, or even as
code is developed. Whatever the approach, there are table-stake tasks that
lie at the very heart of secure development: correctness for security, peer
review, and static analysis (if available).

None of these tasks, by itself, constitutes a silver bullet activity that
will deliver secure software. Each task complements the others. Creating a
secure and securable architecture, with flows that can be understood and
with controllable trust boundaries, enables the software’s features to be
written into an environment that supports security. A thoughtful security
architecture should require those features that will foster secure deploy-
ment and usage. Once the architecture supports the required security fea-
tures, these can be designed from the start rather than attempting to bolt
security on after the fact.

Since secure coding is still very much an art, with local language and
runtime variations adding to complexity, a strong, real-world SDL oper-
ates by “trust but verify.” Trust your developers to write secure code. But
check that code with multiple, independent, and complementary assur-
ance methods: peer review, static analysis, functional testing, and dynamic
analysis of the input paths.

In short, prepare for security, think about how to implement required
features, build these, then test the code to make sure that the security fea-
tures work as intended and that no vulnerabilities have been introduced
while coding.

We believe that, ultimately, software security is a problem that peo-
ple must solve; technology is merely an extension of the human mind.
Relationships, as we will see, are the key to a successful SDL. Obviously,
humans design, write, and test code. Humans must do each of these
things with security in mind in order for the finished product to have all
the attributes that comprise “secure software.” Since execution of each of
the SDL tasks requires intelligent, highly skilled, creative people, it is the
people who execute the SDL who are the most important ingredient. As
we explore each portion of the secure development lifecycle, we will take
note of the approaches that strengthen relationships and provide people
with motivation to produce secure software.

Figure 9.1 illustrates the flow of activities through the SDL:

Architect => Design => Code => Test

258 Core Software Security

Ultimately, the SDL flow in Figure 9.1 reduces to a simple SDL para-
digm: Architecture feeds design, which is then built, i.e., “coded.” The
coded design must be put through a series of validations, “test.” This
chapter details exactly which activities fit into each of the high-level
buckets illustrated by Figure 9.1, and how those activities are used within
either Waterfall or Agile development. As we examine the SDL from the
implementation view, we will ask key questions to determine precisely
which activities must be engaged to what type of software project. In
order to apply the secure development lifecycle activities appropriately,
it’s important to understand that not every activity is required for every
project. Applying every security task to every project, from entirely new
concepts (“greenfield”) and/or complete redesign to a minimal set of user
interface changes is wasteful and expensive. Requiring that every project
go through Web vulnerability scanning, even those that have no Web
server, is just plain silly. Not only will effort be expended with little secu-
rity reward, but development teams are likely to resist the SDL as mean-
ingless “administrivia,” ergo, work with no benefit, empty bureaucracy.

In the past, choosing the appropriate set of tasks out of the complete
SDL menu has been performed by skilled security professionals, often the
security architects or security engineers. As the security architect came to

Figure 9.1 The real-world software development lifecycle.

Applying the SDL Framework to the Real World 259

understand the system, she or he was able to prescribe the correct activi-
ties to deliver secure software. Knowing that there is a Web server that
will be deployed only within a segregated network and that will be used
only by a few trusted administrative staff, the architect might choose to
forego a detailed Web vulnerability scan in favor of network and applica-
tion access restrictions. The required security posture defense in depth
can be achieved through applying multiple controls, each complementing
the other. Like a painter with a palette of technical controls, the architect
builds the security posture out of his or her palette.

Some organizations don’t have much flexibility in the security controls
that can be deployed: They can only deploy a few; a complete “palette”
of solutions isn’t possible. Or the organization may not have the project
analysis skills that are required to appropriately assign SDL tasks to pro-
jects. Or there may be too few analysts to scale to a large or diverse soft-
ware development portfolio. In these and similar situations, one tendency
has been to employ a “one size fits all” approach. This approach applies
every SDL task to every project, regardless of project size, the amount of
intended software change, or change of the included components. In our
experience, this approach is fraught with pitfalls: resistance, misapplica-
tion, missed schedules, or teams simply ignoring security tasks altogether.
Integrating security into software projects is not a “one size fits all” pro-
blem. Not only will there be wasted, even useless effort, but the engineers
tasked with carrying out the tasks will lose faith in the SDL. This can
lead to apathy, even gaming the system to get around what appears to
 developers to be a valueless bureaucracy.

Instead, we propose a straightforward approach that builds on years of
successful security analysis of hundreds of software projects at many diverse
organizations. This extensive experience has been distilled into a set of
key questions and the task flows that follow from the answers. Successful
application of the SDL activities can be accomplished by asking these few
important questions either at project initiation, or before each high-level
phase of development. Each defining question must be answered before
the SDL phase in which its associated tasks are to be completed.

This is not to suggest that executing these tasks is trivial. As has been
pointed out by Microsoft threat modelers, threat modeling can be per-
formed by anyone with an inquisitive mind. Still, in current practice, it
usually takes an experienced architect who understands the project’s archi-
tecture, the intended deployment model, the development languages, and

260 Core Software Security

runtime. The architect must also have a strong grasp of the sort of threat
agents who are active against this sort of software. Indeed, she or he must
understand the relevant attack methods in order to build a realistic threat
model. Static analysis tools require considerable expertise, as do most
forms of dynamic testing, from Web vulnerability scanning to input fuzz-
ing. The existing tools are nontrivial to learn and run effectively. Code
review requires an understanding of general security correctness, the
flow and structure of the particular code under review, as well as how the
intended function should be implemented. Your most junior engineer is
probably not the best resource to apply to any of these tasks—at least, not
without significant support from experienced practitioners.

If one can build the right set of questions into the SDL, choosing the
correct set of high-level tasks turns out to be fairly straightforward. This
is true even if executing those tasks is nontrivial. There are dependencies,
process flows of tasks that follow logically out of the answers. Once the
task flow is engaged, the appropriate activities will take place in a more or
less linear fashion.

Making the SDL relevant and obviously appropriate opens the door
for meaningful interactions among the different stakeholders of the SDL.
As has been noted, asking intelligent, busy people to do things about
which they cannot perceive value does not enhance confidence in the
security team. Conversely, a transparent process that is inherently obvious
has the opposite effect. Empowering SDL participants to answer basic
questions about which activities are appropriate for their current project
is inherently trust-building. It remains true that execution of many of
these tasks requires deep technical (and often interpersonal) expertise.

The current state of the art does not simplify many SDL tasks enough
to allow these to be executed by “just anyone,” even when every member
of the development team holds a modicum of technical skill. For most
organizations in which we have participated, architecture assessment or
vulnerability scanning remain expert domains. Because of this state of
affairs, relationships become even more important. Achieving secure soft-
ware requires many people to pull together toward shared goals—which,
obviously, means that non-security participants must understand that
security is a “shared goal.” Hence, we advocate as much transparency as
possible coupled to an SDL implementation that stresses people and rela-
tionships as much as technology. The key determining questions are one
step toward achieving a “people” focus of the SDL in the real world.

Applying the SDL Framework to the Real World 261

The key determining questions will be presented later in the chapter,
in context. First we will examine the heart of every SDL; those activi-
ties that are not dependent on amount of change or type of interface.
Without these core tasks, the SDL lacks its most essential ingredients to
produce code that is written correctly for security and that contains as
few defects as possible: writing secure code, reviewing the code, and then
running the code through static analysis.

As we examine the SDL tasks as they are applied to real-world projects,
this chapter will detail the supporting parts of a software security program
that will foster and grow the required skills to execute the tasks well.

9.1 Build Software Securely

At the heart of secure software development, there are three core activi-
ties. Figure 9.2 delineates the three core activities and their relationship
within both Agile and Waterfall development. Every programmer must
attempt to write safe, defensive, self-protective code. There is no secure
path around the need for coders to understand what must be done in
the language in which they are working. Different languages and different
execution environments demand different emphases. In fact, issues in one
language may not be worth considering in another; one only has to look
at the differences between C/C++ and Java to understand this fact. The
C/C++ language allows the mishandling of memory; in fact it’s very easy
to do something insecure. In contrast, the Java programming language
takes care of all memory handling; programmers need not worry about
the allocation and the de-allocation of memory at all.

Even experts at writing correct, secure code make mistakes. And the
current reality is that there are very few coders who are experts in secu-
rity, much less the security issues of a particular language and runtime.
In addition, it should be remembered that writing software code is as
much an art as it is engineering. While there are correct implementations
and incorrect implementations (engineering), a great deal of creativity is
involved in expressing that correctness. There may be several algorithmic
approaches to a particular problem. There will be many possible expres-
sions of whatever algorithm has been chosen. And this does not take into
account innovation: The programmer may encounter computer problems
that have not yet been attempted; she or he will have to create an entirely

Fi
g

ur
e

9
.2

C

o
re

 e
le

m
en

ts
 o

f
so

ft
w

ar
e

se
cu

ri
ty

 w
ill

 r
em

ai
n

th
e

sa
m

e
re

g
ar

d
le

ss
 o

f
d

ev
el

o
p

m
en

t
m

et
ho

d
o

lo
g

y
o

r
th

e
SD

L
th

at
 y

o
u

us
e.

Applying the SDL Framework to the Real World 263

new algorithm or significantly modify a standard. And, even with nam-
ing conventions and other coding standards, programming languages are,
in essence, expressive. That may be one of the motivators for becoming
a programmer: creativity at one’s job. But with creativity and innovation
come mistakes. Mistakes are the price we pay for innovation. Not every
idea works; perhaps most fail? One very successful approach is to learn
about a problem by trying to solve it. Such an iterative approach is often
used when building software, but iterative discovery guarantees a certain
level of failure and error. We would posit that defects and vulnerabilities
are a direct result of innovation (although, of course, innovation and cre-
ativity are not the only causes of vulnerabilities).

The software security practitioner is faced with a trade-off between
curtailing innovation and perhaps job satisfaction and delivering code
whose security can be assured. This is where the assurance steps provide
appropriate help. We recommend that at the heart of whatever develop-
ment process is used, include manual code review and static analysis. That
is, give the creative coder considerable help to deliver correct code.

Figure 9.3 visually reinforces the central coding flow: Produce secure
code which is then statically analyzed and manually code-reviewed. This
is the essential “secure” version of “build” in software construction terms,
i.e., the “heart” of a secure development lifecycle. These core tasks lie at the
center of secure software, regardless of the development process being used.

Figure 9.3 The heart of an SDL.

264 Core Software Security

9.1.1 Produce Secure Code

Every program has (at least) two purposes: the one for which it was
written and another for which it wasn’t.1

If software engineers, those who write software, could produce correct,
error-free code, there would be far less of a software security problem.*
And with only correct software there is no need for all the non-design
related tasks of the SDL. At the risk of stating the obvious, writing correct
code has always been difficult, even without security considerations.
Since the dawn of the software industry, when software engineers adopted
the term “bug,” meaning “software error,” engineers have struggled to
produce code that is correct, both logically and without runtime error.
Inferring from the vast experience of all the software that has been writ-
ten, we can conclude that writing error-free code is very, very difficult.
It’s not impossible, but it remains an expensive ideal rather than a norm.

Realizing the error-prone nature of producing code, software engi-
neers have attempted to find a metric that shows how dependable and
error-free any particular piece of code might be. One measure is the num-
ber of defects, “bugs,” per line of code written. It is generally accepted
that production software contains approximately 1 error per 1000 lines
of code. This is a very general statistic. It is possible to produce software
that has far fewer errors; one need look only at critical space mission or
military software, which often must adhere to much stricter defect limits.
And, of course, poorly written software may have orders of magnitude
more errors than 1 in 1000. Generally, however, there are errors in any
moderately complex piece of code. As far as we can tell today, there is no
way for us to ensure that 100 percent of the software or security errors
will be eliminated before software is released. The best approach is to go
through the required SDL activities (see below, determining questions) to
ensure that most of the errors can be caught and fixed before a product
is deployed or sold. If errors are found after software release, one should

* There would still logical errors, errors of architecture and design omission and com-
mission. Logical errors are not dependent upon correct code. It is quite possible to
insecurely specify, and then code that mistake correctly to the specification. That
is, it is possible to correctly follow the incorrect specification and introduce a logical
vulnerability.

Applying the SDL Framework to the Real World 265

essentially follow a foreshortened SDL cycle to get the errors remediated,
tested, and released.

Testing shows the presence, not the absence of bugs.2

Out of the population of extant errors, some proportion will have
effects that can be manipulated to the advantage of an attacker; that is, these
errors will be security “vulnerabilities.” We focus here on vulnerabilities.

There is reasonable certainty that developers will produce incorrect
code at least some of the time and some of those errors will be subject
to malicious manipulation, ergo, there will be vulnerabilities in the
code. This is not a reason to abandon efforts to write correct code. The
advantages of correctness at the outset far outweigh the expenditure; it
is an established fact that achieving correctness as early as possible in the
develop ment cycle is by far cheaper and easier. The earliest point will be
when the code is written.

There are several complementary activities that, when put together,
will contribute to fewer security defects as code is being written: developer
training, safe libraries, and proven implementations generalized for reuse.

Obviously, developers must know what is expected of them, where
to pay attention to security, and what the correct behavior is that must
be programmed. Any and all training approaches have benefit, although
some approaches have less effectiveness than may be obvious.

Developers should understand, at a very high level, that some defects
have profound effects within the software they write. Functional speci-
fications describe how the software will be used. Among these specifi-
cations will be those security attributes and features that users and the
owners of the software require. Generally, that which has been specified
gets built. That is not to say that errors don’t creep in; they do. But since
the properties are a part of the requirements, developers have an organic
exposure to systems such as authentication and authorization, and to the
API functions and classes that implement communications protections,
such as TLS/SSL. If specified, the developer will generally attempt to
build the functionality.

The security industry has primarily been interested in vulnerabil-
ity (something that can be exploited), that is, in security weakness.
Vulnerabilities are defects that when manipulated cause side effects
that can be used to advantage; vulnerabilities are bugs. Since security

266 Core Software Security

 practitioners ultimately must assess risk, a part of which is vulnerability,
it is a natural focus of the occupation. Unfortunately, developers do not
focus on vulnerability. They must focus on correctness. Is the algorithm
written correctly? Does this code implement the specification exactly?
Will this logical series produce the correct paths? Is this code clear enough
to be maintained by someone who has never seen it before? Will this code
reject invalid input? Can this code fail and the program recover after that
failure? These are the sorts of questions that dominate developer thinking.
Vulnerability is generally a side effect of error, often not an error by itself.

Tracking back from vulnerability to defect or code error is one of the
big misses in information security as of this writing. Security people talk
about vulnerability. Developers want to know where the bug is and how
to fix it: Developers typically ask, “What is the correct behavior that must
be implemented?”

It’s useful for coders to understand that bugs can make a program vul-
nerable. However, training should focus on what is correct, self-defensive
behavior. US-CERT’s Key Practices for Mitigating the Most Egregious
Exploitable Software Weaknesses3 are a refreshing start, focusing on cor-
rect, secure programming. The focus of this publication is not vulner-
ability side effects or attack patterns, but rather, on the system pro perties
and algorithms that will prevent issues. For instance, for cross-site script-
ing (XSS, also represented as XXS) errors, which are endemic to today’s
Web applications, Key Practices recommends complementary program-
ming solutions that together will prevent XSS. The following quote rec-
ommends a specific algorithm which would then be “correct” and also
prevents one variation of the vulnerability, XSS.*

When the set of acceptable objects, such as filenames or URLs, is
limited or known, create a mapping from a set of fixed input values
(such as numeric IDs) to the actual filenames or URLs, and reject
all other inputs.4

Training that focuses on correct behavior is a key to fewer security
vulnerabilities. A secure coding training program might begin with the
neces sary high-level attributes of a secured system. There are any number

* The algorithm quoted is not intended to be an XSS “fix-all”; it is chosen for specifi-
city, not for its completeness.

Applying the SDL Framework to the Real World 267

of security design principle collections. The Open Web Application
Security Project (OWASP) provides a distillation of several of the most
well known sets of principles:

• Apply defense in depth (complete mediation).
• Use a positive security model (fail-safe defaults, minimize attack

surface).
• Fail securely.
• Run with least privilege.
• Avoid security by obscurity (open design).
• Keep security simple (verifiable, economy of mechanism).
• Detect intrusions (compromise recording).
• Don’t trust infrastructure.
• Don’t trust services.
• Establish secure defaults5

Even if developers thoroughly understand these principles without
further training, as they design and implement, security correctness will
be one of the key attributes that will emerge as programs take shape.

Training must be readily available and easily consumable. Generally,
week-long courses are very difficult to schedule broadly due to lost pro-
ductivity and lost opportunity costs. While an immersive approach cer-
tainly has benefits, any material that is not quickly applicable to tasks at
hand may be rapidly lost. Instead, shorter segments that can be taken
in small doses and then practiced on the job will likely deliver better
results. One pattern that we’ve found very effective is to establish a base-
line understanding and skill level with:

• High-level application vulnerability introduction
• Secure design and coding principles
• Three to five required, easily understandable short courses (30 min-

utes maximum), demonstrating correct fixes for common vulner-
abilities applicable to the developer’s platform and language.

Once the baseline training has been established, provide additional
training on common fixes. Training in these commonly encountered pat-
terns must be easily consumable. Developers tend to be very jealous of
their time. Alongside highly focused, shorter pieces, also provide more

268 Core Software Security

 i n-depth training on software security. In this manner, developers may
follow their own interests. If they have to fix a particular error, they may
choose to take the short, focused training. Or, if they catch the “security
fire,” they may want to pursue such deeper topics as encryption implemen-
tations or access control systems. Any training program should remind
engineering staff that security skills are marketable and a premium skill.

Training by itself is less effective without opportunities to use the
learned skills. Practice definitely makes perfect. This is a strong reason to
give developers time between training sessions to apply the new skills. A
natural rhythm of training then practice should be established:

• 30–60 minutes of secure coding training
• Several weeks of practical application

Those who become experts can assist those with less skill. Further,
these experts become senior code reviewers, capable not only of finding
defects during manual code review, but also disseminating the correct
approaches and algorithms.

Alongside a robust secure coding training program, thoroughly
debugged implementations can be created. These libraries should be
designed to generalize solutions across many implementations. They
should provide easily implementable Application Programming Interfaces
(APIs) to the correct implementations contained within the library. These
correct libraries may then be included in each software project with the
knowledge that security has been well implemented. And, if an error is
found in the library, it can be fixed in only one place rather than in many
disparate implementations.

The OWASP Enterprise Security API6 is an example of a vetted imple-
mentation that solves various security problems within a Web applica-
tion. For instance, to prevent XSS, there are functions that will validate
all input against a whitelist before passing on the input for use within the
application:

All input must be validated against a strict whitelist pattern using
the Validator.* methods before used.7

Whether correct APIs are built internally or acquired, these should
be a key technology to ensure that code is correctly secure. Creating and
using vetted libraries ensures that correct implementations are used and

Applying the SDL Framework to the Real World 269

reused. This will also avoid the problem of implementation errors creep-
ing into each coder’s individual realization.

Another solution that may be of help is pairs programming. Kent Beck
defines pairs programming as follows:

Pairs of programmers program together. Pairs don’t just make test
cases run. They also evolve the design of the system. Changes aren’t
restricted to any particular area. Pairs add value to the analysis,
design, implementation, and testing of the system. They add that
value wherever the system needs it.8

In this manner, both design and implementation are improved by the col-
lective skill of the pair of programmers.

Writing secure, correct code is a product of several approaches taken
together. Training complements practice. Practice creates expertise that
can be applied to vetted implementations, which can be reused to mini-
mize implementation errors. Collaborative approaches build team exper-
tise while catching errors during the writing process. However, secure
writing is not enough; correctness must be verified.

9.1.2 Manual Code Review

Due to the expressive nature of computer languages and the infinite vari-
ety of logical problems tackled in programs, it is important to employ
independent, skilled reviewers who can provide a safety net for the coder,
and a check on correctness. Manual code review is particularly good at
finding errors in the logic of the code. If the reviewer understands what
the code will be doing but has not been involved in writing the code, he
or she can often spot errors, especially logical errors. The reviewer can
certainly check to see that coding standards have been adhered to. If the
reviewer has security expertise, she or he may also spot security defects as
well. Since there is a dearth of secure coding experts, it may be necessary
to focus on logical and stylistic elements. However, if every developer
is trained in basic defensive programming, particularly with respect to
inputs, manual code review can at least find the egregious input valida-
tion errors that plague so much of the code produced today. In any event,
code review is not panacea. While it is possible to get expert manual code
reviewers who can literally rewrite your code to be not only secure but

270 Core Software Security

also be efficient, elegant, and maintainable, these are very expensive. And
there are very few such “code gurus” from which to draw. Making use of
these experts may be very valuable for critical code, but it is infeasible for
most projects in most organizations. What is feasible is to complement
several different approaches, some targeted assurance, some broad, both
manual and automated. A methodology that maximizes the complemen-
tary nature of approaches has proven to find the broadest level of defects
while also being scalable.

To maximize manual code review, for the large amount of grunt,
well-understood, typical code that must surround the critical pieces
and the proprietary business logic modules, it’s probably sufficient for
most organizations to use peer review. Manual peer code review is when
one or more of the coder’s peers reviews code before commit for build.
Members of the same development team will likely be familiar with what
was intended by the code, the environment in which the code will run,
and the general architecture of the project. It should therefore not be too
difficult for them to understand and comment constructively. For code
that is not too complex, such as routines that call a broadly understood
API, a single reviewer may be sufficient. For more complex code, multiple
reviewers may be employed. In fact, one of the soft benefits from a strong
peer review program is the trust that members of the team develop in
each other. Further, reviewers will become backups to the coder so that
no single person becomes indispensable. On one team, the coders came
to trust each other so much that they would often ask for three or four
reviewers on their code; the resulting code was much more correct and
efficient than it had been previous to this team code review. If the team
is sufficiently skilled by themselves, peer review may be adequate for even
critical or highly sensitive algorithms.

Typically, however, especially at fast-moving organizations where
there may be movement between teams or even periods of turnover, peer
review will be insufficient for critical code. The worst situation is where
a junior programmer shows her or his code to another junior program-
mer who looks at it and replies, “Your code looks just like mine. Pass.”
Inexperienced coders are not going to find many sophisticated errors. Still,
one of the more interesting code review processes we’ve seen involved a
junior reviewer explaining code to a very senior developer.* While this

* Instituted by Joe Hildebrand, CTO of Jabber, Inc.

Applying the SDL Framework to the Real World 271

may be a more time-consuming approach, the training and development
benefits are obvious. A code review becomes an opportunity to mentor
and instruct.

We recommend that critical algorithms, complex functions, security
modules, and cryptography implementations be manually reviewed by
someone who has the skill to assess correctness and who understands
the types of vulnerabilities that can be introduced. This will typically be
someone very senior on the team or who can be made available to the
team. It should be someone who is familiar with the intended functional-
ity; usually, it’s someone who has implemented the same or similar func-
tions successfully in the past.

9.1.3 Static Analysis

Static code analysis is the process of running an automated tool that reads
either the source or the compiled object code after it has been written.
The tool has preprogrammed patterns and errors for which it searches
in the body of the code. Since, as has already been noted, computer lan-
guages are expressive; this is what’s known in computer world science as
a “nontrivial” problem. That is, static analysis must understand not only
the legality and semantics of a language (duplicating what the compiler
does), but must also understand typical constructs and those constructs’
mistakes and misuses. Further, the static analysis must create a graph of
all the possible interactions, “calls” within the code, in order to arrive at
vulnerable interactions. One limited and simplified way to describe mod-
ern static analysis is that the compiler finds what is illegal or disallowed
in the language. A static analyzer builds on legality by finding that which
is “ill-advised.” Again, this is a gross oversimplification of the capabilities
bundled within an industrial-strength static analyzer.

With respect to the SDL, how a static analysis takes place is not particu-
larly important. More important is the sorts of errors that static analysis
finds, and the sorts of errors that will be overlooked. For languages where
direct memory manipulation, allocation, and de-allocation are required,
static analysis has proven excellent at identifying code where memory is
susceptible to misuse. For instance, common stack-based overflows in
C/C++ occur when the size of data to be copied into a stack-based buffer
is not checked before the copy or the length of the copy is not limited to

272 Core Software Security

the size of the buffer. This is considered a classic security vulnerability.
If that buffer can be accessed from a point outside the program (that is,
through an input path), the overflow can be used to execute code of the
attacker’s choosing.

 Most static analysis tools will readily identify failure to check size of
the copy as a memory-handling error. Some tools may even be able to
establish seriousness by identifying an input path that leads to the copy.
This is particularly true for static analysis which builds an execution graph
of the software before error analysis.* Or, conversely, the analyzer may find
that there is no such input path, thus downgrading the seriousness of the
issue. In the latter case, dynamic analysis will never find the issue, as there
is no input leading to the buffer copy. In the former case, dynamic analy-
sis may or may not find the issue, depending on the inputs attempted.

Because static analyzers can view all the code, not just the code that can
be reached through inputs, we place static analysis at the point where the
code is still close to the developer. Several of the industrial-strength static
analyzers build a code graph of every path through the code. Building
such a graph gives the analyzer a holistic view not only of paths through
the code, but of relations between modules, use of APIs, data exposure
and hiding, and other subtle programming patterns. With the true graph,
the analyzer can assign seriousness to issues with far more information
about relations between pieces of the code when it finds an error. And, of
course, since the static analyzer has the source code, it can point precisely
in the code where a potential error lies. This saves significant amounts of
time for developers fixing defects.

The downside of the holistic but not executing view is that errors
that may have less potential to get exercised may be reported alongside
and equivalent to those that absolutely are exposed. These unexposed
errors, in fact, may not be particularly significant even when they are
exposed, due to runtime considerations. That is, not all potential buffer
overflows have equal impact. The classic example is a buffer overflow that
requires very high privileges in order to exploit. Attackers who have esca-
lated privilege to the required level have no need to exercise an additional

* The advantage of the call graph is that every possible path through the code can
be examined. The disadvantage of a call graph is that many of the possible paths
enumerated in the graph may never be executed. There are limited approaches for
static analysis to determine which paths are critical and actually exposed to an attack
surface. The analyzer takes a “best guess” approach.

Applying the SDL Framework to the Real World 273

attack that executes the attacker’s arbitrary code. On most modern oper-
ating systems, at that privilege level, an attacker can execute whatever
he or she wants without a further exploit. In other words, such a buffer
overflow has no potential attack value. Such an overflow is entirely theo-
retical. Still, because the static analyzer is not executing the program and
has no notion of user privileges, the analyzer cannot distinguish between
a high-privilege arbitrary code execution and a low-privilege one. It will
take developer analysis to qualify such a reported defect.

The Embarrassment of Riches problem means that a modern
commercial static analysis tool generally finds more bugs than the
user has resources, or willingness, to fix.9

One practical solution to the “embarrassment of riches” problem is
to start with a well-understood, high-confidence analysis. “High confi-
dence” means: “Report only those defects for which there is very high
confidence that there is in fact an exploitable defect that must be fixed.”
This means turning down the “aggressiveness” or similar configuration to
a low setting. Configure only those checks that the manufacturer of the
static analyzer believes will deliver 90 percent or better confidence in the
results—that is, 10 percent or less false positives. Obviously, this means
that some defects will flow through. We offer the adage that any reduc-
tion in attack surface is a significant win for security. It is extremely hard
to achieve 100 percent; even 80 percent may be difficult in the first few
releases of a program. A reduction in attack surface or vulnerability of
even 20 percent in the early stages of a program to build secure software
(an SDL program) is quite significant.

Political resistance to static analysis bugs is sometimes warranted,
sometimes mere laziness, but sometimes deeper and cultural:
Avoiding the kinds of bugs that static analysis finds is largely a matter
of discipline, which is sometimes unpopular among programmers.
Fixing these bugs, and verifying that your organization has done so,
will require adaptability and judgment. Attempts to design simple
rules and metrics for this are, in my opinion, at best premature, and
perhaps impossible.10

Starting with lower targets that will deliver high-confidence results will
be accepted much faster, as engineering teams quickly gain confidence in
the tools’ results. We suggest a soft target of engineers trusting the static

274 Core Software Security

analyzer similarly to the way they trust their compilation tools. Starting
small and focusing on high confidence is likely to gain that sort of trust.
And once that trust is gained, teams can begin experimenting with more
checks, broader defect analysis, and more aggressive scans. Still, in our
experience, engineering team confidence and trust is critical to the success
of the static analysis program.

In other words, it is typically a mistake to simply turn on the default or
“everything but the kitchen sink” analysis when first getting a start. Teams
will be bombarded with unmanageable defect totals (sometimes in the
tens of thousands from a single analysis). Defect tracking systems will be
overwhelmed. Such numbers are likely to generate “political resistance” to
adoption. Engineers will lose confidence that the tool can deliver usable
and reliable results.

Instead, we advise starting small, clean, and manageable. Build on
successes. Template successful builds, configurations, and test suites that
teams can adopt easily and quickly. Have successful teams assist those
that may be struggling. Let the teams that have reduced their defect
counts evangelize to those that are just getting started or are new to
analysis. We have successfully used precisely this approach several times
in different organizations.

One key is to place static analysis in the correct development “spot.”
Like the compiler, through which the code must pass successfully in order
to generate object code, the code must pass through static analysis and
likewise be free from incorrect uses and identified vulnerabilities before it
can be built (that is, linked into a library, executable, or other fully linked
and executable object). Static analysis can be thought of as a part of the
check-in and build process; static analysis is the mandatory step for quali-
fying code as buildable.

If the analysis tool supports developer use during development, let engi-
neers have this additional check for the code they produce. Programmers
will learn and trust the tool. They will also learn about security and secure
coding; security mistakes will be pointed out during code creation. Still,
we believe that while this use delivers obvious benefits, the code should still
be analyzed again when committed for build into the product or release.
Give coders every advantage. Give them every possibility for deliver ing
correct code. And verify correctness at some formal gate through which
the code must pass. If the code is clean, there is little lost from putting
it through static analysis—commercial analyzers are generally quite fast

Applying the SDL Framework to the Real World 275

once they are properly configured and tuned. However, if there are vul-
nerabilities, this is the bottom line. These “must not pass” into execut-
able objects that then have the potential for getting into production uses.
“Trust, but verify.” We recommend empowering coders to verify their
work while also verifying implementations before these can be fully com-
mitted for potential release.

At the heart of every development lifecycle, there are three processes that
interlock and complement each other to deliver secure code. Developers
need to be trained and have the discipline to try and write correct, error-
free, vulnerability-free code. This practice and discipline will require train-
ing, practice, and a space in which developers can make mistakes, try new
things, learn, and be relatively free during the learning process. It takes
astute management to work with high-functioning, creative people who
are learning their craft while practicing it at the same time. After the code
is written, the next core step of the secure build process is manual code
review. Like secure programming, manual code review is also a disci pline
and a practice. Code review is also an opportunity for learning and mas-
tery; manual code review is the other side of writing correct code. Great
code reviewers become great coders. Great coders become great code
reviewers. The two processes work hand in hand to deliver cleaner code
and more sophisticated programmers. Finally, at the heart of the devel-
opment process, checking and complementing the code review, is static
analysis. Complementing the human element, static analysis is an auto-
mated procedure that looks holistically across multiple dimensions at the
same time. Whether Waterfall or Agile, secure coding, code review, and
static analysis should lie at the heart of any secure development lifecycle.

9.2 Determining the Right Activities for
Each Project

9.2.1 The Seven Determining Questions

Recurring often, continually, and across every organization with which
we’ve worked, is a sense from developers and engineering teams that add-
ing security will be yet another impediment to delivery. It’s important to
note that many if not most software organizations reward at least in part
upon the delivery of features on time, and under budget. Typically, the

276 Core Software Security

focus on timely delivery is well embedded at the point when a software
security practice is started or improved. It is only natural that teams will
want to know how, in their already busy schedules, they will manage to
accomplish a series of what appear to be additional tasks.

Obviously, one can argue that developers should have been integrating
security into development practices already. Interestingly, many times,
teams have responded that they are, in fact, doing just that: producing
“secure” software. “Secure” here is an operative term; “security” has no
precise meaning and is highly overloaded.

Digging a little deeper, we will be told that the authentication mecha-
nism for the software has been well thought through and is built and
tested. Or, perhaps, all communications going over the network can be
placed within an encrypted tunnel (usually, TLS). Rarely, previous to the
instantiation of a strong SDL program, do teams respond in a holistic
manner, acknowledging the range of tasks that must receive attention,
from design through testing. And that is precisely the problem that work-
ing with the SDL is supposed to address: holistic, built-in security, soup
to nuts, end to end.

Because security is often presented as a matrix of tasks, teams may see
the large number of tasks and become overwhelmed as a result. Time and
again, we have heard team leads and development managers ask, “What
do I have to do?” Since the answer to that question really should depend
on the type of project at hand, the security architect may answer, “Well,
that depends.” This answer is not very satisfying to people who have made
a practice out of timely and orderly software delivery: product managers,
project managers, technical leads, and development managers.

Then, the security person will be asked, “What is the minimum set of
activities that my project will have?” Requesting a minimum task set is cer-
tainly a relevant and worthy question. The answer, “Well, that depends,”
is once again not at all satisfying. We realized that having the security
architect as the sole arbiter of what must be done too often makes a mys-
tery of the entire process. Planning becomes more difficult. Yet again,
security is seen as a hindrance and an obstacle, not as one of the required
deliverables that must be a part of production software.

After much trial and error over many years, on divergent develop-
ment groups operating within multiple enterprise organizations, we
have crystallized a set of questions that can be easily answered by pro-
ject managers, architects, technical and engineering leads, and/or product
managers. These people typically have the understanding to assess the

Applying the SDL Framework to the Real World 277

amount of planned architecture and design change, whether there will
be additions of sensitive data and third-party code, the types of interfaces
to be added or changed, and the expected deployment models. Each of
these dimensions influences which security activities must be executed
in order to generate the correct set of security features and requirements.
Some of these dimensions determine what types of security testing will be
required. Together, the answers to these questions will map the required
SDL security task flows to individual project circumstances.

We do not recommend a “do it all” approach. Threat modeling addi-
tions that make no substantive change to a previously and thoroughly
analyzed security architecture delivers no additional security value. Plus,
requiring this step when it has no value will not engender trust of secu-
rity’s process judgment. Engineers often spot valueless activities (they
tend to be smart, creative people!). Nobody likes to waste time on useless
bureaucracy. Most engineers will quickly realize that requiring dynamic
Web testing when there is no Web server has no value. Rather, let teams
exercise their skills by allowing them to answer fundamental questions
that sensibly add activities only when these are applicable.

These questions can be asked up front, at the beginning of the develop-
ment lifecycle, or at appropriate stages along the way. Timing is critical.
Answering each question after the appropriate time for the associated
activities in the SDL has past will cause delays; required security tasks will
be missed. As long as each question is asked before its results are needed,
your security results will be similar. Architecture questions can be asked
before any architecture is started, design before designing, testing answers
need to be gathered for the testing plan, and so on throughout the life-
cycle. However, asking these seven determining questions at the very
beginning allows those responsible for budgeting and resource allocation
to gather critical information about what will need to be accomplished
during development.

 1. What changes are proposed? (The following answers are mutually
exclusive; choose only one.)

 a. The architecture will be entirely new or is a major redesign.
 b. The architecture is expected to change.
 c. Security features or functions will be added to the design.
 d. Neither changing the architecture nor adding security features
 to the design will be necessary (i.e., none of the above).
 2. Will any third-party software be added? Yes/no

278 Core Software Security

 3. Will any customer data (personally identifying information [PII]) be
added? Yes/no

 4. Will this organization or any of its partners host any of the systems?
Yes/no

 5. Is a Web server included? Yes/no
 6. Will there be any other inputs to the program? (i.e., non-Web input,

configuration file, network listeners, command line interfaces, etc.)
Yes/no

 7. Is this a major release?

Very early in the process, even as the concept begins to take shape, it’s
important to ask, “What’s new?” That is, find out how much change is
intended by this project, through this effort. The question is meant to be
asked at the architecture level; there are four possible answers:

 1. Everything is new. This is a “greenfield” project or a major redesign.
 2. The architecture will change significantly.
 3. Security features will be added to the architecture or design.
 4. None of the above.

What changes are proposed?

When everything will be new, there are certain pre-architectural activi-
ties that can help determine the set of requirements and features that will
meet the security challenges for the intended use and deployment of the
software. Figure 9.4 illustrates the task flow for projects that are com-
pletely new, involve major redesign, or where the system has never had
any security review. Having a complete set of requirements has proven to
deliver more inclusive and effective architectures, by far. Among the com-
plete set of requirements must be security. The goal is to “build security
in,” not to bolt it on later. If the required features are not included in the
architecture requirements, they most likely will not get built. This forces
deployment teams to make up for missing security features by building

Figure 9.4 Architecture task flow when a project is new or a redesign.

Applying the SDL Framework to the Real World 279

the required protections into the encompassing runtime or infrastructure,
often as a “one-off,” nonstandard implementation.

When everything or almost everything will be new and there is no
existing, legacy architecture or design for which architects must account,
there is an opportunity to thoroughly consider not only current threats
and their attacks, but the likely attacks of the future against which the soft-
ware must protect itself. This kind of early, strategic thinking is rare in the
world of software re-use. It’s a great advantage to take the time and think
about what the security system will need holistically. Software security
strategy is best done before making decisions that cause the secure design
course to be ruled out entirely or made much more difficult to implement.

If the architecture is changing, then the process should start at archi-
tecture assessment and threat modeling. Figure 9.5 describes the task
flow. The changes must be examined in light of the existing architecture
so that any additional security requirements can be smoked out. The
assumption is that the existing architecture has been assessed and threat-
modeled to ensure that appropriate security requirements have been built
into the design. In cases where there never has been an architecture assess-
ment and threat model, the architecture should be treated the same as a
greenfield project.

Even if there are no additions or changes to the existing architecture,
adding any feature with security implications indicates the necessity for
design work. The design makes the architecture buildable. Programmers
work from the design. So it’s important that any security requirement or
feature be designed correctly and completely. Security expertise is critical;
the purpose of the design review is to ensure that the appropriate security
expertise is applied to the design. Figure 9.6 shows the flow of these two
design-related SDL tasks.

Like any other feature or function, every security function must be
thoroughly tested for correctness in the test plan. Creating the test plan is
part of the design work. The test plan is an artifact of the design.

Figure 9.5 Architecture task flow when there will be changes to the
architecture.

280 Core Software Security

The answers to the question, “What’s new?” are a pick-list choice.
There should be one and only one choice. The answers are not mutually
exclusive. Rather, the second choice, “architecture changes,” is a subset
of the first; “greenfield” implies that the architecture will change. The
answer, “security features,” is independent of the first two. “Security fea-
tures” is meant to catch changes for which the project’s design must be
considered. If the architecture is changing, it can be presumed that the
design will change as well.

The answers to the remainder of the questions are “yes/no” or binary.

Will any third-party software be added?

Adding third-party software presents two challenges.

 1. The additional software may have security vulnerabilities that then
become incorporated into the finished product. Typically, for com-
mercially created software, the development team does not have the
source code to the software. An organization will be entirely depen-
dent on the third party to fix vulnerabilities. Or, if the software is
open source, there may be legal and monetary considerations if the
development team chooses to fix security defects. According to many
licenses, that fix must be contributed back to the open-source com-
munity for everyone to use. That may not be commercially viable.

 2. Added to the conundrum surrounding whether to fix a third party’s
defects are the licensing issues attached to the software that will
be added. Different open-source and freely available licenses vary
widely in restricting what a commercial organization can or cannot
do with software that incorporates this functionality. Your ability to
sell your product might be constrained. Or proprietary intellectual
property may have to be exposed. Because of these considerations,
we believe it is essential that decisions to use third-party software
include consultation with an expert familiar with software licensing

Figure 9.6 Design task flow when designing security features.

Applying the SDL Framework to the Real World 281

(usually someone in the legal department). The software licensing
expert will review the licensing details thoroughly.

Answering “yes” to this question adds a legal licensing review to the
required tasks. It may also require the need to monitor for security patches
of the third-party software for as long as it’s included.

The third-party SDL set of tasks and the linear flow of these tasks are
illustrated In Figure 9.7.

Figure 9.7 Third-party and open-source task flow.

Will any customer data (personally identifying information)
be added?

If your software will face privacy challenges and regulations, it’s impera-
tive to find out if personally identifying information (PII) will be handled
by the application under development. Depending on the organization,
security may be tasked with protecting customers’ information and meet-
ing each legal jurisdiction’s privacy regulations. Privacy duties may also
reside in a dedicated team, or as part of legal, or some other part of the
organization. Whatever team is responsible, these will need to be brought
in for a data protection review. Hence the question, “Are you adding cus-
tomer data?” This is a much easier question to answer without specialized
privacy knowledge.

We phrased this question as “customer data” because, depending on
the jurisdiction, the definition of PII varies widely. And those organiza-
tions that will be subject to regulations in multiple jurisdictions must
ascertain how they will meet regulations that may in fact conflict.
Generally, legal privacy expertise is required for these determinations.
Most development teams will not have the expertise to understand the
various regulations and laws that define PII and to which an application
may be subject. However, we have found that it’s very easy for teams to

282 Core Software Security

understand whether the application is handling customer data or not.
Depending on your development team expertise, you may want to let
determination about whether or not there are privacy issues be answered
by the appropriate personnel with privacy expertise. Simply flagging cus-
tomer data ensures that, at the very least, the right team will be engaged
for privacy issues.

Well-designed and well-implemented security protects data; that is
one purpose of information security. However, it should be noted that
security of customer data is not the only dimension of appropriate (and
legally compliant) privacy. Privacy also may encompass policies, presenta-
tions, consent, limitations to geographic transportation and storage of
data, and other dimensions that have little to do with the security design
and implementation. Thus, security does not equal privacy. On the other
hand, the ability to comply with some privacy laws and expectations cer-
tainly demands sufficient security. And, of course, many dimensions of
digital security are independent of the privacy domain.

Will this organization or any of its partners host any of
the systems?

The deployment model and execution environment of a system influence
not only what security features and controls will be required, but, at a
higher level of abstraction, the security lens through which these controls
and features will be filtered. Not every control is required in every system.
How to choose?

Software that is intended to be deployed by others outside the orga-
nization, for instance, by customers, must have sufficient capabilities to
fulfill the customer’s security posture from within the customer’s environ-
ment. The security goal is to empower the customer while at the same
time not reducing the customer environment’s security posture.

On the other hand, software that will be hosted from within the per-
ceived borders of an organization has fundamentally different security
responsibilities. We use the term “perceived borders” because custom-
ers, media, and public influencers often don’t make a fine discrimina-
tion between a “partner” and the organization. In the face of a successful
attack, the largest or most well known entity or brand will get tagged with
responsibility for the failure, regardless of any tangle of arms-length rela-
tionships. In light of this aspect of perception, we suggest taking a broad

Applying the SDL Framework to the Real World 283

view of responsibility. Of course, each organization will have to define its
acceptable boundaries for incident responsibility.

A system to be hosted by a known and controlled infrastructure
 inherits the security posture of that infrastructure. Thus, systems that will
be deployed by the organization can make assumptions that are not pos-
sible with systems that will be deployed by those outside the organization,
beyond organizational boundaries, on third-party premises. Assumptions
can be made about which security functions are built into the infrastruc-
ture on which the system will be deployed. Indeed, the other side of that
coin is that a locally deployed system also can be prepared for weaknesses
within a known infrastructure. That is, an organizationally hosted system
inherits the security posture of the infrastructure on which it is deployed.
Figure 9.8 represents the set of tasks associated with deployment to a
hosted infrastructure.

A hosted system also must meet all local policies and standards. This
makes configuration, hardening, and tuning much more specific. For
software to be deployed by others, it’s important to design for unknown
security requirements. In the case of hosted software, the requirements are
typically apparent; these requirements can be anticipated, planned into
the design, and pre-built.

In order to understand what security will need to be prepared
and what weaknesses will need to be mitigated, it is important to ask
“Organizationally hosted?” during requirements gathering and architec-
ture. If those responsible for security requirements (typically, the security
architects) are not familiar with the infrastructure into which the system
will be deployed, an assessment of the infrastructure must take place.
Likewise, policies and standards must be thoroughly understood in order
to apply them to the system being built.

Typically, for a running security architecture practice, there will be
experts in the existing infrastructure and policy experts. For hosted

Figure 9.8 Task flow for hosted systems.

284 Core Software Security

 systems, these subject-matter experts can be engaged to help refine the
analysis so the requirements precisely fit the infrastructure into which
the system is to be deployed. In this way, the hosted systems will meet
organizational policies. On the other hand, if it is a new infrastructure,
there is a due diligence responsibility to examine every security factor that
is applicable. Insist that the new infrastructure be studied as a part of the
systems under analysis.

Failure to look at the infrastructure, instead focusing solely on the
systems being built, opens the possibility that an attacker could walk
right through that infrastructure despite a designer’s best efforts to build
a sound defense in depth. Security architecture must, by dint of its due
diligence responsibilities, always be front to back, side to side, bottom
to top, thoroughly analyzing all components that support or interact.
Every system that connects opens the distinct possibility that the inter-
connected system’s security posture will in some way affect the security
posture of the system to which it connects. This is a fundamental law of
doing architectural analysis for security. Failure to be thorough is a failure
in the security analysis. That analysis must include the infrastructure into
which systems will be deployed if that infrastructure is under the control
of the organization’s policies. Thus, always ask, “Will any part of this sys-
tem be hosted by this organization or its partners?”

Is a Web server included?

As of the writing of this book, security testing of Web servers utilizes
a specialized set of tools and skills. For this reason, we have found it
useful to identify the need for Web server testing so that the appropri-
ate testing is engaged. Generally, every input into the software must be
thoroughly tested. Specialized tools are run against custom Web appli-
cation code. These tools take expertise not only in understanding Web
attacks and their variations, but also each particular tool, what it does
well, and its limitations. So we include a separate path within the overall
testing plan that identifies the presence of the Web server so that the
Web inputs get the needed specialized attention. This kind of testing is
called dynamic testing. While there is certainly overlap among most of
the various dynamic testing tools, we recommend that tools specific to
Web applications be applied. Importantly, many attackers specialize in
Web vulnerabilities. And, of course, if the system will be exposed to the

Applying the SDL Framework to the Real World 285

public Internet, it will be attacked constantly and must prepare itself to
defend against these common variations. However, even if the system will
normally be deployed on a more trusted network, we believe that strong
Web server dynamic testing is important. Sophisticated attackers some-
times manage to breach their way onto these trusted networks. A weak
Web server can be a target in and of itself, or a server can present a hop-off
point to more valuable targets. Therefore, it is good practice to identify all
Web servers in order to benefit from this specialized testing.

Will there be any other inputs to the program?

Beyond Web server inputs, there are myriad other inputs that may be
built into a system: command-line interfaces, configuration files, network
inputs, native forms, scripting engines, and so forth. Each of these is an
attack surface. Each input has the potential for a logic mistake that goes
around access controls such as authentication and authorization. Logic
mistakes may allow the misuse of the program to do unintended things,
such as sell a product for a reduced or nonexistent price. Additionally, in
programming languages where the programmer manipulates computer
memory directly, poor input handling may allow serious abuse of the
program or even the operating system. Memory-related errors often allow
privilege escalation on the system or permit code of the attacker’s choice
to run. Inputs are an important attack point in any program, often the
prime attack surface.

Before the test plan is written, all the inputs to the system should be
enumerated. Each of the enumerated inputs should be tested to deter-
mine that the correct input values are handled properly. Further, tests
must be run to prove that variations of incorrect input do not cause the
system to fail or, worse, act as a vector of attack beyond the boundaries of
the software (as in a buffer overflow allowing privilege escalation and code
of the attacker’s choice). A common tool as of this writing is a fuzz tester.
These tools simulate the many variations that attackers may run against
the software. Once a fuzzer is prepared for a particular input, it will auto-
matically run through a set of variations that attempt improper inputs.
The fuzzer will stop when the program begins to misbehave or crashes.
In this way, unsafe input handling, even improper memory handling, can
be smoked out. We recommend that every input that has been changed
during this development cycle be fuzzed.

286 Core Software Security

There is some overlap between what fuzzers cover and Web vulnerabil-
ity analysis tools. If testing time is short, we recommend that Web vulner-
ability tools be run against the Web server, and all other inputs be fuzzed.
However, it’s not a bad idea to overlap the vulnerability scan by fuzzing
the Web server’s inputs as well. Since Web scanning tools look for known
exploit patterns and fuzzers check generally bad input, employing both
types of dynamic analysis provides better coverage than using either alone.

The test plan will likely include both testing of intended security
functions and dynamic tests to ensure that no vulnerabilities have crept
through manual review and static analysis, as indicated in Figure 9.9.

Is this a major release?

The seventh and last question is about the importance of this project or
release in relationship to the software as a whole. Are the additions to the
software in this development cycle going to be considered a major addition
and/or revision? If there are going to be significant architectural changes,
possibly accompanied by major feature additions or maintenance revi-
sions of currently running code, there is a likelihood of introducing subtle
logical changes, perhaps even errors, into the code base. Some of the most
subtle bugs occur due to unintended side effects affecting other pieces of
the code. Indeed, it is very hard to test thoroughly for inter actions; this
is particularly true when adding new features whose side effects interact
with legacy code in unanticipated ways.

In addition, consumers of software tend to expect more from larger
revisions. A major release will tend to get more scrutiny and perhaps
wider distribution than a minor update.

For these reasons, it may be worthwhile considering a more
 thorough and holistic look at the security properties and vulnerabili-
ties of a major release when the release is considered “code complete.”

Figure 9.9 Test plan ingredients.

Applying the SDL Framework to the Real World 287

This can be accomplished through an independent attack and penetra-
tion. “Independent” in this context means independent from building
the software and testing it. Since penetration testing requires significant
skill, experts should be employed. It should also be remembered that no
two testers deliver the same results; each penetration test is more or less
unique to the tester and to the software under examination. Therefore,
it is good practice to have a major release penetration test performed by
someone with significant skills in the deployment model, execution stack,
and even language in which the software is written. Failure to match tes-
ter to software type will likely deliver suboptimal results. You want a tester
who understands how to attack the kind of software you’re producing.

Through the application of a highly skilled attacker against your
software, you can discover the sorts of vulnerabilities that sophisticated
attackers will likely find and exploit. Subtle and sophisticated errors can
be uncovered and fixed before the software goes live. Plus, you will have a
much clearer picture of any residual risks in this release.

In this way, you can deliver both to your organization and to the con-
sumers of the software assurance that the software is indeed self- protective
as well as correct. We have found that for highly competitive markets
and/or widely distributed software; a provable penetration test can be a
competitive advantage, demonstrating not only the security of the soft-
ware but also the commitment of the software maker to customers’ safety.

Answering these seven determining questions can control security task
flow for both Waterfall and Agile processes. Placement of the appropriate
activities into each flow of development differs. These differences will be
described below.

The answer to each of the seven questions answers “What is the mini-
mum set of activities my project must perform?” However, it should
never be suggested to teams that they can’t supplement the minimum set
with other activities if these might provide additional security value. For
instance, if there’s time, even threat modeling an existing architecture and
design may uncover something useful. Attack patterns change over time;
yesterday’s popular attack may be superseded by another, easier or more
successful approach.

Ask “What’s new?” to assess the scope of proposed change. There are
additional activities that flow from each answer. And these earlier, more
architectural activities will lead to the later design, build, and test tasks.
Tables 9.1 and 9.2 describe the selection of activities.

Ta
b

le
 9

.1
 A

rc
hi

te
ct

ur
e

an
d

 D
es

ig
n

A
ct

iv
it

ie
s

In
d

ic
at

ed
 b

y
SD

L
D

et
er

m
in

in
g

 Q
ue

st
io

ns

Q
ue

st
io

n
St

ep
 1

St
ep

 2

G
re

en
fie

ld
 o

r
re

d
es

ig
n?

D
et

er
m

in
e

th
e

re
q

ui
re

d
 s

ec
ur

it
y

p
o

st
ur

e
an

d
 t

he
 in

te
nd

ed
 s

ec
ur

it
y

st
ra

te
g

y
w

it
h

th
e

st
ak

eh
o

ld
er

s.

G
en

er
at

e
th

e
hi

g
h-

le
ve

l s
ec

ur
it

y
re

q
ui

re
m

en
ts

.

P
er

fo
rm

 “
ar

ch
it

ec
tu

re
 c

ha
ng

e”
 s

te
p

s
flo

w
 (s

ee
 F

ig
ur

e
9.

4)
.

A
rc

hi
te

ct
ur

e
ch

an
g

e?
R

ev
ie

w
 t

he
 a

rc
hi

te
ct

ur
e

fo
r

se
cu

ri
ty

an

d
 c

re
at

e
a

th
re

at
 m

o
d

el
 f

o
r

ar
ch

it
ec

tu
re

. P
ro

d
uc

e
ar

ch
it

ec
tu

re

re
q

ui
re

m
en

ts
.

P
er

fo
rm

 “
ad

d
in

g
 s

ec
ur

it
y

fe
at

ur
es

”
flo

w
 (s

ee
 F

ig
ur

e
9.

5)
.

W
ill

 a
ny

 s
ec

ur
it

y
fe

at
ur

es
 b

e
ad

d
ed

?
Th

e
d

es
ig

n
m

us
t

b
e

re
vi

ew
ed

 t
o

en

su
re

 c
o

rr
ec

tn
es

s
an

d
 e

lim
in

at
e

lo
g

ic
al

 v
ul

ne
ra

b
ili

ti
es

.

A
d

d
 f

un
ct

io
na

l t
es

ts
 f

o
r

ea
ch

 s
ec

ur
it

y
fe

at
ur

e
to

 t
he

 t
es

t
p

la
n.

A
re

 y
o

u
ad

d
in

g
 c

us
to

m
er

 d
at

a
(p

er
so

na
lly

 id
en

ti
fia

b
le

 in
fo

rm
at

io
n

[P
II]

)?

C
o

nd
uc

t
a

p
ri

va
cy

 r
ev

ie
w

.

A
re

 a
ny

 s
ys

te
m

s
to

 b
e

ho
st

ed
 b

y
th

e
o

rg
an

iz
at

io
n

o
r

it
s

p
ar

tn
er

s?
R

ev
ie

w
 in

fr
as

tr
uc

tu
re

 s
ec

ur
it

y.
P

er
fo

rm
 a

 t
hi

rd
-p

ar
ty

 v
ul

ne
ra

b
ili

ty

te
st

 o
n

th
e

so
ft

w
ar

e
in

 t
he

in

fr
as

tr
uc

tu
re

 b
ef

o
re

 r
el

ea
se

.

Ta
b

le
 9

.2
 C

o
d

in
g

 Im
p

er
at

iv
es

 a
nd

 T
es

ti
ng

 A
ct

iv
it

ie
s

fr
o

m
 S

D
L

D
et

er
m

in
in

g
 Q

ue
st

io
ns

Q
ue

st
io

n
St

ep
 1

St
ep

 2

A
re

 y
o

u
ad

d
in

g
 a

ny
 t

hi
rd

-p
ar

ty

so
ft

w
ar

e?
P

er
fo

rm
 a

 le
g

al
 li

ce
ns

in
g

 r
ev

ie
w

.
P

o
st

-r
el

ea
se

, m
o

ni
to

r
fo

r
vu

ln
er

ab
ili

ti
es

 t
ha

t
ar

e
d

is
co

ve
re

d

in
 t

he
 t

hi
rd

-p
ar

ty
 s

o
ft

w
ar

e.

Is
 t

hi
s

a
W

at
er

fa
ll

b
ui

ld
 c

yc
le

 o
r

a
cy

cl
e

o
f

Sp
ri

nt
s

in
 S

cr
um

/A
g

ile
?

C
o

d
e

se
cu

re
ly

.
P

er
fo

rm
 m

an
ua

l c
o

d
e

re
vi

ew
.

R
un

 s
ta

ti
c

an
al

ys
is

.

Fi
x

d
ef

ec
ts

 a
s

d
is

co
ve

re
d

.

Is
 t

he
re

 a
 W

eb
 s

er
ve

r?
P

er
fo

rm
 W

eb
 d

yn
am

ic
 v

ul
ne

ra
b

ili
ty

te

st
in

g
.

Fi
x

d
ef

ec
ts

.

Is
 t

he
re

 a
 n

ee
d

 t
o

 e
nu

m
er

at
e

o
th

er

in
p

ut
s?

Fu
zz

 a
ll

no
n-

W
eb

 in
p

ut
s.

Fi
x

d
ef

ec
ts

.

Is
 t

hi
s

a
m

aj
o

r
re

le
as

e?
C

o
ns

id
er

 a
n

in
d

ep
en

d
en

t
vu

ln
er

ab
ili

ty

as
se

ss
m

en
t

an
d

 p
en

 t
es

t.

290 Core Software Security

Table 9.1 lists the activities that apply regardless of whether you are
using a Waterfall or an Agile methodology. These have been previously
described in the respective sections.

For a Waterfall development methodology, the following tasks will flow
in a linear fashion: design, then build, then test. For an Agile methodology,
the following tasks will be iterated through in each development cycle
(“Sprint” in Scrum). Rather than a single period of design which must be
completed before development may begin, each short cycle will design for
the increments that have been selected for build. The cycle will complete
when those features have been tested and are ready for release, i.e., “code
complete.” Hence, in Agile development, there are short, focused design
periods, followed by coding, and then testing. However, it is not uncom-
mon to redesign as more is known about any particular increment. And
testing may begin whenever there is code to test. For this reason, the table
contains the security tasks for each development cycle, to be executed
as needed by the Agile team during Sprints. All three activities may be
occurring in parallel during a Sprint. Table 9.2 shows those activities that
fall within the “build” portion of either a Waterfall or Agile process and
their associated determining questions.

We will examine these task flows more fully in Section 9.3.
It’s important to assess the security impact of legacy code and projects

that have not been through a formal SDL. When a mature SDL hasn’t
been in place for previous development (that is, before the current round
of changes), a due diligence responsibility will be to decide whether there
is a need to assess previous work. In the case of a brand-new SDL, it may
be assumed that no review has taken place; but it’s always a good practice
to ask rather than assume. The determining questions are phrased, “Are
you adding. . . ?” because this process assumes that in prior develop-
ment cycles security has been attended as per the SDL. Therefore, the
seven questions focus on what is being changed rather than any inherited
legacy. When implementing or changing your SDL, one of the tasks will
be to assess how much change will be required to your legacy code and
projects as you apply your new SDL to your current development. What
is your security technology debt? How many design misses exist, and how
much vulnerable code are you carrying forward in the current develop-
ment cycle?

One approach to SDL legacy technology debt is to ask, “How fast are
my applications changing?” In periods of rapid change, it may make sense
to carry the debt until it is replaced.

Applying the SDL Framework to the Real World 291

Concomitantly, in situations where legacy code will be carried forward
for the foreseeable future, it may make sense to whittle away at vulnera-
bilities and exposures. One successful approach devotes a day each month
to “bug bashes.” Developers take a day off from producing new code and
instead fix older defects. Such a “bash” can be done as a party, a relief from
the rigors of code production. In this way, “tech debt” is whittled away
and removed from production code bit by bit.

Bug bashes usually don’t treat design issues. Architecture and design
features to bolster an existing product’s security will have to be considered
against other feature requests. If sales are being missed due to the lack
of security features, then the value of these features should be obvious.
Often, however, the customer’s security people interact with the software
producer’s security people in a separate dialog. Security people under-
stand each other. Also, the customer’s security folks want to gain some
assurance that the vendor’s security people are involved in the software’s
security as it’s designed and built. Product management must be included
in these customer security conversations. Product managers need to
understand that the customer’s security team often has a “no” vote, or
may be expending extra resources on exceptions in order to deploy the
software. When product managers and security architects align, security
features can be taken in their rightful place as customer-enhancing rather
than as a “nonfunctional” set of requirements.

Any security requirements that come out of an assessment of legacy
software need to be added to the backlog of feature requests. These should
be prioritized through risk rating. The risk rating can then be taken into
consideration alongside customer needs. Likely, a security subject-matter
expert should be included in this dialog.

Ultimately, treatment of technological debt is a risk decision. If the
treatment is more expensive than the loss, it may not make sense to treat
the risk. Various factors will have to be weighed, including the opportu-
nity cost lost when not building new technology. We have seen situations
where as many as 75,000 defects have been listed for large code bases.
The known set of automated tools as of this writing is not sophisticated
enough to provide absolute assurance that every discovered finding is in
fact a defect. Simply determining which of 75,000 findings are actually
defects is a significant chore. The execution of this chore, not to men-
tion fixing the defects that are qualified, should be carefully considered.
It’s important to remember that, as Brad Arkin, CSO for Adobe, told
one of the authors, “Vulnerabilities are not exploits.” Indeed, defects are

292 Core Software Security

not necessarily vulnerable. A risk-based approach will focus on exploit-
able vulnerabilities when the vulnerabilities are exposed by the intended
deployment model. Raw defect numbers, by themselves, are meaningless.

9.3 Architecture and Design

 Systems Architecture is a generic discipline to handle objects (existing
or to be created) called “systems,” in a way that supports reasoning
about the structural properties of these objects. . . . Systems Architecture
is a response to the conceptual and practical difficulties of the
description and the design of complex systems. Systems Architecture
helps to describe consistently and design efficiently complex systems.11

Why include architecture in the SDL at all? There is a dictum in infor-
mation security: “Build security in, don’t bolt it on.” Architecture is the
structure, flow, and data of a system. Decisions made about the archi-
tecture can radically influence the security posture of the system. Failure
to add an authentication mechanism may at best mean adding it after
the architecture is set. The worst case is that there is a requirement for
authentication, but no authentication mechanism can be added to the
architecture: Authentication has been designed out.

Over and over, we have seen systems that assumed they were running
on a highly restricted network. Assuming the network will provide appro-
priate restriction, the application is then designed to pass sensitive infor-
mation between components without any protections in the architecture.
Flows may not be protected because it is assumed that only the compo-
nents in the target system would be deployed to that protected network.
In a world of heterogeneous networks, advanced persistent threat attacks,
and huge cloud-based server farm environments, the likelihood that
any application will get its own highly restricted network is exceedingly
small. The vast majority of networks are shared; there are very few highly
trusted networks deployed. The assumption that the network will protect
all the components of the system and all the intercomponent flows is a
major architectural error. And yet, we see it repeatedly. The result will be
a choice between exposing components and flows on the shared network
or attempting to manage complex firewall rules in the shared environ-
ment. Also, the firewall capabilities may not provide the deep application
protections that are required.

Applying the SDL Framework to the Real World 293

Security architecture has particular characteristics:

• Security architecture has its own methods. These methods might be
the basis for a discrete security methodology.

• Security architecture has its own discrete view and viewpoints.
• Security architecture addresses non-normative flows through sys-

tems and among applications.
• Security architecture introduces its own normative flows through

systems and among applications.
• Security architecture introduces unique, single-purpose components

into the design.
• Security architecture calls for its own unique set of skill require-

ments in the IT architect.12

The vast majority of architectural design choices will have at least some
security implications. Some of those choices will have profound security
effects that suggest very particular patterns of security control. Hence,
the security dictum, “Build it in.” Building security in is illustrated by
Figure 9.10.

Figure 9.10 Strategize for requirements: architect, threat model, and
design review.

294 Core Software Security

Generally, the architecture flow starts with requirements gathering.
From those requirements, an architecture that meets the requirements is
proposed and then refined iteratively. This is true for an entirely new sys-
tem as well as for changing an existing system. Other influencing factors,
of course, are what can be built currently, what currently exists, and gen-
eral architectural goals and strategies into the future. Current capabilities
have a profound influence on proposed solutions. This is true for security
capabilities just as much as database, network, server types, and the peo-
ple and processes that support these. In fact, maximizing current capabili-
ties might be one of the requirements. Using an existing authentication
mechanism might be one of the security requirements of the system.

We strongly suggest that security be included during the requirements-
gathering phase. As we have noted, part of a holistic security picture for
a system will be the security features that get built into it. A Web system
that gives access to financial information will likely have requirements
for authentication to make sure that the information is given only to the
holder of the information. Such a system is likely to have an authoriza-
tion mechanism as well, so that the right access is given to the appropriate
user. Indeed, such a Web system will also have other, less obvious security
requirements: hardening of the systems so they can resist the omnipresent
level of attack on untrusted networks, careful layering such that compro-
mise of front-end systems or even middle systems does not provide access
to the data, authentication from business logic to the data store such that
inappropriate access from untrusted or inappropriate applications is not
granted. Some of these requirements are obvious. However, we have seen
many systems that ignored the necessity of gathering specific security
requirements, to the peril of project success. We have even seen a security
requirement stated as: “The system will be secure.” Obviously, this sort of
nonspecific, generalized requirement is useless.

Enterprise security architecture is the component of the overall
enterprise architecture designed specifically to fulfill . . . the overall
objective . . . to preserve the availability, integrity, and confidentiality
of an organization’s information.13

In the case of a completely new architecture (or a complete redesign),
security should be engaged early to strategize how the proposed system
can meet future as well as present expectations, change, and growth.
The security architect must have a strong grounding in the current types

Applying the SDL Framework to the Real World 295

of threat agents and their attack methods whose targets are similar to
the system under consideration. In these strategy sessions, the security
architect should also have a good feel for emerging trends in threats and
attack methods. What new threat agents are just beginning to become
active? Of these new threats, what will be their likely attack methods? As
the threat agents’ organization and sophistication grow, how might they
expand attack patterns? With these sorts of questions, the architecture can
be designed not only for the intended use cases of the present, but also
for the foreseeable future. Typically, enterprise-level architects consider
similar questions regarding the growth of the organization, growth in user
populations, growth in data, and expansion of capabilities. The same sort
of consideration should be given to security needs of the future just as
much as for the present.

Out of any architecture assessment will come requirements that the
architecture must meet. Typically, early requirements are of a more gen-
eral nature: Users will be authenticated, systems will need to be hardened,
Payment Card Industry (PCI) certification (at the appropriate level) will
need to be met, and so forth. The details will then be baked into the
emerging architecture.

As architecting the system proceeds in earnest, the security require-
ments will begin to take on specificity. A particular authentication sys-
tem will be chosen: For a major server farm, for instance, a system may
be chosen which can handle millions of authentications per minute, can
handle millions of user identities, can interface with the appropriate run-
time and execution environments, and so forth. Or, if the authentication
system will be very modest, perhaps there is an integral library, or another
module which will suffice. Using the former implies tremendous growth
and heavy user traffic, perhaps even heterogeneous systems. When using
the latter authentication system, the smaller library may preclude major
server farm growth. In considering the intended use (say, an authentica-
tion system for a customer-deployable appliance), a relatively constrained
mechanism may be warranted. In any event, a particular choice will be
made based on the requirements of the system in the intended deploy-
ment and with respect to the expected growth. The architecture will grow
more specific and particular. The output of the security architecture pro-
cess is specific components providing particular services and communi-
cating using known protocols.

For systems within an existing architecture, any change to that archi-
tecture may have security implications, so the security of each architectural

296 Core Software Security

change should be considered. For instance, the addition of a third-party
partner to whom finance data may flow will engender the addition of
mechanisms to protect that finance data in transit. Further, protections
will need to be put into place such that only the intended partner will be
able to interact. In other words, the security needs of an existing architec-
ture will change in the face of new components, or new communication
flows, or new data types. Changes to any part of the architecture must
be considered in light of the whole architecture, of all the existing secu-
rity services. This work is very similar if not identical to the design work
when building an entirely new architecture. Hence, we specify architec-
tural assessment of the security of the system after the security strategy
for the system has been considered or when any architectural changes are
being made to an existing system. This set of SDL task flows presumes
that the existing architecture has been through a holistic, thorough secu-
rity assessment as required for an entirely new system. If there has been
no previous security assessment, then the existing architecture should be
treated as entirely new.

Once the architecture and all its ancillary components, including the
deployment model and any infrastructure involved, is thoroughly under-
stood, a threat model should be built. A threat model involves setting
trust boundaries and identifying attack surfaces. Every attack method is
not germane to every system. Importantly:

• Deployment models open or close attack surfaces.
• Execution environments provide services and attack surfaces of their

own, which are inherited by the system.
• Existing infrastructure will bequeath security postures and weak-

nesses to the systems deployed on it.
• Different languages and runtime models deliver unique strengths

and weaknesses.

Some components will be more exposed, and thus untrusted, while
other components may need to be shielded, or lie at the heart of a trust
boundary.

Consider the interaction between a user interface and a piece of soft-
ware that must become part of an operating system (e.g., a kernel driver).
The user software will be an obvious point of attack. The attacker might
be after the user’s data or communications. Or the attacker’s goal may be

Applying the SDL Framework to the Real World 297

control of the operating system through the user interface to the kernel
driver. A kernel driver that is poorly protected can be an avenue for privi-
lege escalation. A kernel driver becomes a part of the most trusted heart
of the operating system. The user interface component should protect
itself, but also the kernel driver. However, recognizing that protections
fail, the kernel driver must protect itself as well. The driver must also
protect the operating system, and not add any vulnerability to the kernel,
the highest-privilege core of the operating system.

It should be obvious that there is a natural trust boundary between the
user interface module and the kernel driver. It should also be obvious that
any threat model built for this simple system should consider not only the
user interface, the obvious attack surface, but also the interchange or flow
between user software and kernel. The user software may choose to trust
the kernel driver. However, under no circumstances should the kernel
driver accept communications from any module except the user inter-
face as intended. Also, that user interface must be highly self-protective
against attempts to use it as a way to get to the kernel. From this very
simple threat model, you can see emerging security requirements that
must be built into the architecture and design:

• User interface input validation
• Intermodule authentication
• Kernel input validation from the user interface (in case the authen-

tication or the user interface’s input validation fails)

Depending on the operating system, there may be a slew of require-
ments concerning load order, execution permissions, installation mecha-
nisms, configuration file permissions, configuration file validations, etc.

We do not believe that threat modeling is sufficient by itself.* The
threat model requires the output from the architecture analysis: complete

* Threat modeling systems such as Microsoft’s STRIDE make assumptions that we
do not. STRIDE assumes that the modelers will already be intimately familiar with
the target system’s architecture, as any mature, heterogeneous development team is
likely to be. For highly shared security architects, however, this will likely not be the
case. Further, STRIDE’s aim is to empower non-security-trained development teams
to make a start. Hence, STRIDE is purposely simplified. We applaud STRIDE and
similar methodologies. If your situation matches the intended purpose of STRIDE,
we encourage you to employ it.

298 Core Software Security

understanding of all the components, flows, and data. An architecture
analysis identifies security feature requirements (that is, to fulfill the secu-
rity needs of the potential users). Without this information, the threat
model may be incomplete. With the architecture structure and the secu-
rity requirements in hand, a threat model can be built to understand the
attack surfaces that will be presented by the system. Since, as noted previ-
ously, every attack is not credible against every system, the threat model
considers likely attack scenarios based on analysis of the preferred attack
methods promulgated against similar systems.

It is always true that any requirements output from the threat model
will create new test plan items. These new test cases ensure that the secu-
rity requirements have been built correctly. Thus, if the threat model pro-
duces requirements, the test plan will receive new test cases. Security test
cases are dependent on architecture analysis and threat modeling.

Generally speaking, if there is no architectural change, then archi-
tectural analysis and threat modeling can be bypassed. (This assumes
that the existing architecture went through security assessment and
threat modeling.)

The design of the system must implement all the requirements given
from the architecture. If an architecture is the structure, flow, and data,
then the design is the expected implementation of that structure. The
design must have enough specificity that it can actually be coded.

Given adequate, clear, and detailed enough requirements or user
 stories (Scrum), skilled software designers generally have no trouble trans-
lating architecture and its requirements into a software design. This can
be done before coding in a Waterfall process, or for each incremental
build cycle in an Agile process. In either process case, it’s important to pay
particular attention to the security features and requirements. These must
be absolutely correct or the implementation may open up vulnerabilities
or, worse, create a new, unprotected attack surface. The logic has got to
be watertight for critical security functions such as encryption routines
or authorization schemes. Users of the system will be depending on these
features to protect their resources.

We place a security design review at a point when designers believe
that the design is very nearly completed. A security design review should
be performed by a security assessor who understands the architecture
and functionality well; usually, the review is best done by someone who
has experience designing and even implementing security features. We

Applying the SDL Framework to the Real World 299

 further suggest that the reviewer be independent of the design team. Peer
review is a powerful tool for validating design correctness and complete-
ness. Another set of eyes can often spot errors which those closer to the
design may have missed. If any security features or requirements are to be
built in the current cycle, perform a security review.

As has been noted, every portion of the intended design must engen-
der a thorough functional test plan. This is true of security just as well
as any other part of the design. If Transport Layer Security (TLS) is to
be added as an option to the network protocol stack, the test plan must
include a test with and without TLS, each case having a pass condition.
Security in the design always means security in the test plan.

How does an organization train people so that they can perform these
difficult, architectural tasks? Software security expert Gary McGraw says:

For many years I have struggled with how to teach people . . . security
design. The only technique that really works is apprenticeship. Short
of that, a deep understanding of security design principles can help.14

McGraw’s statement implies that, in order to build a qualified team,
each organization will either have to invest in sufficiently capable and
experienced practitioners who can also mentor and teach what they do,
or hire consultants who can provide appropriate mentorship. Neither of
these is likely to be cheap. As of this writing, there is a dearth of skilled
security architects, much less the subset of those who can and want to
impart what they know to others. The architecture and design skills
neces sary to an SDL program are probably going to require time to build,
time to find key leaders, and then time for those leaders to build a skilled
practice from among the available and interested people at hand. In one
such long-running mentorship, even highly motivated junior people have
taken as long as two or three years before they could work entirely inde-
pendently and start to lead in their own right. This is a significant time
investment.* In the same blog entry quoted above, McGraw cites Salzer
and Schroeder’s seminal 1975 paper, “The Protection of Information
in Computer Systems,”15 as a starting point for a set of principles from

* Please note that not every person who begins training will have the aptitude and
motivation to finish. Our experience is that between one-third and one-half of those
starting will not become security architects.

300 Core Software Security

which to architect. These may also be used as a training and mentorship
basis. McGraw’s principles are

 1. Secure the weakest link.
 2. Defend in depth.
 3. Fail securely.
 4. Grant least privilege.
 5. Separate privileges.
 6. Economize mechanisms.
 7. Do not share mechanisms.
 8. Be reluctant to trust.
 9. Assume your secrets are not safe.
 10. Mediate completely.
 11. Make security usable.
 12. Promote privacy.
 13. Use your resources.16

An in-depth discussion of these principles is beyond the scope of this
work. Security practitioners will likely already be familiar with most if
not all of them. We cite them as an example of how to seed an architec-
ture practice. From whatever principles you choose to adopt, architecture
patterns will emerge. For instance, hold in your mind “Be reluctant to
trust” and “Assume your secrets are not safe” while we consider a classic
problem. When an assessor encounters configuration files on permanent
storage the first time, it may be surprising to consider these an attack vec-
tor, that the routines to read and parse the files are an attack surface. One
is tempted to ask, “Aren’t these private to the program?” Not necessarily.
One must consider what protections are applied to keep attackers from
using the files as a vector to deliver an exploit and payload. There are two
security controls at a minimum:

 1. Carefully set permissions on configuration files such that only the
intended application may read and write the files.

 2. Rigorously validate all inputted data read from a configuration file
before using the input data for any purpose in a program. This, of
course, suggests fuzz testing these inputs to assure the input validation.

Once encountered, or perhaps after a few encounters, these two pat-
terns become a standard that assessors will begin to catch every time

Applying the SDL Framework to the Real World 301

as they threat model. These patterns start to seem “cut and dried.”* If
configuration files are used consistently across a portfolio, a standard
can be written from the pattern. Principles lead to patterns, which then
can be standardized.

Each of these dicta engenders certain patterns and suggests certain
types of controls that will apply to those patterns. These patterns can
then be applied across relevant systems. As architects gain experience,
they will likely write standards whose patterns apply to all systems of a
particular class.

In order to catch subtle variations, the best tool we have used is peer
review. If there is any doubt or uncertainty on the part of the assessor,
institute a system of peer review of the assessment or threat model.

Using basic security principles as a starting point, coupled to strong
mentorship, a security architecture and design expertise can be built over
time. The other ingredient that you will need is a methodology for cal-
culating risk.

Generally, in our experience, information security risk† is not well
understood. Threats become risks; vulnerabilities are equated to risk in
isolation. Often, the very worst impact on any system, under any possible
set of circumstances, is assumed. This is done rather than carefully inves-
tigating just how a particular vulnerability might be exposed to which
type of threat. And if exercised, what might be the likely impact of the
exploit? We have seen very durable server farm installations that took
great care to limit the impact of many common Web vulnerabilities such
that the risk of allowing these vulnerabilities to be deployed was quite
limited. Each part (term) of a risk calculation must be taken into account;
in practice, we find that, unfortunately, a holistic approach is not taken
when calculating risk.

A successful software security practice will spend time training risk
assessment techniques and then building or adopting a methodology that

* Overly standardizing has its own danger: Assessors can begin to miss subtleties that lie
outside the standards. For the foreseeable future, assessment and threat modeling will
continue to be an art that requires human intelligence to do thoroughly. Beware the
temptation to attempt to standardize everything, and thus, attempt to take the expert
out of the process. While this may be a seductive vision, it will likely lead to misses
which lead to vulnerabilities.

† Information security risk calculation is beyond the scope of this chapter. Please see
the Open Group’s adoption of the FAIR methodology.

302 Core Software Security

is lightweight enough to be performed quickly and often, but thorough
enough that decision makers have adequate risk information.

9.4 Testing

Designing and writing software is a creative, innovative art, which also
involves a fair amount of personal discipline. The tension between creativity
and discipline is especially true when trying to produce vulnerability-free
code whose security implementations are correct. Mistakes are inevitable.

It is key that the SDL security testing approach be thorough; testing is
the linchpin of the defense in depth of your SDL. Test approaches must
overlap. Since no one test approach can deliver all the required assurance,
using approaches that overlap each other helps to ensure completeness,
good coverage both of the code as well as all the types of vulnerabilities
that can creep in. Figure 9.11 describes the high-level types of testing
approaches contained in the SDL. In our experience, test methodologies
are also flawed and available tools are far from perfect. It’s important not
to put all one’s security assurance “eggs” into one basket.

Based on a broad level of use cases across many different types of pro-
jects utilizing many of the commercial and free tools available, most of

Figure 9.11 Complete test suite.

Applying the SDL Framework to the Real World 303

the comprehensive commercial tools are nontrivial to learn, configure,
and use. Because testing personnel become proficient in a subset of avail-
able tools, there can be a tendency to rely on each tester’s tool expertise
as opposed to building a holistic program. We have seen one team using
a hand-tailored approach (attack and penetration), while the next team
runs a couple of language- and platform-specific freeware tools, next to a
team who are only running static analysis, or only a dynamic tool. Each
of these approaches is incomplete; each is likely to miss important issues.
Following are our suggestions for applying the right tool to the right set
of problems, at a minimum.

As noted previously, we believe that static analysis belongs within the
heart of your SDL. We use it as a part of the developers’ code writing
process rather than as a part of the formal test plan. Please see the first
section for more information about the use of static analysis in the SDL.

9.4.1 Functional Testing

Each aspect of the security features and controls must be tested to ensure
that they work correctly, as designed. This may be obvious, but it is
important to include this aspect of the security test plan in any SDL.
We have seen project teams and quality personnel claim that since the
security feature was not specifically included in the test plan, testing
was not required and hence was not performed. As irresponsible as this
response may seem to security professionals, some people only execute
what is in the plan, while others creatively try to cover what is needed.
When building an SDL task list, clarity is useful for everyone; every step
must be specified.

The functional test suite is a direct descendant of the architecture and
design. Each security requirement must be thoroughly proved to have
been designed and then built. Each feature, security or otherwise, must
be thoroughly tested to prove that it works as designed. Describing a set
of functional tests is beyond the scope of this chapter. However, we will
suggest that using several approaches builds a reliable proof.

• Does it work as expected?
• Test the corner and edge cases to prove that these are handled appro-

priately and do not disturb the expected functionality.
• Test abuse cases; for inputs, these will be fuzzing tests.

304 Core Software Security

Basically, the tests must check the precise behavior as specified. That
is, turn the specification into a test case: When a user attempts to load a
protected page, is there an authentication challenge? When correct login
information is input, is the challenge satisfied? When invalid credentials
are offered, is authentication denied?

Corner cases are the most difficult. These might be tests of default
behavior or behavior that is not explicitly specified. In our authentication
case, if a page does not choose protection, is the default for the Web server
followed? If the default is configurable, try both binary defaults: No page
is protected versus all pages are protected.

Other corner cases for this example might be to test invalid user and
garbage IDs against the authentication, or to try to replay session tokens.
Session tokens typically have a time-out. What happens if the clock on
the browser is different than the clock at the server? Is the token still valid,
or does it expire en route? Each of these behaviors might happen to a typi-
cal user, but won’t be usual.

Finally, and most especially for security features, many features will be
attacked. In other words, whatever can be abused is likely to be abused.
An attacker will pound on a login page, attempting brute-force discovery
of legal passwords. Not only should a test plan include testing of any lock-
out feature, the test plan should also be able to uncover any weaknesses in
the ability to handle multiple, rapid logins without failing or crashing the
application or the authentication service.

In our experience, most experienced quality people will understand “as
designed” testing, as well as corner cases. Abuse cases, however, may be a
new concept that will need support, training, perhaps mentorship.

9.4.2 Dynamic Testing

Dynamic testing refers to executing the source code and seeing how
it performs with specific inputs. All validation activities come in this
category where execution of the program is essential.17

Dynamic tests are tests run against the executing program. In the security
view, dynamic testing is generally performed from the perspective of the
attacker. In the purest sense of the term, any test which is run against
the executing program is “dynamic.” This includes vulnerability scans,

Applying the SDL Framework to the Real World 305

 custom code vulnerability scans (usually called application scanning), fuzz
testing, and any form of attack and penetration testing. We will examine
the place of attack and penetration testing within an SDL in the next sec-
tion. Due to the skill required and the typical expense, we have reserved
attack and penetration testing as a special case. However, we encourage
any organization that can afford attack and penetration testing at scale
to do as much of this as possible. In real-world tests, skilled attack and
penetration testers always exceed the results of Web vulnerability scanners
and typical fuzzing of inputs. For most organizations, the expense of the
skilled practitioners and the fact that they can’t be scaled across multiple
organizations and multiple projects precludes attack and penetration test-
ing at scale.

Dynamic analysis is based on system execution (binary code), often
using instrumentation.* The advantages of dynamic analysis are that it:

• Has the ability to detect dependencies that are not detectable using
static analysis—for example, dynamic dependencies using reflection
dependency injection, etc.

• Allows the collection of temporal information
• Allows the possibility of dealing with runtime values
• Allows the identification of vulnerabilities in a runtime environment.
• Allows the use of automated tools to provide flexibility on what to

scan for
• Allows the analysis of applications for which you do not have access

to the actual code
• Allows identifying vulnerabilities that might be false negatives in the

static code analysis
• Permits validating static code analysis findings
• Can be conducted on any application18

9.4.2.1 Web Scanning

Vulnerability scanners tend to fall into two categories: those with signa-
tures to test against the runtime that supports execution of applications,

* Here, “instrumentation” is the addition of diagnostic messages and stopping points to
code for the purposes of analysis.

306 Core Software Security

and scanners that are focused on custom application code. The former
are generally applied to infrastructures to assure that appropriate patching
and configuration is done on a regular basis, and kept up to date properly.
For those applications that will be hosted internally (as discussed in the
section on the seven determining questions), runtime vulnerability scan-
ners are essential to keep the infrastructure security posture maintained.
Such a scanner might also be run against an appliance type of project to
see that its default configuration is without vulnerability.* This type of
vulnerability scanner might also be used against the running appliance to
guarantee that the appliance presents an appropriate security posture for
the intended deployment. However, for many software projects that do
not fall into these categories, a runtime vulnerability scanner may be of
limited value within the test plan.

As described above, with respect to Web servers, a custom code or
application vulnerability scanner is essential. If a Web server has been
included in the software, an application vulnerability scanner will help
smoke out those sorts of issues that attackers interested in Web applica-
tion code will likely attack. We believe that every piece of content, whether
dynamic or static, that is served through the software’s Web server must
be tested with an application vulnerability scanner. Considering the level
of Web attack today, if that Web server is going to be exposed to the pub-
lic Internet, we would never allow such an application to go live without
such a scan. Attack is certain; it is just a matter of time. Current estimates
as of this writing suggest that an attack will come in as few as 30 seconds,
and not more than 8 hours after connection. Attackers are very swift to
make use of newly found XSS errors and the like. These are precisely the
sorts of errors that Web vulnerability scanners focus on.

Effective use of a Web vulnerability scanner, however, is not a trivial
operation. Skill with a particular tool is essential. Also, a strong familiar-
ity with how Web applications are structured and built helps the tester
refine the test suite in the tool. Further, a good familiarity with typical
Web vulnerabilities will help in two ways: First, appropriate test suites

* This is because an appliance will likely include a runtime stack, including a supporting
operating system and its services. Unless the operating system is entirely proprietary,
available tools will probably include appropriate vulnerability signatures against
which to test. In the case of an entirely proprietary operating system, a specialized
tool may have to be built for this purpose.

Applying the SDL Framework to the Real World 307

can be configured with respect to the application and its intended use;
and second, the results of the scan will likely need to be qualified. There
are two issues with issue qualification. Depending on the application,
the code, and the tool, the results might be “noisy.” That is, there may be
false positives that have to be removed. We have seen few runs of Web
vulnerability scanners that were free of false positives, and some runs that
had very high rates of false positives. In addition, most of the Web vul-
nerability scanners as of this writing attempt multiple variations of each
type of issue. Most tools will report every variation as another vulner-
ability. Despite multiple vulnerabilities reported, all the variations may
stem from a single bug in the code. For many tools, there is a many-to-
one relationship between vulnerabilities and actual programming errors; a
single input validation error may produce many “vulnerabilities.” Hence,
the tester and/or programming team need to qualify the results in order
to find the actual programming errors.

Training and practice need to be available to any testing personnel
who will run the Web vulnerability scanning tools. Like static analy-
sis tools, when Web vulnerability scanning tools are simply dropped on
project teams, the results are likely to disappoint. Rather, an approach
that we’ve found successful more than once is to start small and limited.
Choose projects that are available for experimenting and will derive
bene fit from Web scanning. Find personnel who are intrigued by secu-
rity testing, perhaps even hoping to enhance their career possibilities.
Then, reduce the tool’s vulnerability test suite to only those tests the tool
manufacturer believes deliver extremely high confidence—deliver better
than 80 percent results, that is, fewer than 20 percent false positives. We
have even started with only those test suites that deliver fewer than 10
percent false positives.

In this way, testers will be motivated to learn about the tool, and the
tool will produce high-confidence results that can be relied on to find
real bugs that need fixing. Everyone’s confidence in the process and the
tool will be high as a result. Starting from this strong place, testers and
development teams will be much more willing to experiment with how
many false positives they can tolerate and still get useful results. Different
projects will need to find their own balance points.

From these limited, pilot starting points, the team that is rolling out
Web vulnerability scanning will gain valuable information about what
works, what doesn’t work, and what kind of resistance is likely to be

308 Core Software Security

encountered. Again, we caution against simply mandating the use of the
tool and then tossing it over the wall without any experience and experi-
mentation, without appropriate training and buy-in. We have seen too
many programs flounder in exactly this way. Instead, start small, limited,
and achieve success and confidence before expanding. A good tipping
point for mandating any particular testing method is to achieve 60 percent
voluntary participation before making any particular test a requirement.

9.4.2.2 Fuzz Testing

Fuzz testing or Fuzzing is a Black Box software testing technique,
which basically consists in finding implementation bugs using
malformed/semi-malformed data injection in an automated fashion.19

Because of the varied nature of non-Web inputs, finding a single type of
tool that is good for each input method is not practical. Development
teams may write their own test tool. However, to make that strategy a
security strategy, the tool designers and implementers must have con-
siderable knowledge about the sorts of attacks that can be promulgated
against the input. The attack scenarios will have to be updated on a regu-
lar basis to account for new discoveries, tactic shifts, and changes to exist-
ing attacks. This is precisely what tool vendors do. Such a strategy may
not be practical for most organizations.

Many attack methodologies are discovered by fuzzing, that is, using
a fuzz tool against input attack surfaces. Once an unintended reaction is
achieved from the program’s input, the attacker (or researcher) can then
examine the offending input and the program’s behavior to determine
what the vulnerability is and how best to exploit it.

Thankfully, software testers don’t need to explore this far. If an input
produces incorrect behavior, then the program is not defensive enough:
A bug has been discovered. That’s all that needs to be understood. This
is the focus of fuzz testing: incorrect behavior upon processing an input.
It can be argued that software, particularly secure software, must handle
gracefully any data sequence through any of its inputs. To fail to handle
improper or unexpected input gracefully will at the very least cause users
concern. Further, the program is likely to expose a vulnerability.

Applying the SDL Framework to the Real World 309

Fuzzing each input of a program is a matter of writing a descriptor
of the range of data inputs that will be tested. Most fuzzing tools han-
dle many different kinds of inputs. The tester sets the type and series of
inputs. The fuzz tool randomizes inside that range or series, continually
sending improper inputs, just as an attacker might who is searching for
vulnerabilities.

A fuzz tool automates the process of trying many variations to an
input. Configuration files can be fuzzed, command-line interfaces can
be fuzzed, APIs can be fuzzed, Web services, network protocols, etc. In
fact, any type of input, including Web servers, can be fuzzed. Since there
are numerous tools available for scanning Web servers in applications,
we have focused on other types of inputs for fuzzing. If an organization
develops strong fuzzing capabilities, there’s no reason not to apply these
capabilities against every input, including Web servers. In our experi-
ence, it may make sense to differentiate between Web inputs which can
be scanned and other inputs for which there may be no direct scanning
tools. It is these other inputs that must be fuzzed in the absence of a more
focused tool.

Fuzzing is an undirected type of input validation, while vulnerability
scanners are highly focused on known attack methods. A complete secu-
rity test program will recognize the applicability of each of these tech-
niques and apply them appropriately. There is some overlap; certain bugs
will respond to both tool types.

9.4.3 Attack and Penetration Testing

Attack and penetration (A&P) testing involves a skilled human tester who
behaves like the most skilled and sophisticated attacker. The tester will
reconnoiter the target system, identifying attack surfaces. Then, the same
tools as would be applied by a sophisticated attacker are run by the tester
to identify not only the more obvious errors, but subtle logic errors and
misses in the system. Logic errors are the most difficult to identify. All but
the simplest errors in logic generally require a human to identify them.

We have separated out attack and penetration testing because it is usu-
ally rather expensive, both in time and effort. There’s a reason that pene-
tration testers receive premium salaries. It takes skill and understanding

310 Core Software Security

to deliver quality results. Alan Paller once casually suggested to one of the
authors that there were not more than 1500 skilled penetration testers
extant. We don’t know the actual number, but there are not enough
highly skilled penetration testers to deliver all the work that is needed.
This situation will probably be true for some time. Due to the scarcity,
we suggest that attack and penetration testing be reserved for critical com-
ponents, and major releases that are expected to be under severe attack.

If your organization has sufficient attack and penetration resources,
the skilled human element is the strongest testing capability in security.
Everything that can be tested probably should be tested. However, we
have seen too many findings reports where the tester did not have this
kind of skill, did not take time to understand the target of the test, ran
the default tests, and reported hundreds of vulnerabilities. These sorts of
tests help no one. Development teams may look at the first few vulner-
abilities, declare them false positive, and stop looking. This is a classic,
typical response to a report filled with possible vulnerabilities rather than
real issues. Generally, in these cases, the attack test was not tuned and
configured to the target, and perhaps the target was not properly config-
ured as it would be when deployed. In our experience, this is a big waste
of everyone’s time.

Instead, focus your highly skilled resources or dollars on the most wor-
thy targets. Critical code that must not fail can benefit greatly from an
A&P test. And a strong return on investment can be made before major
releases or after major revisions. This is where we suggest the most benefit
can be gained from skilled attack and penetration testing.

Because an attack and penetration test can take considerable time to
complete, the rate of code change must be considered when applying
this intensive type of test. If the rate of change (update) is faster than the
length of time to test the system, vulnerabilities may be introduced before
the test even completes. These two factors must be weighed in order to
get the most useful results. Generally, even if updating occurs every day,
these will not be major releases, and certainly not major revisions. Hence,
testing at the larger code inflections can be a better investment.

What is critical code? We have seen numerous definitions of “critical”:

• The highest-revenue system
• The most attacked system
• The largest system

Applying the SDL Framework to the Real World 311

• The system with the biggest investment
• The most strategic system
• The most regulated system
• The highest-risk system
• The system handling the most sensitive data

Each one of these definitions can be blown apart easily with examples
of the others. A practical approach is to let business leaders or other
organizational leaders decide which systems are critical. Multiple factors
may be taken into account. None of the definitions above are mutu-
ally exclusive; different factors may add weight to the criticality of a
system. We suggest an open approach. A larger net, if the organization
can afford it, is probably better in the long run. An organization doesn’t
want to miss an important system simply because it failed any single
factor for criticality.

9.4.4 Independent Testing

There may be situations where it’s advantageous to apply third-party secu-
rity testing. If customers for a product are particularly security-sensitive,
they may demand a third-party verification of the security health of the
system before purchasing.

In the case of demonstrable customer demand for security verification,
one successful approach that we have used is to have third-party testing be
accounted for as a direct cost of goods sold. When systems can’t be sold to
many customers without third-party verification, third-party verification
is considered a part of the cost of building the system for those customers.
One report can typically be used for many customers.

Indeed, sometimes there are advantages to getting an independent
view of the system. As in all human endeavors, if the evaluators are too
close to the system, they may miss important factors. Applying some
independent analysis will focus fresh eyes on the problems.

“Independent” doesn’t necessarily mean outside the organization
entirely. We have had success simply bringing in a security architect who
hadn’t looked at the system yet, who knew nothing about it. If the organi-
zation is big enough, there are usually resources tasked with alternative
systems who can be brought in to check the work.

312 Core Software Security

It is worth mentioning again that one of the strongest tools security
architects have is peer review. It’s easy to miss something important. We
have instituted a system of peer review within multiple organizations at
which we have worked, such that any uncertainty in the analysis requires
a consensus of several experienced individuals. In this way, each assessor
can get his or her work checked and validated.

If there’s any uncertainty about any of the testing methodologies out-
lined here, getting an independent view may help validate the work or
find any holes in the approach.

9.5 Agile: Sprints

We believe that the key to producing secure software with an Agile process
is to integrate security into the Agile process from architecture through
testing. Rather than forcing Waterfall development on top of an Agile
process, security has to become Agile; security practitioners must let go
of rigid processes and enter into the dialog and collaboration that is the
essence of Agile development. Recognize that we have to trust and work
with Agile development teams, and make use of the Agile process rather
than fighting the process and its practitioners.

Figure 9.12 demonstrates how the archetypical SDL illustrated
in Figure 9.1 changes to reflect an Agile process, in this case, Scrum.
Requirements and architecture are a front-end process to Agile cycles, or
“Sprints.” Architecture feeds into the repeated Sprint cycles. At the end of
a series of Sprints, prerelease testing is applied. All the other tasks in the
SDL occur during each Sprint.

A Sprint is a cycle of development during which chunks of code—
“user stories”—are built. Each Scrum team chooses the periodicity of the
team’s Sprints. Typically, Sprints last somewhere between 2 and 6 weeks.
Each Sprint cycle is precisely the same length; this allows an implementa-
tion rhythm to develop. Whatever is not finished in its Sprint is put back
into the backlog of items waiting to be built. At the beginning of a Sprint,
some design work will take place; at least enough design needs to be in
place in order to begin coding. Still, the design may change as a Sprint
unfolds. Also, testing begins during the Sprint as soon as there is some-
thing to test. In this way, design, coding, and testing may all be occurring
in parallel. At the end of the Sprint, the team will examine the results of
the cycle in a process of continuous improvement.

Fi
g

ur
e

9
.1

2

A
g

ile
 S

D
L.

314 Core Software Security

In Scrum, what is going to be built is considered during user story
creation. That’s the “early” part. A close relationship with the Product
Owner* is critical to get security user stories onto the backlog. This
relationship is also important during backlog prioritization. During the
Sprint planning meeting, the meeting at which items are pulled into the
development process (each “Sprint”) for build, a considerable amount of
the design is shaped. Make security an integral part of that process, either
through direct participation or by proxy.

Security experts need to make themselves available throughout a
Sprint to answer questions about implementation details, the correct
way to securely build user stories. Let designs emerge. Let them emerge
securely. As a respected member of the Scrum team, catching security
misses early will be appreciated, not resisted. The design and implementa-
tion is improved: The design will be more correct more often.

Part of the priority dialog must be the interplay between what is pos-
sible to build given the usual constraints of time and budget, and what
must be built in order to meet objectives, security and otherwise. The
security expert doesn’t enter in with the “One True Way,” but rather, with
an attitude of “How do we collectively get this all done, and done well
enough to satisfy the requirements?”

Finally, since writing secure code is very much a discipline and prac-
tice, appropriate testing and vulnerability assurance steps need to be a
part of every Sprint. We think that these need to be part of the definition
of “done.” A proposed definition of “done” might look something like
the following, based on the seven determining questions discussed earlier:

Definition of Done

 1. All code has been manually reviewed (and defects fixed).
 a. All code has been peer-reviewed.
 b. Critical code has been reviewed by a senior or security subject-
 matter expert.

* The Product Owner is a formal role in Scrum. This is the person who takes the cus-
tomer’s and user’s viewpoint. She or he is responsible for creating user stories and for
prioritization. A Product Owner might be an independent member of the develop-
ment team, a senior architect (though not typically) or a product manager, or similar.
It should not be someone who has hierarchical organizational power over develop-
ment team members.

Applying the SDL Framework to the Real World 315

 2. All code has been statically analyzed (and defects fixed).
 3. All functional tests have been passed.
 4. Web server interfaces have been dynamically tested (and defects

fixed).
 5. All non-Web program input paths have been fuzzed (and defects

fixed).

Each of the items designating a security definition of “done” is described
in the relevant section.

In an Agile process, everyone is involved in security. Security per-
sonnel mustn’t toss security “over the wall” and expect secure results.
Development teams will likely perceive such a toss as an interjection into
the work with which they’re already tasked. Rather than collaborative
security, the result is likely to be resistance on the part of the Agile team.

More effective is a willingness to enter into the problems at hand.
Among those problems and important to the overall objectives of the
project, security will be considered. The security experts will do well to
remember that there are always trade-off decisions that must be made
during development. By working toward the success of all objectives,
including security, not only will security be considered in its rightful
place, creative and/or innovative solutions are more likely to be found by
a collaborating team. Security people will have to get their hands dirty, get
some implementation “grease” under their proverbial virtual fingernails
in order to earn the trust and buy-in of Scrum teams.

 Of course, setting the relative priorities over what will get built is one
of the most difficult problems facing any development team. This is espe-
cially true with respect to security items. A strong, risk-based approach
will help factor real-world impacts into the priority equation.

In our experience, if the Agile team has sufficient risk guidance to
understand the implications for prioritizing security items against other
tasks, we believe teams will make better decisions. The classic line, “It’s a
vulnerability that can lead to loss, so fix it now,” has long since failed to
sway decision makers. Let there be no FUD—fear, uncertainty, doubt.

Instead, consider loss not in terms of information security possibilities,
but rather, real-world business impacts for the system under consideration
as it will be used within the expected deployment. An approach focused
on impacts will go much further in helping to make reasonable decisions.
There may be items in the security queue that can be postponed in favor

316 Core Software Security

of other critical features. Team trust is built through everyone partici-
pating fully, which includes security expert participation. When a secu-
rity expert becomes part of the Agile team, everyone wins; security wins.
Indeed, when security is considered carefully and decisions are based on
risk scenarios, there are two great wins for security:

 1. Security becomes part of the decision-making fabric, earning its
rightful place. It’s no longer an add-on or an unplanned extra.
Thinking about security becomes part of the mindset of building
software rather than an interjection from outside.

 2. If risks are considered carefully; the item that has high risk will tend
to be prioritized as it should. Giving up the idea that every security
issue is equally important results in the items that truly are dangerous
(these will be rare) getting the attention they deserve. Items bearing
less risk can be scheduled according to their relative importance.

For many organizations, there are too few skilled security experts.
There aren’t enough security experts that every Scrum team can include
its own, dedicated security guru. Security experts must be matrixed across
multiple teams. These experts will need to develop skills to “time-slice,”
to give a portion of their time to each of multiple projects. Context-
switching time will need to be allotted so that matrixed personnel have
adequate time in which to put down one project’s context and remember
another’s. Excellent project management skills are required. These can be
performed either by the security expert or through a project management
practice. Project managers can be key to assisting with scheduling and
deliverable tasks that make a matrix assignment strategy effective.

There are dangers, however, to assigning a single security expert to
multiple projects. Foremost, overload is all too common. If a security
expert has too many teams assigned, the expert may begin to “thrash”—
that is, have just enough time to pick up the next project and retrieve
context before having to switch projects again. No real work gets done.
Not only is there no time to provide actual security expertise, security
experts don’t thrive without continual technical growth. If the security
expert is overburdened, research time will be curtailed, which can lead to
burn out. More important, without time to research problems properly
and thoroughly, uninformed security decisions may be made.

Avoid overload; watch for the telltale signs, as each person has a differ-
ent threshold for too many context switches.

Applying the SDL Framework to the Real World 317

With too much overload, projects will be delayed, as teams wait for
the security expert to participate. The security expert then becomes a bot-
tleneck to team velocity. Or, worse, designs and implementations proceed
without the required security expertise and help. This almost always leads
to releases without appropriate security, security logic errors, or expensive
rework. These are among the very problems that an Agile process is typi-
cally brought in to address.

Indeed, some overloaded security folks may compensate with ivory-
tower pronouncements tossed out without appropriate participation.
The collaboration and trust that are the hallmark and essence of Agile
processes are skipped in favor of what is efficient for the security person.
Without sufficient time to build team esprit de corps, an overly allocated
security person is likely not to have the time to integrate into each Scrum
team properly. As noted above, when the security person understands
all the issues that must be solved by the whole team, security receives its
rightful place and is not an interjection. It is security items as interjections
into the functioning and autonomy of the Agile team that including a
security expert in the team is attempting to prevent.

Still, it is possible, with just enough security people, to use virtual
teams and multiple assignments. We have seen this done successfully
multiple times. Just avoid overloading. Indeed, hold in mind that team
spirit takes time, exposure, and experience to develop. Mistakes and mis-
steps will occur during forming and learning periods. Build these into the
process for success.

9.6 Key Success Factors and Metrics

This chapter is not part of the SDL framework phases laid out earlier
in this book. Rather, it is the compendium of applying Chapters 3–8 in
real-world situations. Thus, there are no specific success factors/criteria
per se which belong to this chapter. Success factors described below are
presented from the perspective of applying the SDL in practice.

9.6.1 Secure Coding Training Program

It is imperative that a secure coding program be implemented in an
organi zation. It should cater to multiple stakeholders/groups and not

318 Core Software Security

just to development engineers. An effective security coding program will
help a product manager to understand these practices, help polish skills of
architects-in-training, and provide engineers with specific guidelines for
writing correct code. Program modules should also be available for specific
languages (e.g., Java, C, C++). Web Services architecture and proper use of
cryptography must be part of any effective secure coding training program.

9.6.2 Secure Coding Frameworks (APIs)

In addition to secure coding, developers should be made aware of avail-
able secure coding frameworks that exist and any secured APIs that can
be used as part of coding. This prevents ad-hoc coding practices to solve
well-known security problems (e.g., preventing XSS) and standard-
izes code—standardization helps to keep code maintainable over time.
Different types of security testing will point out defects that result from
improper use or failure to use secure coding frameworks (APIs). A secure
coding training program should be offered periodically to reinforce best
practices and should be updated to cover real defects that have resulted
from improper use of APIs.

9.6.3 Manual Code Review

Every line of code that is committed for build should be at least peer-
reviewed. No matter how small a module or set of changes is, this is the
“hygiene habit” of best practice. Comments from peer review should be
taken not as a criticism but as a means to make the code more robust,
readable, and secure. Critical code should be reviewed by someone who is
well versed in security coding practices and the algorithms being imple-
mented. In our experience, multiple code reviews can be quite beneficial.

9.6.4 Independent Code Review and Testing
(by Experts or Third Parties)

Once code is complete, a comprehensive code review by third parties
or independent experts should be performed. The idea here is to catch
any remaining issues that were not identified during the SDL build and

Applying the SDL Framework to the Real World 319

 testing activities. Findings from independent review and penetration
testing should be shared with the people who’ve performed the static
analysis and code reviews. In the next round of development, many of
these issues will then be addressed during peer review, by static analysis,
or during the test plan.

9.6.5 Static Analysis

Before code is checked-in for manual review, it should be put through
static analysis to find common errors and security best practices viola-
tions. This will help to reduce the number of comments during the man-
ual and expert review phases. Performing static analysis on code before
check-in should be mandatory and ideally should be tightly integrated
into development environments and the developer work flow.

9.6.6 Risk Assessment Methodology

As stated in Chapters 3 and 4, a risk assessment framework (RAF) is
essential for the success of a SDL program. Threat modeling and architec-
tural assessment feed into the RAF. The RAF helps to prioritize risks and
enable decisions based on risk severity and impact.

9.6.7 Integration of SDL with SDLC

Integration of “determining” questions into the SDLC cycle will allow
the SDL, that is, software security, to become easily integrated into pro-
ject and development practices. The authors strongly emphasize creating
an SDL program and mapping it into the SDLC cycle rather than mak-
ing security requirements a project plan line item. Without proper guid-
ance, pressed project teams are likely to invent their own interpretations
of “minimum set of security activities.”

9.6.8 Development of Architecture Talent

Security architecture talent is not easy to find, for it sits at the top of a skill
set pyramid. Architects need to have background in software develop ment

320 Core Software Security

and several different areas in security before they can take on an architect
role. This often means a lack of competent candidates who are readily
available. It is critical that a program be in place to develop and men-
tor resources that will eventually take on a security architect role. Hiring
architects from outside is often less useful, given the time they will spend
trying to understand an organization’s software, the environments, and
each organization’s specific practices in order to apply real-world guid-
ance. An architecture mentoring program will provide a clear return on
the investment over time.

9.7 Metrics

As mentioned earlier, this chapter is not part of the SDL phases per se,
and so metrics listed below can fit into Chapters 3–8 as well. This list is a
compilation of useful metrics from the authors’ experience applying SDL
in the real world.

• Maturity of security coding program
• Percent of vetted APIs used in the code
• Percent of software code manually reviewed at time of check-in
• Number of lines of code manually reviewed at time of check-in
• Percent of findings missed by manual review but found during

expert review
• Percent of findings missed by static analysis but found during man-

ual review
• Number of teams auditing software needed to be tweaked signifi-

cantly during the SDL
• Percent of developers using integrated static scanning software from

their integrated development environment (IDE)
• Number of defects found during manual review, static analysis, and

expert review
• Percent of SDL phases “built in” to the SDLC
• Number of “upcoming” architects in the organization
• Percent of software systems assessed to systems produced (Are you

reaching every project and every system?)
• Percent of security reviews completed for designs produced
• Maturity of security design review process

Applying the SDL Framework to the Real World 321

• Number of exceptions granted based on recommendations from
design review*

• Percent of Web servers covered by Web dynamic analysis
• Number of defects found by input fuzzing
• Number of major releases receiving independent A&P testing
• Number of externally reported security vulnerabilities

9.8 Chapter Summary

As we have seen, there is a menu of security tasks which, taken together,
build secure software, the sum total of an applied secure development
lifecycle. In order to get these tasks executed well, relationships among
development team members and between security people and develop-
ment teams make the difference between success and failure.

Engagement starts early during requirements gathering and continues
throughout the SDL to the delivery of the finished software. Architecture
and design-time engagement is meant to build the correct and appropriate
security mechanisms into the software, which must be coded correctly and
then proved to be functionally correct and free from vulnerability through
a testing plan. The test plan includes multiple approaches, as appropriate
to the attack surfaces exposed by the software. Security is an end-to-end
process whose tasks overlap each other to provide continuity and assur-
ance. No one task solves the security problem; there is no silver bullet.

When security people shift to a developer-centric focus, presenting
security not as a deluge of vulnerabilities but rather as attributes that need
inclusion for success and errors that developers wish to remove, developers
and security people can work together tightly to craft appropriately secure
software. Security is not presented as a nonfunctional, top-down com-
mand. Instead, security takes its rightful place among the many attributes
of complete software that must be considered and prioritized. Appropriate
prioritization is achieved through deep and active engagement by security
subject-matter experts throughout the entire SDL.

* We caution against overreliance on this seemingly innocent metric. Skilled security
architects often employ exceptions to shift interactions from “fix or not” to “when to
fix and how to fix.”

322 Core Software Security

It is also true that each security activity is not appropriate to every
project. Projects differ in size, criticality, and scope. A working SDL will
scale to account for these differences. We offer seven determining ques-
tions as one formula for getting the right security tasks assigned to the
appropriate projects.

Stepping back from the specific questions outlined here, instituting a
set of project-specific questions that determine the appropriate security
activities for each project has proven not only to ensure that the right
security is performed for each project, but also to answer typical project
management questions:

• “What do we need to do?”
• “What is the minimum set of activities that we must perform?”

Posing your SDL determining questions in a straightforward and
easily understandable way will build trust between security and project
teams. Ultimately, trust is key to building secure software, just as much as
training in secure coding and rigorous security testing. Security must be
considered from the beginning of the lifecycle in order to be factored into
the design. Code must be written to minimize vulnerabilities and protect
attack surfaces. The program’s functionality and lack of vulnerabilities
must be proven by a thorough series of tests: architect, design, code, test.

Secure software must:

• Be free from errors that can be maliciously manipulated—ergo, be
free of vulnerabilities

• Include the security features that customers require for their intended
use cases

• Be self-protective—software must resist the types of attacks that will
be promulgated against the software

• “Fail well,” that is, fail in such a manner as to minimize the conse-
quences of a successful attack

• Install with sensible, “closed” defaults

Failure to meet each of these imperatives is a failure of the software
to deliver its functionality, a failure to deliver the safety that should be
implicit in a world beset by constant digital attack. There are two impor-
tant and interlocking paths that must be attended to: building the correct
features so the software can protect itself and the software’s users, and

Applying the SDL Framework to the Real World 323

removing the errors that inevitably creep into software as it’s being built.
Incorrect implementations (logical errors) must be caught and removed.
Any vulnerabilities that are introduced must be discovered and eradicated.

The secure development lifecycle is a relationship-based, real-world
process through which teams deliver secure software.

References

 1. Perlis, A. (1982). Epigrams on Programming. ACM SIGPLAN Notices 17 (9),
September, p. 7. Retrieved from http://www.cs.yale.edu/quotes.html.

 2. NATO Science Committee (1969). Software Engineering Techniques. Report on
a conference sponsored by the NATO Science Committee, p. 16, quote from
Edsger Dijksta, Rome, Italy, 27th to 31st October 1969. Retrieved from http://
homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF.

 3. U.S. Department of Homeland Security (2013). Software & Supply Chain
Assurance: Community Resources and Information Clearinghouse (CRIC),
“Mitigating the Most Egregious Exploitable Software Weaknesses: Top 25 CWE
Programming Errors.” Retrieved from https://buildsecurityin.us-cert.gov/swa/
cwe.

 4. Mitre Corporation (2013). “Common Weakness Enumeration (CWE).” CWE-
434: Unrestricted Upload of File with Dangerous Type. Phase: Architecture and
Design. Retrieved from http://cwe.mitre.org/data/definitions/434.html

 5. Open Web Application Security Project (OWASP) (2013). Some Proven
Application Security Principles. Retrieved from https://www.owasp.org/index.php/
Category:Principle.

 6. Open Web Application Security Project (OWASP) (2013). OWASP
Enterprise Security API. Retrieved from https://www.owasp.org/index.php/
Category:OWASP_Enterprise_Security_API.

 7. Ibid.
 8. Beck, K. (1999). Extreme Programming Explained: Embrace Change, p. 18. Addison-

Wesley Professional, Reading, MA.
 9. Sheridan, F. (2012, June 13). Deploying Static Analysis I—Dr. Dobbs. Retrieved

from http://article.yeeyan.org/bilingual/334758.
 10. Ibid.
 11. Golden, B. (2013). What Is Systems Architecture? Retrieved from http://www.lix.

polytechnique.fr/~golden/systems_architecture.html#principles.
 12. The Open Group (2005, November). Guide to Security Architecture in TOGAF

ADM, p. 5. Retrieved from http://pubs.opengroup.org/onlinepubs/7699949499/
toc.pdf.

 13. Wahe, S. (2011). The Open Group, Open Enterprise Security Architecture (O-ESA):
A Framework and Template for Policy-Driven Security, p. 5. Van Haren, Zaltbommel,
The Netherlands.

 14. McGraw, G. (2013, January 18). Cigital Justice League Blog: Securing Software Design

324 Core Software Security

Is Hard. Retrieved from http://www.cigital.com/justice-league-blog/2013/01/18/
securing-software-design-is-hard.

 15. Saltzer, J. H., and Schroeder, M. D. (1975) The Protection of Information
in Computer Systems. Retrieved from http://www.acsac.org/secshelf/papers/
protection_information.pdf.

 16. McGraw, G. (2013, January 18). Cigital Justice League Blog: Securing Software Design
Is Hard. Retrieved from http://www.cigital.com/justice-league-blog/2013/01/18/
securing-software-design-is-hard.

 17. Singh, Y. (2011, November 14). Software Testing, p. 87. Cambridge University
Press, Cambridge, UK.

 18. Wolff, B., and Zaidi, F. (2011, December 20). Testing Software and Systems: 23rd
IFIP WG 6.1 International Conference, ICTSS 2011, Paris, France, November 7-10,
2011, Proceedings, p. 87. Springer-Verlag, Berlin.

 19. Open Web Application Security Project (OWASP) (2013). Fuzzing. Retrieved
from https://www.owasp.org/index.php/Main_Page.

325

Chapter 10

Pulling It All Together:
Using the SDL
to Prevent Real-
World Threats

Cyber threats result from software flaws, which are weakness that can
be exploited by cyber attack or exploitation of a software application
or system. In this book, we have covered strategies for implementing
specific aspects of software security in the form of SDL best practices
to assist software development organizations in avoiding and reducing
software flaws as an essential element of effective core software security by
providing security at the source.

Although achieving a vulnerability-free product is exceedingly diffi-
cult, maybe even impossible, it should always be your goal. By apply-
ing the best practices in this book, the software you develop will be as
free from security vulnerabilities as possible. The fewer the number of
vulnera bilities, the harder it will be for an attacker to exploit a given appli-
cation. By no means are we going to stop all threats through the use
of software security best practices, but maximizing the reduction of the

326 Core Software Security

attack surface is our ultimate goal in that it makes our job as software
security professionals easier and that of our adversaries more difficult. By
implementing the practices outlined in this book, you will be able to a
large extent mitigate most threats coming from non-state threat actors.

In this chapter, we will break down the threats into three major catego-
ries, specifically, strategic, tactical, and user-specific. We will then provide
examples of attacks in each category and how the application of the SDL
best practices outlined in this book will assist you in developing software
that is resistant to these threats and attack methodologies.

10.1 Strategic, Tactical, and User-Specific
Software Attacks

Now that we have described secure software development practices, it is
important to finish this book by reminding the reader of the importance
of using these practices to protect against today’s cyber threats. After a
few quotes from industry leaders, we will give a high-level overview of the
type of cyber threats that secure software development practices provide a
baseline protection against at the core.

Organizations are implementing policies to address secure
software development practices, and beyond using software
scanning tools, finding it important to integrate secure software
practices into the culture of the organization. Some firms have
found that using judicious secure software development processes
can reduce vulnerabilities associated with mission critical
software by 70%.1

—Jeff Snyder, Vice President, Cyber Programs,
Raytheon Company, 2012

Cyber attacks take advantage of software errors, such as not
properly validating user input, inconsistencies in the design
assumptions among system components, and unanticipated
user and operator actions. Software errors can be introduced
by disconnects and miscommunications during the planning,
development, testing, and maintenance of the components.
Although an application development team may be expert

Pulling It All Together: Using the SDL to Prevent Real-World Threats 327

in the required business functionality, that team usually has
limited or no applicable security expertise. The likelihood of
disconnects and miscommunications increases as more system
components have to satisfy security requirements. The necessary
communications and linkages among the life-cycle activities,
among multiple development teams, and between the system
development and eventual usage should be reflected in project
management. Project managers should consider the additional
communications requirements, linkage among life-cycle
activities, and the potential usage environment as these items
relate to security needs.2

—Robert J. Ellison, “Security and
Project Management,” 2006

By promoting the best software security practices industry-wide,
there is a significant opportunity to improve the overall security
of the technology ecosystem.3

—Howard Schmidt, Former U.S. Cybersecurity Czar, 2013

The importance of an organization understanding its application
security maturity level and the impact it has on their overall
IT security profile is critical. Research has shown that the
application layer is responsible for over 90 percent of all
security vulnerabilities, yet more than 80 percent of IT security
spending continues to be at the network layer, primarily focused
on perimeter security. The findings of this study reveal the need
for making greater investment in application security programs
to reduce overall organizational exposure to cybercrime.4

—The State of Application Security—A Research Study by
Ponemon Institute LLC and Security Innovation, 2013

Strategic attacks are typically planned and controlled to target infor-
mation assets including specifications, technologies, plans, capabilities,
procedures, and guidelines to gain strategic advantage. They are typi-
cally conducted by state sponsors (or by entities supported by states),
 organized crime, or competitors. Tactical attacks are typically random
and opportunistic; they target information assets for prestige or financial

328 Core Software Security

reward through the use of malware, exploits, hackers, surrogates, insider
threat, and chat rooms, and they are conducted by professional hack-
ers, script kiddies, and insiders. As you can see, one of the key differen-
tiators between tactical and strategic attacks is motive: Tactical attacks
target network assets for prestige or financial reward, whereas a strategic
attack is the coordination of multiple tactical attacks (and on a much
larger scale) against multiple target networks for strategic advantage or
to preempt adversary from getting one. The targets of tactical attacks are
random and opportunistic, taking advantage of software vulnerabilities
and user ignorance, whereas strategic attacks target a higher-level process
and are intelligence driven and carefully planned and orchestrated. For
example, strategic attacks may include infiltrating strategic infrastructure,
targeting telecommunications infrastructure, and aggregating informa-
tion in specific technology areas such as stealth technology. The ability
to understand strategic attacks requires an understanding of: (1) the busi-
ness functions and processes supported by individual networks; (2) the
business relationships between networks; and (3) sharing of tactical attack
data among contractors, suppliers, and target entities. The information
gleaned by threats to these business relationships is used to guide and
direct strategic attacks.5

User-targeted specific software attacks can be strategic, tactical, or
opportunistic. They may involve an attack targeting a privilege escalation
of a specific user that exploits a vulnerability in software to gain access
to resources and information that would normally be unrestricted to the
user—including data on the specific user machine or resources that the
user can access. Strategic attacks are a super-set that leverage tactical and/or
user-specific attacks.

10.1.1 Strategic Attacks

In general, strategic software targets are applications which are essential
to critical infrastructure functions of the government, economy, or soci-
ety at large. Components of the critical infrastructure include highways,
airports and aircraft, trains and railways, bus lines, shipping and boat
lines, trucking systems, and supply networks for basic goods, electric
power plants and lines, along with oil and gas lines and utilities of all
kinds, including water and sewer systems, land and cell phone systems,

Pulling It All Together: Using the SDL to Prevent Real-World Threats 329

 computer networks, television, and radio (not only that which is publicly
accessible, but that controlled by private or government entities in special
networks or on special frequencies), banks and other financial institu-
tions, and security, fire, hospital, and emergency services. Each element
of critical infrastructure is so vital that if it were removed from the equa-
tion, even temporarily, the entire nation would experience monumental
repercussions. Even when the infrastructure of a particular area is threat-
ened, the results can be disastrous. This can include telecommunications,
energy, banking and finance, transportation, water systems, and emer-
gency services.6 Of course, strategic targets also include critical elements
of the government such as defense, intelligence, and other agencies con-
sidered of high value to an adversary.

Strategic software attacks are highly repeatable and use general target-
ing such as against a broad industry (military, finance, energy, etc.) or
groups of individuals (politicians, executives), and must have long-term
staying power. Strategic attacks are less sophisticated in comparison to
tactical threats and typically are lower in cost to develop and maintain.
These types of attacks can be categorized in three major areas: espionage,
criminal, and socio-political.

10.1.1.1 Espionage

Cyber spying, or cyber espionage, is the act or practice of obtaining
secrets without the permission of the holder of the information,
from individuals, competitors, rivals, groups, governments
and enemies for personal, economic, political or military
advantage using methods on the Internet, networks or individual
computers through the use of cracking techniques and malicious
software including Trojan horses and spyware. It may wholly
be perpetrated online from computer desks of professionals on
bases in far away countries or may involve infiltration at home by
computer trained conventional spies and moles or in other cases
may be the criminal handiwork of amateur malicious hackers and
software programmers. Cyber spying typically involves the use
of such access to secrets and classified information or control of
individual computers or whole networks for a strategic advantage
and for psychological, political and physical subversion activities
and sabotage.7

330 Core Software Security

Cyber espionage is highly strategic in nature; key targets include critical
infrastructures, industrial attacks, manufacturing, research and develop-
ment, pharmaceuticals, finance, and government. Government targets
may also include the defense industrial base (DIB), which includes
defense contractors, research organizations, and political and other high-
ranking individuals.

Examples of espionage attacks are Aurora (GhostNet), Shady RAT,
Titan Rain, and Night Dragon. Note that some of these attacks can be
counted both as espionage and as cyber warfare. They may have multiple
utilities depending on how they are deployed. It might be helpful to think
of cyber espionage as one part of cyber warfare.

Operation Aurora and GhostNet. The 2012 USCC Annual Report on
China contains the following statement:

China’s cyber capabilities provide Beijing with an increasingly
potent tool to achieve national objectives. In a strategic
framework that leans heavily on cyber espionage, a diverse set
of Chinese hackers use pilfered information to advance political,
economic, and security objectives. China’s pursuit of intellectual
property and trade secrets means that much of this espionage
targets private enterprises.8

The information security community has been aware of cyber espio-
nage activities for some time now. However, the extent and impact of
such activities surprised many of us. In 2009, researchers at Information
Warfare Monitor gave the name “GhostNet” to large-scale cyber espionage
operations conducted by the Chinese government. These operations,
associated with advanced persistent threats (APTs), raised awareness of
APT attacks in the security community and among the general public.
GhostNet enabled infiltration of high-value political, economic, and
media targets spread across 90+ countries around the world. Though its
command and control centers were based in China, there was plausible
deniability for the Chinese government, as there was no way to associate
it with actual operations. Note that successful cyber espionage operations
will have this trademark, allowing governments to disassociate themselves
from the actual groups carrying out these attacks.9

The attackers would “social engineer” targets to open a document or
a link infected with malware. After that, malware would be installed on

Pulling It All Together: Using the SDL to Prevent Real-World Threats 331

the target’s system (without raising any red flags for most users). Once
this happened, malware would provide almost unrestricted access to the
attackers. Code was obfuscated, and multiple Trojans were used to avoid
detection by many popular antivirus/antimalware software.

Operation Aurora was a cyber attack conducted from China. Attacks
begin in 2009 and continued until the end of the year. The targets for
these attacks were multinational companies including Google, Adobe,
and Rackspace. Some companies chose to disclose publicly that they had
been the targets of attacks, while others remained under suspicion but
never came out publicly. According to McAfee, the primary goal of the
attack was to get access (and modify) source code of these multinational
companies. One should note that many of these companies have develop-
ment offices in Asia (including China). Thus, protecting their bread and
butter—source code—is of paramount importance to them, though it
was not considered “severe” enough by some companies before this attack.
This trend is changing, but not fast enough. If anything, it has resulted
in chaos, especially in China, and suspicion of employees working in off-
shore offices. This complicates any SDL activities a security group would
like to implement in a global enterprise.10

Operation Shady RAT. Dimitri Alperovitch of McAfee reported
Operation Shady RAT in 2011. Like Operation Aurora, Operation Shady
RAT consists of ongoing cyber attacks and has targeted 70+ countries as
well as the United Nations and the International Olympic Committee.
RAT is an acronym for Remote Access Tool, and though it is not con-
firmed who is behind these operations, suspicions point to China in this
case a well—especially due to the targeting of Olympic organizations
around the time of the Beijing Olympics in 2008.11 Among other tar-
gets were Associated Press offices, the U.S. Energy Department, and U.S
defense companies. In this case, as in GhostNet, attackers would “social
engineer” users of selected organizations into opening documents, spread-
sheets, and other innocent-looking files that actually contained malware.
Once the end user complied, malware would be installed and would try
to connect to its remote server (hard coded into the malware) and provide
attackers with a remote shell.12

Night Dragon. In 2011, McAfee reported that well-organized and tar-
geted cyber attacks were taking place on key international oil and energy
companies. These attacks seem to have started in 2009 (though, as for

332 Core Software Security

many attacks in this class, there is no sure way of knowing this defini-
tively). Based on investigations by McAfee, fingers point again to China
(or China-based hackers). Targeted companies were spread across many
different countries, including the United States, Greece, and Taiwan.
Information that was stolen included specifics on companies and their
operations, bidding data, as well as financial information on projects.
Attackers exploited vulnerabilities in Windows operating systems, appli-
cations (including SQL injection), and active directory infrastructure.
Remote Access Tools (RATs) were used to harvest and steal sensitive infor-
mation. First, the companies’ external-facing infrastructure (e.g., Web
servers) was compromised through SQL injection attacks. This allowed
attacks to execute remote commands to target and compromise internal
desktops and servers within the enterprise. Additional information was
harvested (e.g., passwords), allowing attackers to access sensitive infor-
mation inside the infrastructure. Attackers were able to establish direct
connections from infected systems to the Internet and infiltrated sensitive
information including from senior executives’ systems.13,14

Titan Rain. APT class attacks were launched against infrastructure in the
United States and its allies by hackers believed to be working on behalf
of the Chinese government. Attackers were able to get access to many
sensitive systems of defense contractors and federal agencies. The purpose
of these attacks was to obtain sensitive information, thus putting Titan
Rain into the espionage category rather than warfare, although it could be
 easily used for cyber warfare as well.15–18

10.1.1.2 Organized Crime

Along with the evolution of the Internet, cyber crime has evolved from
the domain of individuals and small groups to traditional organized
crime syndicates and criminally minded technology professionals work-
ing together and pooling their resources and expertise. This has been
largely due to the speed, convenience, and anonymity that modern tech-
nologies offer to those wanting to commit a diverse range of criminal
activities. Consequently, just as brick-and-mortar companies moved their
enterprises to the World Wide Web seeking new opportunities for prof-
its, criminal enterprises are doing the same thing. The global nature of
the Internet has allowed criminals to commit almost any illegal activ-
ity anywhere in the world, making it essential for all countries to adapt

Pulling It All Together: Using the SDL to Prevent Real-World Threats 333

their domestic offline controls to cover crimes carried out in cyberspace.
These activities include attacks against computer data and systems, iden-
tity theft, the distribution of child sexual abuse images, Internet auction
fraud, money laundering, the penetration of online financial services,
online banking theft, illicit access to intellectual property, online extor-
tion, as well as the deployment of viruses, botnets, and various email
scams such as phishing. Organized crime groups typically have a home
base in a nation that provides safe haven, from which they conduct their
transnational operations. In effect, this provides an added degree of pro-
tection against law enforcement and allows them to operate with mini-
mal risk. The inherently transnational nature of the Internet fits perfectly
into this model of activity and the effort to maximize profits within an
acceptable degree of risk. In the virtual world there are no borders, a
characteristic that makes it very attractive for criminal activity; yet when
it comes to policing this virtual world, borders and national jurisdictions
loom large— making large-scale investigation slow and tedious at best,
and impossible at worst.19–21 Some of the more noteworthy groups are the
European crime rings, state-sponsored criminal groups and proxies, U.S.
domestic crime groups, and Mexican cartels.

As payoff from cyber crime grows, it is no surprise that organized
crime groups seek a share in it. Cyber crime allows organized syndicates to
finance their other illicit activities in addition to providing hefty profits.
Criminal syndicates are involved in everything from theft to extortion,
piracy, and enabling online crime in the first place. They are providing a
new meaning to the “as-a-service” term. In addition to exploiting cyber
infrastructure for monetary gains, they are enabling cyber attacks by pro-
viding vulnerabilities, creating tools and offering resources to people who
will pay for it. These services include selling vulnerabilities (proactively
looking for them in new software products and infrastructure), creating
and selling exploits for existing vulnerabilities, spam services, infrastruc-
ture (botnets, hosting), as well as malware.22

10.1.1.3 Socio-Political Attacks

Socio-political attacks are often intended to elevate awareness of a topic
but can also be a component or a means to an end with regard to political
action groups, civil disobedience, or part of a larger campaign, and they
may be an indicator and warning of bigger things to come.

334 Core Software Security

Evidence is growing that more cyber attacks are associated with social,
political, economic, and cultural (SPEC) conflicts. It is also now known
that cyber attackers’ level of socio-technological sophistication, their
backgrounds, and their motivations are essential components to predict-
ing, preventing, and tracing cyber attacks. Thus, SPEC factors have the
potential to be early predictors for outbreaks of anomalous activities, hos-
tile attacks, and other security breaches in cyberspace.23

Some well-known examples of socio-political attacks have been the
result of efforts by Anonymous, WikiLeaks, and Edward Snowden (also
an example of an insider threat), and attacks by radical Muslim groups or
jihadists (e.g., Al Qaeda).

Anonymous. Anonymous is a group of activists that over the last few
years has become well known for its attacks on government and corpo-
rate infrastructure. It has a decentralized command structure and can
be thought of more as a social movement. This movement has targeted
everyone from religious institutions (Church of Scientology) to corpo-
rations (Visa, MasterCard, PayPal, Sony) and government institutions
(the United States, Israel, Tunisia). Some of the most famous attacks
launched by Anonymous are Project Chaology and Operation: Payback
Is a Bitch. After a video of Tom Cruise was posted on a blog, the Church
of Scientology responded with a cease-and-desist letter for copyright vio-
lation. The project users organized a raid against the church, including
distributed denial-of-service (DDoS) attacks. In 2010, they targeted the
RIAA and MIAA, bringing down their websites.24 This action was a pro-
test to protect their rights to share information with one another—one of
their important principles, in their opinion.

WikiLeaks published classified diplomatic cables in November 2010.
Under pressure from the U.S. government, Amazon.com removed
WikiLeaks from its servers, and PayPal, Visa, and MasterCard stopped
providing financial services for WikiLeaks. This resulted in attacks
against PayPal, Visa, and MasterCard, disrupting their websites and
services.25–27

Anonymous also launched a number of activities in support of the
“Arab spring” movement and has targeted websites hosting child por-
nography. After San Francisco’s Bay Area Rapid Transit (BART) blocked
cell service to prevent a planned protest, Anonymous targeted the BART
website and shut it down.28

Pulling It All Together: Using the SDL to Prevent Real-World Threats 335

Jihadists. Threats posed by jihadists are increasing. In one sense, this is
part of cyber warfare, though there is a difference from most such activi-
ties in that there is a fundamental religious ideology driving these actors.
Cyber attacks by terrorists/jihadist organizations started at least as far
back as November 2001 (not long after 9/11), though these early attacks
were relatively unsophisticated. A terrorist suspect told interrogators that
Al Qaeda had launched low-level computer attacks, sabotaging websites
by launching denial-of-service (DoS) attacks.29

10.1.1.4 Cyber Warfare

The term cyber war gives the impression that the war is happening
only in cyberspace, when in fact a more accurate interpretation is
cyber weapons are used in the digital theater of war that can be
strategically aligned with traditional (physical) warfare activities.30

Cyber warfare has been defined by government security expert Richard A.
Clarke as “actions by a nation-state to penetrate another nation’s comput-
ers or networks for the purposes of causing damage or disruption.” 31 The
Economist describes cyber warfare as “the fifth domain of warfare.” 32

William J. Lynn, U.S. Deputy Secretary of Defense, states that “as a
doctrinal matter, the Pentagon has formally recognized cyberspace as a
new domain in warfare—[which] has become just as critical to military
operations as land, sea, air, and space.” 33

From some of the quotes above you can see that there is an acceptance
that when we speak of war, cyber and physical are not separate from each
other; they are merely different theaters of war. Like other theaters of war,
they all have commonalities but typically have different weapons, tactics,
and command structure, as well as different rules of engagement, differ-
ent forms of targets and different methods to identify a target, different
expectations of collateral damage, and different expectations of risk. Cyber
attacks can have a great impact, but not necessarily focused or highly tar-
geted, such as disrupting communications, affecting processing of infor-
mation, and disrupting portions of systems that inhibit normal functions.

In contrast to this, when the government or military use the term
“cyber war,” they are typically thinking of highly targeted and impact-
ful eventualities, such as shutting down power, phones, air traffic
control, trains, and emergency services. Cyber attacks are not limited

336 Core Software Security

to cyberspace; there is both intended and unintended collateral dam-
age outside the realm of cyber. For example, manipulating a SCADA
(supervisory control and data acquisition) system in a chemical plant
or a critical infrastructure facility may cause an intended or unintended
explosion, possible area contamination, or a toxic chemical spill or float-
ing toxic cloud.

It is no secret that foreign cyberspace operations against U.S. public-
and private-sector systems are increasing in number and sophistication.
U.S. government networks are probed millions of times every day, and
successful penetrations have led to the loss of thousands of sensitive
files from U.S. networks and those of U.S. allies and industry partners.
Moreover, this threat continues to evolve, as evidence grows of adversaries
focusing on the development of increasingly sophisticated and potentially
dangerous capabilities.34

The potential for small groups to have an asymmetric impact in cyber-
space creates very real incentives for malicious activity. Beyond formal
governmental activities, cyber criminals can control botnets with millions
of infected hosts. The tools and techniques developed by cyber criminals
are increasing in sophistication at an incredible rate, and many of these
capabilities can be purchased cheaply on the Internet. Whether the goal
is monetary, access to intellectual property, or the disruption of critical
systems, the rapidly evolving threat landscape presents a complex and
vital challenge for national and economic security.

To counter this threat, the U.S. Department of Defense has announced
five strategic initiatives it is taking. They are worth reviewing here. First,
treat cyberspace as an operational domain of war, just like land, sea, air,
and space. Hence, the “fifth domain” of war is recognized as an oper-
ational theater. Second, evolve new defense concepts to combat cyber
attacks. This entails taking four basic steps, as shown below:

 1. Enhance cyber best practices to improve its cyber security.
 2. Deter and mitigate insider threats, strengthen workforce communi-

cations, workforce accountability, internal monitoring, and infor-
mation management capabilities.

 3. Employ an active cyber defense capability to prevent intrusions onto
networks and systems.

 4. Develop new defense operating concepts and computing architectures.

Pulling It All Together: Using the SDL to Prevent Real-World Threats 337

The third initiative is to begin to partner with other U.S. government
departments and agencies and the private sector to enable a government-
wide cyber security strategy. The fourth initiative is to build robust rela-
tionships with U.S. allies and international partners to strengthen collective
cyber security. Finally, leverage the nation’s ingenuity through an excep-
tional cyber workforce and rapid technological innovation. The most sig-
nificant thing to note in all of the aforementioned in relation to this book is
the first step: recognition of cyber best practices that need to be developed
to improve cyber security, which of course includes securing the core by
building security into the development process as described in this book.

Examples of cyber warfare threats that strong secure development
practices protect against include the cyber attacks on Estonia in 2007 and
attacks on assets in Georgia during the Russia–Georgia conflict in 2008.

Cyber Attacks on Estonia. Estonia and Russia have a long (and unstable)
relationship. Estonia, one of the Baltic States, was part of the USSR from
1940 to 1991. Estonia became part of NATO in 2004. In 2007, the
Estonian government moved the Bronze Soldier—a memorial honor-
ing the Soviet liberation of Estonia from Nazi Germany—to a different
location. This resulted in rioting by the Russian-speaking minority com-
munity in Estonia, which viewed the move as an effort to further mar-
ginalize their ethnic identity. At the same time, DDoS attacks started to
target the country’s cyber infrastructure. Attacks were able to shut down
websites of the government, banks, and political institutions. Estonians
accused Russia of waging cyber war and considered invoking Article 5 of
the NATO treaty, although it chose not to do so in the end. One should
note that cyber war can lead to much wider military conflict in such situa-
tions—something we might not have seen so far but which remains a real
possibility. Estonia was the first case of a country publicly claiming to be
a victim of cyber war.35–37

Georgia–Russia Conflict of 2008. In the fall of 2008, hostilities broke out
between Russia and Georgia over South Ossetia. At the same time, coordi-
nated cyber attacks against Georgian assets started as well. The Georgian
government accused Russia of being behind these attacks (though the
Kremlin denied it). Note that this was the first time that cyber warfare
actually accompanied a military war. The official website of Georgia

338 Core Software Security

President Mikheil Saakashvili was under the control of attackers before
Russian armed intervention started, and so were the websites of other
government agencies. Commercial websites were also hijacked. Visits to
websites in Georgia were routed through Russia and Turkey, where traffic
was blocked, preventing people from accessing them. When Germany
intervened and traffic was routed through German servers, attackers again
took control to route traffic through servers based in Russia.38

10.1.2 Tactical Attacks

Tactical cyber threats are typically surgical by nature, have highly specific
targeting, and are technologically sophisticated. Given the specific nature
of the attack, the cost of development is typically high. Repeatability
is less significant for tactical attacks than for strategic attacks. Tactical
attacks can be adjuncts to strategic attacks; in some cases they serve as a
force multiplier or augment other activities such as a military campaign
or as a supplementary action to a special-interest action group. Given the
surgical nature of these attacks, they are also popular for use in subversive
operations. Given the cost of these attacks, they are typically financed
by well-funded private entities and governments that are often global in
nature and popularity—a country, a business, or a special-interest group.

An example of tactical cyber attack (which was leveraged for strategic
purposes) is the Stuxnet worm. The U.S. and Israeli governments, aiming
to subvert nuclear power plants in Iran, likely designed the Stuxnet worm.
However, it ended up infecting more than just the intended target, Iran:
It impacted a host of countries, including India, the United States, and
Great Britain. By September 2010, more than 100,000+ unique hosts
had been infected by this worm.39 Stuxnet was unique in the way it was
designed. It propagated through more than one medium (for example,
flash drives and Internet connections). It affected Windows systems and
exploited known patched and unknown vulnerabilities in the operating
system. However, these Windows systems were not the actual targets of
this worm. After infecting a host, it would look for a specific industrial
control system, the Programmable Logic Controller made by Siemens.
Apparently, this controller was being used by Iran in its nuclear power
plants. If it did not detect the particular controller software, it would not
do anything but would wait to propagate around to other hosts. If it did
find the controller software, it would infect and change it.40

Pulling It All Together: Using the SDL to Prevent Real-World Threats 339

10.1.3 User-Specific Attacks

User-specific cyber threats can be strategic, tactical, or personal in nature,
and target personal devices that may be either consumer- or enterprise-
owned. The use of strategic, tactical, or publically available methods to
exploit specific individuals or general populations of users for monetary,
political, or personal gain can be specifically targeted to a user as a pri-
mary target or as a means to get to another target or random exploitation
of a user as a target of opportunity.

In many ways, most strategic and tactical attacks are a form of user
attack. The difference between these attacks and user-specific attacks are
those of scale. An example of this type of attack is to target a user by
installing a key-logger on his system with the intent to use it for immedi-
ate financial benefit (e.g., to get passwords to log onto bank accounts),
unauthorized access to someone else’s e-mail account (for spying on a
spouse or celebrities), or to target a quiz with the intention to get around
actual results. All these attacks are of benefit to a handful of individuals.
Examples of attacks in these categories are ransomware, credit card harvest-
ing, targeting of specific individuals for monetary gains (bank accounts,
Social Security numbers, and so on), unauthorized access to social media
sites, e-mails, and other online information with intent to blackmail,
exploit, or embarrass individuals, identify theft, phishing attacks, and
exploitation of “smart home” products. Readers will be familiar with most
of these attacks. Ransomware is a kind of malware that tricks users into
believing that there is no way out for them except to pay to get rid of a
nuisance. An example of such an attack would be locking a user’s desktop
and asking for a payment to unlock it. Such attacks were initially found
in Russia but have spread to other countries over the last couple of years.41

10.2 Overcoming Organizational and Business
Challenges with a Properly Designed,
Managed, and Focused SDL

We have outlined an organizational structure with associated roles and
responsibilities specific to the tasks that are outlined in our SDL model
that have been field-tested and optimized by the authors of this book. The
structure described earlier in the book will serve you well to effectively

340 Core Software Security

and efficiently create, deliver, and manage the best practices described
in this book. It will also assist in the successful buy-in and management
of the tasks through A1–A5 in our SDL model. As an added benefit, by
using the organizational structure suggested, you will be able to deliver
the tasks described in Chapter 8 for post-release support (PRSA1–5),
which are typically conducted by other organizations than your own. By
using the metrics described in each section of the SDL model, you be able
not only to effectively manage and track your software security programs
and SDL success but also provide a dashboard to your corporate manage-
ment and internal customers as to the current state of your program. This
dashboard can also be used to identify gaps, which can be used to justify
headcount, funding, and other resources when needed. Most important,
by building security in, you will maximize the ability to avoid post-release
discoveries of security vulnerabilities in your software and increase your
ability to successfully manage these discoveries on the occasions when
they do occur.

10.3 Software Security Organizational Realities
and Leverage

Although an incremental headcount hire plan based on progressive
increase in workload is typically the norm for most organizations, incre-
mental growth isn’t the right model for what has been proposed in this
book and certainly isn’t a reality for those going through austerity realities
within their organizations. Doing more with less is a reality we all face,
regardless of the risks we are facing. To help solve this conundrum, we
have proposed a model for a software security group that doesn’t depend
on continual growth, linear or otherwise. The virtual team grows against
linear growth, allowing a fully staffed, centralized software security group
to remain relatively stable. We believe that a centralized group comprised
of one seasoned software security architect per main software product
group and one for each software product within that group in your soft-
ware engineering development organization will be sufficient to scale
quite nicely as long as the software security champion program is adhered
to as proposed in this book. In addition, by sharing the responsibility for
a typical product security incident response team (PSIRT) among the key
software security champions for each software product in a development

Pulling It All Together: Using the SDL to Prevent Real-World Threats 341

organization, a single PSIRT manager should suffice given the shared
responsibilities of the task throughout the organization.

As described earlier in the book, excellence is not about increasing
numbers; it is about the quality of staff you hire. Each of these seasoned
software security architects can coordinate and support the implemen-
tation of the SDL within each business unit and software product line
and will:

• Provide the associated software security champion with the central-
ized software security group process and governance.

• Mentor the software security champions in security architecture and
reviews.

• Support the associated business unit software security champion
in the mentorship of each software product line software security
champion.

• Coordinate with product management for early and timely security
requirements.

• Help to calculate project security risk.
• Help to ensure that software security champions institute appropri-

ate and full security testing.
• Ensure that appropriate security testing tools are available (static,

dynamic, fuzzing) for use in the SDL as appropriate.

While these tasks benefit greatly from senior experience and discre-
tion, there is a significant opportunity cost savings in having these senior
technical leaders mentor the software security champions and software
security architects, as both a wonderful growth opportunity for the indi-
viduals involved and a cost savings to the company and the organization.
Someone with the potential to grow into a leader through experience and
mentorship is a perfect candidate for the software security champions in
our model. We are the sum of everything we have ever done, which is
constantly being revised and remembered. The same can be said of soft-
ware security architects; it is a journey, not a point in time, and requires
constant learning, mentoring, and collaboration with those who have
been there before.

In our model, there are multiple paths to appropriate “coverage.”
Unlike a fully centralized function, a virtual team, handled with care, can
be coalesced and led by a far smaller central team. The authors have made

342 Core Software Security

this model work, sometimes numerous times in a number of disparate
organizations, and consider this a proven track record for a model that
will constantly evolve with the ever-changing realities we are faced with in
software security. Each member of the centralized software security group
must be able to inspire, encourage, and lead a virtual team such that the
virtual members contribute key subject-matter expert (SME) tasks, but at
the same time do not become overloaded with additional or operational
tasks. “Just enough” such that the PSIRT function can reap huge benefits
through having true SMEs contribute and enable, while at the same time
making sure that no one person bears the entire brunt of a set of opera-
tional activities that can’t be dodged. Since our model for a centralized
software security group makes use of an extended virtual team, the need
for a large central PSIRT staff, as may be found in other organizations,
is not needed. Tasks that can be managed in a decentralized manner are
done, such as technical investigations, release planning, and fix develop-
ment. However, there is a coordination role that must be sophisticated
enough to technically comprehend the implications and risks involved
in various responses. Peer review is a powerful tool for avoiding missteps.
Further, the central role within the engineering software development
group itself provides coordination across teams, something that is lacking
in most organizations. We must not respond individually to a vulnerabil-
ity that affects many software products in unique and idiosyncratic ways.
Further, it is essential to provide an interface between PR (and sometimes
marketing) support and the technical teams who are involved in respond-
ing. You want your response to vulnerability reporters to be consistent
and to avoid putting your company and your brand at risk, externally.

10.4 Overcoming SDL Audit and Regulatory
Challenges with Proper Governance
Management

In Chapter 2, we gave a brief overview of ISO/IEC 27034. Other than
the various software security maturity models mentioned earlier in the
book, this will be the first software security standard. It will presumably
have a third-party attestation and certification industry built around
it in the near future. Given that this standard does not define applica-
tion security as a specific state of security but rather as a process that an

Pulling It All Together: Using the SDL to Prevent Real-World Threats 343

organization can perform for applying controls and measurements to its
applications in order to manage the risk of using, we believe our model
is applicable to preparing to be in compliance with this standard. The
standard provides guidance for organizations in integrating security into
the processes used for managing their applications and explicitly takes
a process approach in specifying, designing, developing, testing, imple-
menting, and maintaining security functions and controls in application
systems. The requirements and processes specified in ISO/IEC 27034 are
not intended to be implemented in isolation but rather integrated into
an organization’s existing process. The combination of ISO/IEC 27034
compliance with the adherence of our SDL practices or any of the matu-
rity models described earlier in the book should serve you well in meet-
ing any audit, regulatory, or governance challenges, since adherence will
likely be driven by the guidance driven by the latter.

10.5 Future Predications for Software Security

We have divided this section into to two parts. First, the bad news, which
is the things that we see that will likely continue on in industry but that
should be changed; and second, the good things we see with regard to soft-
ware security in the future—the light at the end of the tunnel, if you will.

10.5.1 The Bad News

We’ll start with the bad news. For the most part, other than threat
 modeling and architectural security reviews, which is an art, not a sci-
ence, software security isn’t that difficult, but it is an area that industry
has known about for many years and yet has chosen to do almost nothing
about. This is evident in the top software vulnerabilities in the Common
Vulnerabilities and Exposures (CVE), and the OWASP and SANS top-
10 vulnerability lists, which have remained essentially the same over 10
years. Although industry has started to take leadership in this area over
the last few years, and ISO ISO/IEC 27034, 29147, and 30111 have
been announced, we see software security as an ongoing problem for the
foreseeable future. Although the future looks bright in this area, it will
take time to finally steer industry in the right direction. As discussed
throughout the book, building security into the software development

344 Core Software Security

process is more about an attitude change, management acceptance, and
business/operational process changes than about blazing new trails in new
scientific or technical disciplines.

The price to fix vulnerabilities later in the cycle is very high. The level
of effort that is required to tune and maintain current product secu-
rity tools can be more expensive than buying the tool. Although much
of the burden of making this change is on the vendor, we have some
thoughts that may help change this paradigm. We propose a paradigm
shift away from vulnerabilities in software security. Not every vulner-
ability gets exploited, or is even exploitable. Often, mitigations that are
not obvious to vanilla vulnerability scanners make even garden-variety
vulnerabilities unattractive to attackers. We are not suggesting that we
stop fixing bugs in code. Quite the opposite, as should be clear from the
contents of this book. Still, delivering reports with thousands of vulner-
abilities have not made software secure. However, as a collective whole,
the security industry continues to focus on vulnerability: every new type
of attack, every new variation, and every conceivable attack methodol-
ogy. Instead, a focus on correct program behavior aligns well with how
developers approach designing and creating code. Correctness goes to the
heart of the software process. In our experience, developers are rewarded
for correctness. And it should be obvious that vulnerabilities are errors,
plain and simple. Focusing on correctness would, unfortunately, be a sea
change in software security. Tools today often don’t report the one, single
bug that will respond to multiple variations of a particular type of attack.
Instead, too often, tools report each variation as a “vulnerability” that
needs to be addressed by the developer. This is the way security people
think about the situation. It’s an attacker’s view: Which attack methods
will work on this particular system? That is the question that most vulner-
ability scanners address today (as of this writing). However, people who
write code simply want to know what the coding error is, where it is in
the code, and what is the correct behavior that must be programmed.
Often, if the tool contains any programming hints, these tend to be bur-
ied in the tool’s user interface. Instead, we propose that a tool should be
no more difficult to use than a compiler. The results could be a list of
code errors, coupled to line numbers in the code, with a code snippet
pointing out where the error lies. Of course, this is an oversimplifica-
tion. Some kinds of security vulnerabilities lie across code snippets, or
even across a whole system. Still, focus could be on what is the coding

Pulling It All Together: Using the SDL to Prevent Real-World Threats 345

error and what is its solution. Logical errors could be described in terms
of the design solution: things like randomizing session IDs properly, or
including nonpredictable session identifiers with each Web input (to pre-
vent cross-site request forgery, for instance). In a world where tens of
millions of people are writing Web code, and a great deal of that code
contains exploitable vulnerabilities, we need an approach that simplifies
the finding of the actual coding errors. Massive counts of the millions of
vulnerabilities have not reduced the attack surface. We like to suggest call-
ing this new approach “ developer-centric software security.” “Developer-
centric” means that security people should understand developers’ focus,
and developers’ problems. The security industry must begin to address
these in order to get security considered in its rightful place, right next to
maintainability, correctness of algorithm, correctness of calculation, and
all the other problems that a skilled programmer must face.

10.5.2 The Good News

As discussed throughout the book and in the previous section, industry
knows what to do, that they should do it, and how to do it, but they don’t
do it. Knowing what to do is a significant portion of the battle that needs
to be won, and we believe that pressure resulting from new ISO standards
(27034, 29147, and 30111) and the recent increase in business and gov-
ernment community awareness and oversight for software security that is
built into the software development process pressure industry to finally
make software security a priority and business enabler. Other good news
is that the tools and training for software security continue to improve.
We also see more and more mentoring of the next generation of software
security architects, which will serve our industry well over time. Most
important, new organizational and management SDL models based on
real-life experiences and successes, like the one described in this book, are
being developed.

10.6 Conclusion

The criticality of software security as we move quickly toward this new
age of tasks previously relegated to the human mind and now being
replaced by software-driven machines cannot be underestimated. It is for

346 Core Software Security

this reason we have written this book. In contrast and for the foreseeable
future, humans will continue to write software programs. This also means
that new software will keep building on legacy code or software that was
written prior to security being taken seriously or before sophisticated
attacks became prevalent. As long as humans write the programs, the key
to successful software security is to make the software development pro-
gram process more efficient and effective. Although the approach of this
book includes people, process, and technology approaches to software
security, the authors believe the people element of software security is
still the most important part to manage. This will remain true as long
as software is developed, managed, and exploited by humans. This book
has outlined a step-by-step process for software security that is relevant to
today’s technical, operational, business, and development environments.
We have focused on what humans can do to control and manage a secure
software development process in the form of best practices and metrics.
Although security is not a natural component of the way industry has
been building software in recent years, the authors believe that secu-
rity improvements to development processes are possible, practical, and
essential. We believe that the software security best practices and model
presented in this book will make this clear to all who read the book,
including executives, managers, and practitioners.

When it comes to cyber security, we believe it is all about the software
and whether it is secure or not, hence the title of our book: Core Software
Security: Security at the Source. You can have the world’s best client, host,
and network security, including encrypted transmission and storage of
data, but if software application vulnerabilities exist and can be exploited,
your defense-in-depth security approach has just become a speed bump
to the inevitable. As the old adage goes, you are only as good as your
weakest link, and in today’s world, that is still the software; and software
permeates everything we do, from defense to medicine, industry, banking,
agricultural, transportation, and how we manage and live our lives. This
is very serious and daunting vulnerability. You only have to look at how
many years the same software vulnerabilities have remained on the CVE
Top 25 or OWASP and SANS Top 10 to realize that organizations are still
not taking software security seriously. Even worse, experienced and pro-
fessional adversaries will target vulnerable software and don’t necessarily
need it to be Internet-enabled to be at risk—that just makes the exploita-
tion easier, but software is still the primary target because if you can own

Pulling It All Together: Using the SDL to Prevent Real-World Threats 347

the software you can own the data and processes that it controls. In today’s
world, this can result in life-threatening and serious local, regional, and
global consequences. Throughout this book, we have described the SDL
best practices and metrics to optimize the development, management,
and growth of a secure software development lifecycle and program to
maximize the mitigation of this type of risk. Managing software security
is an area that the authors live in on a daily basis, and this book is based
on our real-world experiences. We have worked with Fortune 500 compa-
nies and have often seen examples of breakdown of security development
lifecycle (SDL) practices. In this book, we have taken an experiences-
based approach to applying components of the best available SDL models
in dealing with the problems described above in the form of a SDL soft-
ware security best practices model and framework. Most important, our
SDL best practices model has been mapped to the standard model for
software development lifecycle, explaining how you can use this to build
and manage a mature SDL program. Although security issues will always
exist, the purpose of this book has been to teach you how to maximize an
organization’s ability to minimize vulnerabilities in your software prod-
ucts before they are released or deployed, by building security into the
development process. We hope you enjoyed reading this book as much as
we have writing it, as we are passionate about our efforts to help alleviate
the risk of vulnerable software in the world at large and specifically our
readers’ organizations.

References

 1. Snyder, J. (2012). “Growing Cyber Threats Demand Advanced Mitigation
Methodologies.” Retrieved from http://www.raytheon.com/capabilities/rtnwcm/
groups/iis/documents/content/rtn_iis_cyber_whitepaper_wcs.pdf.

 2. Ellison, R. (2006). “Security and Project Management.” Retrieved from
https://buildsecurityin.us-cert.gov/articles/best-practices/project-management/
security-and-project-management.

 3. Acohido, B. (2013, February 27). “Former Cybersecurity Czar Pursues Safer
Software.” Retrieved from http://www.usatoday.com/story/tech/2013/02/27/
howard-schmidt-executive-director-safecode/1952359.

 4. Ponemon Institute and Security Innovation (2013, August 27). The State of
Application Security—A Research Study by Ponemon Institute LLC and Security
Innovation, p. 21). Retrieved from https://www.securityinnovation.com/uploads/
ponemon-state-of-application-security-maturity.pdf.

348 Core Software Security

 5. Gilbert, L., Morgan, R., and Keen, A. (2009, May 5). “Tactical and Strategic
Attack Detection and Prediction,” U.S. Patent 7530105. Retrieved from http://
www.freepatentsonline.com/7530105.html.

 6. Encyclopedia of Espionage, Intelligence, and Security (2013). Espionage
Encyclopedia: Critical Infrastructure. Retrieved from http://www.faqs.org/
espionage/Cou-De/Critical-Infrastructure.html.

 7. Linktv.org (2013). Cyber Espionage. Retrieved from http://news.linktv.org/topics/
cyber-espionage.

 8. U.S.–China Economic and Security Review (2012). 2012 Report to Congress of the
U.S.–China Economic and Security Review Commission—One Hundred Twelfth
Congress—Second Session. Retrieved from http://origin.www.uscc.gov/sites/
default/files/annual_reports/2012-Report-to-Congress.pdf.

 9. Information Warfare Monitor (2009). Tracking GhostNet: Investigating a Cyber
Espionage Network. Retrieved from http://www.scribd.com/doc/13731776/
Tracking-GhostNetInvestigating-a-Cyber-Espionage-Network.

 10. McAfee Labs and McAfee Foundstone Professional Services (2010). Protecting
Your Critical Assets—Lessons Learned from “Operation Aurora.” Retrieved from
http://www.mcafee.com/us/resources/white-papers/wp-protecting-critical-assets.
pdf.

 11. Nakashima, E. (2011, August 02). “Report on ‘Operation Shady
RAT’ Identifies Widespread Cyber-Spying.” The Washington Post.
Retrieved from http://articles.washingtonpost.com/2011-08-02/
national/35269748_1_intrusions-mcafee-china-issues.

 12. Symantec (2011, August 4). “The Truth Behind the Shady Rat.” Symantec
Official Blog. Retrieved from http://www.symantec.com/connect/blogs/
truth-behind-shady-rat.

 13. Hsu, T. (2011, February 10). “China-Based Hackers Targeted Oil, Energy
Companies in ‘Night Dragon’ Cyber Attacks, McAfee Says.” Los Angeles Times.
Retrieved from http://latimesblogs.latimes.com/technology/2011/02/chinese-
hackers-targeted-oil-companies-in-cyberattack-mcafee-says.html#sthash.
d7PrG6Iy.dpuf.

 14. McAfee Foundstone Professional Services and McAfee Labs (2011, February 10).
Global Energy Cyberattacks: “Night Dragon.” Retrieved from http://www.mcafee.
com/us/resources/white-papers/wp-global-energy-cyberattacks-night-dragon.pdf.

 15. Graham, B. (2005, August 25). “Hackers Attack via Chinese Web Sites.” The
Washington Post. Retrieved from http://www.washingtonpost.com/wp-dyn/
content/article/2005/08/24/AR2005082402318.html.

 16. Thornburgh, N. (2005, August 25). “Inside the Chinese Hack Attack.”
Time Magazine. Retrieved from http://content.time.com/time/nation/
article/0,8599,1098371,00.html.

 17. Onley, D. and Wait, P. (2006, August 17). “Red Storm Rising.” GCN. Retrieved
from http://gcn.com/Articles/2006/08/17/Red-storm-rising.aspx?Page=2&p=1.

 18. Sandlin, S. (2007, October 14). “Analyst, Sandia Settle Suit.”Albuquerque Journal.
Retrieved from http://www.abqjournal.com/news/metro/602547metro10-14-07.
htm.

Pulling It All Together: Using the SDL to Prevent Real-World Threats 349

 19. Interpol (2013). Cybercrime. Retrieved from http://www.interpol.int/Crime-areas/
Cybercrime/Cybercrime.

 20. Williams, P. (2013). Organized Crime and Cyber-Crime: Implications for Business.
CERT Coordination Center (CERT/CC). Retrieved from www.cert.org/archive/
pdf/cybercrime-business.pdf.

 21. Williams, P. (2013). Organized Crime and Cybercrime: Synergies, Trends, and
Responses. Retrieved from http://www.crime-research.org/library/Cybercrime.htm.

 22. Samani, R., and Paget, F. (2011). Cybercrime Exposed—Cybercrime-as-a-Service,
McAfee—An Intel Company White Paper. Retrieved from http://www.mcafee.
com/us/resources/white-papers/wp-cybercrime-exposed.pdf.

 23. Gandhi, R., Sharma, A., Mahoney, W., Sousan, W., Zhu, Q., and Laplante, P.
(2011, February). Dimensions of Cyber-Attacks: Cultural, Social, Economic, and
Political. ResearchGate.net, Source: IEEE Xplore. Retrieved from http://www.
researchgate.net/publication/224223630_Dimensions_of_Cyber-Attacks_
Cultural_Social_Economic_and_Political.

 24. Vaughan-Nichols, S. (2012, January 20). “How Anonymous Took Down the DoJ,
RIAA, MPAA and Universal Music Websites.” ZDNet. Retrieved from http://
www.zdnet.com/blog/networking/how-anonymous-took-down-the-doj-riaa-
mpaa-and-universal-music-websites/1932.

 25. Tucker, N. (2008, January18). “Tom Cruise’s Scary Movie; In Church Promo, the
Scientologist Is Hard to Suppress.” The Washington Post. Retrieved from http://
www.highbeam.com/doc/1P2-15129123.html.

 26. The Economist (2008, February 2). “Fair Game; Scientology. (Cyberwarfare
Against a Cult) (Anonymous).” Retrieved from http://www.highbeam.com/
doc/1G1-174076065.html.

 27. BBC (2010, December 9). “Anonymous Hacktivists Say Wikileaks War to
Continue.” Retrieved from http://www.bbc.co.uk/news/technology-11935539.

 28. Swallow, E. (2011, August 14). “Anonymous Hackers Attack BART
Website.” Mashable. Retrieved from http://mashable.com/2011/08/15/
bart-anonymous-attack.

 29. Kingsbury, A. (2010, April 14). “Documents Reveal Al Qaeda Cyberattacks—
The Attacks Were Relatively Minor but Show the Group’s Interest in Cyberwar.”
U.S. News & World Report. Retrieved from http://www.usnews.com/news/
articles/2010/04/14/documents-reveal-al-qaeda-cyberattacks.

 30. Tiller, J. (2010, June 10). “Cyberwarfare: It’s a New Theater of War, Not Just
a New Form of War.” Real Security. Retrieved from http://www.realsecurity.us/
weblog/?e=104.

 31. Clarke, R. A. (2010). Cyber War. HarperCollins, New York.
 32. The Economist, (2010, July 1). “Cyberwar: War in the Fifth Domain.” The

Economist.
 33. Lynn, W. J., III. (2010, Sept./Oct.) “Defending a New Domain: The Pentagon’s

Cyberstrategy.” Foreign Affairs, pp. 97–108.
 34. U.S. Department of Defense Strategy for Operating in Cyberspace, July 2011, p. 3.
 35. Herzog, S. (2011, Summer). “Revisiting the Estonian Cyber Attacks: Digital

Threats and Multinational Responses.” Journal of Strategic Security, Vol. 4,

350 Core Software Security

No. 2, Strategic Security in the Cyber Age, Article 4. Retrieved from http://
scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1105&context=jss.

 36. RIANOVOSTI (2007, September 6). “Estonia Has No Evidence of
Kremlin Involvement in Cyber Attacks.” Retrieved from http://en.rian.ru/
world/20070906/76959190.html.

 37. Rehman, S. (2013, January 14). “Estonia’s Lessons in Cyberwarfare.” U.S. News Weekly.
Retrieved from http://www.usnews.com/opinion/blogs/world-report/2013/01/14/
estonia-shows-how-to-build-a-defense-against-cyberwarfare.

 38. Swaine, J. (2008, August 11). “Georgia: Russia ‘Conducting Cyber War.’” The
Telegraph. Retrieved from http://www.telegraph.co.uk/news/worldnews/europe/
georgia/2539157/Georgia-Russia-conducting-cyber-war.html.

 39. Falliere, N., Murchu, L., and Chien, E. (2011, February). W32.Stuxnet Dossier,
Version 1.4—Symantec Security Response. Retrieved from http://www.symantec.
com/content/en/us/enterprise/media/security_response/whitepapers/w32_
stuxnet_dossier.pdf.

 40. Schneier, B. (2010, October 7). “Stuxnet.” Schneier on Security—A Blog Covering
Security and Security Technology. Retrieved from https://www.schneier.com/blog/
archives/2010/10/stuxnet.html.

 41. Dunn, J. (2012, March 9). “Ransom Trojans Spreading Beyond Russian
Heartland: Security Companies Starting to See More Infections.”
Techworld. Retrieved from http://news.techworld.com/security/3343528/
ransom-trojans-spreading-beyond-russian-heartland.

351

Appendix

Key Success Factors,
Deliverables, and
Metrics for Each Phase
of Our SDL Model

In Chapters 3 through 7, we have outlined key success factors, deliverables,
and metrics that should be captured as part of our Security Development
Lifecycle (SDL) model. In Chapter 8, the SDL post-release phase, we out-
line the key deliverables and metrics. The key success factors, deliverables,
and metrics are not set in stone and may need to be tweaked as you map
the SDL to your own Software Development Lifecycle (SDLC). In this
Appendix, we have summarized (in tabular form for your quick reference)
the key success factors, deliverables, and metrics that we have outlined in
Chapters 3 through 8.

Ta
b

le
 A

.1
 K

ey
 S

uc
ce

ss
 F

ac
to

rs
 f

o
r

E
ac

h
P

ha
se

 o
f

th
e

SD
L

P
ha

se
K

ey
 S

uc
ce

ss
 F

ac
to

r
D

es
cr

ip
ti

o
n

Se
cu

ri
ty

 A
ss

es
sm

en
t

(A
1)

: S
D

L
A

ct
iv

it
ie

s
an

d
 B

es
t

P
ra

ct
ic

es
1.

 A
cc

ur
ac

y
o

f
p

la
nn

ed
 S

D
L

ac
ti

vi
ti

es
A

ll
SD

L
ac

ti
vi

ti
es

 a
re

 a
cc

ur
at

el
y

id
en

ti
fie

d
.

2.
 P

ro
d

uc
t

ri
sk

 p
ro

fil
e

M
an

ag
em

en
t

un
d

er
st

an
d

s
th

e
tr

ue
 c

o
st

 o
f

d
ev

el
o

p
in

g
 t

he
 p

ro
d

uc
t.

3.
 A

cc
ur

ac
y

o
f

th
re

at
 p

ro
fil

e
M

it
ig

at
in

g
 s

te
p

s
an

d
 c

o
un

te
rm

ea
su

re
s

ar
e

in
 p

la
ce

 f
o

r
th

e
p

ro
d

uc
t

to
 b

e
su

cc
es

sf
ul

 in
 it

s
en

vi
ro

nm
en

t.

4.
 C

o
ve

ra
g

e
o

f
re

le
va

nt
 r

eg
ul

at
io

ns
,

 c

er
ti

fic
at

io
ns

, a
nd

 c
o

m
p

lia
nc

e

 f
ra

m
ew

o
rk

s

A
ll

ap
p

lic
ab

le
 le

g
al

 a
nd

 c
o

m
p

lia
nc

e
as

p
ec

ts
 a

re
 c

o
ve

re
d

.

5.
 C

o
ve

ra
g

e
o

f
se

cu
ri

ty
 o

b
je

ct
iv

es

 n

ee
d

ed
 f

o
r

so
ft

w
ar

e
“M

us
t

ha
ve

”
se

cu
ri

ty
 o

b
je

ct
iv

es
 a

re
 m

et
.

A
rc

hi
te

ct
ur

e
(A

2)
: S

D
L

A
ct

iv
it

ie
s

an
d

 B
es

t
P

ra
ct

ic
es

1.
 Id

en
ti

fic
at

io
n

o
f

b
us

in
es

s

 r
eq

ui
re

m
en

ts
 a

nd
 r

is
ks

M
ap

p
in

g
 o

f
b

us
in

es
s

re
q

ui
re

m
en

ts
 a

nd
 r

is
ks

 d
ef

in
ed

 in
 t

er
m

s
o

f
C

IA

2.
 E

ff
ec

ti
ve

 t
hr

ea
t

m
o

d
el

in
g

Id
en

ti
fy

in
g

 t
hr

ea
ts

 f
o

r
th

e
so

ft
w

ar
e

3.
 E

ff
ec

ti
ve

 a
rc

hi
te

ct
ur

al
 t

hr
ea

t
an

al
ys

is
A

na
ly

si
s

o
f

th
re

at
s

to
 t

he
 s

o
ft

w
ar

e
an

d
 p

ro
b

ab
ili

ty
 o

f
th

re
at

m

at
er

ia
liz

in
g

4.
 E

ff
ec

ti
ve

 r
is

k
m

it
ig

at
io

n
st

ra
te

g
y

R
is

k
ac

ce
p

ta
nc

e,
 t

o
le

ra
nc

e,
 a

nd
 m

it
ig

at
io

n
p

la
n

p
er

 b
us

in
es

s
re

q
ui

re
m

en
ts

5.
 A

cc
ur

ac
y

o
f

D
FD

s
D

at
a

flo
w

 d
ia

g
ra

m
s

us
ed

 d
ur

in
g

 t
hr

ea
t

m
o

d
el

in
g

D
es

ig
n

an
d

 D
ev

el
o

p
m

en
t

(A
3)

:
SD

L
A

ct
iv

it
ie

s
an

d
 B

es
t

P
ra

ct
ic

es
1.

 C
o

m
p

re
he

ns
iv

e
se

cu
ri

ty
 t

es
t

p
la

n
M

ap
p

in
g

 t
yp

es
 o

f
se

cu
ri

ty
 t

es
ti

ng
 r

eq
ui

re
d

 a
t

d
iff

er
en

t
st

ag
es

 o
f

SD
LC

2.
 E

ff
ec

ti
ve

 t
hr

ea
t

m
o

d
el

in
g

Id
en

ti
fy

in
g

 t
hr

ea
ts

 t
o

 t
he

 s
o

ft
w

ar
e

3.
 D

es
ig

n
se

cu
ri

ty
 a

na
ly

si
s

A
na

ly
si

s
o

f
th

re
at

s
to

 v
ar

io
us

 s
o

ft
w

ar
e

co
m

p
o

ne
nt

s

4.
 P

ri
va

cy
 im

p
le

m
en

ta
ti

o
n

as
se

ss
m

en
t

E
ff

o
rt

 r
eq

ui
re

d
 f

o
r

im
p

le
m

en
ta

ti
o

n
o

f
p

ri
va

cy
-r

el
at

ed
 c

o
nt

ro
ls

b

as
ed

 o
n

as
se

ss
m

en
t

5.
 P

o
lic

y
co

m
p

lia
nc

e
re

vi
ew

 (u
p

d
at

es
)

U
p

d
at

es
 f

o
r

p
o

lic
y

co
m

p
lia

nc
e

as
 r

el
at

ed
 t

o
 P

ha
se

 3

D
es

ig
n

an
d

 D
ev

el
o

p
m

en
t

(A
4)

:
SD

L
A

ct
iv

it
ie

s
an

d
 B

es
t

P
ra

ct
ic

es
1.

 S
ec

ur
it

y
te

st
 c

as
e

ex
ec

ut
io

n
C

o
ve

ra
g

e
o

f
al

l r
el

ev
an

t
te

st
 c

as
es

2.
 S

ec
ur

it
y

te
st

in
g

C
o

m
p

le
ti

o
n

o
f

al
l t

yp
es

 o
f

se
cu

ri
ty

 t
es

ti
ng

 a
nd

 r
em

ed
ia

ti
o

n
o

f
p

ro
b

le
m

s
fo

un
d

3.
 P

ri
va

cy
 v

al
id

at
io

n
an

d
 r

em
ed

ia
ti

o
n

E
ff

ec
ti

ve
ne

ss
 o

f
p

ri
va

cy
-r

el
at

ed
 c

o
nt

ro
ls

 a
nd

 r
em

ed
ia

ti
o

n
o

f
an

y
is

su
es

 f
o

un
d

4.
 P

o
lic

y
co

m
p

lia
nc

e
re

vi
ew

U
p

d
at

es
 f

o
r

p
o

lic
y

co
m

p
lia

nc
e

as
 r

el
at

ed
 t

o
 P

ha
se

 4

Sh
ip

 (A
5)

: S
D

L
A

ct
iv

it
ie

s
an

d

B
es

t
P

ra
ct

ic
es

1.
 P

o
lic

y
co

m
p

lia
nc

e
an

al
ys

is
Fi

na
l r

ev
ie

w
 o

f
se

cu
ri

ty
 a

nd
 c

o
m

p
lia

nc
e

re
q

ui
re

m
en

ts
 d

ur
in

g

d
ev

el
o

p
m

en
t

p
ro

ce
ss

2.
 V

ul
ne

ra
b

ili
ty

 s
ca

nn
in

g
Sc

an
ni

ng
 s

o
ft

w
ar

e
st

ac
k

fo
r

id
en

ti
fy

in
g

 s
ec

ur
it

y
is

su
es

3.
 P

en
et

ra
ti

o
n

te
st

in
g

E
xp

lo
it

in
g

 a
ny

/a
ll

se
cu

ri
ty

 is
su

es
 o

n
so

ft
w

ar
e

st
ac

k

4.
 O

p
en

-s
o

ur
ce

 li
ce

ns
in

g
 r

ev
ie

w
Fi

na
l r

ev
ie

w
 o

f
o

p
en

-s
o

ur
ce

 s
o

ft
w

ar
e

us
ed

 in
 t

he
 s

ta
ck

5.
 F

in
al

 s
ec

ur
it

y
re

vi
ew

Fi
na

l r
ev

ie
w

 o
f

co
m

p
lia

nc
e

ag
ai

ns
t

al
l s

ec
ur

it
y

re
q

ui
re

m
en

ts

id
en

ti
fie

d
 d

ur
in

g
 S

D
L

cy
cl

e

6.
 F

in
al

 p
ri

va
cy

 r
ev

ie
w

Fi
na

l r
ev

ie
w

 o
f

co
m

p
lia

nc
e

ag
ai

ns
t

al
l p

ri
va

cy
 r

eq
ui

re
m

en
ts

id

en
ti

fie
d

 d
ur

in
g

 S
D

L
cy

cl
e

7.
 C

us
to

m
er

 e
ng

ag
em

en
t

fr
am

ew
o

rk
Fr

am
ew

o
rk

 t
ha

t
d

ef
in

es
 p

ro
ce

ss
 f

o
r

sh
ar

in
g

 s
ec

ur
it

y
re

la
te

d

in
fo

rm
at

io
n

w
it

h
cu

st
o

m
er

s

Ta
b

le
 A

.2
 D

el
iv

er
ab

le
s

fo
r

E
ac

h
P

ha
se

 o
f

th
e

SD
L

P
ha

se
D

el
iv

er
ab

le
G

o
al

Se
cu

ri
ty

 A
ss

es
sm

en
t

(A
1)

: S
D

L
A

ct
iv

it
ie

s
an

d
 B

es
t

P
ra

ct
ic

es
P

ro
d

uc
t

ri
sk

 p
ro

fil
e

E
st

im
at

e
ac

tu
al

 c
o

st
 o

f
th

e
p

ro
d

uc
t.

SD
L

p
ro

je
ct

 o
ut

lin
e

M
ap

 S
D

L
to

 d
ev

el
o

p
m

en
t

sc
he

d
ul

e.

A
p

p
lic

ab
le

 la
w

s
an

d
 r

eg
ul

at
io

ns
O

b
ta

in
 f

o
rm

al
 s

ig
n-

o
ff

 f
ro

m
 s

ta
ke

ho
ld

er
s

o
n

ap
p

lic
ab

le
 la

w
s.

Th
re

at
 p

ro
fil

e
G

ui
d

e
SD

L
ac

ti
vi

ti
es

 t
o

 m
it

ig
at

e
th

re
at

s.

C
er

ti
fic

at
io

n
re

q
ui

re
m

en
ts

Li
st

 r
eq

ui
re

m
en

ts
 f

o
r

p
ro

d
uc

t
an

d
 o

p
er

at
io

ns
 c

er
ti

fic
at

io
ns

.

Li
st

 o
f

th
ird

-p
ar

ty
 s

o
ft

w
ar

e
Id

en
ti

fy
 d

ep
en

d
en

ce
 o

n
th

ird
-p

ar
ty

 s
o

ft
w

ar
e.

M
et

ri
cs

 t
em

p
la

te
E

st
ab

lis
h

ca
d

en
ce

 f
o

r
re

g
ul

ar
 r

ep
o

rt
in

g
 t

o
 e

xe
cu

ti
ve

s.

B
us

in
es

s
re

q
ui

re
m

en
ts

So
ft

w
ar

e
re

q
ui

re
m

en
ts

, i
nc

lu
d

in
g

 C
IA

Th
re

at
 m

o
d

el
in

g
 a

rt
ifa

ct
s

D
at

a
flo

w
 d

ia
g

ra
m

s,
 e

le
m

en
ts

, t
hr

ea
t

lis
ti

ng

A
rc

hi
te

ct
ur

e
th

re
at

 a
na

ly
si

s
P

ri
o

ri
ti

za
ti

o
n

o
f

th
re

at
s

an
d

 r
is

ks
 b

as
ed

 o
n

th
re

at
 a

na
ly

si
s

R
is

k
m

it
ig

at
io

n
p

la
n

P
la

n
to

 m
it

ig
at

e,
 a

cc
ep

t,
 o

r
to

le
ra

te
 r

is
k

P
o

lic
y

co
m

p
lia

nc
e

an
al

ys
is

A
na

ly
si

s
o

f
ad

he
re

nc
e

to
 c

o
m

p
an

y
p

o
lic

ie
s

D
es

ig
n

an
d

 D
ev

el
o

p
m

en
t

(A
3)

:
SD

L
A

ct
iv

it
ie

s
an

d
 B

es
t

P
ra

ct
ic

es
U

p
d

at
ed

 t
hr

ea
t

m
o

d
el

in
g

 a
rt

ifa
ct

s
D

at
a

flo
w

 d
ia

g
ra

m
s,

 e
le

m
en

ts
, t

hr
ea

t
lis

ti
ng

D
es

ig
n

se
cu

ri
ty

 r
ev

ie
w

M
o

d
ifi

ca
ti

o
ns

 t
o

 d
es

ig
n

o
f

so
ft

w
ar

e
co

m
p

o
ne

nt
s

b
as

ed
 o

n
se

cu
ri

ty
 a

ss
es

sm
en

ts

Se
cu

ri
ty

 t
es

t
p

la
ns

P
la

n
to

 m
it

ig
at

e,
 a

cc
ep

t,
 o

r
to

le
ra

te
 r

is
k

U
p

d
at

ed
 p

o
lic

y
co

m
p

lia
nc

e
an

al
ys

is
A

na
ly

si
s

o
f

ad
he

re
nc

e
to

 c
o

m
p

an
y

p
o

lic
ie

s

P
ri

va
cy

 im
p

le
m

en
ta

ti
o

n
as

se
ss

m
en

t
re

su
lt

s
R

ec
o

m
m

en
d

at
io

ns
 f

ro
m

 p
ri

va
cy

 a
ss

es
sm

en
t

D
es

ig
n

an
d

 D
ev

el
o

p
m

en
t

(A
4)

:
SD

L
A

ct
iv

it
ie

s
an

d
 B

es
t

P
ra

ct
ic

es
Se

cu
ri

ty
 t

es
t

ex
ec

ut
io

n
re

p
o

rt
R

ev
ie

w
 p

ro
g

re
ss

 a
g

ai
ns

t
id

en
ti

fie
d

 s
ec

ur
it

y
te

st
 c

as
es

U
p

d
at

ed
 p

o
lic

y
co

m
p

lia
nc

e
an

al
ys

is
A

na
ly

si
s

o
f

ad
he

re
nc

e
to

 c
o

m
p

an
y

p
o

lic
ie

s

P
ri

va
cy

 c
o

m
p

lia
nc

e
re

p
o

rt
Va

lid
at

io
n

th
at

 r
ec

o
m

m
en

d
at

io
ns

 f
ro

m
 p

ri
va

cy
 a

ss
es

sm
en

t
ha

ve

b
ee

n
im

p
le

m
en

te
d

Se
cu

ri
ty

 t
es

ti
ng

 r
ep

o
rt

s
Fi

nd
in

g
s

fr
o

m
 d

iff
er

en
t

ty
p

es
 o

f
se

cu
ri

ty
 t

es
ti

ng

R
em

ed
ia

ti
o

n
re

p
o

rt
P

ro
vi

d
e

st
at

us
 o

n
se

cu
ri

ty
 p

o
st

ur
e

o
f

p
ro

d
uc

t

Sh
ip

 (A
5)

: S
D

L
A

ct
iv

it
ie

s
an

d
 B

es
t

P
ra

ct
ic

es
U

p
d

at
ed

 p
o

lic
y

co
m

p
lia

nc
e

an
al

ys
is

A
na

ly
si

s
o

f
ad

he
re

nc
e

to
 c

o
m

p
an

y
p

o
lic

ie
s

Se
cu

ri
ty

 t
es

ti
ng

 r
ep

o
rt

s
Fi

nd
in

g
s

fr
o

m
 d

iff
er

en
t

ty
p

es
 o

f
se

cu
ri

ty
 t

es
ti

ng
 in

 t
hi

s
p

ha
se

 o
f

SD
L

R
em

ed
ia

ti
o

n
re

p
o

rt
P

ro
vi

d
e

st
at

us
 o

n
se

cu
ri

ty
 p

o
st

ur
e

o
f

p
ro

d
uc

t

O
p

en
-s

o
ur

ce
 li

ce
ns

in
g

 r
ev

ie
w

 r
ep

o
rt

R
ev

ie
w

 o
f

co
m

p
lia

nc
e

w
it

h
lic

en
si

ng
 r

eq
ui

re
m

en
ts

 if
 o

p
en

-
so

ur
ce

 s
o

ft
w

ar
e

is
 u

se
d

Fi
na

l s
ec

ur
it

y
an

d
 p

ri
va

cy
 r

ev
ie

w
 r

ep
o

rt
s

R
ev

ie
w

 o
f

co
m

p
lia

nc
e

w
it

h
se

cu
ri

ty
 a

nd
 p

ri
va

cy
 r

eq
ui

re
m

en
ts

C
us

to
m

er
 e

ng
ag

em
en

t
fr

am
ew

o
rk

D
et

ai
le

d
 f

ra
m

ew
o

rk
 t

o
 e

ng
ag

e
cu

st
o

m
er

s
d

ur
in

g
 d

iff
er

en
t

st
ag

es
 o

f
p

ro
d

uc
t

lif
e

cy
cl

e

P
o

st
-R

el
ea

se
 S

up
p

o
rt

 (P
R

SA
1–

5)
E

xt
er

na
l v

ul
ne

ra
b

ili
ty

 d
is

cl
o

su
re

 r
es

p
o

ns
e

p
ro

ce
ss

P
ro

ce
ss

 t
o

 d
ef

in
e

ev
al

ua
ti

o
n

an
d

 c
o

m
m

un
ic

at
io

n
o

f
se

cu
ri

ty

vu
ln

er
ab

ili
ti

es

P
o

st
-r

el
ea

se
 c

er
ti

fic
at

io
ns

C
er

ti
fic

at
io

ns
 f

ro
m

 e
xt

er
na

l p
ar

ti
es

 t
o

 d
em

o
ns

tr
at

e
se

cu
ri

ty

p
o

st
ur

e
o

f
p

ro
d

uc
ts

/s
er

vi
ce

s

Th
ird

-p
ar

ty
 s

ec
ur

it
y

re
vi

ew
s

Se
cu

ri
ty

 a
ss

es
sm

en
ts

 p
er

fo
rm

ed
 b

y
g

ro
up

s
o

th
er

 t
ha

n
in

te
rn

al

te
st

in
g

 t
ea

m
s

Se
cu

ri
ty

 s
tr

at
eg

y
an

d
 p

ro
ce

ss
 f

o
r

le
g

ac
y

co
d

e,
 M

&
A

, a
nd

 E
O

L
p

la
ns

St
ra

te
g

y
to

 m
it

ig
at

e
se

cu
ri

ty
 r

is
k

fr
o

m
 le

g
ac

y
co

d
e

an
d

 M
&

A
s

Ta
b

le
 A

.3
 M

et
ri

cs
 f

o
r

E
ac

h
P

ha
se

 o
f

th
e

SD
L

P
ha

se
M

et
ri

c

Se
cu

ri
ty

 A
ss

es
sm

en
t

(A
1)

: S
D

L
A

ct
iv

it
ie

s
an

d

B
es

t
P

ra
ct

ic
es

Ti
m

e
in

 w
ee

ks
 w

he
n

so
ft

w
ar

e
se

cu
ri

ty
 t

ea
m

 w
as

 lo
o

p
ed

 in

P
er

ce
nt

 o
f

st
ak

eh
o

ld
er

s
p

ar
ti

ci
p

at
in

g
 in

 S
D

L

P
er

ce
nt

 o
f

SD
L

ac
ti

vi
ti

es
 m

ap
p

ed
 t

o
 d

ev
el

o
p

m
en

t
ac

ti
vi

ti
es

P
er

ce
nt

 o
f

se
cu

ri
ty

 o
b

je
ct

iv
es

 m
et

A
rc

hi
te

ct
ur

e
(A

2)
: S

D
L

A
ct

iv
it

ie
s

an
d

 B
es

t
P

ra
ct

ic
es

Li
st

 o
f

b
us

in
es

s
th

re
at

s,
 t

ec
hn

ic
al

 t
hr

ea
ts

 (m
ap

p
ed

 t
o

 b
us

in
es

s
th

re
at

s)
, a

nd
 t

hr
ea

t
ac

to
rs

N
um

b
er

 o
f

se
cu

ri
ty

 o
b

je
ct

iv
es

 u
nm

et
 a

ft
er

 t
hi

s
p

ha
se

P
er

ce
nt

 c
o

m
p

lia
nc

e
w

it
h

co
m

p
an

y
p

o
lic

ie
s

(e
xi

st
in

g
)

N
um

b
er

 o
f

en
tr

y
p

o
in

ts
 f

o
r

so
ft

w
ar

e
(u

si
ng

 D
FD

s)

P
er

ce
nt

 o
f

ri
sk

 (a
nd

 t
hr

ea
ts

) a
cc

ep
te

d
, m

it
ig

at
ed

, a
nd

 t
o

le
ra

te
d

P
er

ce
nt

 o
f

in
it

ia
l s

o
ft

w
ar

e
re

q
ui

re
m

en
ts

 r
ed

ef
in

ed

N
um

b
er

 o
f

p
la

nn
ed

 s
o

ft
w

ar
e

ar
ch

it
ec

tu
ra

l c
ha

ng
es

 (m
aj

o
r

an
d

 m
in

o
r)

 in
 a

 p
ro

d
uc

t

N
um

b
er

 o
f

so
ft

w
ar

e
ar

ch
it

ec
tu

ra
l c

ha
ng

es
 n

ee
d

ed
 b

as
ed

 o
n

se
cu

ri
ty

 r
eq

ui
re

m
en

ts

D
es

ig
n

an
d

 D
ev

el
o

p
m

en
t

(A
3)

: S
D

L
A

ct
iv

it
ie

s
an

d

B
es

t
P

ra
ct

ic
es

Th
re

at
s,

 p
ro

b
ab

ili
ty

, a
nd

 s
ev

er
it

y

P
er

ce
nt

 c
o

m
p

lia
nc

e
w

it
h

co
m

p
an

y
p

o
lic

ie
s

(u
p

d
at

ed
)

P
er

ce
nt

 o
f

co
m

p
lia

nc
e

in
 P

ha
se

 2
 v

er
su

s
P

ha
se

 3

E
nt

ry
 p

o
in

ts
 f

o
r

so
ft

w
ar

e
(u

si
ng

 D
FD

s)

P
er

ce
nt

 o
f

ri
sk

 a
cc

ep
te

d
 v

er
su

s
m

it
ig

at
ed

P
er

ce
nt

 o
f

in
it

ia
l s

o
ft

w
ar

e
re

q
ui

re
m

en
ts

 r
ed

ef
in

ed

P
er

ce
nt

 o
f

so
ft

w
ar

e
ar

ch
it

ec
tu

re
 c

ha
ng

es

P
er

ce
nt

 o
f

SD
LC

 p
ha

se
s

w
it

ho
ut

 c
o

rr
es

p
o

nd
in

g
 s

o
ft

w
ar

e
se

cu
ri

ty
 t

es
ti

ng

P
er

ce
nt

 o
f

so
ft

w
ar

e
co

m
p

o
ne

nt
s

w
it

h
im

p
le

m
en

ta
ti

o
ns

 r
el

at
ed

 t
o

 p
ri

va
cy

 c
o

nt
ro

ls

N
um

b
er

 o
f

lin
es

 o
f

co
d

e

N
um

b
er

 o
f

se
cu

ri
ty

 d
ef

ec
ts

 f
o

un
d

 u
si

ng
 s

ta
ti

c
an

al
ys

is
 t

o
o

ls

N
um

b
er

 o
f

hi
g

h-
ri

sk
 d

ef
ec

ts
 f

o
un

d
 u

si
ng

 s
ta

ti
c

an
al

ys
is

 t
o

o
ls

D
ef

ec
t

d
en

si
ty

 (s
ec

ur
it

y
is

su
es

 p
er

 1
00

0
lin

es
 o

f
co

d
e)

D
es

ig
n

an
d

 D
ev

el
o

p
m

en
t

(A
4)

: S
D

L
A

ct
iv

it
ie

s
an

d

B
es

t
P

ra
ct

ic
es

P
er

ce
nt

 c
o

m
p

lia
nc

e
w

it
h

co
m

p
an

y
p

o
lic

ie
s

(u
p

d
at

ed
)

-
P

er
ce

nt
 o

f
co

m
p

lia
nc

e
in

 P
ha

se
 3

 v
er

su
s

P
ha

se
 4

N
um

b
er

 o
f

lin
es

 o
f

co
d

e
te

st
ed

 e
ff

ec
ti

ve
ly

 w
it

h
st

at
ic

 a
na

ly
si

s
to

o
ls

N
um

b
er

 o
f

se
cu

ri
ty

 d
ef

ec
ts

 f
o

un
d

 t
hr

o
ug

h
st

at
ic

 a
na

ly
si

s
to

o
ls

N
um

b
er

 o
f

hi
g

h-
ri

sk
 d

ef
ec

ts
 f

o
un

d
 t

hr
o

ug
h

st
at

ic
 a

na
ly

si
s

to
o

ls

D
ef

ec
t

d
en

si
ty

 (s
ec

ur
it

y
is

su
es

 p
er

 1
00

0
lin

es
 o

f
co

d
e)

N
um

b
er

 a
nd

 t
yp

es
 o

f
se

cu
ri

ty
 is

su
es

 f
o

un
d

 t
hr

o
ug

h
st

at
ic

 a
na

ly
si

s,
 d

yn
am

ic
 a

na
ly

si
s,

m

an
ua

l c
o

d
e

re
vi

ew
, p

en
et

ra
ti

o
n

te
st

in
g

, a
nd

 f
uz

zi
ng

-
O

ve
rl

ap
 o

f
se

cu
ri

ty
 is

su
es

 f
o

un
d

 t
hr

o
ug

h
d

iff
er

en
t

ty
p

es
 o

f
te

st
in

g
-

C
o

m
p

ar
is

o
n

o
f

se
ve

ri
ty

 o
f

fin
d

in
g

s
fr

o
m

 d
iff

er
en

t
ty

p
es

 o
f

te
st

in
g

-
M

ap
p

in
g

 o
f

fin
d

in
g

s
to

 t
hr

ea
ts

/r
is

ks
 id

en
ti

fie
d

 e
ar

lie
r

N
um

b
er

 o
f

se
cu

ri
ty

 f
in

d
in

g
s

re
m

ed
ia

te
d

-
Se

ve
ri

ty
 o

f
fin

d
in

g
s

-
Ti

m
e

sp
en

t
(a

p
p

ro
xi

m
at

e)
 in

 h
o

ur
s

to
 r

em
ed

ia
te

 f
in

d
in

g
s

N
um

b
er

, t
yp

es
, a

nd
 s

ev
er

it
y

o
f

fin
d

in
g

s
o

ut
st

an
d

in
g

P
er

ce
nt

ag
e

co
m

p
lia

nc
e

w
it

h
se

cu
ri

ty
 t

es
t

p
la

n

N
um

b
er

 o
f

se
cu

ri
ty

 t
es

t
ca

se
s

ex
ec

ut
ed

-
N

um
b

er
 o

f
fin

d
in

g
s

fr
o

m
 s

ec
ur

it
y

te
st

 c
as

e
ex

ec
ut

io
n

-
N

um
b

er
 o

f
re

-t
es

ts
 e

xe
cu

te
d

(c
o

nt
in

ue
d

 o
n

fo
llo

w
in

g
 p

ag
e)

P
ha

se
M

et
ri

c

Sh
ip

 (A
5)

: S
D

L
A

ct
iv

it
ie

s
an

d
 B

es
t

P
ra

ct
ic

es

P
er

ce
nt

 c
o

m
p

lia
nc

e
w

it
h

co
m

p
an

y
p

o
lic

ie
s

(u
p

d
at

ed
)

-
P

er
ce

nt
 o

f
co

m
p

lia
nc

e
in

 P
ha

se
 5

 v
er

su
s

P
ha

se
 4

N
um

b
er

, t
yp

e,
 a

nd
 s

ev
er

it
y

o
f

se
cu

ri
ty

 is
su

es
 f

o
un

d
 t

hr
o

ug
h

vu
ln

er
ab

ili
ty

 s
ca

nn
in

g
 a

nd

p
en

et
ra

ti
o

n
te

st
in

g
-

O
ve

rl
ap

 o
f

se
cu

ri
ty

 is
su

es
 f

o
un

d
 t

hr
o

ug
h

d
iff

er
en

t
ty

p
es

 o
f

te
st

in
g

-
C

o
m

p
ar

is
o

n
o

f
se

ve
ri

ty
 o

f
fin

d
in

g
s

fr
o

m
 d

iff
er

en
t

ty
p

es
 o

f
te

st
in

g
-

M
ap

p
in

g
 o

f
fin

d
in

g
s

to
 t

hr
ea

ts
/r

is
ks

 id
en

ti
fie

d
 e

ar
lie

r

N
um

b
er

 o
f

se
cu

ri
ty

 f
in

d
in

g
s

re
m

ed
ia

te
d

 (u
p

d
at

ed
)

-
Se

ve
ri

ty
 o

f
fin

d
in

g
s

-
Ti

m
e

sp
en

t
(a

p
p

ro
xi

m
at

e)
 in

 h
o

ur
s

to
 r

em
ed

ia
te

 f
in

d
in

g
s

N
um

b
er

, t
yp

es
, a

nd
 s

ev
er

it
y

o
f

fin
d

in
g

s
o

ut
st

an
d

in
g

 (u
p

d
at

ed
)

P
er

ce
nt

ag
e

co
m

p
lia

nc
e

w
it

h
se

cu
ri

ty
 a

nd
 p

ri
va

cy
 r

eq
ui

re
m

en
ts

P
o

st
-R

el
ea

se
 S

up
p

o
rt

 (P
R

SA
1–

5)
Ti

m
e

in
 h

o
ur

s
to

 r
es

p
o

nd
 t

o
 e

xt
er

na
lly

 d
is

cl
o

se
d

 s
ec

ur
it

y
vu

ln
er

ab
ili

ti
es

M
o

nt
hl

y
FT

E
 (f

ul
l-t

im
e

em
p

lo
ye

e)
 h

o
ur

s
re

q
ui

re
d

 f
o

r
ex

te
rn

al
 d

is
-

cl
o

su
re

 p
ro

ce
ss

N
um

b
er

 o
f

se
cu

ri
ty

 f
in

d
in

g
s

(r
an

ke
d

 b
y

se
ve

ri
ty

) a
ft

er
 p

ro
d

uc
t

ha
s

b
ee

n
re

le
as

ed

N
um

b
er

 o
f

cu
st

o
m

er
-r

ep
o

rt
ed

 s
ec

ur
it

y
is

su
es

 p
er

 m
o

nt
h

N
um

b
er

 o
f

cu
st

o
m

er
-r

ep
o

rt
ed

 s
ec

ur
it

y
is

su
es

 n
o

t
id

en
ti

fie
d

 d
ur

in
g

 a
ny

 S
D

L
ac

ti
vi

ti
es

Ta
b

le
 A

.3
 M

et
ri

cs
 f

o
r

E
ac

h
P

ha
se

 o
f

th
e

SD
L

(c
o

nt
in

ue
d

)

Software Engineering & Systems Development

... an engaging book that will empower readers in both large and small software
development and engineering organizations to build security into their products.
This book clarifies to executives the decisions to be made on software security and
then provides guidance to managers and developers on process and procedure.
Readers are armed with firm solutions for the fight against cyber threats.

—Dr. Dena Haritos Tsamitis, Director, Information Networking Institute
and Director of Education, CyLab, Carnegie Mellon University

Finally, the definitive how-to guide for software security professionals. Dr.
Ransome, Anmol Misra, and Brook Schoenfield deftly outline the procedures
and policies needed to integrate real security into the software development
process and why security needs to be software and developer-centric if it is
to be relevant ... a must-have for anyone on the front lines of the Cyber War—
especially software developers and those who work with them.

—Colonel Cedric Leighton, USAF (Ret); Founder & President,
Cedric Leighton Associates

In the wake of cloud computing and mobile apps, the issue of software security
has never been more important than today. This book is a must-read for
security specialists, software developers, and software engineers. The authors
do a brilliant job providing common sense approaches to achieving a strong
software security posture.

—Dr. Larry Ponemon, Chairman & Founder, Ponemon Institute

The root of software security lies within the source code developed by software
developers. Therefore, security should be developer-centric, focused on the
secure development of the source code. Dr. Ransome, Anmol Misra, and Brook
Schoenfield give you a magic formula in this book—the methodology and
process to build security into the entire software development lifecycle so that
the software is secured at the source!

—Eric S. Yuan, Founder and CEO, Zoom Video Communications, Inc.

ISBN: 978-1-4665-6095-6

9 781466 560956

90000

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

CORE
SOFTWARE
SECURITY
SECURITY AT THE SOURCE

JAMES RANSOME
ANMOL MISRA

FOREWORD BY
HOWARD SCHMIDT

C
O

R
E

 SO
FTW

A
R

E
 SEC

U
R

ITY
R

A
N

SO
M

E
M

ISR
A

K15922

www.auerbach-publications.com

K15922 cvr mech.indd 1 10/31/13 10:29 AM

 ~StormRG~

	Front Cover
	Dedication
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 1 - Introduction
	Chapter 2 - The Secure Development Lifecycle
	Chapter 3 - Security Assessment (A1): SDL Activities and Best Practices
	Chapter 4 - Architecture (A2): SDL Activities and Best Practices
	Chapter 5 - Design and Development (A3): SDL Activities and Best Practices
	Chapter 6 - Design and Development (A4): SDL Activities and Best Practices
	Chapter 7 - Ship (A5): SDL Activities and Best Practices
	Chapter 8 - Post-Release Support (PRSA1–5)
	Chapter 9 - Applying the SDL Framework to the Real World
	Chapter 10 - Pulling It All Together: Using the SDL to Prevent Real-World Threats
	Appendix - Key Success Factors, Deliverables, and Metrics for Each Phase of Our SDL Model
	Back Cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

