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Various applications based on IoT real-time multimedia are under the spotlight. To implement real-time multimedia service,
motion estimation in video compression service has a high computational complexity. In this paper, an efficient motion search
method based on content awareness is proposed consisting of three steps. The first step is motion classification using the center
position cost distribution.The second step is calculation of a predictor based motion classification.The third step is setting the arm
size of the search pattern based on adaptive use of the distance between the predictor and the center position. Experimental results
show that the proposed algorithm achieves speed-up factors of up to 48.57% and 16.03%, on average, with good bitrate performance,
compared with fast integer-pel and fractional-pel motion estimation for H.264/AVC (UMHexagonS), and an enhanced predictive
zonal search for single andmultiple framemotion estimation (EPZS)methods using JM 18.5, respectively. In addition, the proposed
algorithm achieves a speed-up factor of up to 42.61%, on average, with negligible bitrate degradation, compared with the TZ search
motion estimation algorithm for the multiview video coding (TZS) method on HM 10.0.

1. Introduction

The rapid development of Internet of Things (IoT) technol-
ogy makes it possible for connecting various smart objects
together through the Internet and providing more data inter-
operability methods for application purpose. Recent research
shows more potential applications of IoT in information
intensive industrial sectors such as healthcare services [1].
Also, with the vigorous development of the Internet of
Things (IoT) technology, the wave of the Internet of Things
applications followed by applications based on IoT real-time
multimedia is under the spotlight [2].

Most viewers prefer digital television delivered via terres-
trial, cable, satellite, or the Internet over analog service due to
a greater choice of channels, electronic program guides, and
high definition services. Analog TV has been switched off in
many countries. Many TV programs can be provided via the
Internet. However, due to the huge size of data for a video
signal, in practical scenarios it is not possible to transmit
raw data and video compression is required. To generalize
the video data compression technique for use with different
kinds of media, a global standard for video compression has

been developed by the ISO/IECmotion picture experts group
(MPEG) and the ITU-T video coding experts group (VCEG).

The ITU-T video coding expert group and the ISO/IEC
moving picture experts group together proposed the
H.264/AVC video coding standard in 2003 [3].This standard
is widely used for many applications, including broadcast of
HD TV signals, video content acquisition, camcorders, and
security applications. However, due to increasing demands
for ultrahigh definition over and above HD video formats
VCEG and MPEG established a Joint Collaborative Team
on Video Coding (JCT-VC) January 2010 to implement the
next-generation video compression standard, named high
efficiency video coding (HEVC) [4]. The aim of this new
standard is to further reduce the bitrate by 50% with the
same reconstructed video quality. With these standards, Liu
and Yan have introduced the multiview video technology,
explained the principle and coding structure of multiview
video, and discussed two kinds of video monitoring
applications mode in Internet of Things, focusing on the
application of the intelligent security systems in the IoT
environment [5].
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Figure 1: Different macroblock partitions.

Both the H.264/AVC and HEVC video coding standards
use both temporal and spatial redundancy to achieve com-
pression. In the temporal domain, there is usually a high
degree of correlation or similarity between video frames that
were captured at nearly the same time. Temporally adjacent
frames (successive frames in time order) are often highly
correlated, especially if the temporal sampling rate or frame
rate is high. In the spatial domain, there is usually a high
degree of correlation between pixels that are close to each
other as values of neighboring pixel are often similar.

In general, a video system comprises the two major
modules of intraframe coding and interframe coding. The
block based motion estimation (BME) algorithm plays a key
role in interframe coding. In the H.264/AVC video coding
standard, BME has 7 different block sizes that are used for
interframe motion estimation and compensation [6]. These
different block sizes actually form a two-level hierarchy inside
a macroblock (MB). The first level comprises block sizes of
16×16, 16×8, and 8×16 that is called a largeMB type. In the
second level, the MB is specified as a P8 × 8 type block size
where each 8× 8 block can be one of the subtypes 8× 8, 8× 4,
4×8, or 4×4.These are referred to as the submacroblock type.
The relationship between these different block sizes is shown
in Figure 1.

For HEVC, sizes of coding blocks are not fixed, as are
macroblocks inH.264/AVC.Aflexible coding block (CB) and
a novel quadtree based coding tree unit (CTU) have been
proposed for HEVC. Prediction of each block is performed
in the prediction unit (PU). Illustration of the CTB structure
for a CTU is shown in Figure 2(a) where 64 × 64 pixel CTU
block is divided into smaller CU blocks. Upon calculation
of the RD cost for every combination, the CUs that are

under the red dotted area of Figure 2(a) give minimum
RD values. The corresponding CTU partitioning and CTB
structure for this particular (best) combination are shown
in Figure 2(b). However, the interprediction technique is
similar to H.264/AVC interprediction, for which the most
computational time is needed for motion estimation, which
is common for both standards.

Among traditional motion estimation (ME) algorithms,
a full search (FS) algorithm requires much time due to
evaluation of all candidate macroblocks to achieve optimal
performance. However, the FS algorithm is not suitable in
real-time video coding applications because high degree of
computational complexity is involved.

To overcome this problem in use of the FS algorithm,
variable fast block-matching algorithms (FBMA) have been
proposed to increase the speed of the motion estimation
process based on reduction of the number of search points
using three different approaches. The first approach uses
coarse-to-fine searching as a three-step search algorithm
(TSS) [7], a 2D logarithmic search algorithm [8], and a four-
step search algorithm (4SS) [9]. The second approach uses
center-biased characteristics of the error distortion as a block
based gradient descent search algorithm (BBGDS) [10] and
a diamond search algorithm (DS) [11]. BBGDS is difficult
to apply fast motion and simply falls to a local minimum
position. DS is efficient for use in midlevel motion. However,
many search points are required in slow and fast motion.The
third approach uses temporal and/or spatial correlation for
calculation of a predicted motion vector (MV). An adaptive
rood pattern search (ARPS) and an enhanced predictive
zonal search for single andmultiple framemotion estimation
(EPZS) are also used. These algorithms use a set pattern size



International Journal of Distributed Sensor Networks 3

This combination provides
the lowest RD cost

64 × 64

32 × 32

16 × 16

8 × 8

(a)

CTU

CTB structure

partitioning

32 × 32
32 × 32 32 × 32 32 × 32

64 × 64

16 × 16

16 × 16

16 × 16 16 × 16 16 × 16

16 × 16
16 × 16

16 × 16

8 × 8
8 × 8

8 × 8
8 × 8

8 × 8
8 × 8 8 × 8

8 × 8

8 × 8
8 × 8 8 × 8

8 × 8

8 × 8
8 × 8 8 × 8

8 × 8

8 × 8
8 × 88 × 8

8 × 8

(b)

Figure 2: (a) CTB structure that provides the lowest RD cost for the CTU; (b) the corresponding CTU partitioning for the best CTB structure
[9].

or start position from a previous frame and/or a neighboring
current block MV. The EPZS and ARPS approaches also
preserve the peak signal-to-noise ratio (PSNR), as does FS,
while reducing the time required andmaintaining the bitrate.

An adaptive FBMA has also been proposed based on
pattern switching among TSS, DS, and BBGDS. However,
some proposed algorithms only consider a fixed sizeMB [12].
In [13], a clustering-based approach has been proposed in
which an algorithm periodically counts the motion vectors
of past blocks to accumulate progressive clustering statistics;
then it uses the clusters asMVpredictors for following blocks.

To reduce the computational complexity of the motion
estimation module, an efficient algorithm is herein proposed
for classification of video motion content using an adaptive
size for a search pattern. The proposed algorithm reduces
computational complexity by use of a predictor.

The rest of the paper is organized as follows: Section 2
presents related motion estimation algorithms.The proposed
algorithm is described in Section 3. Experimental results
are presented in Section 4, and conclusions are drawn in
Section 5.
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2. Related Research

Block based encoding structure is used in theH.264/AVCand
HEVC video standard. For interprediction, a motion estima-
tion technique is at the core of video compression and for
different video processing applications that extract motion
information from a video sequence. Typically using motion
estimation, a motion vector is generated for a block (MB or
CU) in the video compression standard. The motion vector
indicates displacement of a block of pixels from a current
location due to motion of an object or the camera.This infor-
mation is used to determine the best matching block in the
reference frame that minimizes the rate-distortion cost. This
technique is known as the block-matching algorithm (BMA).
Based on study of different motion estimation algorithms
used in the H.264/AVC and HEVC standards, existing BMAs
can be classified into the three categories of (1) fixed search
patterns, (2) search patterns based on block correlation, and
(3) search patterns based on motion classification.

2.1. Fixed Search Patterns. Most methods are based on the
assumption that the ME matching error decreases mono-
tonically as search moves toward the position of the global
minimum error. The motion vector of each block is searched
independently using fixed search patterns. Examples are
displacement measurement and applications in interframe
image coding (2-LOGS), motion compensated interframe
coding for video conferencing (TSS), a novel four-step search
algorithm for fast block motion estimation (4SS), a block
based gradient descent search algorithm for block motion
estimation in video coding (BBGDS), a hexagon-based search
pattern for fast block motion estimation (HEXBS) [14],
a new diamond search algorithm for fast block-matching
motion estimation (DS), and fast integer-pel and fractional-
pel motion estimation for H.264/AVC (UMHexagonS) [15].
These algorithms reduce the number of search points with a
tradeoff between complexity reduction and image quality.

Both 4SS and TSS are efficient for fast motion video
sequences because MVs in fast motion sequences are far
removed from the center point of a macroblock. However,
in other cases, such as medium and slow motion sequences,
the MV can be trapped in a local minimum. TSS also uses a
constantly allocated checking point pattern in the first step,
which becomes inefficient for estimation of slow motion. A
new three-step search for block motion estimation (NTSS)
[16], an efficient three-step search algorithm for blockmotion
estimation (ETSS) [17], and a simple and efficient search
algorithm for block-matching motion estimation (SES) have
been proposed in order to improve the performance of simple
fixed search pattern algorithms [18].

2.2. Search Patterns Based on Block Correlation. Instead of
using predetermined search patterns, methods for exploita-
tion of the correlation between the current block and an
adjacent block in the spatial and/or temporal domains for
prediction of candidate MVs are being considered. Predicted
MVs are obtained based on calculation of statistical average
(such as a mean, a median, or weighted mean/median) for
neighboringMVs or selection of one of the neighboringMVs

according to predetermined criteria [19]. One such candidate
method, named accelerator MVs, is based on differentially
increased or decreasedMVs after consideration of themotion
vector of the collocated frame in the previous frame and also
of the frame before that.

The concept behind selection of such predictor is that
a block may not follow a constant velocity but may be
accelerated. This kind of approach uses spatial or/and tem-
poral correlation to calculate the predictor as the ARPS and
EPZS. These types of algorithms set pattern sizes or estimate
positions fromaprevious frame or/and a neighboring current
block MVs. Both EPZS and ARPS preserve the peak signal-
to-noise ratio (PSNR) as does FS, and the time required is
reduced with a similar bitrate. However, these procedures
create much overhead in memory resources since they use
Spatio-temproal information.

2.3. Search Patterns Based on Motion Classification. Apart
from fixed or variable search patterns, the motion activity
of a video sequence has been used for a block-matching
algorithm. Video sequences can be broadly divided into the
three categories of frame slow, medium, and fast sequences
based onmotion activity in successive frames.Algorithmsuse
different schemes to classify video sequences.

A proposed search patterns switching algorithm for block
motion estimation (SPS) [20] has combined two approaches
of motion estimation. The first approach uses a coarse-to-
fine technique for reduction of the number of search points,
similar to 2-DLG and TSS. This approach is efficient for fast
motion video sequences because, in these sequences, search
points are evenly distributed over the search window and,
thus, global minima far distant from window centers can be
locatedmore efficiently.The second approach uses the center-
biased characteristic of MVs. Algorithms such as N3SS, 4SS,
BBGDS, and DS use center-biased search patterns to use the
center-biased global minima distribution. Compared with
the first approach, a substantial reduction in the number of
search points can be achieved for slowmotion sequences. SPS
algorithms combine the advantages of these two approaches
by use of different search patterns according to the motion
content of a block.The performance of an adaptive algorithm
depends on the accuracy of motion content classification.

In real video sequences with slow, medium, and fast
motion, different motions frequently occur together. The
adaptive fast block-matching algorithm using switching
search patterns for sequences with a wide-range of motion
(A-TDB) can efficiently remove temporal redundancy of
sequences containing a wide range of motion. Based on
characteristics of a predicted profit list, A-TDB can adaptively
switch search patterns among TSS, DS, and BBGDS accord-
ing to the motion content [21].

An adaptive motion estimation scheme for video coding
(NUMHexagonS) using statistics of the MV distribution has
been developed.The algorithm uses method for prediction of
theMVdistribution andmakes full use ofMVcharacteristics.
A combined MV distribution prediction with new search
patterns also makes the search position more accurate [22].
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Figure 3: Intersection of Akiyo, Foreman, and Soccer sequence
distributions.

3. Proposed Work

Most real world video sequences contain a substantial
amount of background and many motionless objects that
have a high temporal correlation between successive frames.
In order to estimate movement accurately, different pattern
sizes are used based on the type of motion content.

3.1. Motion Classification Based on Video Content. There are
several measurements for classifying the motion degree of
video content: RD cost, sum of absolute difference (SAD),
and the mean of absolute difference (MAD). Usually, analysis
of MAD value is robust to some noise components for
separating the motion degree. Based on this, we also employ
the MAD value to classify the motion degree.

We have analyzed the distribution of the mean absolute
difference (MAD) of the center position for the Akiyo, Fore-
man, and Football sequences, typical representatives of slow,
medium, and fast motion, respectively. Mean and standard
deviation values were calculated and used to model Gaussian
distribution as shown in Figure 3.

Only intermotion estimation was decomposed. Calcu-
lated MAD values are represented as

MAD = 1
𝑁

2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
Cur
𝑖,𝑗
−Ref
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
, (1)

where Cur
𝑖𝑗
and Ref

𝑖𝑗
are the macroblocks of the current

and reference frames, respectively, with a size of 𝑁, and
(𝑖, 𝑗) are the spatial horizontal and vertical positions of the
current and reference frames, respectively. Gaussian plots of
slow, medium, and fast motion are shown in Figure 3. Video
sequences are shown in which two intersection points of
these distributions can be seen. These points of intersections
are considered as thresholds Th1 and Th2. For motion
classification, there should be two points of intersection as
Threshold 1 = Th1 and Threshold 2 = Th2. The Th1 value is
a classification of the slow motion content between slow and
medium motion, and Th2 is classification of the fast motion
content.

Table 1: Change in threshold points for different QP values.

QP Th1 Th2

0 180 544.5
24 162 475.5
28 173 478
32 188 484.5
36 207 495

Analysis was performed for a particular QP value that
varies from 20 to 36. Corresponding Th1 and Th2 values are
calculated for each QP value. Different threshold points for
changing QP values are shown in Table 1 for the combined
Akiyo, Foreman, and Football distributions.The values ofTh1
andTh2 change linearly with theQP value. Hence, it is natural
to use a linear model for these thresholds for different QP
values. The corresponding linear model is

Th1 (QP) = 0.125 ∗QP
2
− 3.75 ∗QP+ 180,

Th2 (QP) = 0.125 ∗QP
2
− 5.875 ∗QP+ 544.5.

(2)

To effectively locate the global minimum, predictor is
designed to use the motion content. Predictor designs in
many ME algorithms have been proposed and most use
temporal and spatial information [23, 24]. While accurate
predictors can be located, resource overhead and much
memory are required. In the next section, calculation of the
predictors to solve this problem is explained.

3.2. Calculation of Predictors. Based on a unimodal error sur-
face assumption, block distortion monotonically decreases
towards the global minimum. A predictor is calculated using
three steps. First, distortion of the center point is compared
to the threshold value. If the determined motion is slow,
calculation of the predictor is not performed. Otherwise,
distortions at the center and four adjacent center points
are calculated. Among these five points, the one with the
minimum distortion is recognized as the best point and not
Min
1
. Therefore, calculation of the distortion values of the

five points is performed exclusively of Min
1
to locate the

second minimum as Min
2
. The Min

1
and Min

2
values have

the direction of MVs.
From these Min

1
and Min

2
values a minimum of two

positions is obtained. In the second step, ifmotion is classified
as medium, the jumping distance is set to 2. If motion of the
current block is classified as fast, then the jumping distance
is set to 3. To justify the jumping distances of different
sequences, analysis of the 3 representative video sequences
Akiyo, Foreman, and Football was performed, and results are
shown in Table 2 in which jumping distances of 2 and 3 were
sufficient.

For the Foreman and Football sequences, two minima are
calculated initially for a candidate point where the candidate
point is shown as the center point and in black color in
Figure 4, two separate loops are generated for each minima
(Min
1
and Min

2
) as shown in Figure 4.

From Min
1
, in the vertical direction a new point

𝐽
is

considered and the SAD value of this point is calculated. The
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Table 2: Experimental results for determination of the jumping distance.

𝐷

Akiyo Foreman Football

PSNR (dB) Bit rate
(Kbps)

ME
time (sec.) PSNR (dB) Bit Rte

(Kbps)
ME

time (sec.) PSNR (dB) Bit rate
(Kbps)

ME
time (sec.)

1 35.41 43.98 2.67 32.55 128.98 4.04 29.91 263.17 4.53
2 35.41 43.98 2.65 32.52 128.35 3.92 29.92 261.74 4.38
3 35.42 44.05 2.65 32.53 128.48 3.87 29.92 260.67 4.35
4 35.42 44.05 2.66 32.53 129.58 3.87 29.91 260.72 4.32
5 35.42 44.05 2.64 32.53 129.52 3.89 29.90 263.30 4.31
6 35.42 44.05 2.66 32.52 128.63 3.88 29.91 263.17 42.29
7 35.42 44.05 2.66 32.53 128.48 3.87 29.91 264.13 4.31
8 35.41 43.98 2.67 32.52 128.74 3.90 29.91 264.32 4.32
9 35.41 43.98 2.66 32.53 128.64 3.91 29.93 264.22 4.31
10 35.42 44.14 2.65 32.52 128.84 3.91 29.93 264.30 4.31

7

FH

G

E

J

D
C

A

B

I

Minimum point
Candidate of predictor

Predictor

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

7

−7

−6

−5

−4

−3

−2

−1

0
1
2
3
4
5
6

Figure 4: Candidates with consideration of directional prediction.

distance between point
𝐴
and point

𝐽
is the jumping distance

of the sequence. If the SAD value of point
𝐽
is smaller than

for point
𝐴
, another point in the same direction is considered

(point
𝐺
in the example). This procedure will terminate when

the SAD value of the new point is less than the SAD value
of the previous point. For this example, point

𝐺
has the

minimumSADvalue in this direction and is considered as the
candidate point in the vertical direction. A similar procedure
is also applied for point

𝐵
(Figure 4). Considering point

𝐻
as

the candidate minimum point in the horizontal direction
we identify two candidate points in two different directions.
Using these two candidate points a third predictor point is
calculated.The predictor point is shown as point

𝐼
in Figure 4.

Thepredictor point is calculated using (3). On the other hand,
after calculation of the predictor, an adaptive diamond search
is performedusing the calculated predictor as the center point

c
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Figure 5: An adaptive diamond search pattern and a small diamond
search pattern.

of the diamond. The size of the adaptive diamond search is
given in (4) as

predictor

= {point
𝐻
(𝑥) + pint

𝐺
(𝑥) , point

𝐻
(𝑦) + point

𝐺
(𝑦)} ,

(3)

size = Max (󵄨󵄨󵄨󵄨predictor (𝑥)
󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨
predictor (𝑦)󵄨󵄨󵄨󵄨) . (4)

3.3. Selection of a Search Pattern Size. A pattern size decision
algorithm is introduced (Figure 5). Initially, the maximum
distance from the predictor to the center is calculated, which
is 3 in Figure 5. Using thismaximumdistance, a square region
is considered with 4 points (Figure 5, marked as point

𝑎
).

SAD values of these 4 new points are calculated and
centers are checked. If the minimum SAD value is the center
of the diamond, then the large search pattern size decision



International Journal of Distributed Sensor Networks 7

Start

Searching initial minimum points

Finding candidates of predictor

Adaptive diamond search

Predictor calculation

Small diamond search

Stop

Min1 = center

CenterMAD < Th2

D1 D2

CenterMAD > Th1

Figure 6: Overall procedure of the proposed algorithm.

algorithm terminates. For this case, a small diamond search
region is considered again with 4 new points (shown in
Figure 5 as point

𝑠
). In this second step, SAD values of the

5 points are checked. As in the previous decision, if the
minimum value lies in the center, then the search terminates.
Other conditions are shown in Figure 6 and discussed in
detail in the next section.

3.4. Overall Procedure. The proposed algorithm can be
divided into the steps shown in Figure 6:

(1) Initial decision for predictor candidates.

(2) Estimation of predictors.

(3) Setting a search pattern size.

(4) Performing search patterns.

Initially, values Min
1
and Min

2
are calculated. If Min

1
is

the center, then the block has zero motion and no additional
investigation is needed. Otherwise, the MAD value of the
center is calculated as MAD

𝑐
, the value of which is compared

with Th1 and Th2 for calculation of the jumping distance.

Using the value of MAD
𝑐
and the thresholds, block motion

is determined, as shown in (5), as

slow motion: MAD
𝑐
<Th1 (QP) ,

medium motion: Th1 (QP) < MAD
𝑐
<Th2 (QP) ,

fast motion: MAD
𝑐
>Th2 (QP) .

(5)

For slow motion, only a small diamond search is consid-
ered in the proposed algorithm. On the other hand, medium
and fast motion based blocks require calculation of the
predictor. The overall procedure is shown in Figure 6.

4. Experimental Results

The proposed algorithm was implemented using JM 18.5 [25]
and HM 10.0 [26] of HEVC. Measurement of ΔBit, ΔPSNR

𝑌
,

and Δ𝑇 was defined as

ΔBit =
(Bitrateproposed − Bitrateoriginal)

Bitrateoriginal
× 100%,

ΔPSNR
𝑌
= PSNRproposed

𝑌
−PSNRoriginal

𝑌
,

Δ𝑇 =

(Timeproposed − Timeoriginal)
Timeoriginal

× 100%,

(6)

where ΔBit indicates the total bitrate change (percentage),
ΔPSNR

𝑌
indicates ΔPSNR

𝑌
changes, and Δ𝑇 is the time

saving factor (percentage). A positive value for the bitrate
indicates an increase in the number of bits and a negative
value indicates a decrease. An improvement in the ΔPSNR

𝑌

parameter gives a positive value and degradation gives a
negative value. A negative value for the time saving factor
indicates that the proposed algorithm consumes less time
than the original reference software. We performed all sim-
ulation experiments on a PC with an Intel i5-3470 processor
with a 3.2GHz clock speed and 4GB of RAM running on
Windows 7. The proposed algorithm was tested using both
H.264/AVC and HEVC.

4.1. Performance Evaluation Using H.264/AVC Standard. The
experimental conditions were as follows:

(1) Frames To Be Encoded 100.
(2) Search Range 32.
(3) QP 24, 28, and 32.
(4) Framerate 20.
(5) Entropy coding method CABAC.
(6) The format of YUV 4:2:0.
(7) The coding environment IPPP frame structure.
(8) Five reference frames per sequence.
(9) Only integer motion estimation.

Video sequences considered wereNews, Foreman, Soccer,
Stefan, and Tractor. News is representative of slow motion.
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Figure 7: Rate-distortion (RD) curves for (a) News, (b) Foreman, (c) Soccer, and (d) Tractor sequences for slow motion, middle motion, and
fast motion.

Foreman and Tractor are medium motion, and fast motion
representative sequences are Soccer and Stefan.The frame size
of Tractor was 1920 × 1080 (FHD).The other sequences used
a frame size of 352 × 288 (CIF).

Experimental results are shown in Table 3 in which the
proposed algorithm is compared with the full search (FS),
UMHexagon search, and EPZ search algorithms. Devia-
tions between the proposed algorithm and the comparison
algorithms are shown. The proposed algorithm achieved
reductions of 97.10% for total time, on average, comparedwith
FS and achieved, on average, 29.43% and 8.28% more total
time reductions than for UMHexagonS and EPZS, respec-
tively. Considering the motion estimation time (ΔME time)

the proposed algorithm provided 98.88%, 48.57%, and
16.03%, on average, time reductions compared with FS,
UMHexagonS, and EPZS, respectively.

Quality degradation of the proposed algorithm is also
shown based on the ΔPSNR and ΔBit metrics. The proposed
algorithmprovided a negligible loss of quality, comparedwith
the FS, UMHexagonS, and EPZS algorithms, all with larger
time reductions.

To show PSNR deviation from a low to a high bitrate, RD
curves of the proposed and compared algorithms are plotted
in Figure 7 for all sequences. All of the algorithms provided
almost the same RD curve. For the Forman sequence, the
proposed and UMHexagonS algorithms produced similar
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Figure 8: Rate-distortion (RD) curves for (a) Cactus and (b) BasketballDrive sequences for Class B in low-delay-p, main condition.

RD performance. The proposed algorithm achieved a better
result thanUMHexagonS for theTractor sequence and almost
the same performance as FS for the same sequence.

4.2. Performance Evaluation Using HEVC Standard. The
proposed algorithmwas tested in HM 10.0 reference software
using the HEVC encoder. The test environment using the
same hardware as for the H.264/AVC comparison was based
on the following configuration:

(1) QP values are 24, 28, and 32.
(2) Thefirst 30 frames of each sequenceswere considered.
(3) All analyses were performed in low-delaymainmode.
(4) Fast modes were set in the order of FEN: 1, ECU: 0,

FDM: 1, CFM: 0, ESD: 0.
(5) Sequences were tested, including Cactus (Class B),

BasketballDrive (Class B), BQMall (Class C), Par-
tyScene (Class C), and BasketballPass (Class D).

Results are shown in Table 4 in which the proposed
algorithm was compared with the FS and the TZS algorithms
[27]. The proposed algorithm reduced the overall encoding
time, on average, 95.57% and 14.27%, compared with FS and
TZS, respectively. Considering only the motion estimation
time, the proposed algorithm achieves 99% and 42.61% time
reductions, compared with the FS and TZS algorithms.

To evaluate quality degradation, ΔPSNR and ΔBit values
are also shown in Table 4. The proposed algorithm provided
a similar PSNR loss with a marginal bit reduction.

RD curves of all sequences are shown in Figures 8, 9,
and 10 for Class B, Class C, and Class D. The proposed
algorithm achieved almost the same result as the FS and TZS
algorithms. For the BasketballDrive sequence, the proposed

method achieved a degradation of the bitrate, compared with
FS, due to the complexity of the sequence.

In IoT environment, multimedia contents can be also
generated locally or downloaded from the Internet through
any WiFi, DSRC, WiMAX, 4G LTE connections available
to the mobile/smart devices and enable the end-user or
end-system to take appropriate actions and be aware of the
environmental conditions based on rich visual information.
In view of this, real-time content delivery is very important,
especially based on HEVC video standard. The proposed
algorithm can provide a scheme for supporting the real-time
UHD video content distribution system.

5. Conclusions

A video content-based fast motion estimation algorithm is
herein proposed. Based on motion classification, a predictor
is used and an adaptive search pattern size is set. Using
H.264/AVC, experimental results showed that the proposed
algorithm achieved speed-up factors of up to 48.57% and
16.03%, on average, compared with UMHexagonS and EPZS,
respectively, while maintaining good bitrate performance.

For HEVC, the proposed algorithm achieved a speed-
up factor of up to 42.61%, on average, compared with
TZS. Also, for medium and fast motion sequences, the
proposed algorithm substantially reduced the consumed time
for motion estimation. The proposed scheme will be helpful
for implementation of a real-time video encoding system
because of no need for large memory comparing with EPZS
and UMHexagonS algorithms. It means that the proposed
algorithm can give easy hardware implementation of HEVC
encoder on portable (embedded) devices.
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Figure 9: Rate-distortion (RD) curves for (a) BQMall and (b) PartyScene sequences for Class C in low-delay-P, main condition.
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